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Introduction. The Mathieu differential equation

d2u      . ,
(1) -h (A - í2cos2z}» = 0,

dz2

also commonly known as the equation of the elliptic cylinder functions, is

too well known to require any introduction. Its solutions govern problems

of the greatest diversity in astronomy and theoretical physics, and have

accordingly been the subjects of a vast number of investigations.f

The differential equation as such depends upon two independent param-

eters, designated in the form written above by A and Ü. In the present dis-

cussion these are to be taken real but are to be numerically unrestricted

except that at least one is to be large. The variable will be permitted to range

over the complex plane.

Since the coefficient of the differential equation is an even simply periodic

analytic function of z, it is known from Floquet's theory of such equations

that the solutions are in general of the structure

u(z) = cxC"<i>(z) + c2e-"l4>(- z),

in which the function $(z) is periodic. The characteristic exponent, ¡i, is a

constant as to z but depends in an intricate way upon the parameters A

and fi. If it is real, the equation obviously possesses a solution which for

large real values of the variable becomes exponentially infinite, i.e., a so

called unstable solution. In the alternative case the exponent is pure imagi-

nary and the solutions remain bounded along the axis of reals, i.e., are of the

so called stable type. The intermediate case in which ju = 0 is of especial im-

* Presented to the Society, April 6, 1934; received by the editors February 12, 1934.

f Cf. for the literature and for partial enumerations of applications of the equation : Strutt, M. J.

O., Lamésche-Mathieusche und verwandte Funktionen in Physik und Technik, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete, vol. 1, No. 3, Berlin, 1932 ; Whittaker and Watson, A Course in Modern

Analysis, 3d edition, 1920, Cambridge University Press; Humbert, P., Fonctions de Lamé et Fonc-

tions de Mathieu, Mémorial des Sciences Mathématiques, X, Paris, 1926; Van der Pol, B., and Strutt,

M. J. O., On the stability of the solutions of Mathieu's equation, The Philosophical Magazine, vol. 5

(1928), p. 18.
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portance, for the equation then admits one solution known as a Mathieu

function which is periodic. The second solution, a Mathieu function of the

second kind, is then not periodic and is of a functional structure distinct from

that indicated above.

With either of the parameters A and ß fixed, the relation p = 0 restricts

the remaining one to a denumerably infinite set of values called the charac-

teristic values. Broadly speaking the determination of these values and of

the corresponding Mathieu functions is the matter of prime importance in

the applications of the equation which belong more immediately to the do-

main of physics, while the determination of the characteristic exponent in

terms of a fixed set of parameters is generally the peculiar requirement of the

applications to astronomy.

When the values of the parameters are small the solution of the differen-

tial equation is generally and appropriately essayed through the means of

convergent series expansions. When at least one of the parameters is large,

on the other hand, the methods of asymptotic representation are adapted

and have been generally applied. Though the literature covering investiga-

tions of this latter type is large it can hardly be said that the results recorded

are by any means complete. Restrictions upon the range of the parameters

are generally made and frequently only the forms of the Mathieu functions,

i.e., of the solutions with the period 2ir, are considered. Again, when forms

asymptotic with respect to one parameter are obtained their dependence

upon the remaining secondary parameter may not be considered, the results

being established, therefore, only for a fixed configuration of the parameters

relative to each other. Finally the investigations have almost exclusively

been restricted to the case of a real variable. The most recent report on the

status of the theory* says on this point: "While we believe that the theory

of the Hill and Mathieu differential equations with real variables and pa-

rameters has to a certain extent been rounded out, it is to be emphasized that

no such assertion can be made concerning these equations with complex

variables and parameters. . . . Only when the problems bearing upon this

point have been adequately treated may it be hoped to round out the theory

of the Lamé equation as has been done in the case of the equation of Mathieu.

Such an investigation would not only throw new light upon many differential

equations of mathematical physics, but would make possible the application

of certain of the functions obtained to problems of practical importance."

The present investigation is devoted to a general consideration of the

asymptotic solutions of the Mathieu equation over the complex plane and

for all real configurations of the parameter values in which at least one is

* Strutt, loc. cit. (Vorwort).
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numerically large. The analytic forms which represent the solutions asymp-

totically are found to differ in essentially different parameter configurations,

while in its dependence upon the variable such a representation even for a

specific solution and with one and the same configuration of parameters

requires the employment of a variety of analytic forms. In general a special

form is required for the description in the neighborhood of any point in which

the coefficient of the equation vanishes, while outside such neighborhoods

several forms again are made necessary by the incidence of the Stokes'

phenomenon.

The limitation of the discussion to real parameter values was imposed to

keep the extent of the investigation within its present bounds. The method

in no way requires such a restriction.* In the matter of the method the pres-

ent paper is based upon earlier papers of the author f which gave a general

derivation of the asymptotic solutions of differential equations of the type

d2u      .
TT + (p2Xo2(z) + pxiOO + »(«, p)}u = 0,
dz2

in which p is a large complex parameter and the coefficient xo2 (2) vanishes at

some point of the domain considered. Aside from the considerations peculiar

to the Mathieu equation, however, the presence of two independent param-

eters makes of the present discussion something more than a specialization

of the general theory cited. With one parameter assigned to a primary role

it must be shown that the hypotheses of the theory cited are met uniformly

with respect to the secondary parameter which has remained free. This is

essential to assure the uniform validity of the conclusions, i.e., that the

degree of approximation afforded by the asymptotic representation is main-

tained during a variation of the parameters within the bounds of a given con-

figuration.

By way of arrangement there have been grouped in chapter 1 such gen-

eral considerations as are to be subsequently available. Of the following

chapters each is given to the deductions peculiar to a specific configuration of

parameters. Throughout the paper the forms of two fundamental pairs of

solutions are deduced. This is desirable because of the fact that the members

of any one pair of solutions may and do become asymptotically indistinguish-

able in certain regions of the complex plane. Aside from the general asymp-

* An analogous application of the method to a study of the Bessel functions with both the varia-

ble and the parameter complex was made by the author in the papers cited below.

f These Transactions, as follows: On the asymptotic solutions of ordinary differential equations, etc.,

vol. 33 (1931), p. 23; On the asymptotic solutions of differential equations, etc., vol.34 (1932), p.447;

The asymptotic solutions of certain linear ordinary differential equations of the second order, vol. 36,

p. 90. These papers will be referred to in the text by the designations Li, Ls and L3.
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totic forms the special forms which apply to real values of the variable are

noted, and the forms of the solutions of the associated Mathieu equation,

d2v      . ,
(2) -h {í2cosh2z - Ajo = 0,

dz2

are deduced. The asymptotic equations for the characteristic values are given,

and the characteristic exponent is asymptotically determined.

Chapter 1

General considerations

1.1. The parameter configurations. The effect of replacing the variable z

by z+7t/2 in the equation (1) is merely to alter the sign of the cosine function,

i.e., to replace the parameter 0 by its negative. There is, therefore, no loss

of generality in assuming, as will henceforth be done, that ß ranges only over

the positive values and zero. The parameter A, on the other hand, is to range

unrestrictedly over all real values.

For any positive fi, however small it may be, the term fi cos 2z becomes

dominant over A when z reaches a domain sufficiently remote from the axis

of reals. In any such domain therefore the character of the differential

equation is essentially altered if Ü is replaced by zero, and it may accordingly

be expected that formulas which are to be valid uniformly for fí ^ 0 may be

obtained only for regions of the z plane in which |#(z) | is bounded. This fact

suggests the grouping into separate configurations of those sets of parameter

values in which ñ is relatively small. They are indicated as II and IX in

Figure 1 below, the precise specifications to be later determined.

When ß>0, the function {A— fl cos 2z} vanishes at an infinite set of

points in the complex plane. As z moves at a suitable distance about any

such point the asymptotic forms which represent a given solution of the dif-

ferential equation must be altered, i.e., replaced by others, at certain speci-

fiable intervals. This so called Stokes' phenomenon depends quantitatively

upon the order of the zero which is encircled, and since this order changes

from the first to the second when fl and | A | become equal, it may be ex-

pected that results obtained on the assumption that the parameters are suffi-

ciently different in numerical value may not remain uniformly valid when

these values are allowed to approach equality. This fact serves as the moti-

vation for considering as distinct configurations those indicated in Figure 1

by the designations IV and VII, in which the parameters numerically ap-

proximate each other. They will be precisely defined at appropriate points

in the discussion which follows. The division of the half-plane of the coordi-

nates (A,  ß) into configurations is, therefore, such as is indicated in the
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figure, the hypothesis that at least one parameter be large having the effect

of excluding from consideration a neighborhood of the point 0.

1.2. The hypotheses of the general theory. The differential equation (1)

may be transformed in a variety of ways into an equation of the general form

(3)
d2u       . .
TT + {P2Xo2 (s, a) + pxx(s, o-)} u - 0,
ds2

in which p, the primary parameter, and a, the secondary parameter, are

expressible in terms of A and fl. The particular substitutions and hence the

particular equations which result are to depend upon the parameter configur-

ation which obtains, and will therefore be made at appropriate points as the

discussion proceeds.

Fig. 1

Equations of the type (3) in which, however, the parameter a is absent

(i.e., fixed) are familiar, the asymptotic forms of their solutions having been

deduced* under hypotheses which for the present purposes may be enumer-

ated in the following way:

(i) The range of the complex variable s is to be a region R„ in which the func-

tions
(s — so)~"xo2(s) andxxis)

are analytic, s0 being some point of R, and v being some real non-negative con-

stant. Except in some fixed neighborhood of s0 the several functions

(4)   {xo(s)}-\    {/' X^}    !   {xx(s)/xo2(s)},   | J(xi/xo)di}{ /****}

are to be bounded.

* Papers L2 and L3 cited above. In the formulas of paper L3 the variables X, xi, <t>, and £ must be

replaced by ip, ¿xi, 20 and 2i% respectively in order that they may appear as given here.
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It is convenient to have at hand the following definitions :

- ¿Xi(io) , .      ixiis)   ,   2*xo(s)
k = ——77-77'     vis) =—— +

4xo'(io) Xo(i)
I   Xods

(5)
Ms) C '

fa's) = xo(i) - —— >      $(i) =        fas)ds,    £ = P4>.
2p J.0

It follows then, as may be shown, from the hypothesis (i) that the functions

4\<4/        2 \</>/     4(K+2)2\f./'

kxo2  I    yds
V2  , J.„ H^VXo - iifp-1)

(6) coi = —- +

$ I   xo¿i

$"'/(2v+4)

*  =

faU

are continuous in the region P, inclusive of the point î = i0. A second and

third hypothesis* made are the following:

(ii) The differential equation (3) ¿i to be in normal form, i.e., such that

either xi—0 or else v = 2 and

{3xoXi - 2Xo"xi}.=s„ = 0.

(iii) Either the region P«, is to be bounded, or else there are to exist constants

M and H such that the relations

i\—ds<M>     I
mis) j
——-ai

<t>
< M

are satisfied for all arcs of integration in P, on which \s—s0\ >H and on which

#(£) varies monotonically with \%\.

When the secondary parameter cr is not fixed but is permitted to vary, the

formulas to be taken from the theory cited will be valid uniformly only if the

hypotheses stated are satisfied uniformly with respect to cr. Specifically the

functions (4) must be uniformly bounded in P8, the functions (6) must be

uniformly bounded in any fixed finite part of P8, and the hypothesis (iii)

must be fulfilled with constants M and H which are independent of <x.

* The hypothesis (iv) of papers L2 and L3 is not repeated here. It is obviously satisfied in every

case of the present discussion.
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1.3. The Solutions. When the equation (3) satisfies the several hypotheses

and the primary parameter p is sufficiently large, the relation defining the

variable £ determines a map of the region R, upon a corresponding region

i?{ in the complex £ plane. This map is conformai except possibly at the point

corresponding to s0 where, if v¿¿0, the region R( has a branch point whose

order depends upon v.

The relations

(7) H<":    (l- l)* + e gargle (I + l)ir - *,

with / an integral index and e an arbitrarily small but fixed positive constant,

define in the domain R( the (overlapping) sub-regions S<0. These correspond

to respective sub-regions of 2?, which will likewise be denoted by S(n.

For any index h the differential equation (3) possesses a fundamental

pair of solutions uh,x(s), uk,2(s), which are characterized by the fact that they

are of peculiarly simple asymptotic forms as compared with the general

solution for values of s which are in the corresponding sub-region aw and

which are not too near the point s0. When s passes the bounds of the sub-

region aw this simplicity is lost and devolves upon a new set of solutions

which aïe in turn associated in the manner indicated with the new sub-region

in which s is then to be found. If v^O the forms referred to give valid repre-

sentations of the respective solutions only so long as | £ | ^ 2V, where N is a.

constant whose magnitude is determined by the degree of approximation

which the asymptotic representation is required to afford. The excepted

region | £ | ^ N corresponds in Ra to a neighborhood of the point s0, and in

this region a distinct representation must in general be employed.

The solutions uh,j(s),j = l, 2, with a particular index h are thus because

of their simplicity especially adapted for use in any deduction in which the

associated region aw plays a peculiar role. In terms of them, however, any

other solutions may be simply expressed. In particular, it will be noted that

if the point za corresponds to sa under the correspondence of the variables

which relates the equations (1) and (3), then the principal solutions u(z),

U(z), of the equation (1) relative to za, i.e., those determined by the values

du(za) dU(za)
(8a) «(«.) = 0,   —~ = 1,      Viz.) = 1,   —^ = 0,

dz dz

are given by the formulas

/dz\       (Uh,2(sa)uh,x(s) — Uh,x(sa)uh,2(s)\

(8b) " ' W7" ' 7 ' '
jUh,2(Sa)Uh,x(s)   —  Uh,x(sa)uh,2(s)^
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in which A may be any index, the primes denote differentiation with respect

to i, and W designates the Wronskian

W = m'a,i(î)m*,s(î) — uh,2Ís)un,iis),

which is a constant.

The principal solutions relative to the origin (zo=0) will be designated

throughout the discussion by w0(z) and we(z). Inasmuch as the coefficient of

the differential equation is an even function, they will be respectively odd

and even functions of z as is to be indicated by the subscripts chosen. The

principal solutions relative to the point za = ir/2 will be denoted by «„(z)

and Ußiz).

1.4. The asymptotic solutions when v = l. The special case of most fre-

quent occurrence in the discussion which follows is that in which v = l, i.e.,

in which the zero of the coefficient xo2 is) is a simple one. It is convenient,

therefore, to note at this point for general reference the specific formulas

which then apply in the relations of the preceding section, in so far as they

are later to be used. Thus, for A= — 1, 0, 1, 2 the solutions «a,,(í) are de-

scribed by the following formulas :

When |?| ^ A and i is in S(i),

(9a) uh.iis) = p-i/V^Um* + A^t*}, / = 1, 2,

with coefficients to be obtained from the following table :

(*,<)

■*i.a
(9b)-

(-1,-1)

[1]

[1]

(-1,0)

[1]

W

[1]

(-1,1)

[."]

M

(0,-D

[i]

[-<•]

(0,0)

[1]

[1]

(0,1)

[1]

(1,-1)

[1]

[-i]

(1,0)

[1]

[1]

(1,1)

[1]

[1]

(2,-D

[-<"]

[-"]

(2,0)

[-i]

[-"]

(2,1)

[1]

[-¿]

[1]

(2,2)

[1]

[1]

and, when  |£| ¿N,

(10a)    Un,i(s) = (2ir/3y'2<ae^2-'^2[yihhlßJ-mik) + y™ ¡i" Ji,t(&],

with the coefficients

-»t/3 -Tilt -2r«73

(10b)
7Í.8

.v<»>
72.2

pTil3

p-TilZ

e1"
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The symbols / in these formulas designate Bessel functions in the familiar

manner, and the symbol [    ] will be used throughout the discussion in the

sense that [Q] designates a quantity which differs from Q by terms of the

order of p_1 and of the order of N_1 uniformly in a.

From formulas thus given the evaluations

[1]««. [l]e-"«a
«h.x(sa) =   ,,.,,,' uh,2(sa) =

pl/6^1/2 « pl/6^1/2

when | £a| ^ N and £„ is in S(W, and W = [2¿]p2/3, will be immediately noted.

Direct substitution in the relations (8b) leads, therefore, to the following

formulas :

When | £ | ^ N, z is in S(i) and z„ is in lS(h),

[l]/dz\      /   1   Y'2i h,i h,i
» = — -)     (-)    \e-HAx.xe« + Ax^e-*)

2i \ds/s=sa\pcba<p/     \

(Ha)
- exilie* + Ah2\e-*)\,

[1]/^
U = MJ(*^    {e-*.(AhxÍe*+ &*-*) + e*°iA2,le*+ A^e^)},

.4

and when | £| ^ N and za is in S(4),

u - (t)    (t^Y*«u,í*-*-*/*['h4£1/3^/3(£) + 7&£1/3/i/3(£)]
\a5/3=sa\6p0a^)/

+ eifo+'i'4^*2 ^-»/«(i) + rîîi £1/3/i/3(£) ]},
(lib)

U = {^J   ?>« {•*+»« [7(^ ii/*/_i/s(Ö + 72*í £1/3/i/3(£) ]

+ ett-^ly™ £1/3/_,/3(£) + Vi" £1/3-M£)]}.

From these forms certain terms, depending upon the indices, may under cer-

tain conditions be omitted as asymptotically negligible in comparison with

others. The precise evaluations will be deferred to the points where applica-

tions of the formulas are to be made.

1.5. The "associated" Mathieu equation. The associated Mathieu equa-

tion (2) is obtainable from the equation (1) by substituting in the latter iz

in place of the variable z. Its solutions may, therefore, be derived from those

discussed above by this simple change of variable. In particular it may be

observed that the principal solutions relative to the origin, to be denoted by

v„iz) and ve(z), are respectively odd and even functions of z, and that they

are given by the formulas
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Voiz) m - iuoiiz),

Veiz)  = Ueiiz) .

1.6. The solutions for general values of z. The hypotheses stated in §1.2

under which the forms of the solutions of the equation (1) are obtainable

through the medium of the equation (3) restrict the variable to a region Rz in

which the coefficient (A— 0 cos 2z) has at most one zero. It will be found in

the subsequent discussion that this region over which the forms are directly

deducible is in each case either the strip

(13) 0 ¿ x ¿ ir/2,    where    z = x + iy,

or some closely related domain. It remains, therefore, to consider the exten-

sion of the asymptotic representations over the remaining parts of the z plane.

A method by which this may be done is to be outlined as follows.

Since the coefficient of the differential equation is an even periodic func-

tion with the period ir, the function w(«tt—z) is a solution whenever w(z) is

such and n is an integer. Hence each member of the several relations

(a) Uoiz) m — M0(ir — z) + 2u0iir/2)ußiir — z),

,    %     (b) Ueiz) = — UeilT — z) + 2ueiir/2)ußiw — z),

(14)
(c) Uoiz)  = «o(7T — Z)  —  2uliir/2)Uaiir — z),

(d) w„(z) = Ueiir — z) — 2«e' iir/2)Uaiir — z)

is a solution of the differential equation. The identities are established)

therefore, by the fact that in each relation both members and likewise their

derivatives take the same values at the point z = ir/2. A similar comparison

of values at the point z = 2p7r, whatever the integer p, establishes the further

relations

(a) Uoiz) = - Uoi2p+1ir - z) + 2w0(2iV)«e(z - 2"ir),

(b) «.(*) = uei2"+lir - z) + 2«,'(2%)«0(z - 2»r).

Let it be supposed now that the forms of the solutions have been deduced

and so are known for all values of the variable which lie in the strip (13). It

is to be shown then by the method of induction that they are deducible over

the strip §p where p is any integer and SP is defined by the relation

(16) SP:   0 ¿ x ¿ 2*t.

To begin with, let z lie in the region So. Then either z or ir—z lies in the

strip (13). In the former case the representations of «0(z) and we(z) are known

by hypothesis, whereas in the latter they are given by the identities (14) in

which the forms of the right-hand members are known. Proceeding, let the
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representations be considered known in the region SP with any specific p,

and let z lie in the strip SP+i- Then either z lies in §p and the forms are already

known, or else both the values (2p+1tt—z) and (z — 2pir) lie in SPand the forms

of the right-hand members of the relations (15) are known. In the latter event

the identities furnish the representations sought in the part of SP+i not in-

cluded in Sp-

Finally the odd and even functional characters of the solutions «0(2),

ue(z) may be drawn upon to extend their representations into the left-hand

half-plane, and with the forms of these solutions at hand the representations

of wa(z) and uß(z) may be drawn from the identities (14).

1.7. The characteristic values. With any given value of £2 there are

known to be associated specific characteristic values of A for which the dif-

ferential equation (1) admits a periodic solution with the period 2ir. These

periodic solutions are enumerable, and are each either an odd or an even

function of z.* With a scheme of enumeration which will become clear as the

subsequent quantitative discussion proceeds, the characteristic values for

which the odd solution w0(z) has the period 2ir will be denoted by 5„(ß),

while those for which the period occurs in the even solution ue(z) will be

designated by C„(fl). The equations of which these values are the roots are

called characteristic equations.

Consider the characteristic equations for the values 5„(Q). From the

identity (15a) it is seen at once that a necessary and sufficient condition that

2ir be a period of u0(z) is that u0iir) =0, an equation which in virtue of the

relation (14c), with z = ir, may be written

u'o iir/2)uai0) = 0.

If the root in question is one for which the factor u0'(ir/2) vanishes, it follows

from the identity (14c) that w0(z) admits no smaller period than 27r. On the

other hand, if the root is one for which wa(0) is zero, then the solutions u0(z)

and «„(z) are linearly dependent. It follows that w„(z) vanishes at z = ir/2,

and hence from the relation (14a) that m0(z) admits the period x. With the

enumeration to be chosen the characteristic equations for odd periodic solu-

tions are accordingly the following:

(a) WoOr/2) = 0,    roots   S2n(ü),

m„(z) periodic with the primitive period ir;

(I7)
(b) Uo(ir/2) = 0,    roots   .SWi(O),

u0(z) periodic with the primitive period 27r.

* Cf.Whittaker and Watson, loc. cit., §19.2.
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The characteristic equations for even solutions may be similarly deduced.

Thus from the identity (15b), with p = 0, the condition that 2w be a period of

u„(z) is seen to be ue'(ir) =0. From the derived relation (14b), taken at z = 7r,

the condition is found to be

ue(ir/2)ui (0) = 0.

If for the root in question ue(ir/2) is zero, the identity (14b) shows that a

smaller period than 2ir is precluded. In the alternative the factor w/(0) is

zero, »e(z) and ußiz) are dependent and hence u,'(z) vanishes at z = ir/2. It

follows from the relation (14d) then that ue(z) admits the period w. In this

instance, therefore, the characteristic equations are

(a) ««' iw/2) = 0,    roots   C2„(0),

ue(z) periodic with the primitive period w;

(18)
(b) «.(t/2) = 0,    roots   C2n+i(fi),

ue(z) periodic with the primitive period 27r.

1.8. The Mathieu functions. When A is a characteristic value S„(Q) or

C„(i2), the corresponding periodic solution u0(z) or ue(z) is after suitable

normalization known as a Mathieu function, and is respectively designated by

se„(z, ß) or ce„(z, ß). Two modes of normalization have been commonly

employed. The first* uses the stipulation that the coefficients of sin »z and

cos »z in the respective Fourier expansions of se„(z, Q) and ce„(z, ß) be unity,

i.e.,

1   ("
— I    se„ (x, 0) sin nx dx = 1,
ir J _T

— I    ce„ (x, 0) cos nx dx = I + ôo ,n, So ,n = \
Horn = 0,

0 for n ¿¿ 0.

Since the integrands in these relations are even functions, the intervals of

integration may, of course, be reduced to (0,7r). It may, however, be further

observed that in virtue of the equations (17),-(18), and (14),

sen (z, O) - (- 1)»+» seB («• - z, Q),

ce„ (z, Í2) m (- 1)" ce„ (w - z, Q),

i.e., the Mathieu functions are each either even or odd in the variable

z — ic/2. The ranges of integration above may, therefore, be reduced further

to (0, tt/2), the formulas which result being

* Cf. Whittaker and Watson, loc. cit.
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(20)

se„ (z, Í2) =

ce„ (z, Q) =

A-C„(Q)

1(4— 2¿>o,B)   I      ue(x) cos nx dx

A second mode of normalization* is based on the requirements

1   rT If
— I    se„2 (x, Q)dx =1,-1    ceB2 (x, Q)dx = 1 + So.«.
X    J—T V    •/— T

In this case the formulas obtained are

*ll2uo(z)

(21)

sen (z, Ü) =

ceB (z, Q) =

A=S„(U)

21-».../» (  f     u2(x)dx\
A-C„<Q)

(22)

1.9. Other periodic solutions. The characteristic equations for values of

A which yield periodic solutions with periods other than ir or 2x may be

deduced by considerations similar to those of §1.7. The identities

(a) u(z) = — u(2pT — z) + 2u(pir)ue(pT — z),

(b) u(z) m u(2pir - z) - 2u'(pw)u0(pT - z),

(c) u(z) = - uH2p - l)ir - z) + 2u((p - h)ir)ußipir - z),

(d) «(z) = uH2p - 1)t - z) - 2u'iip - $)ir)Uaipir - z) .

are easily verified when p is any integer and w(z) is an arbitrary solution of

the differential equation. With the use of them it can be shown, as is outlined

below, that periodic solutions with the periods indicated occur for values of

A which are roots of the respective equations

w0(«7r/2) = 0, odd solutions with period »7r,

u'o («tt/2) = 0, odd solutions with period 2»7r,

«,' inir/2) = 0, even solutions with period nir,

Ueinir/2) = 0, even solutions with neriod 2nir.

(23)

(24)

* Cf. Strutt, loc. cit.
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Moreover, if » is the smallest integer for which an equation is satisfied, the

period indicated is primitive.

Consider the equations (23). Their sufficiency for the indicated periodici-

ties may be verified by observing that they imply through the pertinent

identities (22) respectively that M0(z+W7r) = ±u0(z). Conversely, if 2«7r is a

period of w0(z), then u0(nir) =0 by the identity (22a), and this leads when »

is even through the relation (22b) to the one or the other of the equations

(23). If » is odd the result follows from the identities (22c) and (22d), to-

gether with the fact that at least one of the solutions ua(z) and uß(z) must dif-

fer from zero at the point z = (»+l)ir/2.

The necessity and sufficiency of the equations (24) for solutions of their

associated types is proved similarly, though in some instances the identities

(22) must be differentiated prior to their application.

1.10. The characteristic exponent. When the parameters A and ß are

both fixed the differential equation in general admits no periodic solution.

In this case it is known from Floquet's theory of differential equations with

simply periodic coefficients that there are two solutions of the forms

e>"ib(z), and e~"zcb(— z),

in which 0(z) is a periodic function with the period w, while p, the so called

characteristic exponent, is a constant which depends upon A and ß. The

equation for p. is*

e2*» - 29e*" +1 = 0,

whence

1 i
(25a) p = — cosh-1 9 = — cos-1 9,

T X

with @=Me(îr). The alternative evaluation

(25b) 0 = 2ue(T/2)uß(0) - 1

may be obtained from the relation (14b).

It is evident that p is either real or pure imaginary according as 9 > 1 or

0<1. In the former case the solutions noted above become infinite near

the one or the other extremity of the axis of reals and are called unstable;

in the latter case they remain bounded for real values of z and are called

stable.

1.11. Certain elliptic integrals. It will be found now and again in the dis-

cussion which follows, that the comparison and identification of certain

* Cf. Horn, J., Gewöhnliche Differentialgleichungen, Leipzig, 1905, p. 242.
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superficially dissimilar formulas will depend upon the approximate or asymp-

totic evaluation of certain elliptic integrals of the type

C W2    1 - T sin2 f

(26) G<" *»-/.  d-twr)«■«•■

The value of A will in every case be either near zero or near 1, and r will be

either 1 or A2.

In terms of the standard complete elliptic integrals

/.T/2 ¿f „Tli

it is evident that

G(r,A2) = K + ^-(E-K).
A2

Hence on substituting for these integrals their expansions in powers of A, it is

found that when A2 is nearly zero

t (        h2 )
Gil,h2) = -jl+- + A*0(l)|,

x t        h2 )
Gih2,h2) =y{l- j + A40(l)|.

On the other hand, when A2 is nearly 1 the Landen Transformation*

A sin f = sin (22 — f)

yields the form

( 1 - — ) + — cos21
\        h)      h

cos¿{l + e2tan2í}1/2

in which

1 -A

(26a)

- t 2      r '■    v » /       «

(1 + A) l'2

(27) <i = sin-' |—I    , « =
1 + Ä

The quantity e2 tan21 is uniformly small of the order of e. Hence the radical

may be replaced by its binomial expansion, whereupon the integration leads

to the formula

* Cf. Hancock, H., Elliptic Integrals, New York, 1917, p. 84.
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e2(h  —  t) sin tx-T      /    2    \/2Tsinii
G(t, h2) =-+ (-) -

h       \l + h/\     h 4A cos2 tx

l/h-T\       i2/ 5r\
+

Kh - t\      í2/        5t\) l + sin2A

For the special values of t this reduces to.

7(—)
-1       2/2    y'2 I - h - k

h        h\l + h) h(l + h)
(26b)

/    2    V'2      1 - Ä        I- h
G(h2,h2) = -* + 2*(——)     -—-log—- + 0(é loge).

\1 + h/ 1 + h 8

Chapter 2

The configuration II

2.1. The differential equation. When the relative values of the parameters

A and ß are such that the point ( ß, A) in Figure 1 lies in the region II at a

sufficient distance from 0, i.e., more specifically when A is large and positive,

and with a constant Mx (to be specified below) the relation

1
(2.1) 0 < Í2 <-A

~     ~ M x

is fulfilled, the substitutions

(2.2) p = A1'2,       <r2 = fi/A,        j = z*

give to the equation (1) the form (3) with

(2.3) X0"*'    Xl = °'

<f>2 = 1 — a2 COS 2i.

Let the variable z be restricted to any finite region of the complex plane.

Then a number Mx may be determined such that for all admitted values of z

1              Mx
(2.4a) \y\ = — cosh-1-> z = x + iy.

The constant Mx of the relation (2.1), which determines the parameter values

to be included in the present configuration, is to be one with which the

condition (2.4a) is fulfilled. The primary parameter p is to be thought of as

* The distinction between í and z, which in the present instance is non-existent, is drawn for

the purpose of making the formulas subsequently useful in a case when these variables are not the

same.
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bounded below but not above, and the secondary parameter cr is evidently

restricted to the range

(2.5) 0¿o-2¿-¡--
Mi

The relation (2.4a), together with

(2.4b) 0£x£-,

defines a strip of the z plane which is to be designated as Rz. The correspond-

ing domain of the variable i is

(2.6) Ra:    0 ¿ s' ¿ it/2,        \s"\ ¿h cosh"1^^),        s =s' + is".

This region includes the origin and it is readily verified that with i0 = 0 the

hypothesis (i) of §1.2 is fulfilled uniformly in cr with v = 0. The hypotheses

(ii) and (iii) are likewise fulfilled, since xi=0 and R, is bounded. From the

formulas (5) it is seen that in the present instance r/(i) =wi(i) = A=0, in

consequence of which

1 5(1 - cr4)
fafa = l +-1--L,     * = $-!/*.

\fa 4fa

These functions are bounded uniformly in cr and hence the requirements

enumerated in §1.2 are completely fulfilled.

2.2. The solutions. Since the case in hand is one in which v = 0, there exist

solutions of the differential equation which maintain a single asymptotic

form over the entire region Rz. Such solutions with their respective forms are

«04« - 0-1/2e«[l],

**o.t(i) = fall2e-*t[l].

Their Wronskian has the value W= [2i]p. The principal solutions relative to

the point z = 0 are accordingly computed directly from the formula (8b),

with A = 0, ia = 0, to be

(2.8)

with

(2.8a)

1    (       1       1  1/2

2% \ p'fa<p )
1  ( ÓA 1/2

Ue{z)=JUi  i^w + ^wi»

p<p = {A - 0 cos 2z}1'2,   pfa = {a - a}1'2,

f=   I     {A - í2cos'2z}1/2¿z.
J a
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Inasmuch as

e«[l] - e"«[l] = [2i]sin[£],

with analogous formulas involving the other trigonometric functions, it is

seen in particular that for real values of the variable

[1]

(2.8b)

u0(x) = -;-—-r- sin I   f {A - 0 cos 2x\1i2dx \,
{(A - 0)(A - ßcos2*)}1/4       Uo J

»eix) = {-\     [llcos     f   {A- Qcos2x\1i2dx\.
ÍA- ßcos2*J L J„ J

The principal solutions relative to z = w/2 are similarly found to be given

by the formulas

(2.9)

with

*«W = ■TíÍtItV'^'^'Ii] - e-<«-v[l]},

Uß(z) = \{j\míeÍ{(~U)[í] + e~'li~e,)^'

(2.9b)

(2.9a) p<h = |A + ß}1'2,    £ - £2 =   f   {A - ß cos 2z\ll2dz.
J t/2

When z is real they are

««(*) = ■;-:-~-Li-j— sin |    I      {A - Q cos 2x\1'2dx \,
{(A + ßXA-ßa^*)}1"        LJ* J

f     A + ß     ) l'\ .        r f*'2, ,        "1
Ufix) = {->     [l]cos {A - Qcos2x}1/2¿a:  .

(A — ßcos2a;J LV z J

In the special case that <r = 0 (i.e., ß = 0) the differential equation (1)

is directly integrable, and it is verified immediately that the formulas above

are correct when the symbols [ ] are omitted. It may be concluded, there-

fore, in the discussion of this chapter that the quantities [l] reduce to 1

when o-2=0.

2.3. The solutions of the associated Mathieu equation. The principal solu-

tions of the associated Mathieu equation (2) relative to the origin may be

derived from the functions (2.8) by the substitutions (12) as was noted in

§1.5. Their forms so obtained are

(2.10)

Voiz) = -,-—-r— sinh I    f   ÍA - 0 cosh 2z}1'2<íz   ,
{(A- Ö)(A- ß cosh 2z)} ̂  LVo J

«.(*) = Í-\     [1] cosh f f  [A - 0 cosh 2z}1'2dz 1,
ÍA- ßcosh2zJ LVo -I
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the region for z being

■       1 Mi
\ x\ ¿ — cosh-1-,1    '   "  2 2

- t/2 ¿ y ¿0.

The solutions (2.10) are evidently asymptotically multiples of each other

when z is real and large. A pair, fY(z), flj(z), not subject to this disadvantage is

that obtainable by the substitution of iz for i from the functions (2.7). Their

forms are explicitly

(2.11)

(z)=--U-exp|_  f  {a - ficosh2z}1'2cfz|,
{A - Qcosh2z W4       I    J0 J{A - Ü cosh 2z}

[1]
Viiz) = -,-—-¡— exp     f  {A - Í2 cosh 2z\ l'2dz \.

A - Qcosh2*  »'«       LVo J

2.4. The characteristic values. If 5p(ß) and C8(0) are a pair of charac-

teristic values, the substitution of the forms (2.8b) into the characteristic

equations (17) and (18) shows that each of these values is a root of an equa-

tion

(2.12) f     {A - Û cos 2*}1/2cfa;    =—,

with the integer « suitably adjusted to p or q as the case may be. To determine

this adjustment, it need merely be observed that when 0 = 0 the equation

reduces to A = «2, and the corresponding Mathieu functions to sin nz and

cos nz. Since these are by definition the forms of seB(z, 0) and ce„(z, 0), it

must be concluded that p=n and q=n, i.e., the form (2.12) is that of the

characteristic equation both for 5„( ß) and for CB( ß).

The symbol [ ] in the equation (2.12) represents a quantity of the

order of A-1/2 uniformly in a, which vanishes when cr=0. Since it like the

equation (1) depends analytically upon cr2, the equation (2.12) may be

written

X
T/2 «t

{A - Q cos 2x}1'2dx + <r20iA-1'2) = —
o 2

The substitution x = ir/2 — f reduces this to

Ai/2{(1+ o-2)li2Gih2, A2) + c'OiA-1'2)} = —,
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where G is the elliptic integral of (26) with Â2 = 2<r2/(l+o-2). Since this value

of h2 is small, the evaluation (26a) gives to the equation the form

A1/2ÍJ + 0-40(1)+ ^OÍA-1)} = »,

from which it follows that

5,(Q) = »2 + -%(l),

(2-13) ß

C„(ß) = »2 + —0(1),
»2

the quantities indicated by the symbols 0(1) being uniformly bounded as to

« and ß while the configuration with which the present chapter deals is

maintained.

2.5. The characteristic exponent. The s ubstitution into the formula (25b)

of the values given by (2.8b) and (2.9b) yields the evaluation

9 = [2] cos [£2] cos [£2] - 1

= cos2£2 + o^OtA-1'2).

Accordingly, from (25a) an asymptotic formula for the characteristic ex-

ponent is

(2.14)   u = — cos-1 <cos(   f     2{A - ß cos 2x}1l2dx\ + -^ 0(1)1.

When ß = 0 this reduces to p=¿A1/2, a result which may be verified by actual

integration of the differential equation.

Inasmuch as the quantity within the brace in the formula (2.14) does not

exceed unity, except possibly for very small ranges of the parameters near

those values for which the integral is a multiple of w, it follows that the

configuration under consideration in this chapter is predominantly one of

stable solutions.*

Chapter 3

The configuration III

3.1. Definitions. The parameter configuration contiguous with that of

the preceding chapter and designated by III in Figure 1 is to be defined by

the relation

1
(3.1) -A ^ ß ^ A - MiA1'2,

Mx

* Cf. the Figure 3 in Strutt, loc. cit.
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in which Mi is the constant in (2.1), and M2 is to be momentarily discussed.

The substitutions

A — ß ß — iz
(3.2) P = -^-'       «r«-l--, i =-

A1'2 A cr

reduce the differential equation (1) in this case to the form (3) with

Xo = fa       xi ■» 0,

(3.3) sinh2 as
fa m 2(1 - <r2)-1.

cr2

The parameter p is evidently restricted by the relation p ^ M2, and since

the degree of approximation which the asymptotic formulas yield depends

upon the magnitude of p, the constant M2 is in any specific case to be chosen

such that representations which are uniformly suitable to the purposes in-

tended are obtained. The secondary parameter is clearly confined to the fixed

closed interval
1

Has 0¿a2¿í-,
(3.4) Ml

in which the lower boundary could in fact more strictly be replaced by

M2A-1'2.

Let z be restricted for the discussion of this configuration to the infinite

half-strip Rz given by the formulas

(3.5) Rz: - ir/2 ¿ x ¿ w/2,      0 ¿ y.

The extension of the solutions from this domain to the entire strip (13) may

be accomplished by the use of the identities

ua(z) = ua( — z) — 2w„'(0)w„(— z),

uß(z) = - Uß(— z) + 2uß(0)ue(- z),

and the odd and even characters of w„(z) and ue(z). Their extension to general

values of z thereupon follows on the lines of §1.6.

3.2. The variables s, $ and £. The region P, corresponding to Rz is the

infinite half-strip

(3.6)        R-: »Si',
— ¿ s " ¿ —
2a 2cr

Within this region xo2(*) has a single zero located on the axis of reals at the

point
1 0-

(3.7) so' =—sinh-1
cr {2(1   -   cr2)}1'2
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Though Jo' depends upon a it is both bounded and bounded from zero for all

admitted values of the parameters.

The relation between s and the quantity <É> maps R3 upon a corresponding

region R<¡, conformally except at the point si. The shape of R& may be easily

determined by observing the values of 4> when s is either real or on the

boundaries of R„. With Rs thought of as cut along the axis of reals from the

origin to Jo' these values for the upper half of Rs are

for s" = 0 + and 0 £ *' á s¿,

r '«'   (                         sinh2 as') i'2
3> = e" I       i< 1 - 2(1 - o-2)--— >    ds';

for s' = 0 and 0 ^ s" g *7(2°-),

C"   (                  sin2 as"        ) l«
$ = $(0) + e"/2 I       il 2(1 - a2)-— + 1 \    ds";

for s" = 0 and j0' á s',

/• •'  ( sinh2 o-j'        ) l'2

__ {2(,-^,_—,} *..

for j"= a-/(2<r) andO g j',

/iri\        Ci cosh2o-j'        ) »/»
*=*y+i„n2(1-<'!)-^-+1} ^

The map of the lower half of R, is obtainable by reflection from that of the

upper half, since conjugate complex values of j lead to conjugate values of $>.

Finally since
sinh o-j 2 .    ,-    > —1*1,

a it

it follows that when | s \ is sufficiently large

,                 .     sinh o"j
0~ {2(1 -a2)}1'2-,

(3-8)

$-{2(1 - a2)}l'2 sinh2 —,
<72 2

the symbolism designating that the ratio of the members of either relation

becomes 1 as | j| —>°°. From the second relation it follows that when c is any

sufficiently large constant the line s' = c maps upon a simple curve in R&.

The uniqueness of the correspondence between points of Rs and Rq is thereby

assured.* Figure 2 indicates the map.

* Cf. Osgood, W. F., Lehrbuch der Funktionentheorie, vol. 1, Leipzig, 1912, p. 377.
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The variables <t> and £ differ only by the real factor p, whence the domains

R( and R& differ only in scale. Figure 3 indicates the relation between R,

#~o
c

G

D,

I
_ZJ_ _

E,

R.

-B

Fig, 2

and i?(, each domain being divided into the sub-regions S(,) defined in (7).

The lines by which this sub-division is effected need not be determined with

£,

=*«»     |

or

Is<

ClC,
z=0

K,

— B

Fig. 3

precision, for due to the overlapping of the regions any displacement of the

curves which does not affect the character of the figure is immaterial.

3.3. Fulfillment of the hypotheses. The zero of Xo2(s) at j0' is of the first

order. Hence in the hypotheses of §1.2 the values v = l, v = ux = k=0 are to
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be used. With the value of </> given by the formula (3.3) it is found that the

functions (6) are in the present instance

1 (       5 /<6\2 6      5(2 -a2))
(3.9)   wW = T|__y+.i+-+__-|, *..././,

Let the region P„ be divided into three parts by the relations

(a) | i - s0'\¿ S,

(b) 8 ¿\s- So'\ ¿ H,

(c) H ¿\s- s¿\,

with the constants ¿5 and H as specified in the following. It is to be shown

that in each of these parts the hypotheses of §1.2 are uniformly fulfilled.

To begin with let H be chosen so large that in the part (c) the formulas

(3.8) may be applied. Then it is a matter of simple computation to show that

in this part of P8 the hypotheses (i) and (iii) are uniformly fulfilled.

Next let 5 be chosen so small that within the part (a), |<p2| ¿% for all

admitted values of a. Then

( <r2fa ) - a%fa

2(2 - <r2)

(1  +¿2)-l/2=l_l + 4)40(1))
¿t

with 0(1) designating functions which are uniformly bounded. Since

3>=J      -dfa

whereas from the formula (3.3)

<p fa       I ( a2fa \\ -1'2
7-<r^{c,+*'>('+i^î)}   •

it is found that

fa        Í 3fa \
—-{ 1-r—-   +  faOil) \ .
-WH 5(2 -<r2) Wj

$ =
3i2-<rt)1'*{ 5(2 - cr2)

With this evaluation it is seen directly that in the part (a) the functions (3.9)

are unifoimly bounded.

Lastly in the part (b) the formula (3.3) may be written

i sinh 2cr(i — so' )      sinh2 ais — só))
X2is) = 2U2- cr2)"/2 _-i-il +-L-1 L .

I 2<r a£ )
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It is evident from this that both

X„(j)    and
J »0

Xo(s)ds

are non-vanishing and continuous as functions of the two variables (j—si, a)

in the closed region determined by (b) and (3.4). Accordingly, they are

bounded uniformly in a and the hypothesis (i) is uniformly fulfilled. Clearly

also the functions (3.9) are uniformly bounded and so the requirements of

§1.2 upon the differential equation are uniformly met.

3.4. The forms of the solutions. Since <p2(s) has a simple zero in R, the

asymptotic representation of any solution of the differential equation is

subject to the Stokes' phenomenon, and v being 1 the formulas of §1.4 are

applicable. From Figure 3 it is seen that the origin z = 0 may be regarded as

lying in the sub-region 2(-1). Hence with h = — 1 and the subscript a replaced

by 1 the formulas (11a) and (lib) yield the representations of the solutions

Uo(z) and ue(z). It may be observed from Figure 3, however, that the value

£i which corresponds to z = 0 (at Cx in the figure) is such that ¿£i is real and

negative, so that any quantity multiplied by e<£l is asymptotically negligible

in comparison with the same multiplied by e~i(l. With the omission of such

negligible terms the formulas obtained are the following:

When z is in S(i), and | £| ^ N,

(3.10)

with coefficients

1 /   a2   Y'2

2\p2<bx<p/      l     M °'2

1 /<t>x\ll2t

2\<t>/    l    •■» «.2        "

0,1

0,2

(3.10a)

£-1.1

K-i.t
e.i

-  1

¿-'«.[1]

-<^>[1]

<T<£':[1]

eHl]

O

<r*f-[l]

-^[1]

itl[l]

te'' «[Il

iel '«i[l]

ie-i('[i]

îV«.[1]

ir&li]
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When |é| ¿N,

/   Tria2   V'2
<2) = ( 71-)    ^"e~ih [Pl3J-u*(ti + ?'Vi/*(Z) ],

\6p2C>l0  /

(3.10b)

»e(z) = (^Y V/6«-i£'[íl/3/_1/3a) + el3Jin(0]-
6<¡>

In the original variables

— =   {ßcos2z-A}1'2, — = e-"'2{A - ß}1'2,
a a

£ = - i f   {ß cos 2z - A}1'2^, fi = i f °{A - ß cosh 2y}1'2¿y,

with yo = è cosh-1 A/ ß. Further, it may be noted that since the values of <p

on the lines AC and ACi in Figure 3 differ only in sign, therefore

- iP r c' iP r c
fi =- I      cé¿z = — I    <t>dz,

o    Ja o" Ja

whence the formulas

j    {ßcos2z- A} "2dz = <
ift-fe), inE<-»,

*'(£ + &), in S(1>

are also valid provided the entire path of integration is taken in each case in

the sub-region indicated.

The formulas (11a), (lib) may likewise be drawn upon to give the repre-

sentations of the solutions ua(z), uß(z). If the point corresponding to z = x/2-is

i2, the subscript a is to be replaced by 2, and since £2 (at Dx in Figure 3) lies

in the region 2(-1), A is again to be taken as — 1. With the omission of asymp-

totically negligible terms the formulas obtained are the following:

When z is in Ew, and | £| ^ A,

1/   o-2   V*
Uaiz) = —{-)    {K-i-'e* + R'1'1***},

2\p2fafa)    l    »-1 "-2

(3.11)

%(z) = —( —)      A-1-'«'-« + Z"1 ■'*-«},
2\c6/ O-1 »-2

with coefficients
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a,X

K-i.i
a, S

(3.11a)

3,1

K-i.i
0,2
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«-«.[1]

■[1]

e~'*>[1]

Mi]

«-«»[i]

¿«-«»[i]

-MU

zer«.[l]

sff = [l]

IT Hi)

ie't'll]

-HD

When UI^A7,

(3.11b)

Again

/  Tria2 Y'2
U°M = ( 71-)    *1/6<r i£ ' [fW^-Vitt) + Í1'V,„(Ö ],

\6p2#2</> /

«/s(z) -(30"{!/•«-«. [{!/•/_,„({)   +  «»/»/i,,«)].

póo t \
- = ¿-"^{A + ß}1'2,

a

C t/2

£2 = £i -    I       {A - ßcos 2z}1/2o'z.
Jo

Figure 3 shows that the segments — ir/2^a;^0 and 0^a;gir/2 of the

axis of reals lie respectively in the sub-regions E(1) and E(-1). The formulas

above appropriate to these regions accordingly yield the descriptions of the

solutions when z is real. It is found that these formulas are precisely those

given in (2.8b) and (2.9b), though it should be noted that with the difference

in the definition of the parameter p the significance of symbol [ ] is slightly

different in this chapter from that in the preceding one.

The pairs of solutions (3.10) and (3.11) have each the defect that in the

region about the upper part of the axis of imaginaries the component solu-

tions are asymptotically multiples of each other. The pair of solutions

w_i,i, m_i,2 given in (9) would be one not subject to this particular shortcom-

ing.

3.5. The solutions of the associated Mathieu equation. If z lies in any of

the domains indicated in Figure 4, the point iz lies in the corresponding
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sub-region of P, as shown in Figure 3. In accordance with (12) the represen-

tations of iv0(z) and ve(z) are therefore obtainable in any one of the regions

*.     \ gm   or

ri-ii   or    £,.

Fig. 4

indicated by the mere substitution in the associated formulas (3.10) of 0 and

£ in place of <p and £, the former being the same functions of iz as the latter

are of z. Explicitly

p</>

a
= {ßcosh 2z - A}1'2,

1 =   I     {ß cosh 2z - A\l<2dz,        x0 = § cosh"1 A/0.
J   *«

In particular, for real values of the variable the formulas so obtained are

the following:

Fot0¿x<x0, \i\ntN,

[1]
Vo(x) =

(3.12a)

— sinh      f   {A-ßcosh 2x}1'2dx \,

ve(x)=<->     [l] cosh      f   {A-ßcosh 2x\wdx \.
U-Ocosh2*j L^o I

{(A-ß)(A-ßcosh2*)}

A-ß      "1 "*

-ß cosh 2x

Forx¿xo, ||| ¿N,

i2ir)-1121 ? 11/6<ri£'
(3.12b) Voix)=-(

{(A-ß)(A-ßcosh2z)}1/4

For x0¿x, \^\¿N,

(*/6)l'aîw«<r«'

[\i\l»K1/ti\i\)].

(3.12c) »<,(«) =
i(A-ß)(ß cosh 2X-A)!1'4

[êi'j-utâ+p'Vwa)).
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Forz<*o, |£| ^N,

[i]e-iU r rx, >       «-1
(3.12d) v0ix)=-,-—--.— cos ßcosh2s-A^d*-.

{(A-ß)(ßcosh2i«:-A)}1/4        L J x, ' 4j

For the x ranges concerned in the cases (b), (c) and (d) the representation of

veix) has been omitted since it is found to differ in appearance from that of

v0(x) only in that the factor (A- fl)-1'4 is replaced by (A- ß)1/4. For the

range in case (b) the value of £ is imaginary, i.e., % = e~iKi'2 | £|, and the rela-

tion

/_i/3(£) + Jx/3(l) =- Kxn( | Í | )
IT

was used.

As already noted in §3.4, a pair of solutions which unlike those above are

not asymptotically multiples of each other for large real values of z would be

that obtainable in the manner used above from the functions m_i,,(z) described

in (9).

3.6. The characteristic values and exponent. The forms of both the ex-

ponent p and the characteristic equations were found in chapter 2 to be de-

termined by the formulas (2.9b). Since these formulas, except for the inter-

pretation of the symbol [ ], remain valid for the configuration at present

under discussion, the deductions of §2.5 and §2.4 require but slight modifica-

tion to apply to the case in hand. The characteristic exponent is thus given

by the formula

(3.13) p = — cos-K cos I      2{A - ücos2x}1'2dx + o(-H.

The order of the final term within the bracket evidently increases with ß,

from which it is evident that the domain of parameter values for which p

is real, i.e., for which there are unstable solutions, increases in extent as the

upper end of the range of values ß admitted in the configuration of the pres-

ent chapter is approached.

The characteristic values Sn( ß) and Cn( ß) are each the root of an equa-

tion of the form (2.12) which in the present instance is more explicitly

/••'», . /   A1'2 \      rnr
(3.14) I       {A - ßcos2x}1'2dx + 0(-]= —

The lower end of the ß range joins with that of the configuration II, and for

such parameter values the formulas (2.13) are again valid as was to be ex-
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pected. To obtain formulas valid near the upper end of the range the follow-

ing process may be used.

Let ki be defined by the relation

(3.15) A - ß = 2i!2kiQ}>2,

and in the integral of (3.14) replace x by x/2 — f. Then the equation becomes

/   A1/2 \      mc

(A + ß)1'2G(A2, A2) +OÍ-) = —,

with G the elliptic integral of (26) and

h2 o^r-
For the larger of the admitted values of ß the ratio kx/ ß is of the order of

A_1/2 and A2 is therefore nearly 1. With the use of the formula (26b) the

equation may accordingly be written

ki
(2ß)1'2 - ki log-h kiS (320)1'2

(3.14b)
'   A1/2/ ¿i         ki\            /   A1'2  \      nir

+ kiOi-log — ) +0    -) = —
Vß1'2   s ß/ Va - o/     2

Recalling (3.15), therefore, it follows that

5n(ß) = ß + 2*i2ki(n)Q}i\

CB(ß) = ß + 25/2£1(«)ß1'2,

with each Ai(«) a root of an equation of the form (3.14b).

Chapter 4

The configuration IV

4.1. The differential equation. Let the configuration designated as IV in

Figure 1 be defined as that comprising the parameter values ( ß, A) in which

both are large and

(4.1) - MiQ1'2 ¿ A - ß ¿ M2A"\

Mi being the constant in the relation (3.1). Then the substitutions

A - 0
(4.2) p = (320)1'2,    a =

(320)1'2

determine p as a large parameter, while the range of values given to a is



1934] THE MATHIEU EQUATION 667

bounded. The differential equation (1) takes the form (3) with the coefficients

IA     1\ X°  -   *  SÍn  5'
(4.3)

Xi = o-,

in virtue of which the functions (5) are in this case explicitly

k = — ia,

s
r¡(s) = 2ia tan — ;

(4.4) î(l J a s\
0 = sinT|7cos- + -sec-|,

Isa s
4> = — sin2-log cos2 —

2 2        p 2

Let R¡ be chosen as the strip (13). Then in the region Ra the coefficient

Xo2 has a single zero located at the origin and of the second order. It must be

shown that with the appropriate values Jo = 0, v = 2 the requirements of §1.2

are uniformly fulfilled. The hypotheses (i) and (ii) offer no difficulty in this

respect, while the consideration of the functions (6) and the hypothesis (iii)

may be made as follows.

The relation

j
eq = cos2 —

2

defines q, in terms of which

r«r« - 1

while the various members of the formula

~ 16\ <t>        */ \ <b        */      2<t>

are found to be
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<t>

1 + — e~2"
p

-j

cr
1 + — e~"

P

2fa s s
-= cot-tan —
0 2 2

2cr
1-e~q

P

2a
1 + — e~"

p

— = cot-tan
3> 2

i f2<r(c7 — 1 + e-")}s f2a(q- l+e-°)\

2 \     pHe~" - 1)  /

It is to be observed now that q vanishes with s, that \eq\ 3j§ in R„ and that

the ratio a/p will be uniformly as small as desired if ß is restricted to remain

sufficiently large. It is consequently seen that the brace in the formula for i>

is uniformly bounded from zero and hence that both fafa) and wx are uni-

formly bounded in any finite part of P„. Finally, when | i| is great the asymp-

totic formulas

± i
<p e", fafa

- 1

16

COl< 2o2q, di ~ + idq

are readily checked and in virtue of them the uniform fulfillment of the

hypothesis (iii) becomes evident.

4.2. The solutions m0(z) and «e(z). The variables €> and £ differ only by

the real factor p, while i and z are identical. Since the values of i> on the bound-

aries of P, are as follows :

fori' = 0,
1 i"      cr s"

$ =-sinh2-. log cosh2 — >
2 2       p 2

iois' = ir/2,

$
( 1 a cosh i"

M
sinh s"       a )
-1-tan-1 (sinh s") > ,

4 p ;

the map of Rz upon P£ is as indicated in Figure 5. The figure shows also the

partition of these regions into the sub-regions 3(i) defined in (7).
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The representation of a pair of solutions Wi(j), %(j) which are determined

by the initial values

/ ipV2/      20-y4
«i(0) = 0, ui(0)=(~)   [i+~)    .

u2(0) =ll+ — \      , ui (0) = 0

is known,* and is expressible in terms of the confluent hypergeometric func-

C I

I    ¿"' or Z'"

£<•! ¿J

E«-" or Z<"

R. D,

C

c7
A

( = 0

Fig. 5

tions customarily designated by M,,¡.f With the functions SW, defined by the

formulas

(4.5)
3Ki(t,<0 = <r3li'8r1/42tf-<„.i/4(2¿£),

Srtitt, *) = e-w/8r1/4^-.-.,-i/4(2J£),

it is found thus that the principal solutions, which are evidently mere multi-

ples of »i and Ui, are the following:

For|£|?£#,

(4.6a)

/ 2\1/2
«.(*)-(-■]   *[Mi(£,o-)],

/ 1 V2
«.(«) = {—)   *[jf ,({,*)].

* Paper L3. See, however, the footnote on p. 646 regarding the differences of notation,

t Cf. Whittaker and Watson, loc. cit., chapter XVI.
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On the other hand, when z is not in the neighborhood of the origin the formu-

las are the following* :

For |£| ^A, andzinS(i),

u0(z)
/ ir\m (V       ¿o.i      1

= ( — )    (ip)-3,i\   -    (2*$)*'««W \Lr(i + ia) Ji

(4.6b)

r_*o.

Lr(î -
2

(f -  w)J

( t\1/s

(2iÇ)-*'e-*l

with coefficients

}■

ILrQ + ¿au
(2^)"^«

/

0,1

(4.6c)

¿fe<»
0,2

A<"
e,l

A»>
e,2

-   1

o a tf— Zvi¡A

pOT— Tl/4

/j— t7)T+3xi/4

-crir+Ti/4

- te2«

-<TT+3iri/4

ö— «Tir+Tt/4

for use in these formulas it is permissible to write in terms of the original

variables

(4.7)
c6= [}]ans,   «- (2ß)1/2[l](l -cos»),

en = (-)   e(ip/4)(i-coS,)j ^ = |-\    r1]_

\1 + cos z/ \1 + cos z/

When z is real the same is true of fa ^ and £, and the last of these is posi-

tive. For such values the functions M,- oí (4.5) are real, and the formulas

(4.6a) are therefore directly real. From Figure 5 it is seen that such values

of z lie in S(0), whence the appropriate formulas (4.6b) reduce to

* The symbol []i is used in the sense that [Q]i denotes a quantity which differs from Q by terms

of the order of (log p)/o and terms of the order of N~'.
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(4.6d)

u0(x) = p-'/M — \    e-°"2 \—J sin U + a log 2£ - 7l + jj ,

ue(x) = p"1'4 ( — \    e—'21—J cos U + o- log 2£ - y2 - yj .

The symbols T, and 7, designate the real values determined by the formulas

(4.8) r(| ± ia) = Tiei'Ti,       Tß ± ia) = IV»»»,

in which the left-hand members are gamma functions.

4.3. The solutions ua(z) and Uß(z). The solutions of the equation (3) espe-

cially associated with the sub-region E(0) which by Figure 5 contains the

point z = ir/2, are those described by the following formulas:

For |£| ^N, and jin E(,),

(4.9a)      uo.jis) = (íp)-1/4(20)-1/2{5(»i(2¿£)i"e<f + Ä«>(2*ß-<'*-««},

with coefficients

I

1,1

BW
1,2

(4.9b)-

BW>
2,1

2,2

- 1

[l]i

r_zm_1
Lr(î - ia)Y(\ - ia)Ax

[IK

[Hi

[Hi

[Hi

T 2irie2"T 1

Lr(i + tV)r(i + ia){

[l]l

For |£\£N,

Uo.x = t

(4.9c)

Uo,2

T(f  -   1er) )

/ttX1'2     (     2c*i/4     .

-(7) •ta+ïj**'*
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The substitution into the formulas (8b) is simple, the Wronskian having

the value W = (ip)ll2[l]i, and if the subscript 2 is used to designate evalua-

tions at z = ir/2, it is thus found that we have the following:

For |^| ^A, and z in E<»,

Ua(z)   =  -1(—)    «W-W[l   - 0l]l
2ip<621/2</>1/2lW

(4.10a) - (— )   '«-««-*•> [1 - Ö2]i|,

<>21/2 U £ V'
^)=2^{Uei(f"!)[l+öl]l

+ (1\   ,Vi«-W[l+Ô2]l|,

where

$i = P<°(- 4£22)<,re2ifs

82 = £»')(- 4?22)-,ve-2i^.

For |£| ¿N,

' 2 cos £

(4.10b)

with

(4.11)

(2 cos £2 r ,        sin fcir , )
ua(z) = 2T1i2p-3i*e-°*<2*\—--[Mi(S,o)]i - ——[%({, <r)U,

v     T2 Ti )

Csin c-2r ,       cos &ir , )
M^(Z)   = irU^ll^-cTl^)-[Ml^ (7)]1 + -[M2^   ^U

v   T2 Ti ;

r p 7T ~|
£1 = ^_ + t7logp_Tl + _|)

e2 = ^ + alogp-y2-j^.

For real values of z the formulas (4.10b) are directly real, while the ap-

propriate formulas from (4.10a) reduce to

- [2]i       V p %1
ua(x) =-sin   — cos x — 2a log tan —    ,

pfa'2 1.4 2Ji
(4.10c)

[l]i V P xl
Uß(x) =-cos   — cos x — 2a log tan —    .

201'2 L4 2J1

4.4. The solutions of the associated Mathieu equation. The representa-

tion of the solutions iva(z) and veiz), of the "associated" differential equation
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(2), are obtainable, as is now familiar, from the formulas of §4.2 by the sub-

stitution in place of cf>, £ and'i' of the respective functions of iz, which may be

designated by <t>, £ and ty. Explicitly the evaluations

tj> =    —   sinh z,

£ = (2ß)1'2[l](l - coshz),

-     /       2       y
ei(   _  ( _ j    e(v/4)(l-coäh*)

\1 + cosh z)

/        4       \1/4
* = (-)   [l]

M + cosh z/+ cosh z)

may be used. The sub-regions of the z plane in which the respective formulas

so derived are valid are as is shown in Figure 6.

I

/r<o> \

\

,'\

£<-" or K<« /    \ Sn) or E<g>

2

Fig. 6

In particular, when z is real and positive the forms deduced from (4.6b)

for E(1) reduce to the following:

for |£| ^N,

voix) = p-3'4

(4.12a)

(ifr)1,V/{äsi4lf|-fflog2|i|+Yi+Tl'

VÁX) = p_1/4( Tï\Ye"n Ít1C0S [ ' « • -* log 2 'f !+ 72 - 71
0|/ Lit

On the other hand, when x is small, i.e.,

to |?| S^,

(4.12b)

/ 2 \1/2

».(*) = (—) *[íwi(-|f U)],

»«(*) =(—) »E^-fil.»)].
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The functions within the brackets may be shown to be explicitly real as they

should be.

4.5. The characteristic values. The values  (4.6d)  substituted into the

characteristic equations (17) and (18) give to the latter the forms

a ir nir
(20)1'2 + — log (320) - 7i -|-(- CXO"1'2 log ß) = —,

2 8 2

for an odd Mathieu function,
(4.13)

a it nir
(20) "2 H-log (32ß) - 72-h 0(ß"1/2 log 0) = —,

2 8 2

for an even Mathieu function.

These equations may be given a somewhat more detailed form when a is

near either the one or the other extreme or the middle of its admitted range

of values. The indices of the characteristic values which satisfy the equations

with a specific integer « on the right may also be determined as will be

shown.

The theory of the gamma function supplies, in particular when Ci = 3/4

and c2 = 1/4, the formulas*

r'(c,)
+ ¿(-^--tan-1-^-\

r-i \Cj + r Cj + r/Tic,)

(4.14) log Tic i + ia) = \ log 2tt + (c,- - $ + ia) log (c¡ + ia)

-iCi+io)+0(-±^,

r(f)r(i - f) - T ese «i,

and from the first of these it is readily seen that with ß fixed the left members

of the equations (4.13) vary monotonically with a so that the roots for any

integer « are unique.

When a is near the upper end of its admitted range of values, it is large

and positive, and the second of the formulas (4.14) gives the evaluations

7,- = a log a - cr + (2c,- - 1) (x/4) + O (I/o).

Both the equations (4.13) thus become

o o2 /   O1'2  \      nir
(4.13a)  (20)1'2-log-\-a + 0(01/2 log 0) + 0   -) =

\A — 0/2 320 \A - 0/       2

* Cf. Nielsen, N, Handbuch der Theorie der Gammafunktion, Leipzig, 1906, p. 23 and pp. 94

and 209.
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which is, therefore, the form of the characteristic equations when ß is near

the lower end of the range of values admitted for it in the present configura-

tion. Since for these values the configurations of the present and the preced-

ing chapter abut, the indices of the characteristic values concerned may

be determined by a comparison of the equations (4.13a) and (3.16), kx in

the latter having been defined precisely as a is in the former. With a given

value of » the roots of the equations (4.13) are thus seen to be precisely

5„(ß) and C„(ß) respectively.

Near the middle of its range a is small, and the left members of the equa-

tions (4.13) are essentially represented by the early terms of their expansions

in powers of <r. Thus the equations become

{(» H-Cj\— - (2ß)1'2 + Otß-1'2 log 0)}

\T'(Cj)       1Í Hey) 1 )
+ <r< -T— - — log (32ß)} + 0(a2) = 0,

the values of » concerned being such as make the initial term small. The

formulas which are valid in this case, i.e., when A and fiare nearly equal, are

thus

(4.13b)

(    (n - J)T - (8ß)1/2    )
5„(ß) = ß + (32ü)l'2\ —-—-\ + 0(1),

liog(32ß)-2r'(f)/r(!)J

(   (» + i)x - (Sß)1'2   \
C(0) = ß + (32ß)1'2<—-—-> + 0(1).

liog(32ß)-2r'Q)/ra)/

In particular, the values of ß for which o- = 0 is a root, i.e., for which there

is a characteristic value equal to ß, are found to be as follows :

(4.15)

If 5n(Q) = 0, then (2Q)1'2 = («-j— + o(—Y

/ 1\tt /log«\*
If C„(ß) = ß, then (2ß)1'2 = í « + — J— + OÍ -^J.

* These values were considered by Goldstein, S., in A note on certain approximate solutions of

linear differential equations, etc., Proceedings of the London Mathematical Society, (2), vol. 28 (1928),

p. 87, where the results are stated in the following form:

Tf  CiOl-O   tí,«, i2"' C0S (8«)1/2~(-Dn,
If S.(Q)-0, then U„ sin (8ü)./2~(-l)»+i.

Tf r ío^-o th«, i2"2 cos (8ß)1/2~(-D",
If G.(Q)-0, then |21/2 s.n (8n)I/2_(_1)n
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Finally near the lower end of its permitted range cr is large but negative,

and the second of formulas (4.14) gives

7,- =  - a + o log | o-1 - (2c,- - 1)
4 \    er   /

The characteristic equations (4.13) accordingly become respectively

cr 320 ir /   01/2  \      «x
(2ß)1/2 + — log-f-cr H-f- OGO-1'2log 0) +0[-) = —,

2 cr2 4 \0 — A/       2

for the characteristic value S„(ß) ;
(4.13c)

(7 320 X /   O1'2   \      «x
(2i2)i/2 + — log-+ cr-+ OiQ-1'2 log 0) + O   -) = —,

2 a2 4 \0 - A)      2

for the characteristic value C„(ß).

These are, therefore, the forms which are valid when ß is near the upper end

of its permitted range of values, or, in other words, when A is near the lower

end of its possible range.

4.6. The characteristic exponent. The formulas (4.6d) and (4.10b) yield

for the evaluation of 0 in (25b)

0 = 4e~CT\-   cos £i cos £2 — 1,
Lriivli

where £i and £2 are as defined in (4.11). The third of the formulas (4.14) may

be made to give further

x jcosh2air'ïU2

Tir2 "  I      2      /     '

whence

(4.16) 0 = 2{l + e~*"}li*[l]i cos £2 cos £x - 1,

and the characteristic exponent is obtainable from the appropriate formula

(25a).

The (ß, A) sub-regions of the domain IV of Figure 1 which comprise

parameter values for which the differential equation has stable solutions are

those for which the value of 0 is less than unity. It is evident from the

formula (4.16) that these sub-regions become more and more attenuated as cr

decreases, i.e., as the right-hand boundary of the configuration IV is ap-

proached.
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Chapter 5

The configuration V

5.1. Preliminaries. Abutting the configuration of the preceding chapter is

that denoted by V in Figure 1, in which ß is taken to be large and

(5.1) 0 ^ A ^ ß - MiÜ1'2.

In this case the substitutions

ß - A A z
(5.2) p =-,      cr2 = 1-,     j = —

ß1'2 ß a

reduce the differential equation (1) to the form (3) with

2 sin2 o-j
(5.« *,*(l""-—-1'

Xi = 0.

The parameter p is bounded below by the constant M2 while a2 is confined

to the fixed closed range 0^o-2^l, its smallest possible value being in fact

Muß-1./2.

With the strip (13) chosen as Rt, the region R, is

(5.4) R. : Ols'á-,
2a

and within this xo2 admits just one zero which is simple and is located on the

axis of reals at the point

a

2i/2-
Jo' = — sin-1

The position of j0' varies with <r but is restricted to the fixed interval (2-1/2,

x/4).
If R, is thought of as cut along the axis of reals from j=0 to j=Jo', the

values of <P on its boundaries are the following:

Forj" = 0+,0^j'^Jo',

C '•'    I        2 sin2 as') »'»
i» = e" I       i< 1->    ds'.

Forj' = 0, j"^0,

f'    i2sinh2o-j"        ) »/2
$=$(0) + e"/2J       d-l-lj.    ds'.
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Fori' = x/(2cr),i"^0,

/x\ C'"   (2 cosh2as"       ) 1/2•"•(i;) + e""J.   {—-'} *"■

The maps of P, upon P^,, and hence of Rz upon P{, are thus revealed, the

latter being as indicated in Figure 7 :

Fig. 7

5.2. The hypotheses. The discussion by which the uniform fulfillment of

the requirements of §1.2 by the present differential equation may be estab-

lished, will be omitted as to detail inasmuch as it proceeds almost entirely

like that of §3.3. In virtue of the values (5.3) the functions (6) are in this

case explicitly

If       5/ç>\2 6(1 -a2)      5(2 -a2))
"(fa -— 1-( —) - *2 + --- + -->,

4 I       9\$/ fa fa      )
y   =   $l/6/0l/2; Wl  =  0.

When | i—io'l is great the formulas

sin as 23/2        as
0^21'2-,       $~-sin2 —

er cr2 2

may be used, while for intermediate values the first of the formulas (5.3) may

be written
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sin2o-(j — Jo') sin 2o-(j — j0')
¿2 . 2(1 _ ff»)-V—m + (2 - a2)-i--•

a1 a

For small values of | j—j0'| it may be shown that

<t>z (        3(1 - a2) )

$ =-\ 1 -- <t>2 + <*>40(1) } ,
3(2-a2y<2\        5(2-a2) )

and with these formulas at hand the arguments of §3.3 may be paralleled.

5.3. The solutions relative to z=0. The point z = 0 may, as is seen from

Figure 7, be regarded as lying in the sub-region E(1). Moreover, the zero of

Xo2 being simple the formulas of §1.4 are applicable, with h = 1 as the appro-

priate value. The formulas (lib) and (11a) thus become, in the manner now

familiar, the following:

When |£| £N,

(5.5a)

M»W - 171-\   *17 vtl fe1"-'-!/««) + fl"JuM) 1.
K6p2<px<t> )

«.(«) = \~}   5l'VMW-i/«(i) + í^ViMDlí

and when z lies in E(i), and |£| ^¿V,

lía2) »'*,
«0(2) = —\->     {K^e'i + K«>tr*t},

2\p2<px<p) "■1 °'2
(5.5b)

with coefficients

I

1 (<pi) ll\ 1

2\<p)       l    ••» «'2       "

0,1

#<o
0,2

(5.5c)

JC«>

1T<»
e.2

-   1

e¿f.[l]

- e-'f.fl]

- îV«i[1]

- ie~^[l]

«'Ml]

*e*«»[l]

- ie'Ml]

«'Ml]

- wr'Ml]

ÍC*fi[l]

«-«•[1]

e'Ml]
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The symbols involved would have the evaluations

peí> r \ P<t>l i \
— = {A - O cos 2z}1/2, — = e"'2{0 - A}1'2,
a a

£ =    I     {A - O cos 2z}1'2dz,        xo = h cos"1 A/0,
J so

{O cos 2x - a}1'2^.
o

When z is real and less than x0 the relation £ = | f| e*T*12 is valid and hence

/-i/3(£) + /i/3(£) =-7A,/s(|£|).
xt

The formulas given in (5.5) thus reduce when the variable is real to the follow-

ing:

When0¿x<x0, and |¿| ^A,

u0(x) = -.-—-'-5—sinh i  i   \ucos2x-A]li2dx\,
(0-A)(Ocos2a;-A)}1/4 LVo J

(5. 6a)

u.ix) = {-i     [1] cosh If   {ß cos 2x - A] l'2dx\.
IOcos2*-aJ LVo J

When z^Zo, and |£| ¿N,

| t|i/«elíil

(4x2(0 — A)(Ocos2a; — A)}1'4
(5.6b)

with   |f|=    f '{ß cos 2a; - a}1'2^.

When a* ̂ s, and |£| ^A,

(x/ó)1'^1"1«!«.!

(5.6c)      uoix) = ;;/       --—^/»jr.y.ß) + ?fijut(t)].
{(ß — A)(A — ß cos 2x) }1/4

When xB<x¿ir/2, and |£| ^A,

[ljeltl
Uoix)  =

{(0-A)(A-Ocos2íc)}1/4
(5. 6dj

an f—+   f   {A - Ocos2a;}1/2a'a;  .
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In the cases (b), (c) and (d) the representation of u,(x) may be formally

obtained from that of u0(x) by replacing the factor (fi—A)-1'4 by (fi—A)1'4.

5.4. The solutions relative to z = 7r/2. The formulas (11) with the sub-

scripts a replaced by 2, where the latter denote values corresponding to

z = 7r/2, may be made to yield also the solutions ua(z) and Uß(z). Since the

point z = 7r/2 lies in the sub-region E(0) the value h = 0 is appropriate and the

formulas obtained are the following:

When \t\gN,

-sin(£2 + ^[£1/»/_,/3(£)]|,

(5.7a)

Mi(2)=(^)1/2fl/1Sin02-ïï)[W^)]

+ cos(£2 + ^)[£1"/_i/,(£)]j.

When z is in E(,), and |'£| feiV,

1 /    a2   V2.
««(«)=—(-)    {£<»«'« + tf(,)e-'í   ,

2\p24>2<bJ    l    ■•» -■»     "
(5.7b)

with coefficients

I

1 /02\1/2r >

2 \0/ "-1' 0'2

o,l

a ,2

(5.7c)

^,1

- 1

- ¿e-i{'[l]

2e3ri/4rcos^Î2 - j)l

2e"i'irsin^{2 - j)J

«-*»[!]

- »ytt[i]

«e^[l]

!*[l]

«-*[!]

2e-jT¡/ircos('|2 - -j)l

je"«.[1]

r*[l]

ie-vi^sinfh - j)]
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In terms of the original variables

^={0 + A}1'2,

a

/T/2 {A - Qcos2x}1'idx.

The forms obtained for real values of the variable are the following:

WhenOga;<a;o,and|£| ^A,

„     "[w(rfc)]      /r% Xl \
UÁX)=iiZ + A)i*cos2x-A)Y^AL  {QC0S2X- A]mdV>

(5.8a)

-M - Ít^iYIHí - *■)]
•expf   1   °{0 cos 2x - A} l'2dx\

Whenz^Zo, and |£| ¿N,

-(2x/3)1'2|£|1/«        f      /        r\rl   . ,   .   ,
««(*)=-;-—U-———î— { cos (£2-)    £ 1/3/i/3(  £   )

{(0+A)(Ocos2*-A)}1'4l      V      12/LI    '      1/3VIÇI;J

+ sin(£2+^)[|£|1"/-i/3(|£|)]},

(5.8b)

-«•(fe+^iifiwj-w.d«!)]}..

WhenXo¿x, and |£| ¿N,

(2x/3)1'2£1'6 f      /        x\r
«»(*)=!- -p-< cos I £2-) £1/3/,/3(£)

{(0+A)(A-Ocos2a;)}1/41      V      12/l        '      J

-*/m-¿) [€*/-*/•<£)]}.
(5.8c)

/2xY'2       f      0+A      V4f      /        x\r
«*-\7) {'"ta^} {-°(«-ü)fc"'-'.Moi

+C03(i,+ ^)[î"'7.,„(i)]}.
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Whenxo<x^ir/2, and |£| &N,

[1]

(5.8d)

ua(x) =-.-—-i—sin      f     [A- ücos2x\1i2dx\,
{(ß + A)(A-ßcos2a;)}1/4       IJ.,21 J

iß + Aii/4        r c'z ~\
uß(x) = {-}     [lieos      I       ÍA - ßcos2*}1'2d*  .

U- fieos 2xí lJT/2   l ' J

5.5. The solutions of the associated equation. The positive axis of imagi-

naires in Figure 7 lies in the sub-region E(1>. The formulas (5.5) appropriate

to this region are to be used, therefore, in obtaining the solutions of the equa-

tion (2) for real values of the variable by the substitutions (12). The formulas

thus found are

[1]

(5.9)

v„(x)=1-—-:—sin      f {ßcosh2z - A}1'2^   ,
{(ß-A)(ßcosh2x-A)}1'4        |_Jo J

v.(x) = <-1     [llcosTf   {ßcosh2z - A]l'2dx  .
lßcosh2z-AJ L-'o J

5.6. The characteristic values and exponent. The forms (5.6d) show that

the characteristic values for both even and odd Mathieu functions are in this

case determined by equations

(5.10a) | —+   f     {A - ßcos2»}1'2da;   =
»7T

2   '

the proper correlation of the indices of the roots with the integer « being duly

regarded.

If ki is defined in terms of A and ß by the same formula as is the a of

chapter 4, i.e., by (3.15), the substitutions

4*!
cos x = h sin f,        h2 = 1 +

(2ß)1'2

reduce the equation (5.10a) to the form

7T                                              /   ß1'2  \      »x

(5.10b) — + (2ß)1'2Ä2G(l, h2) + O í-J = —>

in which G is the elliptic integral of (26). In the range of transition from the

configuration of chapter 4 to that of the present chapter, kx is negative and

h2 accordingly little less than unity. The evaluation of (5.10b) to the form

kx        32Ü (   ß1/2  \     nir
+ (2ß)"2 + - log -— + kx + 0(ß-!'2 log Q) + OÍ- ) = -

2 kx2 \ß — A/        2
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may, therefore, be obtained by the use of (26b), and a comparison of the

result with the equations (4.13c) shows that the characteristic values which

occur as the roots of equations representable by (5.10a) are respectively

5„(ß) and C„_i(ß). In other words the characteristic equations are as follows:

Jx    {A-ßcos2,}1^+o(F-^) = («-T)T,

(5.11) for the characteristic value 5„(ß) ;

¡Ja - ßcos2,}1^+o(^) = (• + })£.

for the characteristic value C„(ß).

In the consideration of the characteristic exponent the formulas (5.6d)

and (5.8a) in conjunction with (25b) are found to lead to the evaluation

(5.12) 0 = e2l*'l[cos2£2] - 1,

and with this the value of u is given by the formula (25a). Since the right-

hand member of (5.12) can be exceeded by unity only when the cosine is

very small, it is evident that the unstable solutions greatly predominate in

the present configuration.

An evaluation of the several elliptic integrals involved may be made to

show that the transition from the formula (4.16) to (5.12) is a continuous one.

Chapter 6

The configuration VI

6.1. Remarks. The configuration designated by VI in Figure 1 is to be

that in which A is negative and

(6.1) - {0- M2Q1'2} ¿ A ¿ 0.

It clearly differs from that of the preceding chapter only in the sign of A. The

distinction between the two configurations is indeed largely an artificial one,

entered into primarily for the purpose of utilizing the discussion of §5.2 with-

out modification when parameter values admitted by (6.1) are concerned.

For in this latter case the substitutions

ß + A A 1/x        \
(6.2) p =-e3"'2,       <r2=l+—, i = —-z)

ß1'2 O A 2 /

transform the differential equation (1) into the form (3) with precisely the

coefficients (5.3), with er restricted precisely as in the earlier case. The de-
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ductions of §5.2, therefore, serve again to show that the requirements of the

general theory are uniformly fulfilled.

By their definitions the intermediate variables j, <p, and $>, and the para-

meters a and p, differ from the corresponding quantities in chapter 5. The

ultimate variables z and £ are, however, found to have the same relation to

each other, so that Figure 7 continues to remain valid in the present con-

figuration. It is found as a consequence that the various formulas deduced

in §5.3, §5.4, and §5.5 apply also in the present instance, provided they are

expressed entirely in terms of the original variables z, A, and fi.

6.2. The characteristic values and exponent. With the prevailing forms

of the solutions exactly those of chapter 5 the characteristic equations of

course remain of the form (5.11). It is of interest, however, to obtain from

these equations more explicit formulas which are valid near the lower end

of the admitted range of values for A. For such values h2, which may be

written
ß -1 a|

h2 =
2ß

is small of the order of ß_1/2, and in the equation (5.10b) the evaluation given

by (26a) is appropriate. The equation thus becomes

jl+ —+ Â40(1)| - 2«- 1.(2ß)1'2Ä2

It is evident that the integers » concerned are those of a bounded set, the

equation being expressible for such w in the form

ß + A = (2« - l)(2ß)1'2 + 0(1).

Inasmuch as the characteristic equations represented by (5.10b) were found

to be those for 5„(fl) and C„_i(fi), it follows that for the algebrai'caUy smaUer

of the presently admitted values of A the characteristic values are described

by formulas
5.(0) = - Q + (2« - l)(2ß)i/2 + 0(1),

C„(ß) = - ß + (2« + l)(2ß)1/2 + 0(1).

The characteristic exponent is again given by (25a) and (5.12).

Chapter 7

The configuration VII

7.1. The transformed differential equation. When A is large and negative

and

(7.1) - If, | A]1'2 ^ ß + A g üf2ß1/2,
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the configuration is that designated by VII, Figure 1. In this case the sub-

stitutions

(7.2) p = (32fl)1'2c-'</2,
ß +A

(320)1'2

bring the differential equation (1) into the form (3) with

Xo(i, cr) = i sin i,

Xi = i<r-

x

2

(7.3)

The transformed equation thus differs from that obtained in chapter 4 only

to the extent that er is replaced by ia. The formulas for <p and <b given in (4.4)

are adaptable to the present case by the substitution of — <r/| p| in place of

a/p, a change which is easily seen to affect in no way the validity of the argu-

ments of §4.1. That the differential equation in the present instance uni-

formly satisfies the hypotheses of §1.2 may, therefore, be accepted without

further consideration.

The regions R, and R& which correspond to the strip (13) are, both as to

outline and relative orientation, precisely like the z and £ regions shown in

Figure 5. Since under the relations (7.2) the region R, is a reflection of P. in

the point i = x/4, whereas Pf is obtainable from P$ by a rotation besides

the change of scale, the figure which relates the ultimate regions R, and P{ for

the chapter at hand is as indicated in Figure 8. The division of these regions

into the sub-regions H(l) is also as shown.

\

\

\

\

/

/

C R. D'

DID,

C,

Fig. 8
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7.2. The solutions. The origin z=0 corresponds to Sx = ir/2 and lies in the

sub-region E(0). The principal solutions relative to this point may accordingly

be deduced by the substitution of the values (4.9) (with a replaced by iu)

into the formulas (8b), the subscript a being taken as 1. To this extent the

process coincides with that by which the forms (4.10) were deduced. In the

present instance, however, certain terms may be dropped from the resulting

formulas for, as may be seen from Figure 8, the quantity i£i is real and posi-

tive and e-'*1 therefore asymptoticaUy negligible in comparison with e'tl. It

is found thus that the following formulas hold:

When z is (anywhere) in R¡, and | £ | ^N,

Uo(z) =-—-{(—\ '«'<«"««> [l]i - (—Y«-'«-«[l],l,
2í^1"V1'2 l\ £1/ V £1/ J

(7.4a)

^(2)=^{(irei<£"ii)[i]i+(iye"i<f"f,)[i]i};

when |£| giV,

/ 7T Y'2 (2î£i)-"«'f>(î£)1'4 (    2e'."4    .

-îâ^ n»*»i}.
(7.4b)

/x0iV/2 (2iíx)-'e'HüY11 i    2e""
«.(*) = - (-)-<—--l3*fitëi*ff)]i

\ 0 / 2 Ir (j - o-)

-TäTS****}-

In these as in subsequent formulas any term is to be omitted if a is such that

the gamma function involved is infinite.

The point z = 7r/2 corresponds to j2 = 0 and the principal solutions relative

to this point are therefore to be obtained precisely as were the solutions of

§4.2. The formulas found are as follows:

When |£|;giV,

««(*) = - (j\   *[i®-U4M.,uti2®\,

(7.5a)

Mz) = (y)    *[(¿£)-1'4ilfI,_i/4(2¿£)] ;
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when | £| |JV, and z is in S(",

-w - - ©'"«-'"{[fcF^]/2^*"

[July

(7.5b)

+ r---1  (2*Ö'«r«l,
Lr(f + »)Ji r

Ußiz) = (¿)IV-{[^]i(2i£)-Vf

+ [rïïf^l'2'0"""}'
with coefficients given by the table

I       \ - 1

A«>

*«>

e(íT-3/4)T¡

e(«r-l/4)T»

c-(<r-3/4)xi

er-(a-l/4)T<

In terms of the original variables

cos z      0 + A
e> =-tan

4 320 (f-7>
0 + A         1 + sin z

i£ = (20)í'2(1 - sinz) +• #_tti> log-,
(320)1'2

which permits the abbreviated relations

feos z"l* - L—J'
t£ = ——[l - sinz],

4

* ■ Kl-
4

* = (1 + sin2V
g(|p|/4)(l-sin*) e'fi =

(7)'
¡IpI/4

The specialization of the various formulas to the case in which the vari-

able is real may be made as usual, it being noted that then ¿£= |£ |. The

representations which result are as follows :
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When|£| £A

/seca;\1/2r , 1 + sin x~\
«<>(*) = (-)    [l]i sinh   (20)1'2 sin x + a log-    ,

\ 2ß /                   L 1 — sin adi
(7.6a) ,    .

r i 1 + an x |
Uoix) = (sec *)1/2[l]i cosh   (2ß)1/2 sin x + a log-     ;

L 1 — sin xJi
when|£| ¿N,

««(*)   = -"- {-        £ \-ViMa 1/4(2     £     )   1
W      (320)"2+3'8(l + sina;)1/''lr(J - <r)LI    ' ,/V  l?WJ

-r^rr^tlí|-1/4^a.-i/4(21 {Dii},

— (2x)1/2e(2ö)1/1 Í       2

V (320)'/2-1'8(l + sinx)1/4 \r(i - <r)U    ' 'W   '   "J

-,'     ,[l£l-1/4^-i/4(2|£|)]il,
1 U — 0) 1

the symbols M representing the confluent hypergeometric functions which

occur in the formulas (4.5).

When |£| %N,

- (2x seca;)1'2/! + sin x\"V       1       1

(320)"/2+3'8    Vl - sin x) Lr(i - <r)Ji
(7. 7a)
V (2x sec a)1'2   /l + sinzVr       1       "1

Uß(X)   =  —-(- )       -      c(2S2)W(l_Biai)_

(320)»'«"1'8   Vl - sin x) Lr(i - cr)Ji

When |¿| ¿ A,

M"W "^wi'x-     W4[Uh1/4^-i/«(2UI)].
(80)1/2(1 + sin x)11*

(7.7b)

^ " „.i.   •     ,1/4[|^l-1/4^-i/4(2|£|)].
(1 + sin a;)1'4

The solutions of the associated Mathieu equation, as obtained from the

forms (7.4a) by the method of §1.5, are for real values of the variable repre-

sented thus:

Voix) =-sin [(20)»/* sinh x - 2a tan"1 (sinh x)]x,
(20 cosh x)1'2

(7-8) U]i
veix) =-cos [(20)1/2 sinh x — 2a tan-1 (sinh x)]i.

(cosh a;)1'2
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7.3. The characteristic values and exponent. The characteristic equa-

tions (17) and (18) may obviously if desired be rewritten in the forms

w„(0) =0, Uß (0) =0 and m/(0) =0, «„'(0) =0. It accordingly follows from the

formulas (7.7a) that any characteristic value must be a root of the one or the

other of the equations

Lr(i - a)lx= °'        LT(i - o-)Ji= °'

If a is not positive the relations (7.9) are manifestly impossible. Hence

no characteristic values exist when A ̂  — fi, a fact which may be simply con-

cluded from a direct perusal of the differential equation. When a is positive

and of suitable magnitude, on the other hand, a relation (7.9) may be satis-

fied in virtue of the gamma function becoming infinite. The appropriate

values are clearly those for which

Kl-f
whence the characteristic equations are found to be of the form

A = - ß + (2« - l)(2ß)1/2 - 0(log ß).

This result when compared with the formulas (6.3), with which it must be in

accord for suitable values of A and fi, shows that the characteristic values in

the present configuration are given by formulas

5„(ß) = - ß + (2« - l)(2ß)1'2 + 0(log ß),

C„(ß) = - ß + (2» + l)(2ß)1'2 + 0(log ß).

Finally the computation of the characteristic exponent depends only upon

the evaluation of the quantity © given in (25b). This evaluation from the

forms (7.6b) and (7.7a) is found in the present case to be

7r«<80>1/2r              1 1

(7.11) 0 =- -   - 1.
(320)» Lrd - «or(i - o-)Ji

Chapter 8

The configuration VIII

8.1. The change of variables. The configuration numbered VIII in Figure

1 is to be defined as that in which A is negative and numerically large, while

(8.1) -|a| + jfi| aI1'2 ^ - ß ^-|a|.
iifi

The substitutions for the transformation of the equation (1) are to be
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(8.2)
|A| - £

| aI1'2
»Tt/2 a2 = 1 - ■t(7->

in which case the resulting equation of the form (3) has precisely the coeffi-

cients (3.3). The value of a is again confined to the range (3.4), and if the

half-strip

(8.3) R,
0  g,   X^TC,

OSy,

is chosen as the domain of z, the corresponding region R, is precisely that of

(3.6). In terms of j, therefore, the present equation coincides entirely with

that of chapter 3. The hypotheses are in consequence uniformly fulfilled and

Figure 2 again applies. The latter evidently leads in the present instance to

Figure 9.

\ £.

\     \      E^orS"     /    /

\E<UV I 'E<°>'

E«i   /   i jr(-i) or g«

/

M

£<» or i
\

I

\
r<-u»

:■   \    A

2

R.

Fig. 9

The extension of the representations which are to be obtained from R,

into the entire strip (13) may be made directly by observing that ua(z) and

Uß(z) are respectively odd and even as functions of the variable (z — ir/2),

and by applying the identities (14a) and (14b) to the formulas for u0(z) and

ue(z). With this accomplished the further considerations of §1.6 are, of course,

applicable.

8.2. The solutions. The zero of xo2 is of the first order, and, as may be seen

from Figure 9, both the points z=0 and z = ir/2 lie in the sub-region E(2).

The formulas (11a) and (lib) may, therefore, be drawn upon, with A = 2, and

lead to the formulas which follow.
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When z is in E<!\ and |£| ^A,

[July

(8.4a)

1 /   *2   V/21
«.(*)=—(-)    {K2-le*t+K2-le-*l\,

2 \p2fa<p )     l    «m M       '

1 lfa\m<
«.(*)=—( — )      A2'ie,£+A2'c-if   ,

2\<>/    (    M .-2      "

(8.5a)

1 /   "2   \1/2(

l /fa\112,
ußiz)=— [ — )    \K2-le*t+K2-'e-*t},

2\fa)    (   f-1 f>-2      '

with coefficients

- 1

*ï:i [*].*» [í']eí{i [l]<Ht. [1]*-

0,1 [-<]« [- 1]^«. [~l]e [- 1]**.

«.1 [-<]**. [-4 e«i [1]e~>ti [1]*-*«

[- *]«*« [1]e«i [1]«*« [!]<*•

<*,i [i].* [î']eif2 [l]r* [I]*-*«

«.S ["il* [-2««" cosf^fe - j)] r-2e"/<cos(fc - j)l [- !]«*■

0.1 [- «]«* [- ¿]ei£¡ [1]<H [l]e-'{

P.2 [- i]«* [2e-*«4 cos (& + j)] [2«r«/4 cos (fc + j)] [1]e't«
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When \Z\gN,

/   ira2   Y'2

(8.4b) WW
/rrcPxY12

M'(z) = W/   P"*1*"""!*1"'-»/»® + *1/Vi/"<Ö]»

Ma(2) = - (^)1/2|1/6{eT</6 siQ(f* + n)^/v-^)]

(8. 5b) + «-*«/« cos (fc - ¿J [|l'«/wttt) ]} ,

Mz) = (^2)1 V/6{e-'</5cos(£2 + QlP'V-uM))

+ «"/« sin (fe - ^{¿"Vi/iß)]} .

For use in these formulas,

— = - { | A | + ßcos2z}1'2,
a

^=-{|A|+ß}w2, í*i=_{|A|_Q}l/í,
a a

£ =   j    {A - ß cos 2z}ll2dz, zo = i cos"1 A/0,

/'Va { | A | - ß cosh 2y} 1/2dy, y0 = J cosh"1 | A | /Q,
o

£i = £» - * I      { | A | + ß cos 2x}l'2dx.
Jo

It is found that for all real values of z on the interval (0, ir) the respective

formulas are

(8.4c)

«.(*)-•TTi—i-r-r-T-r—sinh [  f { |A|+ßcos2*}1/2dsj,
oW    {(|A|+ß)(|A| + ßcos2a;)}1/4 L^o * '    ' J

í        A +ß     ", 1/4 r /" "I

^HtTTTT;-¡Tí    M«**     I   {|A|+iicos2*}»'»á* ,
(   A +ß cos 2x) LVo J| A| + ßcos2z
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uaix)=1—.—¡-~-r—sinh|   f  { Ul+ßcos 2a;}^da;,
,        "W    {(|A|-ß)(|A| + ßcos2^)}1'4 UJ{    ' '        J
(8.5c) .     .

/a_o    i1/4 r r* i
Ußix) = \-.— —!-\     [l] cosh      I      { | A| + Ocos2a;}1/2d3;  .

(. | A | +0 cos 2») L.Jt/2 J

The axis of imaginaries in Figure 9 likewise lies in the sub-region Et2),

and the formulas for the solutions of the associated Mathieu equation are

accordingly found to be

Voix)=-,—;—¡-¡—¡-;—sin      f  { | A |—0 cosh 2a;}1/2a*a:  ,
{(|A| + 0)(|A| + Ocosh2a;)}1/4       L J o ' ' J

(8.6) ,i
(       a +o     ) i'4, .      r/",. .      -]

Veix) = <-.—p—!-Ï      1   cos A +Ocosh2a;}l/2da;  .
I | A1+0 cosh 2a;/ L^o J

8.3. The characteristic exponent. It is evident that the present configura-

tion admits no characteristic values. The formulas (8.4c) and (8.5c) yield

the evaluation

© = [2] cosh2 \   f     { | A | + 0 cos 2a;} ̂dxl - 1,

and the formula (25a) accordingly gives the characteristic exponent in the

form

(8.7) p = Í— f     { | A | + Ocos2a;}1/2da;  .

Clearly, the configuration is one of unstable solutions.

Chapter 9

The configuration IX

9.1. The differential equation. In this final configuration to be considered,

i.e., IX of Figure 1, the parameter A is large and negative while

(9.1) --—\A\¿-Q¿0.
Mi

The variable is to be restricted to any region in which a relation (2.4a) is

fulfilled with some constant Mi, and this constant is that which figures in

(9.1). The substitutions

(9.2) P = I A I1/2«*'/2,        a2 = -.—r,       s = — -z
11 ' |Al 2
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reduce the differential equation to the form (3) with the coefficients (2.3), the

parameter a being confined as in (2.5). As was remarked in chapter 2, the

Stokes' phenomenon is absent and a single formula serves to describe a solu-

tion over the entire strip given by (2.4a) and (2.4b).

9.2. The solutions. The solutions (2.7) apply to the present differential

equation (3) and may be used in the formulas (8b). It is found thus that

tÍ-i^YV^'U]-«-'«-«•> Ml,2 \ p'<i>x<p I

1 /<6A1/2

1\i) l«"M',t1) + '"CM',[1l)'

with the symbols evaluated by the relations

p</> = i\ | A | + ß cos 2z}1'2,

p0i = i{ |a| + 0}1'2,     p<i>2 = ;{|a| - ß}1'2,

¿£ =    f    { |A| + ßcos2z}1'2dz,
J   Til

*'(£ - £i) =   I     { | A | + ß cos 2z}1'2dz.
Jo

For real values of z these formulas are found to reduce precisely to the forms

(8.4c) and (8.5c), while the forms which describe the solutions of the equation

(2) are again found to be those of (8.6). As in the case of chapter 2 the con-

clusion is possible that the symbols [ ] may be dropped from the formulas

when ß=0.

Lastly, the formula for the characteristic exponent is that already given

in (8.7), and there are, of course, no characteristic values.

««(z) =

(9.3)

Ue(z)   =

ua(z) =

(9.4)

Uß(z)  =
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