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1. Introduction. The boundary value and expansion problem associated

with the ordinary linear differential system

«"(*) + P(x)u'(x) + [q(x) + \k(x)]u(x) = 0,

Lj(u)=0,       ; = 1,2,

with coefficients real and continuous, and X a complex parameter, has been

extensively studied. The results of these investigations (and of those dealing

with the generalized system of order n) comprise an extensive theory for

the case in which the coefficient of the parameter maintains its sign in the

interval determined by the boundary conditions. Not merely the existence,

but the asymptotic forms of the characteristic values and functions are

known, and the expansibility of a function, arbitrary within wide restric-

tions, in a series of characteristic functions has been established.

Far less has been done with the cases in which k(x) either changes sign or

otherwise vanishes in the given interval. The existence of infinitely many

characteristic values has been variously established,! but their distribution

and the form of the corresponding solutions has not been determined. If

k(x) changes sign a finite number of times Hubert's theory of the polar inte-

gral equation is applicable and yields the theorem that a function which is

continuous together with its first four derivatives and which satisfies the

boundary and certain auxiliary conditions is expansible in a uniformly con-

vergent series of characteristic functions. The method of infinitely many

variables has been applied with considerable success to the more general

case in which k(x) is less restricted, f Still the expansion theorems obtained

are hardly comparable with those which have been obtained under the hy-

pothesis that the sign of k(x) does not change.

* Presented to the Society, September 8, 1927; received by the editors January 17, 1928.

f For references see the introduction to the paper by L. Lichtenstein, Zur Analysis der unendlich-

vielen Variaban, Rendiconti del Circolo Matemático di Palermo, vol. 38 (1914), p. 113.

X Lichtenstein, loe. cit., also Anna Pell Wheeler, Linear ordinary self-adjoint differential equations

of the second order, American Journal of Mathematics, vol. 46 (1927), p. 309.
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The present paper is devoted to a discussion of the case in which the coeffi-

cient k(x) is the function x', where v is any real positive constant and the

interval includes the point x = 0. If v is integral this is a specialization of the

equation discussed above since the coefficient remains real. If the integer is

even or x = 0 is an end point of the interval the coefficient merely vanishes,

while if v is an odd integer a change of sign takes place. If v is not integral the

coefficient clearly changes from real to complex.

The method used is that of asymptotic forms. The equation is solved

in terms of Bessel's functions and the asymptotic forms of the characteristic

values and of the characteristic functions are deduced. It is shown that if

f(x) is any integrable function then the expansion in terms of the char-

acteristic functions converges except at the end points to the average

h[f(x+)+f(x — )] in any interval in which f(x) is of bounded variation and

xj^O. If f(x) is of bounded variation throughout the whole interval the

expansion converges also at x = 0, to the average of the functional values if

v is an integer and otherwise to a weighted average.

2. The solution of the equation.   We consider the equation

(1) u" + \x'u(x) = 0,

in which v is any real positive constant and X is a complex parameter. When

¡c<0we specify the symbol x" to designate \x \'e'Ti. Similarly p1'2 shall desig-

nate   |p|W2e<i/S)arg„.

It is convenient to set

(2) P-2É-2,    X = ¿2p2,

and to consider p as a new parameter. If the variables are then changed by

the substitutions
y(x) = x~ll2u(x),    t = pxh,

the equation takes the form of the Bessel's equation with solutions

y,(t) = HU)   (t),* j = 1,2.
•"W 1/(2*)W' J '

Hence we may choose as a set of independent solutions of the equation (1)

,1/2

±(ft-H)r</(4ft>£l/l£
"l/(2*)

(3) Uj(x,p)   = (— j  ' #fc<*H>«*/(4»jel/ljri<^M

* The choice of the Bessel's functions of the third kind is made because of their suitability for the

subsequent developments. Cf. Watson, Theory of Bessel's Functions, Cambridge University Press,

1922, p. 73. This reference will be indicated in the text by W.

t In combining two formulas by the use of double signs we shall agree to associate the upper

signs with_/= 1 and the lower signs with/=2.
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With the use of the formula [W, p. 74]

we obtain from (3)

(3a) u¡(x,p) = k^jj     iKWMWB^-uiff^ (p^*), j = 1,2.

3. The asymptotic forms of the solutions. If we adopt as generic

symbols B(t) to designate a bounded function, and Ip(t, r) to designate a

function of the form

^     (r,m) S(i)

where
r(r + m + i)

(r,»i) =-j
w!r(r-w + è)

the asymptotic expressions

/2 V»
ffO)(<)   =  f _j      c±i(«-rr/2-W4)7j)(±   <>f)

are available [W, p. 198] and are valid for any integer P>0, and uniformly

so for — ir+ eg arg /=7T— €, where e is an arbitrarily small positive constant.

We find from this that with the use of th e abbreviations

0,(*,p)  -  ^-»/«^^»»/(i p**), J  =  1,2,

we may write

(5) Uj(x,p) = 6j(x,p),

for
x > 0,    — ir + e g arg pa»-«.

Similarly we deduce as the formula for the derivative

(5a) «/(*,p) = ± ipkx'He^lJt,— - lj.

To obtain the asymptotic forms when ï<0 we employ the formulas

[W, p. 75]
sin (1 + m)rr sinwinr    (»_,•)

(6) HP (tem") =-—HP (t) + e*"<-H      (t),
sin r-K sin nr      '
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which are valid when m is an integer. Setting \x \ = £, i.e. x = £eTi, and de-

fining the integer K and the fractions n, 17' by the relations

K - 1 < k < K,
(7)

k = K-r, = (K-l)+7,',

we find from (3) and (6) that if

(8) p' = pe-""

and arg p' is restricted to the interval (—ir+ e,ir—e), then

(9) Uj(x,P) = ;i+'Mi(£,p') + c,Mt,!>')], j - 1,2,

where

(10) £11 = — cos-csc — ,   Ci2 = C2i =  — t cos — CSC -)
2^        2/fe 2k       2k

(1 + r¡)v ir
c22 = cos ■—-csc — •

2k 2k
In terms of x formula (9) is

(11) u¡(x,p) =iK*-'"[<;,•, e^kI(Pxk) + C,-.3_Ie-i^J(- p**)],       j = 1,2,

for

x < 0,     ( - 1 + i))tt + e ^ arg p ^ (1 + 7j)ir - e,

where Z = l if isT is even, and / = 2 if K is odd.

In (11) as in (5), (5a) the asymptotic form of «/ may be obtained from

that of Uj by differentiating only the exponential factors and replacing

7(0by/„(*,l/(2*)-l).
When v is an integer it follows from the work of Birkhoff* that for p

confined to any quadrant formed by the axes of reals and imaginaries every

solution of equation (1) is asymptotically of the form

u(x) = ar"/4[aiei',**iii(a:,p) + «¡¡«"'"^(«.p)],

for x^ô>0, while for x¿ — 5 such a solution is of similar structure with

ai and a2 replaced by different constants ai and ä2 respectively. From formu-

las (5) and (11) the relation between these sets of constants for the quadrants

in which (5) and (11) are both valid is found to be

ai = iK(clltai + c2,ta2),

&2 = iK(ci,3-iai + c2|3_¡a2).

* Birkhoff, Asymptotic solutions of differential equations, these Transactions, vol. 9 (1908), pp.

219-231.
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The asymptotic expressions obtained display the functional form of the

solutions when \pxk | is sufficiently large. For small values of \pxk \ we

observe that since

fH^it), i = 1,2,    m>0,

is bounded when t is bounded, it follows from (3) and (3a) that

| x'>iUj(x,p) \<Mi,

(12) ,
|«/(*iP)| < Mt\p\ »/«■»/»»,        for \pxk\ < M.

Combining these inequalities with formulas (5) and (5a) we find that

Uj(x,p) = x-'lieiii'xkB(x,p),

(13)
u'j(x,p) = ± ikpe±i"xkB(x,p), for 0 g x.

Lastly we obtain from the formulas [W, pp. 74, 40]

lim PH¿>> (t) = Aj,       lim <"flLM(0 = A,*****, p > 0,
t-*o <->o

where
± 2"

Aj =
¿r(l — ¿u) SÍn/i7T

and

(14) r(«)r(i - z) =
sin irz

and the relations (3) and (3a)

+ Í / 1 \/ p \l/2-WC2*)
%<o,p)---««—««»r(-)(Y)

(15)

M/(0'p) = ^rT7re±(i_1,Ti/<4t>rv1 -^¡Xt/        ' ;"= l'2'

4. The boundary problem. The characteristic values. We consider now

the boundary problem obtained by adjoining to equation (1) the boundary

conditions

(16) u(ß) = 0,        u(-a)=0,*       £*>0,        /8>0.

Since every solution of (1) may be written in the form

(17) u(x) = aiUi(x) + a2u2(x)

* For brevity we shall use the notation u{x) in place of u(x, p) when no confusion is apt to result.
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it is clear that there exists a solution satisfying conditions (16) if and only

if the value of p is such that

(18) Q(ß, - a) = 0,

where
\ui(s)     u2(s)

Q(s,t) =
I «iW      u2(t)

Since by (2) any half p-plane maps into the entire X-plane we may restrict

ourselves, in seeking the roots of equation (18), to any half-plane

(19) - 5 g arg p ^ v - Ô, where 0 < 5 < wV.

For such values the asymptotic forms of u¡(x, p) and of u¡(x, p') are given

by formulas (5) when x>0. We must distinguish between the cases in which

v is or is not an even integer.

Case 1. v not an even integer. In this case the rays

(20) argP = 0,

(21) argp' = 0,    i.e.    argp=»)ir,

are distinct. Suppose now that p is confined to a sector Si of the half-plane

(19) which includes the ray (20) but excludes the ray (21). In such a sector

R(ip')>0, and from (4) 82(x, p') is asymptotically negligible in comparison

with 8i(x, p') for x>0.   Hence we find in this sector

6i(ß,p) Bt(ß,p)        *

Cii0i(a,p')    c2i0i(a,p')

and the equation (18) takes the form

(22) c2ie^"I(Pßk) - cue-^l(- pßk) = 0.

If we set

(23) „.. = ß-*[(m - l)x + 1 log (cos^ sec £)],

and observe that

ü(ß, — a) ~ il+i

\2k'    )
log /(- pß") - log I(pß*) =-—■--f

tp/3*

B(P)

* We use the symbol ~ to indicate that the functions are of the same asymptotic form. Thus if

in this formula the sign ~ were to be replaced by = it would be necessary to replace in the right

hand member the quantity i1+v0i(ap')[c,i0i(ß)+cn0i(ß)], which has been dropped. By (4) it is

evident, however, that this quantity is of lower order of magnitude when \p \ is large than the error

due to stopping at any definite term of the asymptotic expansion of the expression retained.
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we may write (22) in the form

(22a) P —
r   (H
L 2pß2k

p3 -j

= 0.

Let the points fi,» in the p-plane be surrounded now by small circles with

centers at fi,m and radius e. Then for m sufficiently large the parenthesis in

(22a) will have a value lying within this small circle for every value of p

on the circumference, and as p traces the circumference the argument of the

left hand member of (22a) increases by 27r. Hence (22a) has just one root

Pi,m within the small circle.  From (22a) we may write then

Pi,m = r1<m + B(m)/m ■

Computing the term in 1/p from this and observing that ri,m is of the order

of m we obtain the formula

(24) Pi,m +

\2k'    )
+

B(m)

tn*2ritmß2k

In similar manner if p is restricted to a sector S2 of the half-plane (19)

which includes the ray (21) but excludes the ray (20) we have R(ip) <0 and

Ü(ß, - a) ~ - d2(ß,p)0i( - a,p).

The characteristic equation (18) now takes the form

(25) ciiei>'*kI(pctk) + CivrV"hI(- p'a") = 0.

If we set

(26) r2,m = or» [(„ -\)*-J. log (cos £ sec g)],

we find precisely as in the preceding discussion, if we recall (8), that

\2k'    )
(27) p2,m =■- e* r2,m + +

B(m)

2r2,nct2k

We may state then the following theorem:

Theorem 1. // in equation (1) v is not an even integer the infinitely many

characteristic values of p are asymptotically spaced at regular intervals along

two distinct straight lines in the complex p-plane, the formulas for these values

being given by (24) and (27) above.
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We observe in particular that when v is an odd integer then 17 = n' = \, and

the logarithmic terms in (23) and (26) vanish, so that pi,m is asymptotically

real and p2ll» asymptotically pure imaginary.* In this case we find from (2)

the theorem

Theorem la. If in equation (1) v is an odd integer the infinitely many

characteristic values are given asymptotically by the formulas

/1       \i      B(m)
x,._ «^{(„-1) ,. + (!,,)]+

x,..-**«-■((,,-A)W(¿,i)]-.

m1

B(m)

m*

Case 2. v an even integer. In this case we find from (2), (7), and (9) that

k is an integer and hence that K = k, r¡ = 0, 77' = 1, and p'=p.   From the form

(28) Ü(ß, -a) = i[c2i8i(ß)8i(a) + c220i(/3)02(a)

- cn82(ß)8i(a) - ci282(ß)82(a)}

the equation (18) becomes

(29) ei>uk+ahn(pßk)I(Pak) + t f cos — Jei^k-"kU(pßk)I(- pak)

+ ¿(cos — J e-iP«ik-akn(-Pßk)I(pak)-e-i<>wk+''kn(-pßk)I(- pa*)=0.

The equation of this type has been studied, f and it is known (i) that its

roots are asymptotic to those of the equation

(29a)        e2i„w*+«*) + dcos — \e2i^k + i (cos — j e2i"ak -1=0,

and (ii) that the roots of this latter equation lie in a strip bounded by

parallels to the axis of reals, t and that for Ip^A^at most three roots lie

between any two lines perpendicular to this axis and less than the distance

ßk+ak

apart.

* It is known, of course, that pi,m and pt,m are actually real and pure imaginary respectively.

Cf. Ince, Ordinary Differential Equations, London, 1927, p. 238.

t Tamarkin, Some General Problems of the Theory of Linear Differential Equations etc. (in Russian),

Petrograd, 1917, also C. E. Wilder, these Transactions, vol. 18 (1917), p. 420.

X They are actually real. See note * above.
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We observe that in the particular cases in which ßk and a* are commen-

surable, say
ßk = (p/q)ak,

where p and q are integers, the solution of equation (29a) is an algebraic

problem, the equation being algebraic of the degree p+q in e2ifa " . De-

noting the roots of this equation by r¡,j = l, 2, ■ • ■ , p+q, we have then

from which the characteristic values are found to be

0j,m = qa~k\ mir + — log r¡ + (¡(m)

where
lim e¡(m) = 0.
m-* «o

We consider more explicitly the particular case in which

(30) a = ß.

The determination of the characteristic values is in this case easily possible

for the equation (28) reduces to the quadratic

0i*U3) + 2i(cos ^\6i(ß)B2(ß) - 02*03) = 0,

which we write in the form

(31) {0x050 + ie"'<2*>02OS)} (0iO3) + ie-*««k>62(ß)} = 0.

From this the characteristic values are found directly to be

(I, i)/ 1        1 \ \2k      /
[m-+ — )ir —
\ 4      AkJ

(32)    pj,m = ß~k

2\m-± — V
\ 4      Mi) _

B(m)-V' .7 = 1,2,

and we have the following theorem :

Theorem 2. If in equation (1) v is an even integer andct=ß, the infinitely

many characteristic values are given asymptotically by the formula

(33,       X,. - Hr-[(. - i ± i)'„. - (1, .)] + ^,     j- 1,2.

It appears from this that the case v an even integer is irregular in the
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sense that the characteristic values (32) are not the limiting values which

would be obtained from (24) and (27) by allowing r¡ to approach zero,i.e.

by allowing v to approach the even integer.

5. The characteristic functions. When p is a characteristic value the

constants ah a2 in (17) may be chosen to make the solution satisfy the

boundary conditions. The solution (17) becomes then a characteristic func-

tion. We proceed to derive its asymptotic form. For convenience we shall

omit the subscripts on p, understanding that in the discussion of this section

p is always taken to be a characteristic value.

Case 1. v not an even integer. Consider first the function corresponding to

P=Pi,m.   Choosing the constants in (17) thus:

oi = -u2(ß,p),        a2 = ui(ß,p),

we find

(34) u(x) = Ü(ß,x,p).

The characteristic equation (22) is in this case

ClMß,p)  - C2i0i(p\p)~O,

and substituting from this in (34) we find

/C2l\1/2 V/Ctl\U2 /Cii\1'2 1
(35) u(x)-(— j   0iO3,p)^— j   di(x,p)-[— J   02(*,p)J.

With the use of the formulas (4) the form of u(x) when x >0 is thus obtained.

If x<0 we observe that because of (18) we may write

Ul(ß,p)
ü(ß,x,p) =—--ü(-a,x,p).

«i(- «,P)

Substituting from (9) for «,-(*) and «,-(—a), and observing that

(36) C11C22 — C12C21 = 1,

we derive the result

i1+"0i(ß,P)
(37) u(x,p)= K " -n(tt,t,pO.

cii0i(a,p) + Ci202(o!,p)

Now when p=pi,m, 02(a, p') is asymptotically negligible in comparison with

di(a, p') and hence we may replace the denominator of (37) by Cu0i(a, p').

Lastly if we remove from (35) and (37) the factor

-2i(-J   0iO3,P),

which is independent of x, we have the following theorem :
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Theorem 3. If in equation (1) v is not an even integer the characteristic

function Ui,m(x) corresponding to the characteristic value pi,m is of the asymptotic

form

x~fl*r/c2i\1/2 Aii\1/2 ~\
ui,m(x)-  (—J   ei'lkI(pxk) - Í—J   tr*»*I(- px")

when x>0,

í-'/*      r /(- p'ak)        i
ttl-»W-7^7-wJ r**H- P'«*) - e-*'<2«*-**>   ;  ,       7(p^>)

- 2i-'(cnC21)1/2L f(pa') J

wÄera a; <0, p=pi,m.

To derive the form of u°,m(x) we consider the solution

(38) «(ac) = - i-2'Q(x,-ct,p).

When a;<0 we obtain from this by means of the equations (9) and (36)

«(ac) =fl(£,a,p').

The characteristic equation in this case is (25), i.e.

Cn0i(a,p') + cx282(a,p') ~ 0.

Observing that (38) and (25) may be obtained from (34) and (22) by inter-

changing the following letters:

(39) «i with «2,   6*1 with 82,   c2i with — Ci2,  ß with a,  p with p',   x with £

it is clear that the result, namely the form of u(x) when x<0, may be simi-

larly obtained from (35).

When x>0 we have because of (18) the relations

«2(— a,p) ¿1+'02(a,p')
0(«, - a,p)-—— ü(x,ß,p) = ———-—-— a(x,ß,p),

u2(ß, p) Cu82(ß, p) - c2i8i(ß, p)

and hence from (38)

V--*82(a,p')
(40) u(x)-——-——-ü(x,ß,p).

Cn82(ß,p) - c2i8i(ß,p)

Observing that the interchanges of letters (39) lead from (37) to (40) except

for a factor — i~2" it is clear that the result is again derivable from that of the

preceding discussion.  Removing the factor

/-Cl2\1/2
2i(-— )   82(a,p')
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from the solution considered we may state the following theorem:

Theorem 32. If in equation (1) v is not an even integer the asymptotic forms

of the characteristic functions u2,m(x) corresponding to p=p2,m are given by the

formulas
X-'H r I(pßk) "1

«!.«(*)-e^kI(pxk) - e»«"»-**» /(- pxk)
- 2H-Ciiei2Y'2l I(~Pßk) J

when x>0,

t-'i*r/ c.. \i/2 /_c \i/- -i

w,"t*)~^Kz7') eWlH{pV) * ("7T/ e_<p't*/(~pV)\

when x<0, p=p2,m.

In particular if v is an odd integer these forms may be somewhat reduced

and we have the following theorem :

Theorem 3a. If in equation (1) v is an odd integer the characteristic func-

tions «i,m0*0 corresponding to the characteristic values p=pi,m are given by the

formulas
Y {        B(mxk) )        / t\

ui,m(x) ~ x~'l4\ < 1 + -——- > sin ( pi,nxk +— )
L \ (mxk)2 )        \ 4/

B(m,xk)        ( t\-\
-\-:— cos I pi,mxk + — )   ,

mx* \ 4/J
when x>Oj

"'-w~-r"'(sln5)h""{i+^}

t   t   (        B(mtk))l

I m%k   ).]'

when x<0.

The form of the characteristic function u2,m(x) for x>0 (or x<0) is obtain-

able from that of Ui,m(x) for x<0(orx>0)by interchanging x with £ and a with ß.

From this we see that for large values of m any solution has the character

of |a: \~vli sin (pi,m \x |*+7r/4) in any interval of the x-axis lying entirely

on one side of the origin, while in any interval of the x-axis on the other side

of the origin the graphs of the solutions lie arbitrarily close to the axis for m

sufficiently large.

It is desirable also to note the values taken on by the characteristic

functions at x = 0. Removing the constant factors specified in the dis-

cussion above and substituting from (15) we find
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/ai\ /n\       n    ]/2-l/(2*) , 1/2+1/(2*) .
(41) M,-.m(0)  =C,p. ,        f»i.»(0)  = C^p. , J = 1,2,

I.m

where C, and C/ are constants independent of m. Since |p,-,m | is of the order

m it is seen that \u,,m(0) |, and |«/,«(0) |, become infinite with m.

Case 2.  v an even integer.  Inasmuch as we have derived the asymptotic

forms of the characteristic values when v is even only for the case a=ß,

we shall confine our discussion of the characteristic functions also to this case

Setting

(42) u(x)=ü(ß,x),

and observing that from (31) we have

0i(0,Pi.m) = - ïe±"/<2*>02O?,Pi.m), j = 1,2,

we obtain directly on dropping the factor

- 2e"/<±"/<'>*>02(0,pi,m)

the  form

ar'/4
(43) uiim(x) ~—-[^((irf+Wff»/«*))/^»*) _ e-i(pxt+W4Tx/(4t))7(_ pa.*j]

2t

for ac>0, p=pi,m, or in an alternative form

KB(mxk))        / t      x\
1 +-7-nSTf sin (p'mXk + T + 71

(mi*)2 ;        \ 4      4k/

(Pí-*i + T:F¿)]
-cos

fora;>0,/ = l, 2.

For a; < 0 we have since p' = p, j; = 0,

¿02(/3)

c2i0i(ß) + c2202(/3)

Substituting in this the values of c2i, c22 as given by (10) we find that the

fraction on the right reduces to ( — 1)' for p=Pj,m. Hence we have on compar-

ing with (42)

Mj,m(ac) = + Uj,j£) for x < 0, j = 1,2.

Theorem 4. If in equation (\)v is an even integer and a = ß, the asymptotic

forms of the characteristic functions are given for ac >0 by (44) above. The func-

tions Ui,m(x) are odd functions and the functions u2,m(x) are even.
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Proceeding as in the previous case when x = 0, we find in this case the

values

/lr. Ml.»(0)   =  0, «l.m(0)   =Ci'p
(45) *•"

«2,m(0)   = C2p , «2,m(0)   = 0.
2,m

6. The formal expansion of a function f(x). We shall suppose now, that

the characteristic values are arranged and designated by a single subscript

so that | pm_i | =■ | Pm |. Then two characteristic functions corresponding to

distinct characteristic values are found in the usual way to satisfy the relation

•o
x'un(x)ui(x)dx = 0, / 9¿ n.

/

It is clear that X = 0 is not a characteristic value, since by equation (1)

this would imply u"(x) = 0, and by (16) u(x) = 0. Hence we have for any

characteristic function u and the corresponding X the relation

Id. .
(46) x'u2 m -——\\x'+lu2 + xu'2 - uu'\,

2k\ dx

which is an identity since u(x) satisfies (1).  Integrating it and applying (16)

we obtain

I
" 1

x'u2(x)dx =-[ßu^(ß) + ««„"(- a)].
2k\n

It is readily found by substituting on the right the asymptotic forms of the

characteristic functions that this member and hence the integral on the

left is different from zero for n>N, i.e. for n>N the characteristic values

are all simple. If this is true for all values of n, which is clearly the case when

the characteristic functions are real, i.e. when v is an integer, we may derive

in the usual way the expansion associated with an arbitrary function f(x), i.e.

lim   f t'f(t)4,m(x,t)dt,
m->»  J—a

where

"      un(x)un(t)
(47) <pm(x,t) =   Z

ni       C
Vu2 (t)dt

J -a

Moreover if G(x, t, p) is the Green's function of the system (1), (16), and y

is any semi-circle in the p-plane with center at p = 0 which with the diameter



1929] A BOUNDARY PROBLEM 15

joining its end points encloses the characteristic values X», » = 1, 2, ■ • • , m,

and no others, then by familiar reasoning*

k2  r
(48) <bm(x,t) = —     pG(x,t,p)dp.

ITl Jy

7. The function G(ac, t, p). To avoid repetition in the discussion of the

expansion problem we shall suppose that x, which we consider fixed, lies

on the interval O^ac^/3. Clearly the deductions and results for an z<0

will be entirely similar to those for ac >0.

If W[u2, «i] denotes the Wronskian of the functions «2 and «i, i.e.

W|«2,Ml] = u2u{ — «i«2 ,

we find from formulas (3) and (3a)

W[u2,ui] = —xkW[HW    (pxk),HW    (pxk)],
1      '       J 2 1/(2») 1/(2*) '

and it follows from the known formula for the Wronskian on the right

[W, p. 76] that

W[m2,Mi] =. 2kpi.

The classical formulas for G(x, /, p)f reduce therefore for the case in hand to

Xl(ß,x)Q(t, -a)

(49) G(x,t,P) - {
2kpü(ß, - a)

Xl(ß,t)ü(x, - a)

2kpü(ß, - a)

for t < x,

for / > x.

We observe now that because of the distribution of the characteristic

values as shown in §4 it is possible to choose in the p-plane a sequence of

circles rm: \p \ =rm having the following properties:

(i) as m—>oo over positive integral values, rm—>°o ;

(ii) if ym denotes the semi-circle of Tm for which —o^d^ir — S, then

ym with the diameter joining its end points includes just m characteristic

values;

(iii) there exists a constant x>0 such that every point of any arc ym

is at a distance greater than x from any characteristic value.

For the subsequent discussion we must derive the asymptotic forms of

* Birkhoff, these Transactions, vol. 9 (1908) p. 379. If some characteristic values are not simple

we may consider^™ (x, f) defined by (48) rather than by (47).

t Birkhoff, loc. cit., p. 378.
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G(x, t, p) on the semi-circles ym. With this in mind we proceed as follows.

If v is not an even integer let ym be divided into the arcs

7mi: - 5 = 0 Û 0,

ym2:     0 ^ 0 ^ ijir,

ym3:   ijir ^ 0 = x — 5.

Consider first any portion of ym2, say ym2: 0^d^d'<t)ir. On this arc

R(ip') >0 and hence we have

Q(ß, - a) ~ - ¿^110203,p)0i(a,p') |"l - '"^'"H.
L       cii02O3,p)J

Substituting from (4) in the bracket on the right we obtain for it the ex-

pression

(50) [1_^(1+^))])

and this is clearly asymptotic to 1 except in the neighborhood of 0 = 0. But

it is known* that if \p—pm |>x, where pm is any root of the equation ob-

tained by equating the expression (50) to zero, then the expression (50)

itself is uniformly bounded from zero. Similarly if we consider 7m2:O<0'

^d^tjir, then on this arc R(ip) <0 and we have

[Ci202(a;, p') 1
1 +     „ ,T   •

Cn0i(a,p')J

The bracket in this expression is clearly asymptotic to 1 except in the

neighborhood of 6 = r]ir where it is uniformly bounded from zero since

\p — Pm | >X-  In the same way we find that Q(ß, —a) is uniformly bounded

from zero on the arcs ymX and ym3, while

Í       ¿1+'C2i0iO3,p)0i(a,p') for - 5 = 0 = 0" < 0,
Q(B, — a) ~ <

( - i1+'ci202(p»02(a,p') for ijir < 0' = 0 ^ x - 5.

If v is an even integer, we have from (28)

Í2(j3, - a) = - ici202(/3)02(a)   1 H-——-—— - -t-t-tt: \,
L       ci202(a)     eiMß)     02(a)62(ß)J

and the preceding argument may be applied to show that the bracket on

* Tamarkin, Rendiconti del Circolo Matemático di Palermo, vol. 34 (1912). Cf. also Wilder, loc.

cit., p. 422.
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the right is asymptotic to 1 for 0<8' ¿8^ir — 5. An analogous formula is

found for Q(ß, —a) when — 8¿8¿6" <0, while the quantity is uniformly

bounded from zero on the semi-circles ym. It is clear from this that the

subsequent discussion of the case v an even integer may be included in the

preceding general case by permitting 17 to take the value zero.

Substituting the asymptotic forms in the numerators of formulas (49)

we find that when O^ac^/3, G(x, t, p) is bounded uniformly for p on the arcs

7m, and that the asymptotic forms of G(x, t, p) may be obtained when

0 g x < ß and —a<t<ß, from the following expressions :

when -8^8g,8'<0,

(51) G(x,t,P) ~ ■

when 0<8'^8¿8"<7}ir,

(51a) G(x,t,p) ~

iOt(x)[ctMt) - cn8t(t)]

2kpc2i

J82(t)[c2i8i(x) - Cn82(x)]

2kpc2i

J8i(x)[c2i8i(t) -cn82(t)]

2kpcn

i8i(t)[c2i8i(x) - Cu82(x)]

2kpcu

and when t]ir<8'¿d^ir — 8,

Í i0i(ac) [c228i(t) - ci202(<)]

(51b) G(x,t,P)
2kpci2

i8i(t)[c228i(x) - ci282(x)]

2kpci2

for t < x,

for t > x ;

for * < x,

for / > x ;

for t < x,

for t > x.

8. A lemma. For the discussion of integrals involving G(x, I, p) we shall

find the following lemma of use. We designate by 7(1,2) the portion of the

semicircle ym for which 8'^8^8" and set p = rei$.

Lemma. // \p(t) and $(t, p) are any integrable functions such that for

a^t^b,

(i)     $(t) is real and t(t)^y>0;   (ii)     |$(/, p) | <M for 8'^8^8", r>N,

then the integral

I(t) =  f    ple±i^t^(t,p)dp,

the ambiguous sign being chosen + when p is in the upper half plane, and —

when p is in the lower half plane, satisfies the relation \l(t) \ ¿Mi rl.
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Suppose for the moment that 7(1,2) is an arc of the quadrant O^0^ir/2.

Then we have sin 0^0/2 and hence

I  g»P*(<) |     =  g-r^(()8in«  <g   g-r^(()8/2

and

J'*"                        2Mrl
e-Wi*rdB <-

If 7(1-2) is an arc of the quadrant 7r/2g0^7r we have sin 6^(tt — 0)/2 and

the result follows in the same way, as it obviously does also if — ir/2 = 0^0.

9. The function <pm(x,t) when x^O.   With the use of the formulas above

we shall show first that when x is considered as a parameter, x > 0,

(53) | t^<j>m(x,t) | < M

for — a^t^x — f, or x+Ç^t^ß, where f is an arbitrary constant subject

tor>0,0 = x-f,z+f:gj3.
Since G(x, t, p) as a function of x or as a function of / satisfies the boundary

conditions (16) we see from (48) that

<pm(- a,t) m <pm(ß,t)

= <pm(x, — at) = (pm(x,ß) = 0.

We may restrict the further discussion therefore to the case x<ß, —a<t<ß.

Furthermore we may choose as the contours y in (48) precisely the semi-

circles ym of §7. Consider first the case in which — ct<t^x — f. Then since

by (4) and (9)

t''*[c2i0i(t) - cu02(t)] = e^-f^itiM.p)    when p is on yml,

and

/'/4[c2.,_i0i(/) -ci,j-Mt)]= e-i'^-^'lBj(x,t,p)   when p is on ymj,  j = 2,3,

we obtain by substituting (51), (51a) and (51b) in (48)

t"*<pm(x,t) = —j— f  e-<>i*k-i*-!WBi(x,t,p)dp
2tLc2i J7ml

+  ¿ — —  f  e^k-^-^Bj(x,t,p)dp\
J-2    Cl,,_l Jymj J

From this it follows by the lemma of §8 that (53) holds for — a<t¿x — f.

A similar procedure establishes (53) when x+C^t<ß.
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Consider now the integral

(54) Im(x,h,t2) =   I    t'Vm(x,t)dt,    forO < ac < ß.
J (,

We shall show that

.    . i . i      M uniformly for  - a á 'i á <s á i - f,
(55) \Ux,h,t2)   <-, L„'      , ^fl

rm ora;+f = /1 = <2gß;

(56) Im(x, — a,x) = § + e(x,m) ;

(57) /»(*,*,j8) - i + «(*,«) ;

(58) | Im(x,ti,t2) | < M uniformly îor - a ^ h ^ t2~£ ß,

where e(a;, w) is used as a generic symbol for a function which approaches

zero as m—»°o.

The function G(ac, i, p) as a function of í satisfies the equation (1).   Hence

on substituting from (48) in (54) we may write the result

1   {•**    r dp
Im(x,ti,t2)   =-; I      Glt(x,t,p)—dt.

Interchanging the order of integration and integrating we obtain from this

(59) Im(x,h,h) = -— f    {Gt(x,t2,p) -Gt(x,ti,p)}—,
iriJy„ p

provided — a ^ h g t2 g x,    or x ^ t\ ^ t2 g /S.

Now from formulas (8) and (13) we find that for — a^t^x— f

1 r
— [ch«i (0 - cu«i (0] = e*»(,^)*JBi(*,/,p), forp on-yml,
P

and

— [c2li_i«i'(0 - ci.^i«a(0] = r+t-t^BiixJ,?), ioiponymi,j = 2,3,
P

and hence from (51) and the lemma of §8

f Gt(x,t,p)- =   f  e-^-c^l/i^^p)-
(60)      Jy" P      Jymi P

+ t    f^^^l^.^.fifl^.
j-2   •/?„,• P rm

Similar considerations lead to the same result when x+C^t^ß.   This es-

tablishes the relation (55).   If we set f =0 in (60) the exponential factor
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reduces to unity. Obviously, however, the integrals are still bounded as

m—>°o. It follows that (58) is valid for t^x, and a similar discussion estab-

lishes it for tîzx. To deduce (56) we observe that on substituting t = x in

the first of formulas (51), (51a), and (51b) and using the asymptotic forms

(4) we obtain

Jdp        c   T      1      B(x,p)~\dp tí
Gt(x,x-,p)-= \--Z + -±±1 \-= -- + e(x,m).

ym p       JynL      2 p     A p 2

Substituting this and the relation (60) for i= — a into (59) we obtain the

result (56)

Since the Green's function has the property that

(62) Gt(x,x +,p) -Gt(x,x- ,p) as 1,

we obtain directly from (61)

dp      iri
Gt(x,x+,p)— =-1- t(x,m).

■ym P        2

This together with (60) for í=0 yields (57).
10. Convergence of the expansion at x¿¿0. We prove the following

theorem:

Theorem 5. // f(x) is any function which is integrable in the sense of

Lebesgue over the interval —ct^x^ß, and if x is any inner point of this interval

other than x = 0, and if further the function f(t) is of bounded variation in any

neighborhood of the point t = x, then the expansion associated with f(x) converges

h[f(x+)+f(x-)].

At the end points x = —a or x=ß the expansion converges to zero*

From (56) and (57) the expression £[f(x+) +f(x — )] may be written in

the  form

(63) lim [f(x+)Im(x,x,ß) +f(x -)Im(x,-ct,x)].
m—►»

On the other hand the sum of the first m terms of the expansion associated

with f(x) is by (47)

ff(t)<t>m(x,t)dt.I
It remains to be shown that under the existing hypotheses the difference

of these expressions converges to zero.  This will follow if

* The-convergence at x=0 is covered by a later theorem.
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(64) \im Di(x,m) =0, i - 1,2,

where

(65)

Di(x,m) =    f t'[f(t) - f(x-)]ym(x,t)dt,
J —a

D2(x,m) =  J    t'[f(t) -f(x+)]Vm(x,t)dt.

Consider the first of these expressions (65). By hypothesis there exists

an interval (x — f, x) in which/(i) is of bounded variation. Hence we may

write in this interval
f(t)-f(x-) =xi(i)-X2«,

where x»(0> j = ^> 2, are bounded, positive and decreasing functions and

Xi(x — ) = 0. Hence if e is arbitrary, e > 0, there exists a positive constant

fi<f such that

(66) 0á Xi® <« for x-ttZtg x, j » 1,2.

We have now

(67) Di(x,m) = j    \'[f(t) - f(x -)]Vm(x,t)dt

2 r. X

- E(-  1)''   I t'Xi(t)ym(x,t)dt.
/-i J i-ri

By virtue of (53), (55) and Lebesgue's* lemma the first of these integrals

converges to zero as m—>°o. By the second law of the mean, however, the

remaining integrals in (67) can be written in the form

Xi(x — Ti)  I        t'<pm(x,t)dt, where x — fi < tj < x, j = 1,2,
J x-ti

and by (58) and (66) this is less than Me. Hence for m sufficiently large

| Di(x,m) | < 3Me

and the first of relations (64) is established. The discussion of the expression

D2(x, m) is precisely similar and hence we may consider the theorem es-

tablished.

11. The function <j>m(x, t) when ac = 0. The discussion above was based

on the assumption x ̂  0. We consider now the excepted case. The function

ym(x, t) is readily found to be unbounded as a function of m when ac=0.

However, we shall show that when x = 0 the integral (54) satisfies the rela-

tions

Lebesgue, Annales de la Faculté des Sciences de Toulouse, (3), vol. 1 (1909), p. 52.
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M uniformly for   -aldld^-J'
(68)     | I„(0,ti,t2) | <

fml/2+l/(2Jfc)

or       t£h£h£ßi

1 1 / rl'ir rlir\
(69) 7m(0, — a,0) =-\- ia + e(m), where a = — ( n tan-n' tan — I ;

2 2 \ 2k 2kJ

(70) /„(0,0,/3) « —- Är + e(m);

(71) | 7m(0,ii,/2) | < M     uniformly for - a ^ h ^ /2 á /3.

We observe that when ? is an integer, a = 0.

The formula (59) is valid for a; = 0.    Hence we consider the integral (60)

for x=0. We have from (51), (51a) and (51b) for -a^t<0

Jdp     — ¿» r 1   r
Gt(0,t,p)-— - I

r_                         p ¿R    \Sll Jy

(72)

u2(0)ui (r,p') dp

y (- i)'' r  «i(q)«I-,(t,p) ¿p-|
J-2       Cl,j-l     Jymj P pj

where t = te~*\    If / g — f we may substitute the asymptotic forms of

«/ (r, p')- This gives to the right hand member the form

.     Bi(r,p) r      .     B2(r,p) r    .     B3(r,P)
t.-ip'r"- An 4.     |        e'p'r*-¿p

Jymi pl/2+l/(2*) J7mi pl/2+l/(2« J7»«.T.HTO „1/2+1/(2*)
7»i P ''ï.l P

to which we may apply the lemma of §8. From this together with the discus-

sion for f gíá/3, formula (68) follows. On the other hand if -f á*á0,

we may turn to formula (12) for the form of uf (r, p'). The right hand member

of (72) is in this case of the form

¿     f    Bj(r,p)-,
Í-1     JymJ P

and relation (71) follows.

For the determination of (69) we consider the integral (72) for / = 0—.

Substituting the values given by (15) in (69) and (70) and employing (14)

we obtain

f  G,(0,0 - ,p)- = ——*--{[- 4- ie-«/(2*)] f    ^
J1m P „     .       T   <-LC21 -iJ-lml    P

2 sin —
2k

+ [~£ü_ ^„»,1 r ±+ffîî_fe.<,(»)] r fei
Leu J J7m, p     Lc2i J J7„, p ;
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But

J*    dp f    dp r    dp
— = ôi, I      — = rjiri, and   I      — = (77V — 8)i,

Tmi P Jymi P Jymi P

while from (10)
Cll / IT 7J1T 7T \
— = — i\ cos-h tan-sin — ),
cM \     2k 2k       2k)

/        1T tjV 7r\
I cos-h tan-sin — ],
\     2k 2k        2k)

(x                 jjtt ir\
cos-tan-sin — ).

2k              2k        2k)

C21

Cll

Ci2

C2i

With these values we obtain

Jàp I 1 i / r)'it w*\t
«0,0 -.p)- = - ~{j + -(, f - - ,' tan-)},

and this leads directly to (69).   The formula (70) follows from (69) because

of (62) as in §9.

12. The expansion at a;=0. We prove the following theorem:

Theorem 6. If f(x) is any function which is of bounded variation on the

interval —a^x^ß then the expansion associated with f(x) converges when

x = 0 to

(73) [h - iff]f(0 +) + '[i + iff]f(0 -),

where a depends on v as given in (69), and vanishes when v is an integer.

Proceeding as in §9, we write (73) in the form (63) with a; = 0, and

construct the quantities Z>,-(0, m) given by (65). We must show that (64)

follows when ac = 0. Consider A(0, m). Since/(/) —/(0 — ) is of bounded varia-

tion we may write it in the form

Xi(0 -Xi('),

where x¡(t) are positive and decreasing, and

(74) | x,(0 \<M.

Moreover since X/(0—)=0> we mav choose e arbitrarily and determine f

so that

(75) | Xi(t) | < «,   when - f = t = 0.

Then
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Di(0,m) = - ¿(- IV f    t'xÀt)<pm(0,t)dt - ¿(- l)í f t>xAt)Vm(0,t)dt.
j-l J-a j-1 «/-r

Applying the second law of the mean to each of these integrals, we obtain

the relation

Di(0,m) = -  ¿(- 1)'xí(- a) f ' fVm(0,t)dt
,'—1 J-a

-  E(- l)'Xf(- f)  f ' t"<pm(0,t)dt,

where -a<r,<-f, -f</,<0.   By (74), (68), (75), and (71), however,
this yields

M
| Di(0,m) I ^-h 2ilfe < 3Mi for m ^ Wi.

m

This establishes the fact that

limD,(0,i») = 0,
«-♦00

for j = \, and a similar argument establishes it for y=2.   Hence Theorem

6 is proved.

13. The case a = 0.    We consider now briefly the case in which ac = 0

is an end point of the interval.   The boundary conditions are then

w(/3) = 0,    «(0) = 0,

and the characteristic equation is

(76) 005,0) = 0.

From (4) and (15) the equation (76) is of the form

(77) pi/H-1/fi« [0l(ß) + ie*«(Md2(ß)] = 0.

The observation of §6 that p = 0 is not a characteristic value is valid for the

case in hand, and since the remaining factor in (77) is precisely the first

factor of (31) the characteristic values pm (or Xm) are given, regardless of the

character of v by precisely the formula (32) (or (33)) with y = 1.  It follows

that the characteristic functions also are given for any value of v by the

formulas for Ui,m(x) in (43), (44), and (45).

Since ac = 0 is now an end point of the interval the expansion converges

at this point to zero. For 0<a;^jS the discussion is precisely that of §§6, 7, 9

and 10 with a replaced by 0, and the expansion theorem is accordingly the

theorem as stated in §10.

University of Wisconsin,

Madison, Wis.


