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Abstract

Extant phylogeographic patterns of Palearctic terrestrial vertebrates are generally believed to
have originated from glacial range fragmentation. Post-Pleistocene range expansions have led
to the formation of secondary contact zones among genetically distinct taxa. For coal tits
(Periparus ater), such a contact zone has been localized in Germany. In this study, we
quantified gene flow between Fennoscandian and southern European coal tits using a set of 13
microsatellite loci. STRUCTURE analysis revealed four genctic clusters two of these on
Mediterranean islands. German populations were genetically admixed but introgression of
southern alleles was evident for Fennoscandian populations. In the South, we found negligible
introgression of northern alleles (and haplotypes) but slight admixture of two southern genetic
clusters in the Pyrenees and on the Balkan Peninsulac and near complete sorting of these two
allelic lineages on the islands of Corsica and Sardinia. Genetic distinctiveness of the
Mediterrancan island populations reflects general patterns of endemism in the Corso-
Sardinian fauna and the Cypriot fauna. Wide-range gene flow in Central Europe suggests a
broad zone of intergradation between subspecies of the coal tit rather than a narrow contact
zone. This is in accordance with low morphological and bioacoustic differentiation of

European coal tit populations.

Key words: phylogeography — island populations — microsatellites — subspecies — glacial
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Introduction

Evolutionary biologists widely agree that glacial impact considerably shaped phylogeographic
patterns and speciation of terrestrial vertebrates in the Palearctic (Avise & Walker, 1998;
Hewitt, 2000, 2004; Lovette, 2005; Zink er al., 2008; Stewart ef al., 2010). Pleistocene
separation of Eastern and Western Palearctic populations led to divergence of gene pools
among distant refugia, in a few extreme cases across a large extant distributional gap, such as
seen in the marsh tit, Poecile palustris (Tritsch ef al., 2017) or in the azure-winged magpie,
Cyanopica cyanus (Zhang et al., 2012). Other East-West lincage splits dating back to
Pleistocene events were reconstructed for example in corvids (Haring er al., 2007, 2012) and
tits (Kvist ef al. 2003; Packert ef al., 2005; Kvist & Rytkonen, 2006). One noticeable result
from Holocene range expansion is the spatial overlap of genetically distinct populations that
is manifested in secondary contact zones of a highly variable extent (Woodruff, 1973; Haffer,
1989; Aliabadian er al., 2005). In Western Europe, the apparent spatial clustering of
secondary contact zones among terrestrial vertebrate sister taxa was the result of postglacial
expansion from southem glacial refugia (Hewitt, 2000; Schmitt, 2007). Parapatry along sharp
and narrow hybrid zones is typically found at geographic barriers, such as the European
mountain systems that separate two larger glacial refugia from the continent: 1) the Iberian
Peninsula in the Pyrenees (Fig. 1A; birds: Helbig er al., 2001; Pons ef al., 2011; Backstrom ef
al., 2013; Kuhn et al., 2013; reptiles: Mila er al., 2013; insects: Vasquez ef al., 1994; Shuker
et al., 2005; Bella er al., 2009); ii) the Italian Peninsula in the Alps (Fig. 1A) II; birds:
Hermansen ef al., 2011; rodents: Sutter ef al., 2013; Gimenéz ef al., 2017; insects: Flanagan ef
al., 1999). Apart from parapatry across mountain ranges, narrow hybrid zones of a wide
latitudinal extent exist in Central Europe (Fig. 1A), the best-studied examples being those of
crows (Corvus c. corone, C. ¢. cornix: Haas et al., 2009, 2010; Wolf ef al., 2010; Poelstra et
al., 2014a, b; other birds: Secondi ef al., 2011), the house mouse (Mus m. musculus, M. m.

domesticus: Macholan et al., 2008; Gimenéz ef al., 2017) and hedgehogs (Erinaceus
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europaeus, E. roumanicus: Berggren ef al., 2005; Bolfikova & Hulva, 2012; Waters et al.
[2013: Fig. 1B]; Pféffle et al., 2014).

In several bird species pairs, zones of secondary contact and hybridization are not
restricted to a narrow band, but extend along a wide longitudinal range into Eastern Europe
(Fig. 1B), such as found in flycatchers (Ficedula: Satre ef al., 2001; Hogner et al., 2012a),
reed warblers (Acrocephalus: Reifova ef al., 2016), nightingales (Luscinia: Vokurkova ef al.,
2013), tits (Cyanistes: Woodruff, 1973; Stervander er al., 2015) and Old World buntings
(Emberiza: Irwin et al., 2009).

In a few other examples, pre-mating barriers were either not established during a short
separation time in refuge arcas or they simply broke down in secondary contact, which had
led to merging of divergent genetic lineages. The signal from mitochondrial markers might
then remain the only testimony of past (Pleistocene) lincage separation, presently contrasted
by narrow or wide-range gene flow (Fig. 1C), as suggested for some passerine bird species
(Zink et al., 2008; Packert er al., 2010; Hogner ef al. 2012b; Block ef al., 2015). Interbreeding
and merging of gene pools between cryptic genetic linecages of a phenotypically uniform
species has been sometimes termed “speciation in reverse” (e.g. in birds Webb e al., 2011).
However, in the strict sense, reverse speciation is more appropriately applied to those
examples where gene pools become largely absorbed due to hybridization with one of the two
parental species running the risk of going extinct (in fishes: Sechausen ef al., 2008; Taylor ef
al., 2006; Hudson et al., 2013; Bath ef al., 2014; in Darwin’s finches Kleindorfer ef al., 2014).

Our study focuses on the recent evidence of secondary range overlap in Western
Europe among a north-castern and a south-western mitochondrial lineage of the coal tit,
Periparus ater (Pentzold ef al., 2013). In this study, we aim at verifying the extent and degree
of nuclear gene flow among the two coal tit lineages using nuclear markers (microsatellites).
We expect significant gene flow at least in the region of considerable mtDNA lincage overlap

at a contact zone extending throughout Germany (Fig. 2). We also expect nuclear gene flow
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to extend across a wider range than mitochondrial introgression, as was shown for another

parid hybrid zone (Parus major/ P. minor: Kvist & Rytkénen, 2006).

Material and methods

Study species

Eight divergent mitochondrial lineages are presently known in the coal tit. These lincages are
distributed across large parts of the Palearctic, the mountain forests of China, the Himalayas,
Karakoram and Hindu Kush as well as on Taiwan (Tietze ef al., 2011). Across the Westem
Palearctic, four distinct mtDNA lineages of the coal tit occur (Fig. 2): 1) the north-castern
Palearctic (ater subspecies group; distributed from Northern Europe across the Eurasian
continent to the Pacific coast and Japan), i1) Central and Southern Europe (abiefum subspecies
group) including the British Isles and the islands of Corsica and Sardinia, iii) North Africa
and iv) Cyprus (Martens ef al., 2006, Tietze ef al., 2011, Pentzold ef al., 2013). Range overlap
of the south-western abiefum and the north-eastern afer lineages could so far be restricted to
the German populations only (Fig. 2). Due to a lack of reliable morphological and bioacoustic
distinctiveness of north-castern versus south-western Palearctic coal tits, the spatial dimension
of the contact zone cannot be delimited by geographical variation of phenotypes or song types

(Tietze et al., 2011; Pentzold ef al., 2013, 2016).

Sampling and multilocus genotyping

We sampled 166 birds from Russia, Kyrgyzstan, Kazakhstan, Finland, Norway, Germany,
French Pyrenees, Corsica and Sardinia. DNA preparation was conducted either using the
inmuPREP DNA Mini Kit (muscle tissue, Analytik Jena AG, Germany) or the PEQLAB
GOLD Blood DNA Mini Kit (blood samples, PEQLAB Biotechnologic GmbH, Germany),

following the manufacturers” advice.
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New microsatellite loci for P. ater were identified by Ecogenics GmbH (Zirich,
Switzerland) based on an enriched DNA library. Size selected genomic DNA was ligated into
SNXforward/SNX reverse-linker (Hamilton er al., 1999) and enriched by magnetic bead
selection with biotin-labelled oligonucleotide repeats ((CT)iz, (GT)13, (GTAT)y, (GATA)7;
Gautschi ef a/., 2000 a,b). A total number of 528 recombinant colonies were screened and 415
gave a positive signal after dot-blot hybridization. Plasmids from 48 positive clones were
Sanger sequenced and primers were designed for 16 microsatellite inserts of which nine
(listed in Table 1) were finally used for amplification of polymorphic microsatellite loci using
the protocol described by Schuelke (2000). For this protocol a M13(-21) tail (18 bp) was
adhered to the 5° end of the forward primer. The reverse primer remained unmodified. In
addition to the two regular PCR primers, a fluorescent-labelled universal M13(-21) primer
was added to the reaction mixture. The reaction contained 10 to 40 ng of template DNA,
0.04 uM of the M13-forward primer, 0.16 uM of the reverse primer and the labelled M13
primer, 0.2 mM of each dNTP, 1 pL. of 10x PCR reaction buffer “complete™ and 0.5 units of
DFS-Taq DNA polymerase (Bioron GmbH, Germany) in a total volume of 10 pL. The
thermo-treatment consisted of two successive steps: a) amplification of the microsatellite
fragment with M13 fusion, b) labelling of the fragment with the fluorescent dye. The PCR
program was 95 °C for 10 min followed by 30 cycles of 30 s of 95 °C, 45 s of 50 °C (Parate8)
or rather 56 °C (all other Parate loci) and 45 s of 72 °C (step a), followed by eight cycles of
305 0f 95 °C, 45 s of 53 °C and 45 s of 72 °C (step b) and a final elongation at 72 °C for 30
min.

Four additional primer pairs targeting microsatellite loci were obtained from previous
studies on Poecile atricapillus (Table 1). We tested for cross amplification with P. arer
samples in a total volume of 10 pL containing 10 to 40 ng of template DNA, 0.3 uM of each
primer, 0.2 mM of each dNTP, 1 pL of 10x PCR reaction buffer “complete” and 0.5 units of

DFS-Taq DNA polymerase (Bioron GmbH, Germany). The thermo-cycling protocol was as
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follows: 94 °C for 5 min followed by 35 cycles of 94 °C for 30 s, 60 °C (Pat2-43) or 57 °C
(PmaC25, PmaTGAn33, Pma69) for 30 s, 72 °C for 45 s and a final elongation at 72 °C for 5
min.

Specimens were genotyped at 13 loci (Table 1) using the reaction conditions outlined
above and labelled PCR fragments were run on a 16-column ABI 3130x/ capillary sequencer
(Applied Biosystems). The alleles were scored using the STRand Analysis Software vers. 2.4
(UC Davis, veterinary genetics lab, http://www.vgl.ucdavis.edu/STRand; Toonen and
Hughes, 2001).

The software package MICROCHECKER 2.2.3 (van Qosterhout er al., 2004) was
used to test the probability that experimental errors occurred during microsatellite genotyping,
1.c. large allelic dropout, scoring errors due to misinterpretation of stutter bands and null

alleles.

Diversity and Divergence

Summaries of allele sizes and the existence and frequencies of population specific alleles
(private alleles) were calculated using the program CONVERT vers. 1.31 (Glaubitz, 2004),
which was also employed to generate input files for various software packages. Linkage
between loci was determined using ARLEQUIN vers 3.5.1.3 (Excoffier ef al., 2005). The
same software package was used to calculate locus-specific observed and expected
heterozygosities (Ho, Hg) for each sample population and to test for locus-specific deviations
from Hardy Weinberg expectations (HWE). Population specific deviations from HWE
(excess or deficiency of heterozygosity) across all loci were explored using inbreeding
coefficients (Fis), calculated with the software FStat (ver. 2.9.3.2; Goudet 1995) using a
randomisation test (3600 randomisations) to test for significance. The same software was used
to estimate the mean number of alleles per locus and populations as well as the mean allelic

richness (AR) per population across all loci. For these, we analysed a reduced dataset
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consisting of 145 specimens that belong to 14 distinct populations with a minimum of five
specimens per population (Table 2, Table S1).

Divergence between populations was estimated using F-statistics (inferred from
microsatellite allele frequencies) and ®-statistics (inferred from mitochondrial nucleotide
sequences) by pairwise Fsr and ®st values as well as by non-hierarchical and hierarchical
locus-by-locus analysis of molecular variance (AMOVA with Fer and ®cr values as a
measure of divergence among groups) using ARLEQUIN. 20000 permutations were
performed to test for significance of these values. All p-values obtained from tests
implementing multiple comparisons (i.e. test for deviation from HWE expectation, test for
linkage between loci) were Bonferroni corrected to adjust the significance threshold (Rice,
1989). In order to depict divergence between populations, pairwise Fsr values were used in a

distance matrix to construct a UPGMA phenogram with MEGA v.6 (Tamura ef a/., 2013).

Bayesian inference of the population structure
Non-spatial Bayesian inference of population structure was performed using the software
package STRUCTURE vers. 2.3.3. (Pritchard et a/., 2000; Falush er al., 2003). STRUCTURE
runs were performed 1) under the a priori assumption of genetic admixture and correlated
allele frequencies and ii) under a LOCPRIOR model that allows for classification of the
individuals into groups, which are given to the algorithm as an a priori parameter (Hubisz et
al., 2009). The model was run under two different LOCPRIOR settings: 1) by classifying the
individuals of the complete data set (n = 166) according to their assignment to mitochondrial
lincages (inferred from the data set by Pentzold er al., 2013) and ii) by assigning the
individuals to 14 local populations of n > 5 (total sampling n = 145, Table 2).

All STRUCTURE runs were conducted for 1-10 putative genetic clusters (K) with ten
replicates for each value of K. The number of MCMC runs was 10° with a burn-in period of

25 000 throughout all model runs. For further processing of the STRUCTURE output,
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STRUCTURE HARVESTER (Earl & von Holdt, 2012) was used. In order to select the most
likely number of genetic clusters (K), we used the approach by Evanno ef al. (2005).
STRUCTURE analysis was also used to estimate the extent of genetic admixture in different
populations according to the method described by Randi (2008). Accordingly, we used a
threshold q > 0.80 for the assignment of individuals to a cluster or we classified individuals as
admixed individuals, if the proportion of membership was q < 0.80 (see Randi, 2008).

Spatial Bayesian clustering was performed using the software packages TESS vers.
2.3.1 (Chen et al., 2007) and GENELAND vers. 4.03 (Guillot et al., 2005b). Unlike the non-
spatial models of STRUCTURE, the spatially explicit models implemented in TESS and
GENELAND consider the geographic coordinates of the samples, but do not consider
affiliation as a model parameter. Data exploration under different models is recommendable,
because explanatory power of spatial versus non-spatial models depends on demographic
scenarios to be tested and clustering output from one model-based method might reveal a
finer scaled spatial structure that other models fail to detect (Frangois & Durand 2010). Both
admixture models in TESS (BYM and CAR model, Durand et a/., 2009a, b) were run with the
complete dataset of n = 166 individuals (MCMC iterations: 10°, burn-in period: 20 000,
Kmax: 2-10, five replicates for each Kmax for both models). Unlike STRUCTURE or TESS
the standard models of GENELAND do not account for admixture, but assign posterior
probabilities of cluster membership to the single individuals. A benefit of GENELAND is that
it can correct for the occurrence of null alleles. Although from a biological perspective it
seems obvious to assume the allele frequencies to be correlated between populations, the
respective model was assessed to systematically overestimate the number of clusters (Guillot
et al., 2005a). Hence according to the authors’” recommendations the analysis was conducted
in two steps: first, resolving the number of populations (K) using the D model (frequency
model = uncorrelated; K: 1-10); second, deriving the correct population assignment by

applving the F model (frequency model = correlated) with a fixed number of K (which was

Biological Journal of the Linnean Society



OOV D WN =

\O

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

Biological Journal of the Linnean Society

determined in the first step, Guillot ef al., 2005a, GENELAND documentation). The model
parameters were: 10° MCMC iterations, Thinning = 1000, Null allele model = TRUE and ten
replicates per analysis step. The outputs of STRUCTURE and TESS both were further
processed with CLUMPP (Jakobsson & Rosenberg, 2007). For visualization, DISTRUCT

(Rosenberg, 2004) was used.

Admixture rate in the hybrid zone

For estimating admixture rate in the hybrid zone we applied demographic modelling based on
Approximate Bayesian Computation (ABC) using the program DIYABC v. 2.0.4 (Comuet ef
al., 2010). We first used both microsatellite and mitochondrial control-region sequences and
included individuals from which both data were available. We chose samples from Norway
and Finland (n = 18) with g-values from STRUCTURE above 0.8 to their cluster ‘ater” to
represent the ‘northern’ parental population and samples from French Pyrenees with g-values
from STRUCTURE above 0.8 to their cluster ‘abietum’ to represent the ‘southern’ (n = 8)
parental population. This was based on further evidence that these populations represented
only one mitochondrial lineage each and were clearly separated from, but still related to the
admixture populations in the STRUCTURE analysis from the microsatellite data. In the
central European admixture population, we included samples from Schleswig Holstein, Harz,
Saxony, Palatine Forest and Black Forest (n = 47, all Germany).

We started by constructing four historical models (Fig. 3): 1) parental ‘northemn’ population
and ‘southem’ population were split from each other at time t2 and come into a contact at
time tl to form the admixture population, 2) the parental populations split first from each
other and the central European population was split later from the northern population, 3) the
northern and central populations split first from each other and the southern population was
split later from the northern population and 4) the parental populations split first from each

other and the central European population was split later from the southern population.
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Mutation rate for the microsatellite data was set to 10°-107 as was done with another tit
species, the blue tit Cyanistes caeruleus (Hansson et al., 2014). For the mitochondrial
sequences, we applied the substitution rate 1.156 * 10 calibrated for coal tit control region in
Pentzold et al. (2013), HKY+Gamma model with gamma = 0.09 (as suggested by the test for
the substitution model implemented in MEGA v. 6.06; Tamura ef al., 2013). As the fit of
observed data with the simulated data was poor, we next performed the same analysis
separately for the microsatellite data and the mitochondrial data. For the microsatellite data,
uniform prior distributions for effective population sizes were set to 10-10 000 and for
coalescence times, t]1 was set to 10-1000 and t2 to 10-4000. The uniform prior distribution
for the admixture rate was 0.001-0.999. The priors for effective population sizes and
coalescence times were changed for mitochondrial analyses to N = 1000-1 000 000 for
‘northern’, "southern’ and ancient populations, N, = 1000-2 000 000 for the population at the
contact zone, t1 = 10-20 000 and t2 = 1000-2 000 000, as the fit of the observed and
simulated data was poor when using the same priors as for the microsatellite data. Altogether,
4 000 000 data sets were simulated for both microsatellite and mitochondrial data.

For calculation of time of divergence and time since admixture we assumed a mean
generation time of approximately two years in tits (as applied by Hansson er al., 2014;
compare 1.5 years for the great tit, Parus major, in Qu et al. (2015) and 2.26 years for the
willow tit, Poecile montanus, in Kvist ef al. (2001)). We expect time estimates inferred from
mitochondrial DNA to correspond with the onset of lineage splitting and admixture caused by
paleoclimatic events more accurately, because nuclear loci will generally reach coalescence
slower and at a later stage of evolution (Palumbi er al., 2001). Therefore, time estimates
inferred from microsatellite data are generally supposed to post-date paleoclimatic events that
triggered lineage divergence.

Furthermore, the ratio between male to female gene flow (m,,/m¢) was calculated

according to the equations in Hedrick ef al. (2013). The main assumptions implemented in

Biological Journal of the Linnean Society
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this approach are that populations can be described according to the island model and that
populations are in migration-drift equilibrium. The approach uses divergence levels caused by
female gene flow as Fsrp values derived from mtDNA and estimates divergence levels
caused by male gene flow Fsrm) from microsatellites (Eqn. 7a; Hedrick er af., 2013). Both
divergence levels were used to calculate the mp/my ratio (Eqn. 7b; Hedrick er al., 2013).
Given the island model and migration drift equilibrium as basic assumptions, the estimates
were alternatively performed 1) for the total set of populations and ii) under exclusion of

Mediterranean island populations for all continental Eurasian populations.

Results

Microsatellite genotyping

Deviations from HWE were predominately found at loci Parate 6 (six populations) and Parate
8 (seven populations), but also in single populations at loci PmaC25, Parate 15, Parate 16,
Parate 3 and Parate 2. The occurrence of HWE deviations at these loci was associated with the
presence of null alleles (Table S1). Most HWE deviations were found in the population from
Schleswig-Holstein, which also had the highest positive Fig value (Table 2). Furthermore, in
this population we found evidence of linkage disequilibrium among alleles at six loci (Table
S1). None of the other study populations showed a signal of linkage disequilibrium except
two island populations from Cyprus and Corsica (at two loci each; Table S1). Our analyses
did not provide evidence of genotyping artefacts due to large allele dropout and misscoring of
genotypes due to stuttering was almost absent except at locus Parate 8 in a single population
(Cyprus). These analyses suggested that loci Parate 6 and Parate 8 should be treated with a

precaution in subsequent analyses (see below).

Diversity and Divergence
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Given the null allele bias at loci Parate 6 and Parate 8, we excluded these data from estimating
diversity and divergence for 14 populations (n = 145). The mean allele number over loci
varied between 9.9 (Schleswig-Holstein) to 4.5 (Central Asia; Table 2) due to variation in
sample sizes. However, allelic richness that is corrected for differences in sample sizes,
ranged at similar values across populations (4.1-5.2), except for Sardinia, where it was
considerably lower than in other populations (3.5; Table 2). Based on the expected
heterozygosity (Hg), the genetic variation appeared relatively high and fairly constant between
the samples (0.75-0.86), excluding again Sardinia that had the lowest Hy (0.63; Table 2).
Most population samples showed moderate deficit of heterozygotes as indicated by positive
inbreeding coefficients (Table 2). This was the most pronounced in the three German
populations from Schleswig Holstein, Harz and Saxony, but also in Norway.

Non-hierarchical AMOVA indicated divergence between populations (#s = 0.065, P
< 0.0001). Pairwise Fst values were calculated (Table S2) and depicted as an UPGMA
phenogram reflecting the existence of four clusters of populations (Fig. 4). There is a
significantly high amount of genetic divergence between these four groups as indicated by a
hierarchical AMOVA (microsatellites: For = 0.076, P < 0.001; mtDNA: ®@¢cp = 0.662, P <
0.001). Two of the Mediterrancan island populations exhibited the strongest divergence
(Cyprus vs. all. Fsr=0.13-0.28, Sardinia vs. all, Fst = 0.10-0.26; Table S2). For Cyprus, this
was apparent not only in terms of high Fgp values, but also by a considerably high
accumulation of private alleles despite the small sample size (Table 2). In comparison, ®sr
values inferred from the mtDNA data set (control-region sequences) were much higher than
Fsr values from the microsatellite data, but likewise indicated the strongest divergence
between island and continental populations (Cyprus vs. all. ®gp = 0.58-0.99, Sardinia vs. all,
Ogp = 0.41-1.00).

The continental populations can be considered as two population clusters (Fig. 4).

North-castern Eurasian populations (Russia and Fennoscandia) are divergent from the central
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and south-western European populations (Fig. 4). To give a general picture, pairwise Fgr
values within these two groups were lower than values between populations of both groups
(Table S2). Maximum divergence between the two continental groups was observed between
southern European populations (Pyrenees, Greece) and north-eastern Palearctic populations
(Russian Far East, Central Asia; Fst = 0.075-0.106; Table S2). Lowest divergence was
observed between German populations from the zone of overlap and all other continental
Eurasian populations (Fst = 0.00-0.088; Table S2).

For the entire set of populations, the ratio between male to female gene flow (mp,/mg)
was estimated based on AMOVA performed for microsatellite data (Fst = 0.065) and mtDNA
(Fstny = 0.667). These estimates suggest that male gene flow contributes less to the total
divergence (Fstm) = 0.13) than female gene flow and my/ms was 13.41 When we limited the
analysis to Eurasian continental populations (under exclusion of island populations) the ratio
slightly increased to 19.96 with Fsr = 0.029 (microsatellites), divergence caused by female
gene flow Fgrig = 0.556 (mtDNA) and divergence caused by male gene flow Fspm) = 0.059

(microsatellites).

Bayesian inference of population structure

For the complete data set (n = 166) under the admixture — frequency-correlated model,
Evanno’s AK separated two large clusters (K = 2) as the most plausible population structure
(Fig. S1). There was a high level of admixture between these two groups all across Europe
and only few populations appeared to be pure representatives of either of the two clusters: 1)
Central Asian and Far East Russian populations of the north-eastern cluster and ii) the island
population from Sardinia of the south-western cluster. All continental European study
populations included a high number of genetically admixed individuals. Using LOCPRIOR
(classification according to mitochondrial lineages), a population structure with four genetic

groups (K = 4) resulted as the most plausible situation (Fig. S1). Likewise for the reduced
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population dataset (n = 145 for 14 local populations) four genetic clusters (K = 4) were
identified by the AK method to be the most plausible scenario, independent of the model
applied (with and without LOCPRIOR; Figs 5, S1). The spatial differentiation pattern under
K =4 was as follows: In the West Palearctic, four groups were distinguished (Fig. 5): 1) The
north-eastern Palearctic cluster including Central Asian, Far East Russian and Fennoscandian
populations, ii) the south-western Palearctic cluster including all central and southern
continental European populations, iii) the Mediterranean cluster comprising of populations
from Corsica and Sardinia (Fig. 5) and iv) the Cypriot population. No signs of genetic
admixture were found in Far East Russia, on Sardinia and on Cyprus (Fig. 5). Local genetic
admixture was found all across Europe: i) introgression of southern European alleles into
Fennoscandian populations, ii) introgression of north-castern Palearctic alleles into German
populations, but (near) absence of north-eastern alleles in the Pyrenean and Greek populations
(Fig. 5), ii1) wide admixture of two southern clusters (continental: orange; Mediterrancan
islands: yellow) and introgression of continental European alleles into the Corsican island
population (but not into the Sardinian population; Fig. 5).

Spatial clustering studied with GENELAND identified three clusters which exactly
matched the phylogeographic pattern of three mitochondrial lineages: a north-eastern
Palearctic cluster (Russian Far East, Central Asia, Fennoscandia), a south-western Palearctic
cluster (central and southern Europe, including Corsica and Sardinia) and Cyprus (Fig. 6).
This pattern was identical in nine out of ten model runs. In a single run, Corsica and Sardinia
together represented one separate group whereas the north-eastern and south-western coal tits
were united in a second cluster (the number of possible clusters in the analysis was fixed at
K =3). Both of the two spatially explicit admixture models that were run in TESS reflected
the same population subdivision inferred by GENELAND (Fig. 6, S2). Neither TESS nor
GENELAND separated populations from Corsica and Sardinia from the south-western

mainland group.
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Admixture rate in the hybrid zone

For both the mitochondrial and the microsatellite data set the best fit was for the admixture
model (scenario 1, Fig. 2). However, parameter estimates inferred from microsatellite data do
not seem reasonably interpretable for yielding extremely recent and unreliable estimates for
times of divergence and time since admixture (during the last six centuries). For the
mitochondrial data, scenario 1 was the best model with high support (posterior probabilities
0.9740 and 0.9983 for the direct and logistic regression approaches, respectively), also
supported by all the used 40 summary statistics. Type I and II errors were small; type I errors
were 0.006 and 0.192 and type II errors were 0.011 and 0.049 for the direct and logistic
approaches, respectively. Modes of the effective population sizes for Northern Europe
(Norway and Finland) were 280 000 (95 % HPD = 105 000-940 000), for the hybrid zone
9 820 000 (95 % HPD = 3 120 000-9 910 000) and for the Southern Europe 595 000 (95 %
HPD = 222 000-981 000). The admixture was estimated to have occurred 57 600 generations
ago (95 % HPD = 12 400-95 900) with an admixture rate of 0.216 (95 % HPD = 0.079-
0.422) relative to the northern population and divergence of southern and northern lineages 1
260 000 (95 % HPD =521 000-5 710 000) generations ago. Applying a mean generation time
of two years, our estimates correspond to a mean time of divergence of 2.52 mya (95% HPD
1.04-11.42 mya) and a mean time since admixture of 0.114 mya (95% HPD 0.024-0.192

mya).

Discussion

Patterns of gene flow in Europe

Despite considerable genetic differences, the European range of secondary overlap among
south-western and north-eastern coal tit lineages does not match the general pattern of a

narrow and geographically restricted secondary contact zone (Fig. 1A; compare Haffer, 1989;
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Aliabadian, 2005). All German populations appeared to be genetically strongly admixed and
introgression of south-western alleles extended northward into Fennoscandian populations,
where corresponding (south-western) mtDNA haplotypes were absent in our study (but see
Johnsen ef al., 2010). A moderate deficit of heterozygotes and linkage disequilibrium in three
German populations (strongest in Schleswig-Holstein) are indicative of local admixture of
two diverged genetic lincages and are typically found in populations from the centre of a
hybrid zone (Jiggins & Mallet, 2000; Alexandrino ef al., 2005; Brelsford & Iwrin, 2009). The
actual eastward and southward extent of the contact zone is far from being fully described,
because to a lesser degree the northwestern alleles and haplotypes were present in southern
European populations (Greece).

Despite all limitations of our sampling, northward allelic introgression and strong
differences between pairwise ®@g7 values and Fgr values hint to wider spatial extent of nuclear
gene flow as compared to mtDNA introgression. Such mito-nuclear discordance, can arise
from selection against hybrids and/or sterility of the F; heterogametic sex (Haldane’s rule:
Davies & Pomiankowski, 1995; Wu ef al., 1996) as suggested to be the case in other
passerine hybrid zones (European Ficedula flycatchers: Tegelstrom & Gelter, 1990; Sactre ef
al., 2001; Qvarnstrém ef al., 2010; Far East Russian great tits: Kvist & Rytkdnen, 2006).
However, in coal tits there was no evidence of hybrid sterility or selection against hybrids
from cross-fostering experiments with individuals from European and Afghan populations
(Lohrl, 1994). Therefore, with given certainty we can rule out selection against hybrids in
admixed European coal tit populations, too.

Secondly, sex-biased dispersal is considered as another possible cause of mito-nuclear
discordance (reviewed by Prugnolle & de Meus, 2002; in birds: Kvist & Rytkénen, 2006;
Nleraeral., 2011; Lin et al., 2011). Though the common paradigm of female-biased dispersal
in birds (Clarke ef al., 1997, Petit & Excoffier, 2009) has recently been challenged (Li &

Merild, 2010; Both ef al., 2012; Dobson, 2013), there is only very scarce information on sex-
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specific dispersal distances for many bird species, including the coal tit (except Dietrich e al,
2003). Because of such data deficiency further evidence from field studies is required to
substantiate assumptions on any putative correlation between sex-biased dispersal and mito-
nuclear discordance in coal tits.

Thirdly and lastly, extreme ratios between male to female gene flow might arise from
stochastic effects when comparing different levels of genetic diversity, e.g. high allelic
variation of microsatellite loci and sequence variation between deeply divergent lineages
(Karl er al., 2014; Putman & Carbone, 2014). Due to relatively long coalescence times,
incomplete lineage sorting of nuclear markers might blur spatial patterns of genetic variation.
In the coal tit, this is reflected by strong admixture of two southern European allelic clusters
(yellow and orange for K = 4) in continental populations on the one hand and a near-complete
allelic lineage sorting in island populations of Corsica and Sardinia on the other hand. This is
in accordance with low parameters of genetic variation on these islands and with the general
assumption that density-dependent processes, such as founder effects and genetic drift, are
most effective in island populations (Waters et al. 2013; birds: Padilla ef al., 2015). Even
during short evolutionary time spans, fast lincage sorting derived from ancestral
polymorphisms in founder populations can occur in organisms with high dispersal ability, as
inferred from a comparison of historical and extant Mediterranean populations of hawkmoths

(Hyles; Mende & Hundsdorfer, 2013).

Genetic admixture on the European continent

Extant phylogeographic patterns and lineage diversification in the coal tit are likely to have
emerged from glacial range fragmentation (Martens ef al., 2006; Pentzold er al., 2013) as
suggested for other tit species (Kvist er al., 2003, 2005; Packert er al., 2013; Stervander ef al.,
2015; Tritsch er al., 2017). Our time estimates inferred from the mitochondrial data set

support a scenario of lineage divergence close to the Pliocene-Pleistocene boundary at a mean
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time of divergence of 2.5 mya (in accordance with Pickert ef al., 2012). Our mean
coalescence-based estimate for time since admixture of 0.114 mya pre-dates a Holocene post-
glacial expansion and thus suggest that admixture of north-castern and south-western gene
pools could have already started in southern refuges during the late Pleistocene. This
assumption is supported by sound evidence that northward dispersal of forest birds from
Mediterrancan refuges already started before the onset of the Holocene, because fossil
remains of forest birds from interglacial periods have been found north of the Alps across
Central Europe up to a latitude of 50° N (Holm & Svenning, 2014). Furthermore, mean
coalescence time estimates are rather rough estimates, because there is no reliable empirical
value of coal-tit generation time and several authors have applied shorter generation times for
tits (Garant ef al., 2005; Qu et al., 2015) that would shift our time since admixture estimates
closer to a Holocene expansion scenario.

The wide range of mitochondrial introgression and nuclear gene flow in central
European coal tits is indicative of a partial reversal of Pleistocene divergence patterns (for a
similar case in North American chickadees compare Manthey et al. 2012). The
phylogeographic pattern in continental European coal tits matches a broad trans-European
zone of intergradation at the subspecies level similarly to e.g. in Eurasian nuthatches, Sitia
europaea (Red’kin & Konovalova, 2006). Unlike in the latter species, phenotypical variation
of continental European coal tits is very subtle and body size parameters and plumage
coloration vary along a pan-European cline with phenotypical extreme forms vieirae and
abietum in the South and afer in the North (Wolters, 1968; Nicthammer, 1943; Glutz von
Blotzheim & Bauer, 1993; Martens, 2012). Furthermore, the vocal repertoire of coal tits is
remarkably uniform throughout continental Eurasia and seems to provide a less effective
premating barrier compared to songs of other tit species (Thielcke, 1973; Tietze er al., 2011;
Pentzold et al., 2016). In contrast, in many cases of asymmetric gene flow across narrow

hybrid zones among Holarctic bird taxa (regardless of their taxonomic rank), assortative
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mating seems to be associated with strong divergence of vocal repertoires (Haavie ef al.,
2004; Helbig et al., 2001; Packert ef al., 2005; Kvist & Rytkénen, 2006; Sattler ef al., 2007,
Vorkurkova er al., 2013; Shipilina er al., 2017). Generally, separation of gene pools is
strongly enhanced by the variation of morphological and behavioural traits that play a key
role for species recognition, ¢.g. in Ficedula flycatchers (Sactre ef al., 2003; Backstrom ef al .,
2013; Ellegren ef al., 2012). In contrast, it seems that phenotypical and behavioural
differentiation between northern and southern European coal tits is too subtle to provide an
effective premating barrier.

The same holds true for potential segregation of ecological or climatic niches in
secondary contact (in tits and chickadees: Packert er al., 2005; Zhao et al., 2012; Taylor et al.,
2014). Webb er al. (2011) pointed out that merging of genetic lincages might be more likely
to occur in generalist species having a lower probability of evolving unique adaptations. This
argument may apply to the coal tits as well, because despite a strong adaptation to coniferous
forests, they exploit a great variety of food resources. In those regions where the species has
adapted to deciduous forests, coal tits use a broader range of the tree’s canopy and trunk than
many other parid species do (Glutz von Blotzheim & Bauer, 1993; Gosler & Clement, 2007).
Habitat structure might also have a considerable effect on local population structure, because,
in mixed conifer-broadleaved forests of Ussuriland (Far Eastern Russia), population densities
of coal tits were estimated 2.5 to 3 times higher compared to pure spruce-fir taiga forests of
the upper mountain-forest belt (Nazarenko 1984).

Third and last, there is in fact recent evidence of spatial variation in an adaptive trait of
European coal tits. Schmoll & Kleven (2011) found differences in sperm size between coal
tits from Norway and Germany, as was reported among European and Afro-Canarian blue tits
(Cyanistes caeruleus and C. feneriffae; Gohli et al., 2014). Whether in blue tits these
differences would constitute an effective post-mating barrier, cannot be judged due to a lack

of range overlap in the field and missing evidence from experimental studies. In European
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coal tits, intraspecific differences in sperm morphology do not seem to effectively prevent

gene flow across the European contact zone of coal tits.

Allopatric differentiation on Mediterranean Islands
Typically, in the central arcas of a species’ range, the degree of gene flow is often high,
whereas it is low at the range margins (Kvist ef a/., 2007; Lehtonen er al., 2009; Kiipper ef al.,
2012; Packert ef al., 2013). In widespread Palearctic bird species greatest phylogeographic
structure is often observed at the southwestern range margins, ¢.g. in the Mediterrancan and
on the southemn European peninsulae (revision in Steward ef al., 2010; birds: Tietze et al.
2011; Brambilla ef al., 2008). Since genetic drift and lineage sorting are most effective in
small isolated populations, genetic distinctiveness of island populations is a common
phylogeographic pattern.
At the global scale levels of vertebrate endemism are significantly higher on islands when
compared to the same ecoregions on the adjacent mainland (Fa & Funk, 2007; Kier et al.,
2009). In the coal tit, the population from Cyprus (cypriotes) stands out as a genctically and
phenotypically distinctive form that dates back to a more ancient (though still Pleistocene)
colonization (Pentzold er al., 2013). Phylogenetic studies have revealed complex circum-
Mediterrancan phylogeographic patterns including distinct island lincages on Cyprus
(Voelker & Light, 2011) and highly distinctive populations and even endemic species or
subspecies. Apart from the famous examples of the extinct megafauna from Cyprus
(Hadjisterkotis & Masala, 1995) weak insular endemism has also been postulated for the
extant Cypriote herpetofauna (Bohme & Wiedel 1994) and the Cypriote avifauna (Forschler
& Randler, 2009; Randler et al., 2012).

Genetic distinctiveness of Corsican and Sardinian coal tit populations was less
manifest than that of P. a. cypriotes. The shallow genetic divergence of P. a. sardus from its

continental relatives (see also Tietze ef al., 2011; Pentzold er al., 2013) contrasts the long
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evolutionary histories of some Corso-Sardinian faunal elements (reviewed in Ketmaier &
Caccone, 2013). Accordingly, rather ancient (pre-Pleistocene) Corso-Sardinian species-level
lincages have been found in amphibians and reptiles (Rodriguez ef al., 2017, Salvi et al.,
2010, 2017; Fritz et al., 2012). In a Corsican endemic frog species, Discoglossus montalentii,
phylogeographic structure in microallopatry was found even within the island (Bisconti et al.,
2013). But also in highly mobile vertebrates, such as birds, several endemic species occur on
these islands, such as the Corsican nuthatch, Sitta whiteheadi (Pasquet ef al., 2013) and the
Corsican finch, Carduelis corsicana (Forschler et al., 2009), which also breeds on the
Balearic Islands and on a few smaller neighbouring islands. In addition, there are distinct
genetic lineages at the subspecies level in other bird species (Pons ef al., 2016).

Subtle genetic admixture of the Corsican population might imply that this island does
or did receive more influx from continental populations than the Sardinian population, ¢.g.
due to its closer proximity to the mainland and along a North-South migratory pathway of
migrants and/or dispersers. However, a greater number of local samplings from both islands
would be needed to reliably confirm this hypothesis. Moreover, dispersal behaviour of coal
tits is quite variable (Lohrl, 1974; Glutz von Blotzheim & Bauer, 1993; Gosler & Clement,
2007) and seems to depend on the availability of food resources (Lohrl, 1974; Harrap &
Quinn, 1996). On Corsica, the breeding phenology of coal tits has strongly adapted to local
food peaks (Blondel ef al., 1988) and such adaptive processes might effectively have
contributed to the fixation of genetic linecages on islands ¢.g. in Corsican blue tits (Cyanistes
caeruleus ogliastrae; Porlier et al., 2012). Generally, the genetic composition of the Corsican
coal tit population might be the result of both incomplete lincage sorting during a short
separation time (Pentzold et al., 2013) and recent gene flow from irregular influx of
continental vagrant individuals and/or dispersers.

These examples demonstrate that the circum-Mediterranean phylogeographic pattern in

the coal tit is partly or often paralleled in other island endemics of the Corso-Sardinian fauna.
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Traditionally, phenotypical distinctiveness has been a crucial factor for species delimitation
and in fact, distinct genetic lineages of the coal tit in North Africa (atlas subspecies group)
and on Cyprus (ssp. cypriotes) are corroborated by the differences in the plumage coloration
(Harrap & Quinn, 1996; Gosler & Clement, 2007) and partially by subtle differences in song
(Tietze et al., 2011; Pentzold ef al., 2016). A decper understanding of the range-wide
intraspecific differentiation in the coal tit will therefore benefit (i) from an integrative
taxonomic approach and (ii) from broad population sampling across gradients of genetic

introgression (e.g. in narrow hybrid zones that exist for example in the Himalayas).
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Figure captions

Figure 1: Spatial patterns of secondary contact and hybrid zones among divergent genetic
lincages (schematized haplotype networks; right) of terrestrial vertebrates in the Western
Palearctic; A) narrow contact zone along geographic barriers (Pyrenees, Alps) or of a wide
latitudinal North-South extent; B) broad intergradation zone often along phenotypical clines;
() range wide merger and local co-occurrence of distinct genetic lineages (reversal of past

lineage divergence), Europe outline map inferred from www.freeworldmaps.net.

Figure 2: Distribution range and phylogeographic pattern of the coal tit, Periparus ater
(modified from Pentzold et al. 2013; sampling sites of mtDNA data indicated by black dots;
range boundaries in light brown according to BirdLife International 2017); pie charts indicate
percentages of haplotypes belonging to four different clusters (Scandinavia/Russia, W and
SW Europe, North Africa and Cyprus; subspecies included in the mtDNA dataset listed at the
corresponding clusters) indicated by different colours; study populations (abbreviations): BF
= Black Forest, Cors = Corsica, Cyp = Cyprus, Fin = Finland, Grec = Greece, Mor =
Morocco, Nor = Norway, PF = Palatine Forest, Pyr = French Pyrences, Sard = Sardinia, Sax =
Saxony, SH = Schleswig-Holstein (strongly divergent North African subspecies atlas not
included in our population genetic study), coal tit drawing: K. Rehbinder, University of

Mainz.

Figure 3: Historical models used for DIYABC analyses; popl = northeastern populations

from Finland and Norway; pop2 = populations from the German zone of overlap (Pentzold et

al. 2012); pop3 = southwestern population from the French Pyrenees.
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Figure 4: UPGMA phenogram inferred from pairwise Fsr values (computed with MEGA v.6,

and listed in Table S2).

Figure 5: Genetic variation of 14 Western European and Mediterranean coal tit populations (n
= 145) based on 13 microsatellite loci; STRUCTURE analysis under the admixture —
frequency-correlated model without locpriors a priori defined, STRUCTURE plots for K = 2
to K =4 (left); threshold q > 0.8 for assignment of individuals to genetic clusters (according
to Randi 2008) indicated for the most plausible scenario of K = 4; coloured bars above the
plots indicate individual assignment to three mitochondrial lincages (control region; data from
Pentzold et al. 2013); grey bars above indicate regional origin of samples; right: a) estimate of
most plausible K = 4 according to Evanno et al. (2005; AK plotted against the number of
modelled genetic clusters) and b) according to L(K) (Prichard2000); abbreviations of
populations: BF = Black Forest, Cor = Corsica, Cyp = Cyprus, PF = Palatine Forest, Sard =

Sardinia, Sax = Saxony, Schl. Holstein = Schleswig-Holstein, .

Figure 6: Spatial clustering of coal tit populations as inferred from GENELAND analysis;
assignment probabilitics of the individuals to spatial clusters identified by GENELAND
displayed in a contour map for a) the northwestern, b) the south-western and ¢) the Cypriot
cluster respectively. The spatial membership probability is visualized by colour: bright yellow

indicates a high-, dark red a low assignment probability; black dots: sampling localities.

Figure S1: Genetic variation in the complete data set of the Western European and
Mediterranean coal tits (n = 166) based on 13 microsatellite loci; STRUCTURE analysis
under the admixture — frequency-correlated model with locpriors a priori defined (assignment
according to mtDNA lineages), STRUCTURE plots for K = 2 to K = 4 (left); right: estimate

of most plausible K according to Evanno et al. (2005; AK plotted against the number of
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modelled genetic clusters) a) under the admixture — frequency-correlated model without
locpriors a priori defined (K = 2) and b) with locpriors a priori defined (K= 4); assignment

according to mtDNA lineages, control region: coloured bars above the plots.

Figure S2: Spatial clusters as inferred by the spatial explicit CAR admixture model of TESS
(Kmax = 3). The TESS admixture models did not distinguish more than three units even if the
number of possible clusters in model is higher (Kmax > 3). The DIC criterion (arithmetic

mean of ten replicates) confirmed three spatial clusters.
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