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1. Introduction. The subject with which this discussion is to be concerned

is the differential equation of the type

d2w dw
(1.1) -|-XPi(x, X)-h \2P2(x, \)w = 0,

dx2 dx

with coefficient functions of the form

A PiAx)
Pi(*,V = T,!^L-L> 7 = 1,2.

The variable x is to be real and on an interval a^x^b. The parameter X is to

be large in absolute value, but otherwise unrestricted—real or complex. The

matter of primary concern is to be the derivation of analytic forms which

represent the solutions of the equation asymptotically as to X. By way of

hypotheses it is to be assumed that the functions pj,y.(x) are indefinitely

difierentiable on (a, b), and that the series Py(x, X) are convergent and dif-

ieren tiable term by term when |X| is sufficiently large(2).

It is familiar that the functional forms of the solutions of an equation (1.1)

depend in large measure upon the nature of the discriminant of the auxiliary

algebraic equation

72 + Ko(x)7 + pi,o(x) = 0,

namely of the function

(1-2) [#,,.(*) - iî.o(*)/4].

When X is real this is very evident, for the solutions are then of an oscillatory

or an exponential type according as the function (1.2) is positive or negative.

Whether X is real or complex, the simplest case—we shall refer to it as the

classical case—is that in which the function (1.2) is bounded from zero, and

therefore maintains its sign over the interval (a, b). For that case algorithms
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(2) These conditions could be materially relaxed in ways that will be evident. They are

adopted here to prevent the discussion from losing itself in matters other than those which are

of primary interest. '

461



462 R. E. LANGER [November

are known by which series in negative powers of X may be determined to

satisfy the given differential equation at least formally. Though these

series are in general divergent, it can be shown that their segments serve to

represent true solutions of the equation in specifiable regions of the X plane

to degrees of approximation that are characterized by appropriate powers of

1/X.
The facts are different when the interval (a, b) includes a so-called turn-

ing point, namely, a point at which the discriminant (1.2) changes its sign.

In the neighborhood of such a point the largeness of [ X | is in a certain sense

offset. In the case of a real X the solutions change there from the oscillatory

to the exponential type. If a restriction to the use of elementary functions is

made, no single analytic form suffices for the representation of a solution over

the whole interval, but, on the contrary, different forms are found to be

requisite on opposite sides of the turning point. This is known as the Stokes'

phenomenon. When it is present the forms representing one and the same

solution for different values of the variable must be associated with each

other, and this requires the deduction of so-called connection formulas. Here-

tofore, such formulas have been given only to the extent that the leading

terms of the asymptotic representations have been involved. They have not

been given for the representations as a whole.

If the restriction to elementary functions is dropped and the use of Bessel

functions is admitted, the theory of asymptotic representation is greatly

simplified. The Stokes' phenomenon is obviated, and the representation of a

solution by a single form over the entire interval is made possible. While such

representations have been given, and have even been expressed as series in

powers of X, it is nevertheless true that only the leading terms of these series

have heretofore been given in any simple way. For the terms after the leading

ones only very complicated expressions in repeated integrals over products of

Bessel functions, and so on, have been known. In this respect the theory of

asymptotic representation for the case of a turning point has remained con-

spicuously behind that for the classical case.

In the present paper this gap is in large part to be filled. An algorithm of

an elementary type is to be given for the deduction of formal solutions for the

differential equation with a simple turning point, that is, when the zero of the

discriminant (1.2) is simple. It is to be shown that the segments of these

formal solutions represent true solutions to within terms which are of an

arbitrary order as powers of 1/X.

It is convenient for the discussion to normalize the equation (1.1) by sub-

jecting it to the transformation

w = u exp-I   Pi(x, \)dx   .

In its resulting form, the equation is then
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d2u      . ,
(1.3) -+ [\2?o(*) + X?i(x) + R(x, \)]u = 0,

dx2

with

00

(1.4) R(x, X) = E
y=0

ry{x)

The functions go(x), Çi(x), and r„(x) are again indefinitely differentiable, and

the series (1.4) again converges when [X| >N(i).

For the differential equation in the form (1.3) the discriminant analogous

to (1.2) is simply the coefficient q0(x). It is therefore this function, the coeffi-

cient of X2, which vanishes at a turning point. We shall consider the equation

without imposing any restriction upon the coefficient §i(x). Heretofore it has

invariably been found necessary to suppose that gi(x) is identically zero,

or at least that it vanishes where qo(x) does so.

The discussion below consists of two parts. Part one, which is brief and

entirely formal, applies to the classical case. For that it gives a new algorithm

by which formal solutions are obtainable, one which seems simpler than that

heretofore known, especially when gi(x)^0. Part two, which constitutes the

main and essential part of the paper, deals with the case of a turning point.

In this are given both the formal deductions by which the asymptotic forms

are to be derived, and also the rigorous analysis by which the properties of the

forms are established. The method of the latter seems simpler and more direct

than those which have heretofore been used.

Part I. The classical case

2. The formal solutions. When the coefficient g0(x) of the equation (1.3)

is nonvanishing, and hence is bounded from zero on the (closed) interval

(a, b), we may choose either determination of qll2{x) as a root of Ço(x), and

with x0 as any point of (a, b) that is independent of x, define <b, ¿, and 0 as

functions of x and X by the formulas

1/2 <7i(x) Cx
<t>(x,\) = q0  (x) + -—j-^—-,        £ = XI    <t>(x,\)dx,

2\q0   {x) J x
(2.1)

0(x, X) = R(x, X) -
qi{x)

4ço(x)

The equation (1.3) is then expressible in the form

(2.2) — + [\2<t>2(x, X) +0(x, \)]u = 0,
dx2

(3) The symbolism "|\| >N" is to be read throughout the paperas standing for the phrase

"when the absolute value of X is sufficiently large." The letter N is not to be regarded as denot-

ing any specific constant in this connection.
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with

(2.3) 6(x, X) = £^,
„-o    X"

this séries converging when   |X| >iV, and being indefinitely difieren tiable

term by term.

Let the functions yi(x, X) and y2(x, X) be given by the formulas

(2.4) y,(x, X) = e^A,(*, X), j = 1, 2(<),

in which the factors A¡(x, X) remain for the moment unspecified. It is then

found by direct substitution that

(2.5) -ß- + [XV + ©]yy = e^dix, X), j = 1, 2,

in which

(2.6) dix, X) = ± ¿X[2<M/ + 0'4,] + [A¡' + 64y],      ; = 1, 2«.

With an arbitrarily chosen positive integer m, let the functions Aj(x, X)

now be taken to be of the form

m   a '

(2.7) ¿i(*,X) = £ -^, j =1,2.
^_o   XM

Under the substitutions (2.3) and (2.7) the formula (2.6) may be made to

appear more explicitly as

Cj(x, X) =  + ¿X[20a'-.o + <t>'a;,0]

(2.8) °°      r " i
+ X) ^H  ±*(20aílí+i + 0'aíl(I+i) + a"M + 22 8ß-'<Xj,v   ,

n=o       L »=o J

it being understood in this that »very symbol a with a subscript greater than

m is to be interpreted as having the value zero. Now in the formula (2.8) the

terms in X1-*, for k = 0, 1, • • •    m, will all vanish if the relations

24et .:; + 4>'ai.(i — 0,

fc-i

±i (24>ctj,k + 4> ctj.k) = -   ?j,k-i — ¿_, Qk-i-vOij,,, k = 1, 2, • • • , m,

are fulfilled. These will be fulfilled if suitable values are assigned successively

(4) It will often be convenient to combine the expression of two relations in this way. It is

then always to be understood that the upper signs are to be associated with j = 1, and the lower

ones with j = 2.
(5) The accents indicate differentiations with respect to x.
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to «y,o, ctj,i, • • ■ , oLj,m, in particular if

a,,o = <T1/2(*, X),

(2.9)
+ i

Oij,k =
2<¿>1/2(x, X) /:

ay./b-i + 2Lê Ö*-i-»ay,,

4>1/2(x, X)
¿X.

Since go(x) is bounded from zero, it follows from the first of the relations (2.1)

that 4>{x, X) is similarly bounded when |x| >N. No singularities are therefore

involved in the relations (2.9). It results from these relations that the func-

tions Cy(x, X) reduce to the order of X~m, namely that the products XmCy(x, X),

j = l, 2, are bounded when |X| >N.

It will be observed at once that if in the discussion above the integer m

were to be replaced by «>, the scheme outlined would serve to remove all

terms from the right-hand members of the relations (2.8). Formally, there-

fore, the functions Cy(x, X)—and with them the right-hand members of the

equations (2.5)—would then reduce to zero, and the functions yi(x, X) and

y2{x, X) would formally solve the given differential equation (2.2). This equa-

tion thus admits of the pair of formal solutions

(2.10) p±t

,.=0 X"
i = 1- 2,

with coefficients that are given by the formulas (2.9).

3. The approximating differential equation. The functions yi(x, X), y2(x, X),

as defined under (2.4) are the initial segments of (w-f-1) terms of the respec-

tive formal solutions (2.10). Like any pair of linearly independent and suitably

differentiable functions, they determine a linear differential equation of the

form

(3.1)
d2y dy
-i + Pi(x, X) — + P2{x, \)y
dx1 dx

0,

of which they are solutions. For the coefficients of this equation we have the

familiar formulas

Pi(«, X) =

P2(x, X) =

yv

yi'
y I

yV

yi

y*

yl

yl

yi

yi

yl

yi

yi

y2

n
y-i

If in these we substitute for y" and y" their respective values as given by

the equations (2.5), and for yu y2 and y{, yi their values as obtainable from

the relations (2.4), the formulas are found to reduce to
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Pi(x, X) =
Ai   Ci

Ai   Ci

Pi{x, X) = XV2 + 0 +

A{ + i\4>Ax   Ai

Ai — i\4>Ai   Ai

Ci    Ai' + i\4>Ai

Ci    Ai — ÏK4>Ai

A{ + ¿X<Mi   Ai

Ai — i\4>A2   Ai

Since the functions ^4y(x, X) are bounded when |X| >N, while the functions

Cj(x, X) are of the order of X~m, it is evident that

üi(x, X) S22(x, X)
Pi(x, X) = —-,       Pi{x, X) = \24>2 + 6 H-,

Xm+1 Xm

with ñi and £22 standing for functions that are bounded when |X¡ >N. The

equation which is solved by yi and y2 is thus

d2y      Qi(x, X) dy      C fl2(x, X)"]

(3.2)      -/- + -±—-¿ -f. +    X>2(x, X) + ©(*, X) + —i-   y = 0.
¿x2 Xm+1     dx      L X"1    J

This differential equation, of which the solutions are known, approximates

the given equation (2.2) in an obvious sense when | X| >N, the degree of the

approximation being the better the larger the value of m. From the similarity

between the two equations it is possible to prove that the solutions of the

one are asymptotically representable by those of the other. We shall not give

such a proof here. The reasoning upon which it may be based is, however,

precisely such as will be used below in §§10, 11, and 12.

Part II. The case of a turning point

4. The first approximating equation. When the coefficient q0(x) of the

equation (1.3) has a zero at a point Xi in the interior of the interval (a, b), the

deductions of the preceding sections fail. Either the function <ß(x, X) or its

reciprocal—they both play a crucial rôle—is then unbounded, according as

gi(x) is different from or equal to zero at Xi. In either case the formulas (2.9)

give no usable evaluations. It is the purpose of the following discussion to

present an alternative algorithm, one which retains its validity even when a

zero of qo(x) is present.

The hypotheses to be made are the following:

(i) The interval (a, b) contains a point {just one) at which the function q<¡{x)

vanishes.

(ii)  This zero of qo(x) is simple, that is, of the first order.

(iii) The function go(x) is real, except possibly for a constant complex factor,

when x is real and is expressible by a power series in (x — Xi) near Xi.

It is convenient to make certain adjustments which involve no loss of

generality. To begin with, the zero of qo(x) may be taken to be the origin of

the variable x. Further, the function q0(x) may be taken to be real on (a, b),

and to have everywhere on this interval the same sign as x.  Under the
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hypothesis (iii) this adjustment may be attained by at most the transfer of a

suitable constant factor from go(x) to the parameter X2. We shall assume

these normalizations to have been made, and observe therefore that hence-

forth a<0 and 0<&.

With qlJ2{x) determined to be that root of qo(x) which is real and positive

for positive values of x, let the functions <£(x), |, and M^x) be defined by the

formulas

1/2
(a) 0(x) = go   (x),

(b) £ = X I    4>(x)dx,
(4.1) Jo

I     <t>(x)dx
ut

(c)     *(x) =

[*(*)]
1/2

It will be observed from these that 0(x) and its integral both vanish at x = 0,

and that near this point they are respectively of the orders of x1/2 and x3/2.

For positive x they are both real and positive, so that then arg £ = arg X.

For negative x, on the other hand, 4>{x) and its integral are both pure imag-

inary, with arguments that are respectively 7r/2 and 3w/2. In this case

arg£ = argX + 37r/2. Finally, it is clear that the formula (4.1c) is indeterminate

at the origin. It is, however, easily verified that limx,o *(x) exists and is

different from zero(6). With proper definition at x = 0 the function ^(x) is,

therefore, continuous, and in fact indefinitely differentiable, over the interval

(a, b). Both *(x) itself and its reciprocal are bounded.

Consider the function

(4.2) .(*, X) - *(*)F(Ö,

in which the factor V(l-) is any solution of the differential equation

d2V      1   dV
(4.3) -+-+7 = 0.

de      3£   df

The formula (4.1b) yields the relation

d d
(4-4) — = X</>(*) — >

dx ag

and by virtue of this it is found that

. dV                 d2V
v" = ^r"U(£) + [2X0*' + X0'tf]-(- XV*-

d!; di;2

(«) Its value is [3gó (0)/2]-1-".
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But from the relation (4.1c) it is readily deduced that

.      \24>2*

[2X0*' + X0'*] =-

The evaluation of v" above therefore reduces to the form

rdW       1   dVl

Ide       3?   dil

or, because of the equation (4.3), to

v" = *"7(Ö - XfyW(Ö-

From this and the formula (4.2) it follows that v(x, X) solves the differential

equation

d2v
(4.5) -— + [\2q0(x) + 6(x)] v = 0,

dx2

in which

(4.6) 0(x) = -

The differential equation (4.3) is a familiar one. It admits as explicit

solutions the product £1/3i?i/3(£), in which Hi/s stands for any Bessel function

of the order 1/3. The equation (4.5), which to the extent of the term in X2

resembles the given equation (1.3), is thus also explicitly solvable, its solu-

tions being the functions

(4.7) v{x, X) = *(*)£i/»ff!„({).

We shall refer to (4.5) as the first solvable approximating equation.

5. The second approximating equation. Whenever the coefficient çi(x) in

the given differential equation (1.3) is not identically zero, the resemblance

between the equations (1.3) and (4.5) is still remote when |X| is large. It is to

be shown that an equation yielding a closer approximation, but which is still

explicitly solvable, is then derivable.

With vi(x,\), vi(x, X) as any pair of linearly independent solutions of the

equation (4.5), and with tentatively undetermined coefficients no(x), Pi(x), let

the functions fi(x, X), f2(x, X) be defined by the formulas

ytil(x)
(5.1) f,(x, X) = no(x) Vj(x, X) H-— v'j (x, X), j = 1,2.

X

The differentiation of these, followed by an elimination of the v'/ through use

of the equation (4.5), leads to the companion formulas
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(5.2) f/ (x, X) =    mo  - XgoMi-— \vj +  Lo + —— \vj , j = 1, 2,

and a repetition of the process shows further that

20m i' - ö'/iir                                            20mi - 0 Mi 1
f /' (x, X) =    mo" — 2XgoMi  — Xço'mi-X2?0Mo — 0Mo \v

0/11 - Mi'
+ 1 2mo'  — XgoMi — j = 1, 2.

X

From these results it follows that

f/' +  [X2?o + Xçi]fy =  { - X(2g0/ii   + ?o Mi - giMo) + gi(x, X)}î)y

(5.3) . .  9/
+ {X(2mo' + iU*t) + g2(x)} —-, y = 1, 2,

X

with

20Mi' + 0'mi
(5.4) gi(x, X) = Mo"  - 0Mo-» g2(x) = Ml" - 0/11.

X

Let the functions Mo(x) and Mi(*) now be chosen thus,

çiO)

(5.5)      mo(x) = cos <  I    - ax> ,
U o   20(x)      J

?i(»)    ,) , „ Wo   20(x)
Mi(x)

- dx>
o   2<j>(x)       )

2<f>(x)      ) <t>(%)

It then follows that

2goMi' + go'mi — giMo = o,      2mo' + giMi = o,

and because of this, that the relations (5.3) reduce to the forms

•/
(5.6) f/' + [X*?o + Xji]f,- = gi(x, X) Vi + g2{x) —-, j = 1, 2.

X

When gi(x) differs from zero at x = 0, the integral which appears in the

formulas (5.5) is improper. Since its integrand becomes infinite only like x~1/2,

however, the integral is convergent and is itself of the order of x1/2. The

formula for Mo(x) is thus definitive, and although that for ¡xi{x) is indetermi-

nate at x = 0, it is easily found to yield the result lim^o Mi0*0 =3i(0)/ço' (0).

With proper definition at x = 0—and we shall assume that—the functions

(5.5) are accordingly continuous, and in fact indefinitely differentiable over

the interval (a, b). It is to be observed for future use that

(5.7) mo(x) + ç0(x)mi(x) = 1.
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When the index j is understood to stand for either one of the values 1,2,

but to be fixed, the equations (5.1) and (5.2) together constitute a linear

algebraic system in which the values Vj and v¡ take the rôle of the unknowns.

The determinant of this system is

(5.8) Do(x,\)

and this, because of the relation (5.7), has the value

Mo
Mi

X
dßi                  Mi-

Mo   — XÇoMl-Mo H-
X X

(5.9) Do(x, X) = 1 +
MoMi   — Mo Mi        0Mi

It is clear that D0 is thus both bounded and bounded from zero when |X| >N.

The solution of the system (5.1), (5.2) is now found to be

(5.10)

'*/ = yr "j - ( Mo'  - XçoMi-—J Tí + M of / > ■

With the substitution of these values, the relation (5.6) becomes an equation

in fy and its derivatives. Since the coefficients in this equation are independent

of j it is thus found that f i(x, X) and f2(x, X) are solutions of the differential

equation

(5.11)

in which

d2i df      .
—- + H0(x, X) — + [X2?0(*) + X9i(x) + Ko(x, X)]f = 0,
dx2 dx

1

(5.12)

Ho(x, X) = —- [gi(x, X)mi - gi(x)ßa],
Wo

Ko(x, X) = —-   gi(x, X) ( mo + -^-) + gi(x) UoMi-^- + —-)   ■

Now by virtue of the values (5.4) it is easily verified that the first one of

the formulas (5.12) is in fact expressible as

Ho(x, X) =
Do (x, X)

Do(x, X)

The change of variable from f to z under the relation
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(5.13) 2 = D^'\

therefore reduces the equation (5.11) to the form

d2z
(5.14) -+ [X2go(x) + \qi(x) + K(x, X) ]z = 0,

dx2

in which the term in the first derivative is lacking, and in which

Z?o"(x, X)       3 rDo'(x, X)l2
(5.15) K(x,\) = K0(x,\) +

2Do(x, X)       4

r£>o'(x, X)l2

LDo(x, X)J

The function K(x, X) is evidently bounded when |X| >N. It is in fact ex-

pansible in powers of X-1, thus

Zfá¡>\ OC )

i—o      X"

with coefficients &„(x) that are differentiable. The equation (5.14) is thus of

precisely the type of the given equation (1.3), and resembles it to the extent of

all terms in positive powers of X. It is, moreover, explicitly solvable, its solu-

tions being the functions

/   s      ,      , s    .    Mi(*)

}•

(5.17)      2,(x, X) = D0    (x, XMmo(x)ïî(x, X)H-z>/(x,X)V,     j = 1, 2.

We shall refer to (5.14) as the second solvable approximating equation.

The deductions of this section are significant and lead to an equation

(5.14) which is an improvement over (4.5), whenever the coefficient gi(x) in

the given differential equation is not identically zero. If çi(x) is identically

zero the step represented by these deductions may be completely omitted.

Formally the evaluations (5.5) then reduce to Mo = l, Mi —0» so that -D0 = l

and the functions 2y(x, X) are identical with the v¡{x, X). The equations (4.5)

and (5.14) are then the same.

6. The related differential equation. By a method which is essentially

that of §5 it is now possible to derive a solvable differential equation which

approximates the given one, not only to the extent of the terms in positive

powers of X, but to the terms in arbitrarily prescribed powers of 1/X as well.

Let m be chosen as any positive integer. With tentatively undetermined

coefficients a,{x), ß„(x), let the functions A(x, X) and B(x, X) be given by the

relations

•EL1  a,(x) '¡iZ,1   ßJx)
(6.1) A(x,\) = Z—V"'        £(x,X) = £^V-

v=0 X" ^,0 X"

Finally with Zi(x, X), z2(x, X) as any linearly independent solutions of the dif-

ferential equation (5.14), let the functions r¡j(x, X) be defined by the formulas
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B(x, X)
(6.2) 7/j(x, X) = A(x, X)z,(x, X) H-—z/(x, X), j = 1, 2.

X2

A differentiation of these, followed by an elimination of the z'/ through the

use of the equation (5.14), leads to the companion formulas

r qiB     KB~\ r        B'-\
(6.3) 7,,'(x,\) = ^'-go5-I—-—JZi+^+_J2/,      j -1,2,

while a repetition of this process gives a corresponding evaluation of the r¡'/

in terms of zy and z/. It follows from these results that

(6.4) nf + [X2?,, + \qi + R]ví = 5o(x, X)2i + 5ï(«, X)z/,        ; = 1, 2,

with

S0(x, X) = T- 2q0B' - q¿B + A" + (JR - £)4

2?15' + ci' P       2^5' + X'iT
(6.5)

' + K'BI

T2 J'

Si(x, X) = \2A' +
B" + (P - P)5"

X2 ~".

Through the use of the relations (1.4), (5.16), and (6.1), the functions (6.5)

may be expressed as power series in 1/X. If it is agreed to interpret all sym-

bols with negative subscripts, and all symbols« and /3with subscripts greater

than (m — 1), as having the value zero, the formulas (6.5) thus become more

explicitly:

oo / m— 1 \

Si = 2>-'-¡2aí + ß'J_t _|_ £ (r_*-s -  kr^-i)ßS ,
k—0 V (1=0 /

(6.6)   5o = ¿X-'-| - 2q0ß'r - q'0ßr + a" - 2?i/3,'_i - q'iß,-i
v=0 \

m—I \

+ X [(»V-n —   ¿,_„)av —   2kv-r-ißß —   ¿„_M_2ft,]> .

Now in these series the leading terms are in general those which are free

from X. They vanish, however, if

2ai = 0,

- 2ço/30' - ?o j8o + ao" + (r0 -   ¿o)«o = 0.

These equations may be fulfilled by the choices of a0(x) and j30(x), and they

will be fulfilled if in particular
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1      rx rB(x) — k0(x)
(6.7a) «,(*) . 1,       ß9(x) = —- '  ,    °V    dx.

<f>{x)Jo 2<j)(x)

We shall assume that a0(x) and ßo(x) have been given these values. The series

(6.6) therefore lack the terms which are constant as to X.

In general, now, the leading terms in the series (6.6) are those in X-1.

These, however, vanish if

2a{ = 0,

i

- 2q0ß{ - go'ßi + «i" - 2qiß£ - q{ ßo + £ (/i_„ - ki^)a, = 0.
,1=0

To achieve this we shall choose

(6./b)      «iïsO,        j8i(*)=-T-rl    --r—-¿x.
0(x)Jo 20(x)

The expressions (6.6) are thus reduced to be formally of at most the order of

X-2. It will be clear, now, that the procedure admits of repetition to make the

terms in X-" vanish successively for v = 2, 3, • • • , (m — i), by the successive

choices of a„(x) and ß„(x). The formulas expressing these choices in terms of

those previously made may, at the vth stage, be taken to be

a„(x) = —- I       ß['_2 + Z (f_p_s - k,-ß-2)ßn   dx,
2  J o  L ,i_o J

v — 2, 3, •••,(*»— 1),
(6.7c)

I av   — 2gi/3,_i — qiß,-i + ^ (r„_M — fc_„)a
1      /»*

<A(x) Jo
tt«)

<^>(x)Jo   v 2<¿(x)

¿ . (2^v_M_2ß,i —   «„_,,_ 2fti)
^-0

2<f>(x) /
áx.

It will be observed that the formula for the function ß0(x) involves an

integral which is improper, and also involves </>(x) to a negative power.

However it is clear, that since <b(x) vanishes only like x1/2, the integral is

convergent, and the entire formula only indeterminate at x = 0. With ßo(x)

defined to be continuous at the origin it is a function which is continuous and

indefinitely differentiable over the interval (a, b). The like observations may

now be made upon the definition of the function ßi(x), and then in turn upon

those of ß,(x) for v = 2, 3, • • -, (m — 1). The determinations (6.7), and there-

with the specifications of the functions (6.1), are, therefore, significant. As

a consequence of them the functions S0(x, X) and 5i(x, X) in the relations
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(6.4) are of the order of X~m.

When j is fixed at either one of its possible values, (6.2) and (6.3) con-

stitute an algebraic system in Zy and z/. The determinant of this system is

A B/\2

A' - q0B - qiB/X - KB/X2    A + B'/X2
(6.8) Pi(x, X)

and since this differs from A2 by an expression of the order of X-2, whereas, by

(6.7a) and (6.7b), ^42 differs in turn from unity by a similar quantity, it is

clear that Pi and its reciprocal are both bounded when |X[ >N. The system

at hand is therefore solvable, and yields the evaluations

(6.9)
^-k{[A + ̂ \ni

B
Vi

Zi   =

-1
~D¡ qxB      KBI

A' -q0B-
X X2 J

r,j - Ar,' > ■

By virtue of these the relation (6.4) is expressible as an equation in r¡j and its

derivatives. It is found thus that ?7i(x, m) and r¡i(x, p) are solutions of the dif-

ferential equation

(6.10)

with

(6.11)

d2V dr,       r ,
—- + Hi(x, X) — + [X2g„ + X?i + R - Ki]v = 0,
dx2 dx

Hi{x, X) =

Ki{x, X) =

-1

i

p7

A     B/\2

So      Si

A' - q0B - qiB/\ - KB/X2    A + B'/\2

So Si

The differentiation of (6.8), and a comparison of the result with the first

one of the equations (6.11), shows that Hi(x, X) = —D{ (x, X)/Pi(x, X). The

change of variable from r¡ to y, where

(6.12) y = Pi%,

accordingly reduces the equation (6.10) to the form

(6.13)

in which

d2y     r
— +    \2q0(x
dx2      L

) + Xgi(x) + R(x, X) +
0(x, X)

] y = 0,

(6.14) 0(x, X) = Xm{P'i(x, X) - PÎ(x, X)/4 - H{ (x, X)/2}.
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Since the functions (6.5) are both of the order of X~m, the same is true of the

functions (6.11). Hence ß(x, X) is bounded when |X] >N, and the differential

equation (6.13) accordingly resembles the given equation (1.3) to the extent

of all terms in powers of X to that in X_m. We shall refer to (6.13) as the dif-

ferential equation related to the given equation, or simply as the related equa-

tion. Its explicit solutions are

1 C B(x, X) )
(6.15)        yy(x, X) =       /2 \A(x, X)zy(x, X) -\-——z/(x, X)> ,

Pi   (x, X)  { X2 J

j = I, 2.

7. The solutions of the related equation. Inasmuch as the solutions

Vj(x, X) of the first approximating equation are of the wholly familiar forms

(4.7), it is desirable to refer the expressions for the functions yy(x, X) directly

into terms of them. That is easily done. By virtue of the relation (5.13), the

formulas (6.15) assume the form

and from this the evaluations (5.1) and (5.2) lead at once to the forms

(7.1) y,(x, X) = Eo(x, X) Vj(x, X) + P:(x, X) -^-^-, j = 1, 2,
X

with

BV M„' moPo' Miö-I
Eo{x, X) = poA-comí-1-1-'   i

X L X 2XP0        X2 J

B I- mi' MiPo'l
Pi(x, X) = niA -\-Mo -\-■-■   .

X L X 2XPoJ

Let the Wronskian of two functions yi, y2 be designated by W(yi, yi), thus

(7.3) W(yh yi) = yiy2' — yi'y2.

The relations (6.9), (6.8), and (6.12) show then that W(zu zi) =Dr1W(vi, Vi)
= W(yi, y2), whereas the relations (5.10), (5.8), and (5.13) show that

W(vi, v2) = P;V(fi, f2) = W(zi, zi).

Thus it follows that

(7.4) W{yi,y2) = W(vi, v2).

These Wronskians are evidently independent of x, since the equations (6.13)

and (4.5) lack the terms in the first derivatives.

(7.2)
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In the formula (4.7)Hi/3 is any Bessel function of the order 1/3. Its rôle

may therefore be filled by any constant linear combination of the standard

functions H[% and H¡%, the so-called Bessel functions of the third kind(7)

and for the deductions which follow it is convenient to do that. We may thus

write

(7.5) v,ix, X) = VWi'^c^iHvziO + cMff$(Ö}, j - 1, 2,

and these two functions will be linearly independent if the determinant of

their coefficients Cy,< is different from zero; in particular if

(7.6)
Cl,l     Cl,2

¿2,1     C2,2

=   1.

To adopt the relation (7.6) is a mere normalization which it is convenient in

the following to adhere to.

To obtain the derivatives v¡ we may draw upon the familiar relations

ytirHHkO}=rH%zœ, i =1, 2(B),
dí

together with (4.4) which may be alternatively written in the manner

d X     / £ Y'3   d
(7.7) — =-( —)     —•

dx     *2(x)\X/      d£

It is thus found that

|-*'(X)     .1/3      (2) 1 2/3      (2) 1\

3*(x)

j = 1, 2.

From the formulas (7.1) we find accordingly that

K*'-El\     1/3      (2),   , El 2/3      (2) ~[)
*e0 + —)nlhUo + ^  *^<öj},

(7.9)
r/_    *'-Ei\ 1/3. (2),,     £i

+ c

j = 1, 2.

(7) Cf. Watson, G. N. A treatise on the theory of Bessel functions, Cambridge, 2d ed., 1944,

p. 73.
(8) Cf. Watson, p. 74.
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It is familiar that, with any positive index 7, the functions ^H±y(^) are

bounded in any bounded domain of the variable £. The relations (7.9) there-

fore show at once that with some constant M

(7.10) ¡ y,-(x, X) I < M, when|£|=:iV.

The Bessel functions, as is well known, become infinite, or approach zero,

or remain of an oscillatory character, when the variable itself becomes

infinite. Which of these alternatives maintains depends in general upon the

argument of the variable as a complex quantity. The configurations which de-

termine the behavior of the standard functions Il[fz are the following ones:

C1) , / 2 V'2  •3-6W/12
Hiiiiz) ~ I —)    e , when  — ir + 5 ^ arg z iï 2ir — 5,

\tz/

(2) / 2 \ 1/2 -iz+Sri/U

"1/3(3) ~ I — )    e , when — 2ir + 5 á arg z ^ t — 5,
\TZ/

(7.11)

with S>0(9). The sense in which these relationships are to be understood is in

each case the following one: that the quotient of the member on the left of

the symbol ~ by the member on the right differs from unity by an amount

which is arbitrarily small when \z\ >N. For values of arg z which do not fall

within the ranges for which the relations (7.11) are indicated to apply, these

latter must be used in conjunction with the classical equations

(7.12)

„CD,   **<.       sin (1 — ¿Ott/3     M) -ri/3   sin for/3     (2)
PiMze    )=-;-Pi/3(z) - e        —-— Pi/3(z),

sin x/3 sin 7r/3

(2)     kTi wilt sin ¿tt/3     a, sin (1 + k)w/3     (2)
Pi/3(ze    ) = e      —;-— Pi/3(z) H-;-Pi/3(z).

sin it/3 sin ir/3

In these k may be any integer, positive, negative, or zero(10).

It will be clear from this that the forms of the functions (7.9), when |£|

is large, depend both upon the constants Cy,¿, and also upon arg £, which is to

say upon x and arg X. The further discussion of this matter is therefore to be

deferred to the appropriate sections below.

8. The representation formulas. If u(x) is a function which fulfills an

equation

(8.1)        y(x) = u(x) +
yi(x)yi(t) - yi(x)yi(t)

W(yi, yi) J    X

Q(t, X)
u(t)dt,

in which Xo may be any fixed point of the interval (a, b), and in which yi(x),

y2(x), and y(x) are any solutions of the equation (6.13), with yi(x) and y2(x)

(9) Cf. Watson, pp. 197, 198.
(10) Cf. Watson, p. 75.
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linearly independent, then u(x) is a solution of the given differential equation

(1.3). This is easily verified. The second derivative of the equation (8.1) is

/'(*) = w"(x) + n«/ i0 i_

fi(x, X)

yl'(x)y2(t) - yl'(x)yi{t)-\ Q(t, X)

W(yx, y2)
u{t)dt

w(x),

and from this and the fact that Ji(x) and 3>2(x) satisfy the equation (6.13),

it is to be seen that

y" + X2g0 + X?i + R + —Xm
y = u" + [\2qo + Xqi + R]î

Since the left member of this is zero, the assertion as to w(x) is clearly estab-

lished. Equations of the form (8.1) evidently associate solutions of the given

differential equation with those of the related equation. It is to the analysis

of such associations that the following discussion applies.

From the relations (7.5) and (7.6) it is clear that

»l

vi

v2

vi
= e-'^ix)

Hvlit) Hi?,®

dx dx

and this equation, by the use of the formula (7.7), may be written thus:

W{ vi,  Vi) = X2'3£

ÄÖ ByziO

d      (i) d      (2)
-Bi/zio -b[;3(ï)
di, di,

Under (7.4) the left-hand member of this may be replaced by W(yi, yi), and

since the determinant on the right is known (n) to have the value — 4»'/irÇ,

it follows that

(8.2) W(yi, y2) = — X2'3.
x

Let Mi(x) be defined now as the solution of the equation (8.1) when x0=<z

and y(x)=yi(x), and let w2(x) be correspondingly defined as the solution of

that equation when x0 = b and y(x)=y2(x). Then because of the evaluation

(8.2) we have

(8.3) «,(*) = yi{x) + —— (   —. {yi(x)y2(t) - 3'2(x)y1(/)}x1/3í2(í, \)ui(t)dt
\m+lJa  4i

(u) Cf. Watson, p. 76.



1949] ASYMPTOTIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 479

and

(8.4) u2(x) = y2(x) + —— f   — {yi(x)y2(0 - y2(x)yi(/)}X1/3í2(¿, \)ui{t)dt.
Xm+lJ 6 4î

With appropriate choices of the functions yi(x) and y2(x)—and these choices

will depend upon the value of arg X—we shall deduce from these equations the

forms of the solutions Mi(x), Ui(x).

The equations (8.3) and (8.4) are integral equations of the Volterra type

1     rx
(8.5) w(x, X) = f(x, X) H-I     K(x, t, X)w(t, X)dt,

with coefficients f(x, X) and kernels K(x, t, X) that are continuous over the

ranges of the variables that come into question. Their solutions are therefore

likewise continuous. Beyond that, the fact which is asserted by the following

lemma will be of use in the deductions that follow.

Lemma. If for x0 and x on a given interval and | X | > N, the coefficient and

kernel of the equation (8.5) are such that

(a) | f(x, X) | = M,

(8.6)
(b) I f    ¡ K(x, t, X) I dt   =: M,

\J x0 1

with M standing for some constant (independent of x and X), then

0(1)
(8.7) w(x, X) =/(*, X)+—-»

Xm+1

with 0(1) standing for a function of x and X that is bounded when x is on the

given interval and \ X | > N.

To show this, let wmÇX) be used to denote the maximum of \w(x, X)| on

the interval in question, and let xm be a point at which this maximum is

taken on. Then the equation (8.5) at x=x„ shows readily that

Mwm(X)
wm(X) = M +

X\m+1

namely, when |X| >N, that

M
(8.8) wm(X) =

1 - M / I X | «+1

But by virtue of this, the equation (8.5) with the coefficient f(x, X) trans-

posed shows that
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1      / M \
W(X,\)   -/(X, X)      ¿-r—-.-(-:-¡- )M.

1 M      "       Ixl^1 \1 - M/1 x|-»+V

With this the assertion of the lemma is evidently established.

9. Some appraisals which apply when

(9.1) 0gargX<7r/2.

According as x <0 or 0 <x, the value of arg <f> is tt/2 or 0, and the integral of

<b(x) therefore has an argument that is respectively 37r/2 or 0. Accordingly,

by (4.1), arg £ = arg X + 37r/2 when x<0, and arg £ = arg X when 0<x, and

the range (9.1) thus corresponds to

(9.2) 3t/2 g arg £ < 2tt, when x < 0,

and to

(9.3) 0 ^ arg £ < t/2, when 0 < x.

Let us choose as the functions Oy(x), in this case, those which are given

by the formulas (7.5) with the coefficients

(9.4) (ci.i, ci,2) = (e-'3, 1),        (c2,i, c2.2) = (-1, 0),

namely

(9.5)
vi{x) = nx)ï'3[eTil3Bli)l(0 + *#(©],

v2(x) = - *(x)HV3Huz(l;).

The reasons for these particular choices will soon appear. It is to be observed

that they conform to the relation (7.6).

When x<0 the variable £, lying in the region (9.2), does not fulfill the

conditions upon z for which the relations (7.11) are valid. The variable £e~2"

on the other hand does fulfill those conditions. For that reason we shall re-

write the formulas (9.5), as we may by the use of the equations (7.12), to

appear thus

vi(x) = - *(x)£    ffi/s(£e      ),

(9-6) ,   , T/    sJ/3r     (1)       -2t¿ -Til»      (2) .     -2x<   -,
v2(x) = *(x)£    [Hi/3(Çc      )+e       Hi,z(Çe      )J.

The relations (7.11) with 2 = £e~2,ri may now be applied to show through the

formulas (9.6) that

(2 V'2
Di(x) ~ ( — )    c5"/12*(x)r1/6e"i£,

(9.7)
/2X1/2

Vi(x) ~ - Í — j    e-6*-¡/12*(x)^-1/6[eif + ie~il],    when x < 0.
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Now for £ in the region (9.2) the exponential e~{i is bounded, while ei{ in

general is unbounded. Of all the linear combinations of v\(x) and v2(x),'\t is

therefore clear from the relations (9.7) that Vi(x) alone is invariably bounded

for negative x and X in the region (9.1). The reason for the particular choice

of Vi(x) is thereby manifested.

To derive relations analogous to (9.7) but applying to the derivatives

v{(x), v2(x), the deductions above could be applied to the formulas (7.8)

with the coefficients (9.4). The result of that, however, would be merely to

show that the relations (9.7) are differentiable by differentiating only the

exponentials that are involved. Thus it is found that

(9.8)

/2\1'2
v{ (x) ~ - Í — J    e6Ti/12X(Kx)*(x)r1/6e~i{.

/2 \1/2
vt (x) ~ - f — J    e-M12X4>(x)y(x)£-ll6[eil¡ - te'*],

when x < 0.

Because of the relations (9.7) and (9.8), and by virtue of the equations (7.1),

the following observation may now be made. If the functions Fy(x) and (Vy(x)

are defined by the relations

Fi(x) = el6e^yi(x), Yi(x) = pite-tiy^x),

Ui(x) = e"e^ui(x),        Ui(x) = e'6e~^u2(x),

then the functions  Fi(x) and  F2(x) are bounded when x<0.

For positive x, the variable £, lying in the region (9.3), fulfills the condi-

tions upon z which pertain to the relations (7.11). These relations are there-

fore directly applicable to the formulas (9.5), and show that

/ 2 V'2
vi(x) ~ f — J    eOri/is^^g-i/efiTif - &*],

(9.10)
/ 2 Y'2

vi(x) ~ - Í — J    <r**ila*(x)fmet*, when 0 < x,

and hence also that

/2\"î
v{(x) ~ - Í — J    e6iri/12X(i.(x)^(x)r1/6[e_i{ + iei(],

(9.11)
/2N1/2

vi(x) ~ - Í — J    e'brii12X4>(x)^(x)è-ll6e^, when 0 < x.

In the region (9.3) it is the exponential ei¡ which is bounded, while e~if- is in

general not so. Since i>2(x) thus appears as the only one of the linear combina-
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tions of Pi and v2 which is bounded for positive x and X in the region (9.1), the

reason for its particular choice will be clear. Through the equations (7.1)

and the relations (9.10) and (9.11) it is now to be observed that the functions

Fi(x) and Y2(x), as they have been defined under (9.9), are bounded also

when 0<x.

With any specific value of N the relation |£| >N is fulfilled for the

values of x on a negative and on a positive subinterval, say for a^x<x_¡v,

and for x^<x^b. In these the points X-tr and xn lie respectively on the

negative and the positive sides of the origin, and both depend upon X. Since,

when |x|  is small, |£|  is in the order of |Xx3/2|, it is to be concluded that

x-n\ , xn, and the length of the subinterval (x-N, xn) are all of the order of

X|"2'3.

10. The forms of a pair of solutions when

0 S arg X < t/2.

For use in the discussion of the equations (8.3) and (8.4) it is convenient to

define a value t in terms of the variable of integration /, as ¿j is defined in

terms of x, namely

= X I    4>(t)dt,
J o

and also to list certain functional combinations which may then subsequently

be abbreviated. These combinations, with the designations to be assigned

them, are the following ones:

K0(x, t, X) = — {yi(x)y2(t) - 3'2(x)y1(¿)}X1'30(/, X),
4:1

Ki{x, t, X) - — {Yi(x)Y2(t) - Y2(x)Yi(t)e2i«-^  ( — )    0(i, X),
4» \ T /

K2(x, t, X) = — {yi{x)Y2{t) - y2(x)Yi(t)e-2"}(—)    Q(t, X),
4î \ T /

(10.1) K3(x, t, X) = — {Yi(x)y2(t) - F2(x)y1(0e2i£}X1'3í2(í, X),

K¿x, t, X) = — { Yi(x)Y2(t)e-2^-^ - Yi{x)Yi{t)}(—)    Q(t, X),
4* \ t /

K6(x, t, X) = — {yi{x)Yi{t)e2" - y2{x)Yi{t)}[ — )    Q(t, X),
4i \t /

Ke(x, t, X) = — {Yi(x)y2(t)e-2it - Y2(x)yi(t) }X"3fi(i, X).
4i
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Let us, to begin with, consider the equation (8.3) when x is on the range

a^x<x-N- Upon multiplying the equation by £1/6ei{ and suitably grouping

the factors of the terms in the integrand, the equation may be made to ap-

pear in the form

(10.2) Pi(x) = Fi(x) H-f    Pi(x, t, \)Ui(t)dt,
Xm+1J a

the function Ui(x) having been defined by the formulas (9.9). This is mani-

festly an equation of the type (8.7), of which the coefficient Fi(x) was ob-

served in §9 to be bounded. In the course of the indicated integration arg £

and arg t both have the value arg X+3tt/2, and \t\ è|£|.Thus arg {*(| — t)\

= arg X+7T, and for the values of arg X presently in question this means that

the exponential e2iie~T) is bounded. In the formula (10.1) for PJi(x, t, X), only

the factor (X/r)1/3 is therefore unbounded. However near t = 0 this is of the

order of t~112. It is therefore seen that Ki(x, t, X) fulfills the condition which

is imposed upon the kernel K(x, t, X) by the relations (8.6). The lemma of §8

is thus applicable to the equation (10.2), and justifies the conclusion that

0(1)
(10.3) Ul(x) = Yl{x) +

Xm+1

Let us now consider values of x on the interval (x-n, x.y). If /i(x, X) is de-

fined by the relation

(10.4) /x(x, X) = yi(x) +- f    V Ki(x, t, X)Ui(t)dt,
Xm+1Ja

the equation (8.3) may be written thus,

(10.5) ui(x) = /i(x, X) +- f      K0(x, t, X)ui(t)dt.

This is again an equation of the type (8.7). We wish to show that its coefficient

and kernel again fulfill the conditions (8.6). Since £ is now upon the bounded

range |£| ^N, the functions yi(x), y2(x) are bounded, as was shown in (7.10).

For the integration in the formula (10.4) the relation (10.3), which has al-

ready been deduced, maintains, and since the functions Y¡(t) and the ex-

ponential e~2ir are all bounded, the integrand of (10.4) is bounded except for

the factor (X/t)1/s. The integral is therefore bounded, and since/i(x, X) thus

differs from yi(x) by a term of the order of X_m_1, it fulfills the condition (8.6).

For the integration in the equation (10.5), the functions y¡(t) are bounded by

(7.10). The kernel K0(x, t, X) is thus of the order of X1'3, and since its integra-

tion is extended only over an interval whose length is of the order of X-2/3, it

likewise fulfills the conditions (8.6). The lemma of §8 is thus applicable to

the equation (10.5), and by consequence
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0(1)
(10.6) Mi(x) = yi(x) + —, when | ¿| g N.

Finally let us consider values of x on the interval XN<xSb. With/2(x, X)

defined by the formula

/2(x, X) = Yi(x) -|-f       Ki(x, t, \)Ui(t)dt
Xm+1J a

(10.7)

+ -— Kz(x, t, \)ui(t)dt,
Xm+1.m+1   J

the equation (8.3) may be written in the form

(10.8) Ui(x) = /2(x, X) H-f   Ki(x, t, \)Ui(t)dt.
\m+1J IN

For the values of x now in question the functions F,(x) are again bounded.

The functions Ui(t) and Ui(t) on the respective ranges of integration in the

relation (10.7) have already been shown to be bounded, so that it is clear that

/2(x, X) differs from Fi(x) by an amount which is of the order of X-m_1. In

the course of the integration in the equation (10.8) arg £, arg t, and arg (f — r)

all have the value arg X, and thus the exponential in the formula for Ki(x, t, X)

is bounded. The conditions of the lemma are accordingly fulfilled, and the

equation (10.8) again yields an evaluation (10.3).

In a quite similar way we may now consider the equation (8.4). When x is

on the range XN<x^b, the equation may be given the form

U2(x) = F2(x) H-f   K^x, t, \)U2(t)dt.

In the course of this integration arg { — i(£ — t) } =argX+ir/2, and hence the

exponential in the formula for Kt(x, t, X) is bounded. An application of the

lemma is permissible, and yields the result

0(1)
(10.9) U2(x) = F2(x) +--•

Xm+1

When X-jv^xiSxjv, we may write the equation

1    cx
Ui{x) = fz(x, X) H-I      K0(x, t, \)iii(t)dt,

A *S   xN

with

J /» XN

fz(x, X) = v2(x) + —— K6(x, t, \)U2{t)dt,
\m+1J b
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and by reasoning that is now familiar, this may be made to show that

0(1)
(10.10) ui(x) = y2(x) -\-» when    £   g N.

Xm+X

Finally when a^x<X-x, the equation is

Ui(x) = /«(*, X) + —- f     P4(x, /, \)U,(t)dt,

with

i    rXN
f4(x, X) = Yi(x) + —— K,(x, t, X)Ui(t)dt

Xm+1Jb

-fm+l   1
V  xl

H-— | K6(x, t, X)u2(t)dt.
\m+1J XN

From this a relation (10.9) is again derivable.

The results (10.3), (10.6), (10.9), and (10.10) effectively express the forms

of the solutions Mi(x), Ui(x) over the entire interval (a, b). By way of summary,

they may be set forth thus:

Theorem 1. The given differential equation (1.3) admits of a pair of solu-

tions Ui(x), u2(x), which, when O^arg X<7r/2, have the forms

0(1)
Uj(x) = y,(x) + £-1/6^-, j = 1, 2,  when    £   > N,

\m+l

0(1)
tt,(x) = y,-(x) H-> when    £   ^ N.

Xm+l

The functions yi(x), y2(x) are in this instance those which are given by the

formulas (7.9) with the coefficients (ci,i, ci,2) = (cri/3, 1), and (e2,i, c2,2) = ( — 1, 0).

11. The forms of a pair of solutions when

(11.1) x/2 =■ arg X < 7T.

When X lies in the region (11.1) we may choose as the functions »i(x), v2(x),

those which are given by the formulas (7.5) with the coefficients (ci,i, Ci<2)

= (0, e-ri/3) and (c2,i, c2,2) = (-e"'3, 0)(12). These coefficients fulfill the rela-

tion (7.6), and give explicitly the formulas

(11.2) ,i(x) = r"/V(x)£1/3Pi<;3>(£),        .2(x) = - /,7V(x)£1/3PÍ;3(£).

(12) It will, of course, be clear that the functions thus to be designated by Ui, Ui in this sec-

tion are not the same as those so designated in §10. The same observation will apply also to

the functions which are to be denoted by y¡, yi., and by «i, «2.



486 R. E. LANGER [November

When x < 0 we have

(11.3) 2tt á arg £ < 5tt/2,

and thus the variable £ is such that the relations (7.11) are applicable when

z = £e_2,ri. By means of the equations (7.12), the formulas (11.2) may be

given the alternative forms

vi(x) = *(x)SU*Hl£fa-M),

v2(x) = *(*)£    [e     Hi/8(£e      ) + Bv»(£e      )],

and as applied to these, the relations (7.11) show that

/2Y'2
»i(x)~-f — j    <r-8"/12*(x)£-i/V«,

/2 V/2
Vi(x) ~ - I—j    e«'i/12*(x)£-i/'>[e^ii — ie«'*],        when x < 0.

On the range (11.3) the exponential ei£ is bounded. Hence, as will readily be

seen, the functions Fa)(x), F(2)(x) that are defined in the relations

F<D(x) = íll6e-^yi(x),        F<2>(x) = gUUtyrf«),

U^(x) = e,6e-^ui(x),       TjW(x) m ?l*e(*«t(*),

are bounded when x<0.

When 0 <x, on the other hand,

(11.5) tt/2 g arg £ < x,

and £ is accordingly such that the relations (7.11) are applicable when

2 = £e~xi. Under the equations (7.12) the formulas (11.2) are alternatively

expressible in the manner

*m = mkx)^3^;^-") + iW*®mT%

v2(x) = *(x)£V3H^(^"),

and on the basis of these the relations (7.11) show that

/2X1'2
vi(x) ~ ( — )    e"-'/12*(x)£-1'8[e_i£ + ¿ei{J,

/2 V'2
v2{x) ~ — f—J    e-"'/12*(x)£-1/6ei£, when 0 < x.

The region (11.5) is one in which the exponential eil is bounded, and it is ac-

cordingly seen that Fx(x), F2(x), as they were defined in (9.9), are bounded.



1949] ASYMPTOTIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 487

Let us now agree to the following designations:

*■ « VW3
K™(x, t, X)=— {YM(x)Y<-»(t)-YW(x)Y<»(t)e-2i«-^\(—\    U(t, X),

t   , ,/X\1/3
K^(x, t, X)=— {yi(x)Y™(t)-yi(x)YM(t)e2")( — \    n(/, X),

4» \ t /

KW(x, t, X)=— {Fi(x)F<2>(0-F2(x)F<1>(¿)e2i<«+r)}('_N\    q(/, X),
Ai \ T /

(11.6)

K^(x, t, X)=— {F(1'(x)F2(0e2i(£+r)-Fi2)(x)Fi(/)}i—J    ß(*. X),

£<«>(*, t, X)=— {Y^(x)y2(t)e2*-Ym(x)yi(t)\XV*Ü(t, X),
Ai

K^(x, t, \)-—. {F(1)(x)F<2»(0e2i<£+T)-F(2)(x)F«)(0 }(—\    Q(t, X).

The equations (8.3) and (8.4) may then be written in the following ways:

U^(x) = Y^(x)-\-f   £»>(*, f, X)U^(t)dt, when a g x < x_*,
Xm+I J a

ui(x) =   |yi(x) + — f       P<2>(x, Í, X)E7<«(0ä|

1     /•*
H-I       K0(x, t, X)ui(t)dt, when x_jv ^ x ^ xN,

~Xm+1J x-N

( If*-»
Ui(x) =  ! Yi(x) +- P<3>(x, /, X)U^(t)dt

( Xm+1J a

í   rXN 1
H- *>(*. *. X)«i(0¿/>

X^+V^jv )

1    /•*
H-I     Pi(x, t, X)Ui(t)dt, when xN < x ^ b,

\m+1JxX

and

1     /•*
U2(x) = F2(x) H-I     Ki(x, t, X)U2(t)dt, when xN < x g, 6,

Xm+1J6

«s(*) =   | yî(«) + -—; f      P6(x, t, X)Ui(t)dt\

1      f*
H-I     Po(x, t, X)u2(t)dt, when x_at ^ x ^ Xat,
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■ f       K™(x, t, X)«2(/)d/l
' J xN )

U™(x) =   <( F<2>(x) + T-=; |       K^(x, t, \)U™(t)dt

J (% X-N

Xm+1,

i   rx

^-I       #<6)(x, t, \)U™(t)dt,        when a g x < x_jv.

The reasoning which was used in §10 is successively applicable to the equa-

tion in each of these forms, and shows that in each instance the equation's

left-hand member differs from its first term on the right by an amount which

is of the order of \~m~t. These facts may be summarized as follows.

Theorem 2.   The given differential equation  (1.3)   admits of a pair of

solutions Mi(x), u2(x) which, when 7r/2^arg X<7r, have the forms

0(1) ,   ,
«y(*) = yÂx) + £-1/6±,'î-; when x < 0 and | £ |  > N,

0(1) ,
Uj(x) = yAx) H-> when   £    :S N,

j\ i      jj\ xm+1

0(1) .
Uj(x) = yÂx) + £_1/6e:F*í-> when 0 < x <z«<¿    £   >-¿V.

X».+i

The functions yi(x), y2(x) are in this instance those which are given by the formula

(7.9) with the coefficients (ci,i, Ci,2) = (0, e~Til3) and (c2,i, c2,2) = ( — eTili, 0).

12. The forms of pairs of solutions for other values of X. When X lies in

(12.1) x S arg X < 3x/2,

the choice of solutions v(x) to be used as i»i(x) and i>2(x) is

vi(x) = - *(x)£1/3/7v3(£),

»2(x) = *(*)£    [ff1/3(£) + e       #i/3(£)J.

For negative values of x these may be rewritten by use of the equations (7.12)

into the forms

,   .   1/3     (2),    —tri,

vi{x) = *(x)£   Hi/fae     ),

D2(x) = - *(x)£    [Hi/3(£e      ) + e       ffi/3(£e      )J,

whereupon the relations (7.11) with z = ^e"iTi are applicable, and show that
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/2Y'2
vi(x) ~ ( — )    e-'ri/12^(x)£-1/6eif,

/ 2 V'2
vi(x) ~(—)    e*'i/12lI'(x)£-1/6[e~i| + *V*J, when x < 0.

The exponential eiJ and therefore the functions F(1)(x), F<2)(x) of (11.4) are

bounded.

For positive x the formulas (12.2), rewritten into the forms

jii(x) = - ¥(*)£    [e     Pi/3(£e     ) + Pi/3(£e     )J,

vi(x) = ^(*)£1/3PÍ/13(£^T<),

show that

/ 2 \1/2
Vi(x) ~ I — J    e-"/12^^-1'6^*'« - «-**},

/2 y2
fl2(x) ~ ( — J    eTill2^r(x)^-1^e-i(, when 0 < x.

The functions F(i)(x) are thus again found to be bounded.

The equations (8.3) and (8.4) yield in this instance to an analysis which is

analogous to that of §10, and differs from this latter only to the extent that

the functions F(fl(x) replace the Fy(x). The conclusions to be found are the

following ones.

Theorem 3. The given differential equation (1.3) admits of a pair of solutions

Ui(x), ui(x), which, when ir = arg \<3ir/2, have the forms

0(1) ,
w,(x) = y,(x) + £-l/6e±!'« —— , when \ £| > vV,

0(1)
Uj(x) = y,(x) -|-» when    £   ^ N.

Xm+l

The functions y¡(x) in this instance are those which are given by the formulas (7.9)

with the coefficients (ci,i, Ci,s) = (0, —1) and (cs.i, c2,2) =(1, e~Tili).

For values of X in the region 37r/2^arg X<27T, the choices

vi(x) = ^(x)£1/3PÎ/13(£),

vi(x) = ^(x)£1/3[/,73Pi^(£) + H^)}

are to be made. For negative values of x the alternative forms
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vi(x) = - ^x^X^-3'*'),

,   , .   ,    1/3 r   iri/3     (1),     — 3iri, (2),     — äri  -,

v,(x) = - *(x)£    [e     Hl/fae      ) + H1/3(£e      )]

yield the relations

/2X1/2
Di(x) ~ ( — )    e"-í/12^(x)£-1/6e-¿f,

/ 2 y2
v2(x) ~ — I — J    e-'r¿/12*(x)£-1/6[eif — ÛT*],      when x < 0,

and these show that the functions Fy(x) are bounded.

For positive x the formulas

,   ,    1/3 r      (1),     -2xt\ -»i/3,  m,     -2t>\-,
vi(x) = - *(x)£    [Hi,l(te      ) + e       /?,„(&      )],

,   , ,   .    1/3      (2),     -2t»\

*(*) = - *(*){    fli/s(f«      )

yield the relations

(2 \1/2
_\   e-**in*q,fx)£-ut[eit + fa-H],

/2 V'2
î)2(x) ~ I — )    e5Ti/12*(x)£-1/6e-i£, •   when 0 < x,

and thus the functions Y(i)(x) are bounded. An analysis of the equations

(8.3) and (8.4), which is analogous to that of §11, leads in this case to the

following conclusion.

Theorem 4. The given differential equation (1.3) admits of a pair of solutions

ui(x), u2(x), which, when 3w/2 ^arg X<27r, have the forms

0(1) i    ,
Uj(x) = 7,(x) + £-i/«e*t£-, when x < 0 and    £ [ > N,

Xm+1

0(1) -    ,
ui(x) = yÂx) H-' when I £ I ^ AT,

Xm+1

0(1) ;   ,
My(x) = yÂx) + £_1'6e±,f-, when 0 < x awd    £ | > N.

X«+l

TÂe functions yi{x), y2(x) are in this instance those which are given by the for-

mulas (7.9) with the coefficients (c\,\, Ci,2) = (l,0 ) and (c2,i, c2,2) = (exi/3, 1).
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