
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 151, October 1970

ON TOPOLOGICALLY INVARIANT MEANS ON
A LOCALLY COMPACT GROUP

BY

CHING CHOU

Abstract. Let J( be the set of all probability measures on ßN. Let G be a locally

compact, noncompact, amenable group. Then there is a one-one affine mapping of J(

into the set of all left invariant means on L"(G). Note that Jt is a very big set. If we

further assume G to be a-compact, then we have a better result : The set Jt can be

embedded affinely into the set of two-sided topologically invariant means on L"(G).

We also give a structure theorem for the set of all topologically left invariant means

when G is a-compact.

1. Introduction. Let G be a a-compact, locally compact, amenable group.

Then there exists a sequence of compact neighborhoods Un of the identity e

which satisfies the following two conditions (cf. [10]):

(Fl) C/nc: £/n + 1,       «=1,2,...;    \J Un = G
n = l

and

(F2) lim(|*CfBAC/B|/|i/B|) = 0
n

uniformly on compact subsets of G. Here A A B = (A\B) u (B\A), the symmetric

difference of A and B; for a Borel set B, \B\ is the measure of B with respect to a

fixed left Haar measure on G. We shall call such a sequence an P-sequence. (P

stands for F0lner.)

Let <Pn = XuJ\Un\, where xun ¡8 the characteristic function of Un, «=1,2,....

Let (xn) be a sequence in G. Then a sequence of linear functionals pn on Lco(G)

can be defined as follows: /*„(/) = (<pn */)(*„)• Denote the set of all w*-limit points

of the sequence pn by I'(xn) and then set

1(G) = U {I'ixn) '■ (xn) ranges over all sequences in G}.

Let MTl(G) be the set of all left topologically invariant means on L°°(G). Then we

have the following.

Theorem. Let G be a a-compact, locally compact, amenable group with a fixed

F-sequence. Construct F(G) as in the previous paragraph. Then the w*-closed convex

hull ofl'iG) is MTl(G).
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When G = R, the additive group of reals, the above theorem, in a different form,

was proved by Raimi [15].

Let G be a locally compact amenable group and Ml(C(G)) be the set of all left

invariant means on C(G). It is natural to ask how big is the set Ml(C(G)). If G

is an infinite discrete amenable group, Granirer [7] proved that the space of left

invariant functionals on C(G) is infinite dimensional. When G is a locally compact

group the following two results are known :

(1) If G is a locally compact abelian group then Ml(C(G)) is a singleton if and

only if G is compact (cf. [13]);

(2) If G is a separable, locally compact, noncompact group which is amenable

as a discrete group then the space of left invariant functionals on C(G) is infinite

dimensional, (cf. [8]).

In this paper we shall prove that the above two results can be generalized to

every locally compact amenable group.

Theorem. Let G be a locally compact amenable group. Then card Ml(C(G)) = l

or ^ 2°. It is one if and only if G is compact.

Here c is the cardinality of the Continuum and, for any arbitrary set A, card A

denotes its cardinality.

Under the same assumption as in (2) above, Granirer actually proved that the

space of left invariant functionals in LUC (G), the space of bounded left uniformly

continuous functions, is infinite dimensional. We are able to improve his result to

show the following.

Theorem. Let G be a a-compact, locally compact, noncompact, amenable group.

Then G has at least 2° two-sided topologically invariant means.

Note that every separable group is tr-compact. We believe that the above theorem

is new even for the discrete case. Another result along this line is the following.

Theorem. Let G be a locally compact, noncompact, amenable group such that

G has equivalent right and left uniform structures. Then card MTl(G) ^ 2C.

In particular, the above theorem is true for every locally compact abelian group.

For an arbitrary locally compact group G, LUC (G)* is a Banach algebra with

convolution as multiplication, cf. [8]. A consequence of the above two theorems

is the following.

Corollary. Let G be a locally compact amenable group which satisfies one of the

following two conditions: (i) G is a-compact; (ii) the right and left uniform structures

on G are equivalent. Then dim R(G) = 0or^ 2C, where R(G) is the radical o/LUC (G)*.

It is 0 if and only if G is compact.

P. Civin and B. Yood in TTze second conjugate space of a Banach algebra as an

algebra, Pacific J. Math. 11 (1961), 847-870 (especially p.  853), proved this
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corollary for the case that G is the group of additive integers. They conjectured

it to hold for any infinite abelian discrete group. Much more than this conjecture

has subsequently been proved by Granirer in [7, pp. 48-58], and [8, pp. 131-132].

The above corollary improves Theorem 4 and part of Theorem 6 in [8].

Let M be the set of all probability Borel measures on the compact set ßN, the

Stone-Cech compactification of N, the discrete set of positive integers. Then the

above theorems are actually consequences of the following embedding theorem.

Theorem. (1) Let G be a locally compact, noncompact, amenable group. Then

there is a one-one affine mapping of M into M/(C(G)).

(2) Let G be a o-compact, locally compact, noncompact, amenable group. Then

there exists an affine iw*-w*) homeomorphism of J( into MTliG).

In (2), if G is further assumed to be unimodular, then we can actually embed

J( into the set of two-sided topologically invariant means on L™iG).

A portion of this paper is contained in the last chapter of the author's Ph.D.

thesis. He wishes to thank Professor Raimi for his advice and encouragement.

2. Preliminaries and notation. Let G be a locally compact group with a fixed

left Haar measure. If/is a Borel measurable function on G and B is a Borel subset

of G, the integral of/on B with respect to the left Haar measure is denoted by

jBfix) dx. The Banach space of all essentially bounded real-valued Borel functions,

with ess. sup-norm || • ||, is denoted by L°°(G). The space of integrable real functions

with respect to the fixed Haar measure is denoted by LAG).

Let (peLAG), <p~ denotes the function: <p~ix) = (pix~1). For <peLAG) and

/eL°°(G), the convolutions <p */and/* q>~ are defined by

(«p */)(*) = f f(t^x)<p(t) dt,     if* <p~)(x) = f fitypix^t) dt.
Ja Jg

For/e Lco(G) and xeG, lxf{rxf}, the left {right} translation of/by x is defined

by (lxP(y)=f(xy) {(rxf)(y)=f(yx)}. A function feL<°(G) is called left {right}

uniformly continuous if, given e > 0, there is a neighborhood U of the identity e

in G such that \\f-lxf\\<e {\f-rxf\\<e} for all yeU. The space of left {right}

uniformly continuous functions on G will be denoted by LUC (G) {RUC (G)}.

Let UC (G) = LUC (G) n RUC (G) and let C(G) be the space of all bounded real

continuous functions on G. All the above spaces are closed subspaces of L"(G).

We shall need the following well-known elementary fact.

Lemma 2.1. Let G be a locally compact group, yeLAG) and feL'"(G). Then

<P */e LUC (G) andf* <p~ g RUC (G).

Let E be a subspace of ¿"(G) which contains the constant function 1. p-e E*

is called a mean if /¿(1) = ||ju|| = 1. A. subspace E of ¿"(G) is said to be left {right}

invariant, if 1 e E, fe E and xeG imply lxfe E {rxfe E}. If E is a left {right}

invariant subspace, a mean p-e E* is called a left {right} invariant mean if /*(/*/)

=p(J) {lArxf) = p,iP)} for xeG and/e E.
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A subspace E of La>(G) is said to be /-admissible {/--admissible} if it is left {right}

invariant and LUC(G)c£ {RUC(G)c£}. Denote the set {<p e LX(G) : <p ̂ 0,

||9>||i = l} by P(G). A mean peE*, E /-admissible {r-admissible}, is said to be

topologically left {right} invariant if p.(cp *f) = p(f) {p(f* <p~) = H-(f)} for/e E and

9eP(G).

The set of all left {right} invariant means on a left {right} invariant subspace E

will be denoted by Ml(E) {Mr(E)} and the set of topologically left {right} invariant

means for an /-admissible {/--admissible} space E will be denoted by MTl(E)

{MTr(E)}. For convenience, we shall denote Ml(Lco(G)) and MTl(L'K(G)) by

Ml(G) and MTl(G) respectively. We shall denote the set of all two-sided topo-

logically invariant means on L°°(G) by MT(G) and the set of two-sided invariant

means on Lco(G) by M(G). It is obvious that the sets Ml(E), MTl(E), ... etc. are

w*-compact and convex in E*.

When Ml(G) is not empty we say G is amenable. It is well known that MTl(G)

<=Ml(G) and when G is amenable, AfT(G)# 0 (cf. [10]). Abelian groups and

compact groups are amenable.

The following lemma is implicitly contained in [10]. We state it here for later

quotations.

Lemma 2.2. Let G be a locally compact amenable group and let E be an l-admissible

subspace ofL'c(G). Then

(1) if p e Ml(E) and 9^, <p2 eP(G) then pfa *f) = p(<p2 */);

(2) M77(LUC (G)) = M/(LUC (G)) and MT(UC (G)) = M(UC (G)) ;

(3) MTl(G)\E=MTl(E) and the restriction mapping is one-one; M(UC (G))

= MT(G) I UC (G) and the restriction mapping is one-one.

(1) tells us that if p e M 1(E) and for each fe E there exists <p¡ e P(G) such that

Kfr */)=/*(/) then p is actually topologically left invariant. (On the other hand,

it is not true, in general, that Ml(E) = MTl(E), cf. §5.)

(2) tells us that for each /-admissible space E, MTl(E) and MTl(G) can be

considered as the same set.

Let (yn) be a sequence in a topological space. The set of limit points of ( vn)

will be denoted by lp(yn), in other words, y e lp(yn) if and only if y = lima yna for

some subset na ofn.

Let X be a subset of a topological vector space. Then the closed convex hull

of X will be denoted by cl co X.

3. Structure of MTl(G) for a cr-compact group G. In this section we assume

that G is a cr-compact, locally compact, amenable group with a fixed F-sequence

(Un). Note that (F2) can be replaced by a stronger condition:

lim(|t/nAtfc/n|/|tg) = 0
n

for each compact subset K of G [5], But we do not need this.
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For each n, we define a linear operator Tn from La'(G) into LUC (G) as follows:

(Tnf)(x) = TTT7 f /(/ - xx) dt,      feL<°(G), xe G.
\'Jn\ Ja

That rn/eLUC(G) follows from Lemma 2.1. Note that ||Tn|| = l and Tn/^0 if

f= 0. For x e G, x' will denote the linear functional on LUC (G) defined by x'(f)

=ffa). Since x' is a mean, T*x' is also a mean (on Lm(G)).

Let F(G)={/eZ,°°(G) : limnrn/=c, a constant function, in norm}. V(G) is a

closed subspace of L°°(G). Define a linear functional m0 on F(G) as follows:

m0(f) = c, if limn/=c. Note that m0 is a mean on K(G). Let

L'(G) = {^er(6)*: M|K(G) = m0, \\p\\ = 1},

i.e., the set of all linear norm-preserving extensions of m0 to Lm(G).

If E is an admissible subspace of Lœ(G), we shall use the following notation:

L'(E)=L'(G)\E, V(E)= V(G) n E. By the Hahn-Banach theorem

L'(E) = {peE*: p\V(E) = m0\V(E), \\p\\ = 1}.

Let

I'(E) = (J {w*-lp((Tn\E)*x'n): xn ranges over all sequences in G}

and let the set I'(Lco(G)) be denoted by I'(G).

It appears that V(E), L'(E) depend on the choice of the F-sequence (Un). But

actually they are independent of it. We first prove the following.

Lemma 3.1. Let <peP(G) andfeLx(G). Then limn ||Tn(cp *f)-TJ\\ =0.

Proof. Let e > 0 be given. Choose a compact set K<^ G such that (K <p(t) dt > 1 - e.

For an arbitrary yeG,

\(Tn(<P */)-Tnf)(y)\ = jL I Í    f (f(t -xx~xy)-f(x-xy))<p(t) dt dx
I «^nl I Jun Ja

= \Tñ\í    í iAt-xx-xy)-f(x-xyM.t)dtdx\+2\\f\\e
\IJn\ \Jun Jk

ím\LHL«*-1»-L/(*-'»]dxd'
Ssup(|l-i;/,M/.|/|í/.|)|/|+2|/||,.

teK

Since \t~xUn A Un\/\Un\ converges to zero uniformly on K, there is a positive

integer n0 such that n^n0 implies \t~xUn A Un\/\ Un\ <e (t e K). Thus

\\Tn(<P*f)-Tnf\\ <3\\f\\e

if n 1 n0 and the proof is completed.

Now we are in a position to state and prove the main theorem of this section.
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Theorem 3.2. Let G be a o-compact, locally compact, amenable group with a

fixed F-sequence Un and let E be an l-admissible subspace of LxiG). Define Tn,

ViE), L'iE), andl'iE) as above. Then

(a) MTliE) =L'iE) = w*-cl co (/'(£)) ;

(b) ViE) = closed linear span of{Tnf—f: fe E, « positive integer} u {1}

= {fe E: p-iP = a constant as p. runs through MTliE)}.

Proof. When G = R, this theorem, in a different form, is contained in Raimi [10].

Part of the proof here is similar to his.

(1) w*-cl co iI'iE))=L'iE): It is directly checked that I'iE)^L'iE). Since

L'iE) is w*-compact and convex, to show w*-cl co iI'iE))=L'iE), by one form

of the Krein-Milman theorem [4, p. 80], it suffices to show that for eachfe E

sup {piJ): p. e I'iE)} = sup {piß: p e L'iE)}.

Letfe E be given and denote the left-hand side of the above formula by Xx and

the right-hand side by A2. Clearly A2^ Xx.

Choose a sequence xn such that sup {iTnf)ix): x e G} — Tnfixn)< l/n. Let p be a

w*-limit point of the sequence iTn\E)*x'n. Then p. e I'iE) and

Xx ̂  pif) ^ lim inf Tnfixn) = lim inf sup {(rj)(x): x e G} = A3.
n n

Note that for each «, limfc Pfc(P„/-/) = 0 (Lemma 3.1). Thus if veL\E),

ATnP = Aß- But v is a mean, we have sup {Tnfix) : xeG}^ v(P„/)=v(/). Therefore

for each «,

sup{Pn/(x): x e G} § sup {v(/): veL'iE)} = A2.

Thus A3 ̂ A2 and the proof is completed.

(2) w*-cl co iI'iE))<= MTliE): Since MTliE) is w*-closed and convex, we only

need to show that P(P)<= MTliE). Let p. = w*-lima iTnjE)*x'na e I'iE). Let <p e PiG)

andfeE. Then

M<P */-/) = Hm (Tna\E)*x'nA<P */-/) = Hm TnA<P */-/)(*J
a a

= 0,   by Lemma 3.1,

and hence p. e MTl(E).

(3) MTl(E)<=L'(E): Let peMTl(E). Then p.(Tnf) = ti(f) for each feE. If

fe V(E), say, limn Tnf=c, then c=^(c) = limn p(Tnf)=p.(f). Thus peL'(E).

(4) ViE) = closed linear span of {TJ-f: n e N,fe E} u {1}= VxiE): By Lemma

3.1, for ne N and feE, TJ-fe K(P). Since F(P) is closed in E, VX<=V(E).

Conversely, if g e V(E), then limn Tng=c exists. Thus g=limn (g - Tng) + ce VX(E).

(5) V(E) = {feE:li(f) = a constant as p. runs through MTliE)} = VAE): If

/^ ViE) then there exist two subsequences A:(«),/(«) of« and two sequences xn,

yn in G such that

lim iTkMf)ixn) = Cx^c2 = lim iTjln)f)iyn).
n n
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Let pi be a w*-limit point of the sequence (Tk<n)\E)*x'n and p2 be a w*-limit point

of (TiW\E)*y'n. By (2), /*, e MTl(E), /=1,2, and pi(f) = Cl¿c2 = p2(f). Thus

/£ V2(E).

Conversely, if feV(E), say limnTn/=c, and peMTl(E) then p(f)=p(Tnf)

= limfc p{Tkf) = p(limk Tkf) = p(c) = c. Thus fe V2(E).

4. Embeddings of Jl into MT(G) and MTl(G). Let N be the additive semigroup

of positive integers and m(N) the Banach space of bounded real functions on N

with sup norm. Let C={fe m(N): limn/(«) exists}. C is a closed linear subspace

of m(N). There is a bounded linear functional v0 on C defined by v0(f) = \imnf(ri).

Note that v0 is a mean on C. Let &r={vem(N)*: |v|| = l, v\C=v0}. Then J^ is

H>*-compact and convex.

For each w e ßN, the Stone-Cech compactification of the discrete space A7,

cf. [6], there corresponds a linear functional w' on m(N), defined by w'(f)=f~(w),

where/" denotes its continuous extension to ßN. Then (ßN)'={w': w e ßN},

with the w*-topology, is homeomorphic to ßN and w*-cl co (ßN)' = Jl, the set of

all means on m(N).

The set ^ is a big subset of Jl as the following lemma shows.

Lemma 4.1. (I) 8F = w*-clco (ßN\N)'.

(2) There exists a one-one affine (w*-w*) homeomorphism of Jl into ÏF.

Proof. (1) Let weßN\N. Then w=limana, na a net in N, with lima«a = oo.

Therefore, iffeC, w'(f)=f~(w)=limaf(na) = limnf(n). Thus, w' e3F and hence

(ßN\N)'c:^'. Since & is vf*-compact and convex, we have w*-clco(ßN\N)'<^&r.

Conversely, if p. e & then, considering /iasa measure on ßN, the support of p is

contained in ßN\N. By the Hahn-Banach theorem, p e w*-cl co (ßN\N)'.

(2) It is well known that ßN\N contains a topological copy K of ßN, cf. [6].

Then the set of Borel probability measures on K is affinely homeomorphic to Jl.

Thus the proof is completed.

Theorem 4.2. Let G be a a-compact, locally compact, noncompact, amenable

group. Then the set Jl can be embedded into MTl(G) affinely and (w*-w*) topologi-

cally.

Proof. By Lemma 4.1, it suffices to prove that the set ^ can be embedded

into MTl(G) affinely and (w*-w*) topologically. Let (Un) be an F-sequence for G.

Since G is noncompact, lim„ | Un\ =oo. So, by choosing a subsequence if necessary,

we may assume that (Un) also satisfies

(F3) |t/n+1| £(n+l)|£/n|,       « = 1,2,....

We define a mapping n of L°°(G) into m(N) as follows:

YorfeLx(G)andneN

(trf)(rí)= \        Í f(t)dt.
\Un + l\Un\ Jun + 1\Un
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Note that 7r is linear, ||ir|| = l and v{L'x'(G))=m(N). Therefore 7r*, the conjugate

of it, is a linear, one-one and (w*-w*) continuous mapping from miN)* into

Z,°°(G)*. Since & is w*-compact, if we can prove that tt*(&)^ MTl(G) then n*

is the embedding mapping we are looking for. To this end, we have to prove that

(1) if veSF then n*v is a mean, and (2) iffeLco(G), <pePiG) andvG^ then

TT*v(<p*ß=TT*v(f). (I) is obvious. For (2), it suffices to show that for fie Lm(G)

and <peP(G) then lim,, ir(<p */-/)(«)=0. (It implies that if v e !F then Tr*v(q> */)

=n*v(ß by the definition of J*!)

Let fe L™(G) and <peP(G). We may assume that <p=xul\U\, the normalized

characteristic function on U where U is open and relatively compact. Then

W(n)-?r((xul\U\)*ß(n)\ = U,-^771 Í (tTTT f Uit)-f(x~'t))dx) dt\
n + l\tAl|  JU„ + 1\U„   \\U\  Ju I        \

= I77TI Í \\ii \n\ f       (/w-yfr-1*))*1 <&|
< m „1in|(C/. + i\C/QA3c-1(t/n + 1\C/B)|

S,/IÎSf |£/»+i\t^|

L*£U l^n + ll « "J

To get the last inequality, we used the following easily verified inclusion relation :

(Un + x\Un)Ax-AUn+x\Un) c ((/^Ax-^juí/.uxí/,,

and condition (F3). By (F2)

lim(|(7nAjt-1t/n|/|£/n|) = 0
n

uniformly on [/. Thus we have (^(n) — ir((xu/\ U\) */)(") -* 0 as « -»■ co, as required.

Remarks. (1) Let G be as in the above theorem and let E be an /-admissible

subspace of L'a(G). Then MTl(E) and MTl(G) are affinely homeomorphic, cf.

Lemma 2.2. So the set J( can be embedded into MTl(E), and hence Ml(E),

affinely and homeomorphically.

(2) Let M(N) be the set of invariant means on «j(A^). Note that M(N) is a very

small portion of JÍ. (It is known that there exists a nowhere dense compact subset

K of ßN such that each p. e M(N) is supported on K, cf. [1].) On the other hand

there is an affine homeomorphism of J( into M(N) : Let kn be an increasing se-

quence of positive integers satisfying the following condition: A:n+1^(«-rT)fcn. We

define a mapping 6: m(N) -> m(N) as follows: For/e m(N),

(^(") = \—ZF "1 A!)
"•n + 1     "-n ¡ = fc„ + l

Then using the same proof as the above theorem, we see that the set &, and hence

Jl, can be embedded into M(N) topologically and affinely. This also gives us a

new proof that card M(N) = 2e, cf. [2].
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In the previous theorem if we further assume that G is unimodular then we have

a better result:

Theorem 4.3. Let G be a unimodular, a-compact, noncompact, amenable group.

Then the set Jl can be embedded into MT(G) affinely and (w*-w*) topologically.

Recall that MT(G) is the set of all two-sided topologically invariant means on

Lço(G). Indeed, we have

Theorem 4.4. Let G be a unimodular, a-compact, amenable group. Then G has an

F-sequence (Un) which also satisfies

(S) Un= U-\   for n= 1,2,3,....

Let G be a group satisfying the hypothesis in Theorem 4.3. Then by applying

Theorem 4.4, there is an F-sequence which also satisfies (F3) and (S). Note that

\UnAUnx\      \(UnAUnx)-x\ _ \U;X Ax-xUñx\      \UnAX-xUn\

\Un\ \Un\ \Un\ \Un\

since G is unimodular and (S) holds. Thus

(F2R) lim(|C/nAt7nx|/|c/n|) = 0
n

uniformly on compact subsets of G. Define tt as in the proof of Theorem 4.2. By

(F2R) we see that for v e 3P, tt*v is also topologically right invariant. Thus tt*(&)

aMT(G), and Theorem 4.3 is proved.

When G is discrete, Theorem 4.4 is proved by Namioka in the last section of

[14]. For the general case, we have to modify his proof and combine with results

of Hulanicki [11] and Nyll-Nardzewski (cf. [5]). We sketch the proof here.

For convenience, (peLx(G) is called symmetric if <pfa) = <p(x~x) almost every-

where and a Borel set B with finite Haar measure is called symmetric if

|5A5"1|=0.

Lemma 4.5. Let G be a unimodular amenable group. Let a compact subset K and

e>0 be given. Then there exists a symmetric <peP(G) such that \\lx<p — q>\x<e for

all xeK

Proof. Since G is amenable, there exists <j¡eP(G) such that \lxifs — ̂lx<e for

all xeK, cf. [11, Theorem 3.21]. Set çe=</< * </>~, where 4>~(x) = 4>(x-x). Then cp

is symmetric and <p e P(G). Moreover, since G is unimodular

\\lx<p-<p\\i = \\lx(>l'*>l>~)-<l>*>l'~\\x = \\(lx>l>)*,P~-<P*'P~\\i
S |4¿-*|i|*~|i- |/**-*|i.

Thus, <p is the function we are looking for.

Lemma 4.6. Let G be a unimodular amenable group. Let K be a given compact

subset of G and let e>0. Then there exists a symmetric compact set A, 0< \A\, such

that

\xAAA\/\A\ < e   for all xeK.
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Proof. First of all, we have to prove the following weaker result: Let e>0,

S>0 and a compact set K<^G, \K\ >0, be given. Then there exists a symmetric

compact set A with 0<|^|, and a Borel set B^K with |P|<8, such that

\xA A^I/l^eforallxeA-Ve.

By Lemma 4.5, there is a symmetric function <peP(G) such that \lxq>—<p\x

< 8e\K\. Then we use the same proof as Proposition 5.1 of Hulanicki [11] to get

the symmetric set A and the Borel set B we are looking for.

To complete the proof of our lemma, we only need to apply the above weaker

result and use the same proof as Lemma 1.4.3 of [5].

Proposition 4.7. Let G be a unimodular amenable group. Let compact sets

K^G, F<^G and e>0 be given. Then there exists a symmetric compact set A,

\A\ >0, A^Fand \xA A A\/\A\<efor all xeK.

Proof. Clearly, it is equivalent to prove that for a given 0 < k < 1, and given

compact sets F and K, there is a compact symmetric set A such that A => P and

\xA n A\ ~^k\A\ for all xe K. If Gis compact this proposition is trivial. Therefore,

we assume that G is noncompact. We may also assume that Pis symmetric. Choose

a number c> 0 such that ^<^(l + |P|c_1)<l. Suppose that we can find a symmetric

compact set B^G such that (1) \B\^c and (2) \xB n JS^fcCl + lPlc-1)!^ for

each xeK, then A = B U Pis the symmetric set we are looking for. Cf. Namioka

[14] for the details. Therefore, it remains to produce a compact symmetric set B

such that (1) and (2) are satisfied. Choose a symmetric compact set Kx such that

KX^K and \KX\^2c2. Then by Lemma 4.6, there is a symmetric compact set B

such that

\xB r\B\^ k(l + \F\c-x)\B\    for each x e Kx,

and hence for each xe K. Thus B satisfies (2). To see the set B satisfies (1), we con-

sider the function xb * Xb- Note that since B is symmetric (x¡¡ * xb)(x)= \B n xB\.

Also, note that \\xB * Xb||i = |-S|2- Let D = {x: yb * xsW = i}- Since fc(l + |P|c_1)

>i, the set Kx <=D. Thus, \B\2^(dXb * Xb(x) dx^\D\ ^i\Kx\ ^c2. So |P|^c,as

we wanted.

Finally, note that Theorem 4.4 is an easy consequence of Proposition 4.7

(cf. [14]).

Now we want to generalize our result to general locally compact amenable

groups.

Lemma 4.8. Let G be a locally compact, noncompact group. Then G contains a

a-compact, noncompact, open subgroup.

Proof. Let Vx be an arbitrary relatively compact symmetric neighborhood of e.

Set Wx = \Jñ= i Vx. If Wx is not compact, then it is the subgroup we are looking for.

If Wx is compact, choose a relatively compact symmetric neighborhood V2 of e

such that F2g Wx. Set ^2 = U"=i v%- Continue this process. If Wk is not compact
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we stop there. Otherwise, we choose Vk + 1 such that Vk+1 is a relatively compact

symmetric neighborhood of e and Vk + 1^ Wk. If all the Wks are compact we set

V— Vi u V2 u • • ■. F is clearly a noncompact, a-compact, open subgroup of G.

Lemma 4.9. Let G be a locally compact amenable group and H an open subgroup

ofG. Then there is a one-one affine mapping of Ml(C(H)) into Ml(C(G)).

Proof. The proof is similar to the discrete case in [3]. Fix p0 e Ml(G). We define

a mapping 6: Ml(C(H))^ MIC(G)) as follows: For veMl(C(H)), 6v(f)

=Hofa(f)) where feC(G) and v~(f)(x)=v((lxf)\H) (xeG). Note that v~f is

constant on each right coset and is, therefore, continuous. It is easy to check that

6v e Ml(C(G)).

Let F be a transversal for the right cosets of H and let x=t(x)t¡(x) eTHbe the

unique factorization ofxeG with respect to T. Let g e C(H). Extend g to gi e C(G) :

gi(x)=g(v(x)) (xeG). Then fa)(gi) = v(g). So the mapping 8 is one-one. 6 is

clearly an affine mapping.

Remarks. (1) The above lemma has two shortcomings: (i) It is a one-sided

theorem. We do not know how to embed the set M(C(H)) into M(C(G)). (ii) When

v e Ml(C(H)) is actually left topologically invariant, we do not know whether 6v

is left topologically invariant.

(2) Let v e Af/(LUC (//)). Define 6v e M/(LUC (G)) by (Ov)(f) = p0(v~f) as in

the proof of the above lemma. In general, we do not know whether this 8 is one-

one. But note that if g is a right uniformly continuous function on H then its exten-

sion gi to G, as in the proof, is also right uniformly continuous. Thus if G has

equivalent left and right uniform structures, e.g. G is abelian or discrete, then the

mapping 6 is one-one. In this case, we know that the set M/(LUC (//)) can be

embedded into M/(LUC (G)) affinely. But MTl(G) | LUC (G) = M(LUC (G)) and

the restriction mapping is one-one (Lemma 2.2); so we know that the set MTl(H)

can be embedded into MTl(G) affinely.

A combination of Lemmas 4.8, 4.9 and Theorem 4.2, gives us the following

Theorem 4.10. Let G be a locally compact, noncompact, amenable group. Then

the set Jl can be embedded into Ml(C(G)) affinely.

By the above remark, we also have the following

Theorem 4.11. Let G be a locally compact, noncompact, amenable group such

that (1) G is a-compact or (2) G has equivalent right and left uniform structures.

Then the set Jl can be embedded into MTl(G) affinely.

5. Remarks and consequences.

(I) The cardinalities of Ml(E) and MTl(E). It is clear that card Jl=2c. It is also

well known that if G is a compact group then G has a unique invariant mean : the

normalized Haar measure on G. Thus by Theorem 4.10, we have

Theorem 5.1. Let G be a locally compact amenable group. Then card Ml(C(G)) = 1

or 3:2°. It is one if and only if G is compact.
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When G is discrete, a stronger result is contained in [2]. By Theorem 4.11, we

get

Theorem 5.2. Let G be a locally compact amenable group which satisfies one of

the following two conditions (1) G is a-compact, (2) right and left uniform structure

on G are equivalent. Then card MTl(G) = 1 or à 2C. It is one if and only if G is

compact.

Granirer [8] proved that if G is a locally compact, noncompact, separable group,

amenable as a discrete group (which implies that G is amenable) then the dimen-

sionality of the space of left invariant functionals on LUC (G) is infinite. Since

separability implies a-compactness, our result is an improvement of his (cf. Lemma

2.2). Unfortunately, we are unable to prove Theorem 5.2 for general locally

compact amenable groups. We would like to give the following

Conjecture. Let G be a locally compact amenable group. Then card MTl(G) = 1

or ^2C.

Theorem 5.3. Let G be a locally compact amenable group which satisfies one

of the following conditions (1) G is a-compact, (2) G is nonunimodular. Then

card MT(G) — 1 or ^ 2C. It is one if and only if G is compact.

Proof. If G is a-compact and unimodular then this theorem is a consequence of

Theorem 4.3. So, we assume that G is not unimodular. Let H={x e G\ : A(x) = 1}.

Here A is the modular function for G. Note that if is a proper closed normal

subgroup of G and G/H can be identified with a nontrivial subgroup of R, the

group of real numbers. Thus G/H is not compact and hence, card MT(G/H) ^ 2°

by Theorem 5.2. It follows that card MT(G)^2C as the following lemma shows.

Lemma 5.4. Let G be a locally compact amenable group. Let H be a closed normal

subgroup of G. Then there exists an affine mapping of MT(G) onto MT(G/H).

Proof. Note that the restriction mapping p. -* /x|UC (G) of MT(G) into

AÍ(UC (G)) is one-one and onto (Lemma 2.2). Therefore we only need to show

that there exists an affine mapping of M(UC (G)) onto M(UC (G/H)). The proof

is similar to the discrete case in [3]. We shall only give the outline of the proof

here.

Consider the natural mapping 6: UC (G/H)^ UC(G) defined by (9ß(x)

=f(x + H), xeG. Let 6* be the conjugate of 9. Then clearly

6*(M(UC (G))) c M(UC (G/H)).

To see

0*(M(UC (G))) = M(UC (G/H)),

let v e M(UC (G/H)). Set E= Ô(UC (G/H)). E is a two-sided invariant subspace

of UC (G/H) and 1 e E. Define a functional p. on E as follows: p(Qß=Af)- Then p.

is a two-sided invariant mean on E. Now set

K = {A: A is a mean on UC(G) and X\E = p.}.
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Clearly, K is w*-compact and convex and 1%K<=K, r*K<^K for each xeG. By

Rickert's fixed point theorem [16], there exist A1; X2eK such that /JA1 = A1 and

r*xX2 = X2 for all xeG, i.e., Xx e Ml(\JC (G)), A2 e M/-(UC (G)) and X(\E=p. Finally,

define A as follows: X(ß = Xx(f~) where fe UC (G) and f~(x) = X2(lxf) (xeG).

Then A|F=/i, i.e., 6*X = v, and A e M(UC (G)).

(II) FAe algebra LUC (G)*. Let G be a locally compact group. Then it is well

known that LUC (G)* is a Banach algebra with convolution, cf. [8]. Denote its

radical by R(G). If G is amenable, then as in [8], for a fixed p0 e Ml(LUC (G)),

we have M/(LUC (G))—p0^R(G). Thus, as a consequence of Theorem 5.2 and

the fact that if G is compact then LUC (G)* is semisimple, we have

Theorem 5.5. Assume G is a locally compact amenable group such that (1) G is

a-compact or (2) the uniform structures on G are equivalent. Then dim R(G) = 0 or

^2C. It is zero if and only if G is compact.

We would like to single out an important special case here. Note that every

abelian group is amenable.

Corollary 5.6. Fei G be a locally compact abelian group. Then the algebra

UC (G)* is semisimple if and only if G is compact. When G is noncompact, dimen-

sionality of the radical of UC (G)* is 2:2°.

It is conceivable that the above theorem should be true for every locally compact

group. But we cannot even prove it for amenable groups.

(III) Relations between invariant means and topological invariant means. It is

well known that for an /-admissible subspace E of LX(G), G a locally compact

amenable group, MTl(E)<= Ml(E) and when F=LUC(G), MTl(E) = Ml(E). In

[9] Granirer asked whether MTl(C(R)) = Ml(C(R)), where R is the additive group

of reals with the usual topology. (Greenleaf [10], also asked the same question.)

Granirer's problem had actually been solved by Raimi [15]. He proved that there

is a p e Ml(C(R))\L'(C(R)). (The above notation is defined in §3.) But, by Theorem

3.2, L'(C(R)) = MTl(C(R)), therefore MTl(C(R))^Ml(C(R)).

In general, we have the following

Lemma 5.7. Let G be a locally compact amenable group and E be an l-admissible

subspace ofLœ(G). Then the following are equivalent:

(1) Ml(E) = MTl(E);
(2) £cLUC (G) + F(G);

(3) the restriction mapping of Ml(E) -> M/(LUC (G)) is one-one.

Here, F(G)={feLco(G): p(f)=a constant as p. runs through Ml(G)}, the space of

almost convergent functions in LX(G).

Proof of Lemma 5.7. (1) o (3) is a consequence of Lemma 2.2.

(1) => (2). Let fe E, fi LUC (G) + F(G). Choose a <peP(G). <p*feL\JC(G),

so/— <p *f$ F(G). Therefore there exists p e Ml(G) such that p(f)=£p(<p *f) and

hence, p\E$MTl(E).
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(2) => (3). Assume (2) holds. Let p.¡eMl(E), z'=l,2, and p-x^p.2. Then there

exists f=g+h e E, where g e LUC (G) and « e FiG) such that p-Aß^p-Aß- Since

P-X(h)=p.2(h), we have px(g)¥"p-2(g) and hence, (3) is true.

It is known that LUC (G) # C(G) if G is a noncompact, nondiscrete, locally

compact group, cf. [12]. By Theorem 5.1 if G is noncompact amenable then

Ml(C(G)) is not a singleton and hence F(C(G))^C(G). So the following conjecture

seems reasonable.

Conjecture. Let G be a locally compact group. If G is nondiscrete and noncompact

then MTl(C(G))=£Ml(C(G)).
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