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On Polynomial Factorization Over Finite Fields

By Hiroshi Gunji and Dennis Amon

Abstract. Let fix) be a polynomial over a finite field F. An algorithm for determining the

degrees of the factors of fix) is presented. As in the Berlekamp algorithm (1968) for

determining the factors of fix), the Frobenius endomorphism on F[x]/(fix)) plays a central

role. Little-known theorems of Schwarz (1956) and Cesàro (1888) provide the basis for the

algorithm we present. New and stream-lined proofs of both theorems are provided.

1. Introduction. There are a number of computational problems in which one

wants the degrees of the factors of a polynomial over a finite field without needing

the factors themselves. Factorization of polynomials over the rationals Q provides

one example. In recent algorithms for constructing the factors of g(x) in Q[x], one

must essentially guess their degrees, check this guess, and repeat until a correct

guess is made; see e.g. Musser [4]. For almost all primes p, the degrees of the

factors of g(x) mod p restrict the possible degrees of factors of g(x). Musser has

exploited knowledge of these mod/7 factor degrees for several primesp to signifi-

cantly improve the guessing process. A second example of where only factor

degrees of a polynomial over a finite field are needed is the technique, due to van

der Waerden (see [7, Section 8.10]), of determining subgroups of the Galois group of

g(x) in Q[x] from knowledge of its modp factor degrees for several primes p.

Zimmer [9, p. 5] mentions additional examples.

Let F be a given finite field with q elements, where q = ps for some prime p and

some s > \. Let/(x) be a given monic polynomial of degree n > 1 in F[x]. Let

(l.i) f(x)=Mxy>f2(xy---fr(x)\    r> i,

be a complete factorization of /. That is, each fk has degree > 1 and is irreducible

over F; if kx ¥= k2, then fk is not an associate of fk, and each ek is a positive

integer. Define a,, 1 < / < «, to be the number of fks of degree j. We have

0 < tjj < r for each j, and

n

£ °j " *".

7=1

Thus, if we can compute a,, a2, . . . , a„ given /, we know the degrees of the

(distinct) factors of/.

Let n denote the Frobenius mapping on the F-algebra R = F[x]/(f(x)), i.e., for

any h + (f) in R, ir(h + (/)) = hq + (/). It is easily verified that it is an endomor-

phism of R. For 1 < i < n, define v¡ to be the dimension of the null space of the
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endomorphism it' — I of R, where / is the identity on R. vx plays a crucial role in

Berlekamp's algorithm [1] for constructing the factors of a polynomial in F[x].

Let A be the n X n matrix H^-H, where AtJ = (i,j), the greatest common divisor

of i and/'. Let o and v denote the column vectors (a,, . . . , an)T and (vx, . . . , vn)T.

Schwarz [5] proved

Aa = v.

Smith's formula [6] states that

n

Determinant^) = \± <p(0>
/-i

where <p is the Euler totient function. Hence, as Schwarz observed, A is invertible

and a is uniquely determined by p. As we will see in Section 5, v can be computed

from/(x).

Schwarz did not discuss the question of obtaining an explicit formula for A "' (as

a function of n). Clearly, it would be preferable to use such a formula to compute o

from v rather than using, say, gaussian elimination. As Carlitz [3] points out, a

formula for A~l is implicit in an 1888 result of Cesàro. We give our own rather

succinct derivation of the formula in the present paper. We note that Dickson [8]

essentially stated the relation o = A~xv and the formula for A'\ without proof and

without reference to Schwarz or Cesàro. It seems likely, however, that he assumed

f(x) to be a separable polynomial (i.e. e, = e2 = • • ■ = er = 1 in (1.1)).

Thus, we have a two-step algorithm for determining the degrees of the factors of

f(x): first we compute the length n vector v, then multiply v by A~\ an n X n

matrix of rational numbers. We begin this paper with a new proof, in Sections 2

and 3, that Ao = v whether/(x) is separable or not (we proceed by considering first

the separable case). In Section 4 we derive the formula for A "' and note that the

derivation yields Smith's formula as a by-product. In Section 5 we give an example

of the algorithm.

2. The Separable Case. We assume in this section that the given polynomial f(x)

is separable, i.e.

fix) = fx(x)f2(x) ■ ■ ■ fr(x),        r > 1,

where the fks are irreducible nonassociate polynomials of positive degree. Where

nk > 1 is the degree of fk, we have n = 2*_. nk. We write the definition of v¡,

1 < / < n, in the form

v¡ = dimension(kernel(w' - /)) = dim ker(?r' - /),

it the Frobenius on R. By the Chinese Remainder Theorem we have an isomor-

phism of F-algebras

Fix]        Fix] Fix] Fix]

(/(*))      (fM)      (f2(x)) (fr(x))

For 1 < k < r, let Rk denote F[x]/(fk(x)), mk the Frobenius on Rk, and Ik the

identity on Rk. irk, in other words, is the map irk(h + (fk)) = hq + (fk) for any

h + (fk) in Rk. Then, for any i, 1 < / < n, we have
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r

", =  2 [dimker(< -/*)].
* = i

Since each/^ is irreducible, Rk » GF(q"k) for each k. Noting that h + (fk) is in the

kernel of irk — Ik if and only if A*' — h is divisible by/¿, we have, for each k,

ker(< - Ik) s GF(<7') n GF(^) s GF(q^n")).

Hence, dim ker(^ — Ik) = (/', nk). We have thus proved

Theorem 2.1. Iff(x) is a separable polynomial, then for any i, 1 < / < n,

r

V, =    £   (»'. «*)■

Recalling that, for 1 < j; < n, a} > 0 is the number of nks, I < k < r, equal toj,

we have immediately

Corollary 2.1. Iff(x) is a separable polynomial, then, for any /, 1 < i < n

n

"i = 2 (hj)Oj.

Thus, using notation from Section 1, we have

Corollary 2.2. If f(x) is a separable polynomial, then v = Aa.

We also note the following

Corollary 2.3. // f(x) is a separable polynomial, then vx is the number of

nonassociate irreducible factors of f(x). In particular, if f(x) is separable, it is

irreducible if and only if vx = 1.

3. The General Case. We now drop the assumption that/(x) is separable, i.e., in

the complete factorization of f(x) as given in (1.1), we do not assume that each ek is

one. Letting nk again denote the degree of fk, we have now n = 2rt_r eknk. The

Chinese Remainder Theorem yields the following isomorphism of F-algebras

(fM) (/,(*D (/AXT')'

For 1 < k < r, let Rk denote F[x]/(fk(x)ek), irk the Frobenius on Rk, and Ik the

identity on Rk. For any /, 1 < / < «, we have

r

v¡ = dim ker(7r' — /) = 2 [dim ker(7r¿ — /A)].
*-i

Let Rk denote F[x]/(fk(x)), îrk the Frobenius on Rk, and ïk the identity on Rk. If

we can show for all k and ¡, 1 < k < r and 1 </'<«, that

(3.1) dim ker(^ - Ik) = dim ker(w¿ — /¿),

then the results of Section 2 will carry over to the present, more general, situation.

We establish the validity of (3.1) with three lemmas.

For the lemmas (and only for the lemmas) we will assume given some irreducible

t(x) of degree m > 1 in F[x], and a positive integer e > 1. We will let 5 denote

F[x]/(t(x)e) and S denote F[x]/(t(x)). Again only in the lemmas, ir will denote the
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Frobenius on S, îr the Frobenius on S, I the identity on S, and / the identity on S.

Elements of S and S are cosets h(x) + (t(x)e) and h(x) + (t(x)), respectively, for

h(x) in F[x]. The map ^: h + (te) —» h + (t) is an F-algebra homomorphism of S1

onto S.

Lemma 3.1. t °7r = í » t.

Proof. For any h + (te) in 5:

* ° ir(h + (te)) = V(hq + (te)) = h" + (t).

Also,

»•*(* + (/')) = *(* + (0) = A* + (')•

Q.E.D.

Corollary 3.1. For any i,\ < / < n, ^ ° (it' — I) = (îr' — í) ° <k.

Let K' and AT' denote ker(w' - /) and ker(w' — /), respectively. Then the

inclusion ty(K') c K' is a direct consequence of Corollary 3.1. We shall now prove

Lemma 3.2. For any i, 1 < ; < n, ^(K¡) = K1.

Proof. It is enough to show that K' c <k(K'). Let /i + (r) be an arbitrary element

of K', and let w in F[x] be defined by

h"' - h = wt.

If w/ is divisible by te, then /i + (te) is in A'' and <l?(h + (te)) = h + (t). Suppose

wt is not divisible by /'. Let

A" - h + 2 (h*)**
A: = 0

where c > 0 is the largest integer such that (w/)'" is not divisible by te. Clearly

^(A + (te)) = h + (t), and a direct calculation shows that

h"' - h = (wt)q<c+,)i = 0   (mod(/c)),

i.e. h + (te) is in K'.    Q.E.D.

Finally we have

Lemma 3.3. For any i, 1 < i < n, ^ restricted to K' is infective.

Proof. Suppose for some h G F[x] that h + (te) is a nonzero element of K', but

h + (t) is zero in S. Write h = vtc, where 0 < c < e and rc is the largest power of t

dividing h, i.e. v e F[x] is not divisible by /. Since h + (te) is in K', in F[x] we

have

hq' - h = ute,

for some m in F[x]. Hence

h = hq' - ute,

i.e.

vtc = (o/c)*' - ute

i.e.
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But since c > 1 and e — c > 1, we have inferred that v is divisible by t, a

contradiction.   Q.E.D.

From Lemmas 3.2 and 3.3 we have

Corollary 3.2. For any i, 1 < i < n, ker(ir' - I) and ker(7r' - /) are isomorphic

as vector spaces.

Returning to the polynomial f(x) and the notation we had prior to the lemmas,

we can now state (3.1) as a theorem:

Theorem 3.1. For any k and any i,\ < k < r and 1 < /' < n,

dim ker(^ - Ik) = dim ker(^ - /¿).

Analogues to the corollaries of Section 2, minus the separability hypothesis,

follow immediately:

Corollary 3.3. For any i, 1 < i < n, vl, = 2*_r (i, nk).

Corollary 3.4. For any i, 1 < i < n, v¡ = 2"_i (i,j)oj.

Corollary 3.5. v = Ao.

Corollary 3.6. vx is the number of nonassociate irreducible factors of f(x).

(Note: the irreducibility criterion of Corollary 2.3 is only valid when / is

separable.)

Remark. Corollary 3.6 was proved as a theorem by Butler [2]. It is fundamental

to the Berlekamp algorithm.

4. The Formula for A'1. The matrices in this section will be m X m, where m is

any given positive integer. We view the standard Möbius function u as being

defined on the positive rational numbers; ¡i(c) = 0 for nonintegral c. We define

matrices M, S, A and D :

1,    j divides /',

0,    j does not divide i.

A¡j " (ij),    E> = diagonal(<p(l), . . . , cp(m)).

The reader can easily verify the following:

Lemma 4.1. (1) MS = I, where I is the m X m identity matrix.

(2) Determinant M) = De terminan t( 5) = 1.

(3) Determinant(Z)) = UfmM0-

Remark. Part (1) of Lemma 4.1 is a "vector" form of the Möbius inversion

formula. That is, if g and h are any arithmetical functions, if

g* = (g(\),g(2),...,g(m))T   and   h* = (h(l),h(2), . . . , h(m))T,

then (1) says that g* = Sh* if and only if h* = Mg*, which is just a simultaneous

statement of the Möbius formula for the values g(\), . . ., g(m), h(\), . . . , h(m) of

g and h.

Now let g and h be any two arithmetical functions such that g(k) = 2^* h(d),

for all k. Let G and H be the following matrices:

^-7



286 HIROSHI GUNJI AND DENNIS ARNON

G,j = g((i,j)),    H = diagonal(A(l), . . ., h(m)).

Theorem 4.1. G = SHST.

Proof. For every i,j, 1 < i,j < m,

Gij = g((i,j))=   2   h(d)
d\(i,j)

m

=      2      Kd) = 2 Sikh(k)Sjk = (SHST)U.
d\i and d\j k=\

Q.E.D.
As Carlitz noted, a different but equivalent version of this theorem was proved

by Cesàro in 1888.

Corollary 4.1. A = SDST.

Proof. Set g(k) = k and h(k) = tp(k) in Theorem 4.1.

Corollary 4.2. A~l = MTD~lM. Thus, the ijth element of A'1 is

(4.1) ^■'-MiHiU
<p(k)

Corollary 4.3 (Smith's Formula). Determinant(A) = n™-i <p(0-

5. An Example. We now illustrate how the results of Sections 2, 3, and 4 provide

an algorithm for computing the degrees of the irreducible factors of a given f(x).

One first constructs a matrix for the Frobenius on R = F[x]/(f(x)). One then uses

this matrix to obtain vx, v2, . . . , vn, and finally obtains o as A~lv. A~x is assumed to

have been precomputed by formula (4.1) of Section 4.

We choose q = 2 and let F2 denote the finite field with two elements. We let

f(x) G F2[x] be x8 X = X x; thus n = 8. It is well known that f(x) is the

product of all monic polynomials in F2[x] irreducible over F2 and of degree

dividing 3. We assume the standard basis 1, x, x2, . . . , x1 for F2[x]/(f(x)), so the

; th row, 1 < { < 8, of the matrix of ir with respect to this basis, is x(l ~1)? mod / =

x2'-2 mod/. We obtain the following 8x8 matrix:

10 0 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 0 10 0 0
0 0 0 0 0 0 10
0 10 0 0 0 0 0
0 0 0 10 0 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 0 1

Where / is the 8 X 8 identity matrix, we compute v„ i = 1, 2,

dimension of the null space of the matrix it' — I. We obtain

til     2345678

v,    4     4844844

, 8, as the
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Using formula (4.1), we obtain the 8x8 matrix A

4

1

2
-1

6

0

^4 'i» yields the vector

41

12
-3

2

-1

2

2

J^
2

-1

T

o

-T

2

0

2 2

1 0

» 1
0 0

-i °

0 0

o 4

-1

4

0

0

0

\_

4

0

0

0

2

0

0

\_

2

0

0

6

0

0

0

0

0

6

0

0

4

0

1
4

a = (2, 0, 2, 0, 0, 0, 0, 0)r.

Thus, f(x) has two irreducible factors of degree one, and two irreducible factors of

degree three. Since the monic irreducible polynomials of degree one and three over

F2 are x, x + 1, x3 + x + 1, and x3 + x2 + 1, this is just what was expected.
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