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BY

RUDOLPH E. LANGER

Chapter 1. Introduction

This paper is concerned with the theory of the integral equation whose

salient characteristic is that its kernel K(x, £) is discontinuous along the

line £=x. It is closely related with the theory of the integral equation char-

acterized by discontinuities in the partial derivatives of the kernel for

£=x, of which more specific mention is made below.

The point of departure for the consideration involved is in each case

furnished by the familiar fact of the equivalence of a differential system

composed of an equation

dnu

po--r- • • • + PnU = Xw,
dx"

and homogeneous boundary conditions, with the integral equation

u(x) = X f G(x,Qu(Qdi,
Ja

in which the kernel is the Green's function of the reduced differential system.

The existing theory of differential boundary problems guarantees the exist-

ence of characteristic values of X and corresponding functions u(x) for the

differential system in a broad class of cases. The same is true, therefore, for

the equivalent integral equation, and viewed from the standpoint of the

theory of integral equations these facts must be attributable to the peculi-

arities of the Green's function which serves as a kernel.

Fixing the attention for the moment on the case in which the differential

system is of the second order and self-adjoint, the properties of the kernel

which are of particular interest in this connection are (1), its symmetry in

its arguments, and (2), the finite non-vanishing discontinuities in its first

partial derivatives for £ = x. The extent to which symmetry of the kernel

serves as a basis for a theory of integral equations is shown by the theory

of Hubert and Schmidt.   The question of the extent to which the second

* Presented to the Society, January 1, 1926; received by the editors January 21 and March

26, 1926.
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property mentioned serves as such a basis has remained open. It appears

to have been touched upon first by Birkhoff in 1906 in an unpublished dis-

cussion of the equation with kernel both symmetric and discontinuous.*

The development of a theory based only on the discontinuity of the first

partial derivatives of the kernel was taken up by Mrs. Eleanor P. Brownf

in a thesis prepared under the direction of Birkhoff and presented at Rad-

cliffe College in 1921. This theory wiU be presented shortly in a joint paper

by Mrs. Brown and the author.

If the differential system under consideration is of the first order the

discontinuity along the line £=x occurs in the Green's function itself. It is

this property which is taken as the distinguishing feature of the kernel of the

integral equation to which the present paper is devoted. While the analytic

details which are of interest differ in many respects, the methods used here

are in the main parallel to those of the paper referred to above which is to

embody Mrs. Brown's thesis. They are similar also in many respects to the

methods employed by Birkhoff and the author in a treatment of differential

boundary problems.t

The content of the paper may be roughly summarized as foUows. In

Chapter 2 the hypotheses on the kernel of the given equation are enunciated

and a change of variables is deduced which serves to normalize the discon-

tinuities in the kernel and its first partial derivatives. In Chapter 3 the

integral equation is transformed into a system composed of an integro-

differential equation and a boundary condition, and in Chapter 4 the equiva-

lence of this system with the given equation is estabUshed. Chapters 5, 6,

and 7 are concerned with the integro-differential equation alone (without

the boundary condition), and it is shown that the equation is possessed of a

solution for all values of the parameter which are sufficiently large. The

asymptotic form of this solution in any right-hand or left-hand half-plane is

there deduced.

In Chapter 8 the boundary condition is introduced and by means of it

the existence, under certain restrictions, of infinitely many characteristic

values for the parameter is proved and the asymptotic form of these values

is obtained. In Chapters 9, 10, and 11, the normalized asymptotic forms of

the characteristic functions for the given integral equation and its associated

* Bulletin of the American Mathematical Society, vol. 13 (1906), p. 62.

t Formerly Miss Eleanor Pairman.

X G. D. Birkhoff and R. E. Langer, Boundary problems and developments associated with a

system of ordinary linear differential equations of the first order, Proceedings of theAmerican

Academy of Arts and Sciences, vol. 58, pp. 51-128; April, 1923
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equation are developed, and it is proved that when the given equation has

only simple characteristic values the set of characteristic functions is closed.

Lastly in Chapter 12 the expansion of an arbitrary function in a series of the

solutions is considered. It is shown that for the expansion of any function

f(x) which is integrable in the sense of Lebesgue the solutions of the integral

equation have essentially the same properties as the solutions of a related

system composed of a differential equation of the first order and a homo-

geneous boundary condition. At the end points of the interval, and only

there, do the two expansions behave in dissimilar fashion. The related

differential system in question here is a special case of a system previously

studied by the author.*

In the appendix a simple example of an integral equation to which the

developed theory applies is given, and by computed results various features

of the theory are illustrated.

Chapter 2. The normalization of the equation

1. The given equation. We consider given the equation

(1) y(t) = Pj T(t,T)y(r)dT,

in which p is a complex parameter. The kernel is real and satisfies the

following conditions:

(i) that it is possessed of partial derivatives to those of order »^1 in-

clusive, these partial derivatives being continuous in the open regions

l'{ and     R"{
Ka^t^ß U g t á ß,

and approaching in each of these regions a finite limiting value at every point

of the boundary r=t;

(ii) that

r(*,r)T      = 9(t) * 0.
Jr-i-

2. The derivatives of <p(t).     The differentiability of the function <p(t)

defined in (ii) may be derived from the facts which we formulate as follows.

* Developments associated with a boundary problem, these Transactions, vol. 25 (1923), pp.

155-172.
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Lemma. IfF(t, t) is any function possessed of the properties (i) above, then

dF(t,t + )
(a) ' =Ft(t,t + )+Fr(t,t + ),

at

dF(t,t - )
(b) ' =Ft(t,t-)+FT(t,t-).

at

Let t2>ti be any two points of the interval (a, ß).  Then

F(t2,t2 + ) -F(ti,ti + )      1 . .
-—-- = -{F(t2,t2 + )-F(ti,t2)+F(ti,t2)-F(h,ti+)},

t2 — h At

where At = t2 — ti. By the law of the mean the right hand member of this equals

F,(t2 - 0iAt,t2) + FT(h,t2 - e2Af), 0 < 0i < 1.

Since this approaches the right hand member of (a) as a limit when either

ti or tt is taken at t and At—>0 the proof of statement (a) is complete.

The proof of (b) is precisely similar.

Since the kernel T(t, t) and its partial derivatives to those of order

(n—1) are of the type of F(t, t) of the lemma, we may differentiate the right

hand member of the relation

v(t) = T(t,t + ) -T(t,t-)

n times. This, together with the continuity of the resulting terms on the

right, establishes the existence and continuity of dn<p(t)/dtn on the interval

(«, ß).

3. The change of variables. By hypothesis the function <p(t) maintains

its sign on (a, ß). With a proper distribution of the constant factors between

p and T it will follow that <p(t)>0. We assume such a distribution. Then

the continuous functions

(2) =   f <p(t)dt, k =   f <p(T)dT
Ja Ja

are monotonie increasing and may be used as new independent variables.

Introducing them in equation (1) and denoting by f(x, £) the function into

which/(/, t) is transformed by the inverse of (2), we obtain the form

(3) jW=xííi(I,^(Oá{,
Ja

in which
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(4) X=-p,    a = 0,    b=jV(T)dr,

<p(Ö

It is readily verified that in the regions

(a < £ < x (x < £ = b
Rx<     " and R2<

(a ^ x g 6 lo g x g 6,

and on the boundary l-=x, $l(x, £) is possessed of properties analogous to

those under (i) above. Moreover

8(*,{) ■ - 1.

Defining if/(x) now by the relation

=    *(*),

and introducing in (3) as a new dependent variable the function

u(x) = y(x)eJ*        ,

we obtain as the final form of the equation

(5) u(x) = \j K(x,Qu(Qdi,

where

K(x,i) = ß(*,Öe»>*.

This kernel K(x, £) and its partial derivatives are undefined on the line

£=x. We shall complete their definitions by designating them to have in the

points of this line their limiting values as these points are approached in the

region Rx.

4. The normalized equation. The equation (5) will be said to repre-

sent the normal form because of the following characteristics which its kernel

is found to possess.

(A) The function K(x, £) is possessed of partial derivatives to those of

order n — i inclusive, which are continuous in the region Rt and in the

closed region

(a < £ < x

R{\    Z    ~la g * g b ;
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-|f-*+

Jl-x
(B) K(x

(C) K,(x,Q~\      b 0.
J{-x

It may be observed that the differentiation of (B) and the appUcation of

(C) yield the further relation

(D) *t(M)T "- 0.

Theorem 1. Every integral equation of the type (1) with a kernel possessed

of the properties (i) and (ii) above may, by a suitable change of variables, be trans-

formed into an equation of the same type with a kernel possessed of the properties

(A), (B), (C) and (D).

Chapter 3.   Transformation of the integral equation into

an integro-differential system

5. The auxiUary differential system.  We consider in connection with the

normalized equation the differential system

y'(x) = 0,(6) n;        '

fiy(a) + vy(b) = 0.

The constants p and v are parameters, the choice of which is arbitrary,

subject to restrictions to be imposed at certain points in the subsequent

theory. In each case, however, only discrete values of the ratio n/v wiU be

excluded.

To begin, let p and v be chosen so that

(7) n/v*   -1.

Then system (6) is incompatible and possesses a Green's function G(x, £).

This function and its derivatives are undefined on the Une !-=x where

G(x, £) is discontinuous. We shall complete their definitions in the region R,

composed of R2 and R'¡, by designating them to have in the points of the

line i-=x their limiting values as these points are approached in the region

Ri.  We may then enumerate their characteristics as follows.

I. The functions G(x, £), Gx(x, £), and G((x, £) are continuous in Rt and RÍ ;
-1Í-H-

II. G(x,Q m - 1 ;

III. Gz(x,O^Gi(x,Û^0

IV. nG(o,Q + vG(b,t)m0

V. vG(x,a) + ßG(x,b)= 0
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VI. the solution of the system

<o'(x)=f(x),

ftu(a) + vu(b) = 0
is given by

«(*) = j G(x,t)f(t)dt ;

VII. G(x,Q = -ff«,*),

where H(x, £) is the Green's function of the system adjoint to (6).

6. The construction of K (x, £). It will be observed that G(x, £) and the

kernel K(x, £) of the normalized equation (5), and their respective first

partial derivatives, have the same discontinuities in the region R. We shall

construct with the use of K(x, £) another function K(x, £) which maintains

these characteristics, and in addition shares with G(x, £) its properties IV

andV.

We assume now that for the given equation

(iii) n ^ 2,

and that in the normalized form

(w) | K(a,b) | + \K(a,a + ) + K(b,b) \ + \ K(b,a) \ * 0.

Then p and v may be so chosen, subject to previous restriction, that

(8) A - n*K(a,b) + nV[K(a,a + ) + K(b,b)] + v*K(b,a) * 0.

We assume such a choice, and set

vK(x,a)+nK(x,b) = W(x),

»K(a,Z) + vK(b,Ç) = V(Ç).

Clearly these functions W(x) and F(£) are possessed of continuous deriva-

tives to those of order » on the interval (a, b). The function K(x, £), defined

by the formula

K(x,0   W(x)\

F(£) A  I '
(10) K(x,£) = -

A

is, therefore, found to possess the properties (A) to (D) of the kernel K(x, £).

From the relations

nW(a) + vW(b) = A,

vV(a) + nV(b) = A,
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it follows further that

nK(a,l) + vK(b,t) = 0,

vK(x,a) +nK(x,b)=0.

7. The relation between K(x, £) and G(x, £). If x is regarded for the

moment as a parameter, the function

«(»,0 =K(x¿) -G(x,Q

is continuous together with its first derivative in £. Since by III, V, and (12)

it is also a solution of the differential system

da(x,i)
-^-- = K((x,0,

v<a(x,a) + [xoo(x,b) = 0,

it is uniquely determined as such, and is by VI expressible in terms of the

Green's function H(x, £). Introducing G(x, £) by virtue of VII, we may

write  therefore

(13) K(x,Q -G(x¿) = -  { Kt(x,t)G(t,£)dt.
\j a

This relation, if £ is now looked upon as the parameter, is in form an integral

equation for G(x, ¿) as a function of x.

8. The solvability of the relation between K(x£) and G(x, £). A sufficient

condition for the solvability of equation (13) for G(x, £) is that the Fredholm

determinant D for the kernel Kj(x, £) shall differ from zero. This kernel,

and hence also D, depends upon the parameters p and v. We shall show that

under the assumption, which we now make, that the given equation

is such that

(v) D j£ 0 in n and v,

it is always possible to choose these parameters subject to previous restric-

tions, so that D?¿0.

We set
K((x,Q = E(x,Q ,

K((x,S) = E(x,k)

and denote respectively by D and D(x, £) the Fredholm determinant and

first minor of the kernel E(x, £), and by O and 0(x, £) the corresponding

expressions for the kernel £(x, £). We have*
00 00

D =  1 +   JZ an   ,        D(íl,a)  = £({!,{!) +   zZ ¿.tti.fc),

Bôcher, An Introduction to Integral Equations, Cambridge University Press, 1909, p. 32.
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where, if we omit writing the arguments and indicate them only by their

subscripts,  thus: £(£<,£,•)=£„-,  then

n !    Ja Ja

Ex 1 • '"In!

dn(Íl

n     ¡.h

ni       Ja Ja

Eni • ■ ■ En

EX2 EXt   ■ ■

Ett Ett   • ■

-■n+t.t

¿£i • • • d&.,

El, n+í

^3 ,n+2

En+t.n+î

dit • ■ -d£„+j.

We shall omit writing down the analogous formulas for D and D(£i, £j),

since they may be obtained by replacing in those above dn, ¿n(£i, £2) and

E respectively by d„, d»(£i, £2) and £.

Consider the term d„.  By (10) we have

where

E(x,Q = 6(*,0+ *(*)*«),

W(x)V(l)

Substituting this form and expanding the resulting determinant into a

sum of determinants with monomial elements we obtain

,      (-D- r        r'

» ! Jo Ja

£i,

d£i-   •     d£.

■ /.on+izip.r...r±
»!       Jo Jo     Í-1

£nl - "   £n»

£ll     -   '   * £l,<-l  <P$l>i Êl,»+1 • e„

£nl    '   -   - £n,<-l  *>n^i ßn.ifl   -   *   '   6n«

dtl ■ •   d£.
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Of the terms on the right the first is simply dn. The remaining sum we shall

reduce by the following manipulation. In the determinant of the ¿th term

of the sum, let the ith row and column be shifted into first places, and let

the arguments be renamed as follows :

£* to become ¿j*+i, for k = l, 2, ■ ■ ■ , (i — 1);

£¡ to become £1 ;

the others to remain unchanged.   Since these arguments are all variables of

integration this change in their designation amounts merely to a change in

the order of integration, and this is immaterial. The terms of the sum have

thus been made identical, and hence the entire expression reduces to

(-1)"

n ! ; ' J>

¡Pl     £12 •

•pi    ■

e>,

dh dín.

\<Pn     £n2  '     '     "    £„Bi

This we expand by the elements of the first column to obtain

| £22   ■     •     •    Ê2n|

«-1)!J„ J„(
fcn2   ' "    C-„n

£l2

+

(»-!)! Ja Ja i-i

á{i • ■  dU

£m

£j'-l,2

£j'+l,2

£n2

dfi • • -di.

Observing that the first term of this is

/.
- (  ¥>(!OiKii)d-id{i,

we proceed to a further reduction of the remaining sum. Let the (j — l)th

column in the respective term (i.e., that in which y is the second subscript)

be shifted into first place and let the arguments again be renamed so that

£* becomes £*+i, for k = 1,2, • • •,(/—1),

£, becomes £1,
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and the others remain unchanged.   This again makes the terms of the sum

identical, and the expression takes the form

(-1)—»

(i»-l)

This is precisely

_ 1 \ H— I      *% O •* 0

-(   • • •   I   (n - Dipi

C'21   fc-2 £2n

e.i en

d£. • • • d£n.

no p(fi)*(£í)d-i(£í,{i)d|i«i.

Collecting our results, then, and summing the d» to obtain D, we find that

By use of Fredholm's relation

e(x,sí)0 + f e(*,íOO(í«,«i)«t- o(*,íi),

and the formula

K'ftO =M£(a,£i) + i-e(ft,£,),

which follows from (9), the final form

D = <D - - f H'r(£i)|"iX«,£i) + »©(MOW

is obtained. We observe now that in this relation £> and D(x, £) are free

from the parameters n and v, since they depend only on £(x, £). It follows

that D is rational in n and p. The condition D^O in ¡i, v is found directly

to take the explicit form

(va)

where

e(a,b)\ + \0(a,a + ) + 6(b,b) \ +\o(b,a)\ * 0,

9(x,y) = K(x,y)D - J £>(*,£) tf(f,y)d£,

andD and©(*, £) are the Fredholm determinant and first minor of the kernel

K~t(x, £). Except in the case that this inequality fails, the parameters ¡i and

v can be chosen so that D^O.
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The method of manipulation used on D can be employed equally well in

the analysis of Z?(£i, £2). It may be shown in this way that 2?(£i, £2) is also

rational in p and v.

With p and v chosen so that D?¿0, the existence of the kernel F(x, £)

reciprocal to E(x, £) is assured. Writing the relation (13) then in "solved"

form we have

(14) G(x,Q = K(x,& -  f F(x,t)K(t,l)dt.
Ja

9. Characteristics of F(x, £). Since the kernel E(x, £) is continuous in

R, it follows that F(x, £) is likewise continuous in R. The behavior of the

partial derivatives of F(x, £) may be determined as follows. Differentiating

Fredholm's identity

(15) EK    |) + F(*,0 - f E(x,t)F(t,W m f F(x,t)E(t,t-)dt,
Ja Ja

we obtain

E,(x,Q +F,(x,S) ^ jEz(x,t)F(t,k)dt,

Ei(x,S)+F((x,iU ^ j F(x,t)Ei(t,í)dt.

Since the right hand members of these relations are obviously continuous

it follows that Fx(x, £) and F((x, £) are continuous in 2?2 and R[, and hence

that

(16)

Fx(x,£)        = - Ez(x,Ç)
J{-z J£-i

]{-!+ -\l-X+

m - Et(x,i;)
{-i Jf-i

In similar manner the higher partial derivatives may be considered. It will

be found that F(x, £), like E(x, £), is possessed in 2?2 and 2?, of continuous

partial derivatives to those of order (« — 1).

From the formula

it is seen further that F(x, £) is rational in the parameters p and v.   From

Fredholm's identity above and the relation

(17a) p2£(fl,{) + ,2£(i,Ö=0,
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obtained by differentiation from (12), we draw lastly that

(17b) MF(a,£)+vF(a,£)sO.

10. The transformation of the integral equation. Let u(x) represent,

now, any solution of the normalized equation (5). Multiplying (14) by

Xw(£) and integrating with respect to £, we obtain

(18)   X f G(*,£)«(£)d£ = X f K(x,0u(Qdi -  f F(x,t)\ f K(t,Qu(Qdt ■ dt.

In this the integral which occurs in both terms on the right may be evaluated

by multiplying (10) by Xw(£), integrating, and utilizing (5). With the result

so obtained and with the abbreviation

(19) L(u) = pu(a) + vu(b),

the equation (18) reduces to the form

Jg(x,Qu((20) X     G(x,£)M(£)d£ = u(x) - L(u)
W(x)

- J*F(*,o|«(0 -L(u)~~^dt.

We shall abbreviate this result by setting

(21) $(x) = - \W(x) -  f F(x,t)W(t)dt 1.

The function <$(#) so defined is continuous and has a continuous (» — l)th

derivative on (a, b).  For subsequent use we observe that

(22) p$(a) +v$(b) = 1.

Introducing $(x) into (20) we may write that relation

(23) u(x) - X f G(x,Öv(Ödt = L(u)$(x) + f F(x,t)u(t)dt.

By differentiation this yields finally the equation

u'(x) - \u(x) = L(u)*(x) + j f(x,t)u(t)dt,

where we have set

<p(x) = *'(x),

/(*,&-F¿*,&.
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Lastly adjoining to the equation thus derived a second equation—

obviously satisfied by every solution of (5)-—we may formulate the result

as fellows.

Theorem 2. If the kernel of the normalized integral equation (5) satisfies

the conditions (iii),(iv),(v), above, then every solution of the equation is also

a solution of the related integro-differential system

(a)

(25)

u'(x) - \u(x) = L(u)<p(x) +  I   f(x,t)u(t)dt,

(b) L(u) = X  f V(t)u(t)dt.

The functions V(l) and L(u) involved here are given respectively by (9)

and (19) above. We remark that the function ip(x) is continuous together

with its derivatives to that of order (n — 2) on (a, b), while f(x, £) is con-

tinuous with its partial derivatives to those of order (n — 2) in R2 and R[.

11. The associated integral equation. Deductions analogous to those

above may also be made for the integral equation

v(x) =xf K(t,x)v(l;)dS,f m,x)
Ja

associated with equation (5).    To accomplish this most easily  we shall

set — K(£, x) = K(x, £) and write the equation in the form

(5) v(x) = -xf J?(*,íMO¿{,

which is readily found to be its normal form. The deductions already made

become applicable to equation (5), then, if X is replaced by —X and if the

functions involved are taken to spring from the kernel K(x, £) rather than

from K(x, £). When this is the case we shall indicate it by superscribing the

various functional symbols with a bar.

The relation between the two developments is more easily followed

if in passing from the treatment of the given equation to that of the associ-

ated equation the parameters p and v are interchanged. We shall suppose

this done.  Since A = — A, then, the condition A^O has already been met.

It is, however, necessary to impose upon the kernel of the given equation

the condition that

(v) D ^ 0 in v and n.
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The explicit form of this condition as it is obtained from (va) is that

(vl) | 6(a,b) | + | 0(a +, a) + 8(b,b) \ + \d(b,a) \ * 0,

where

6(x,y) = K(x,y)Ô-  f 0(y¿)K(x,m,
Ja

and O and <D(x, £) are the Fredholm determinant and first minor of the

kernel — #{(£, x).

When condition (v) is satisfied, every solution of the equation (5) is

found to be a solution of the system

_   (a) v'(x) + \v(x) = L(vhp(x) +   f f(x,t)v(t)dt,
(25) Jo

(b) L(v) = - X f V(t)v(t)dt.

In this

L(v) = vv(a) + pv(b),

and to obtain the values oîf(x, £) and <p(x) in terms of familiar symbols we

may proceed as follows.

By direct substitution it is found that

W(x)=--V(x), F(£)=-W(£),

K(*,£) =--.*(£,*),        £(*,{)= -Kte,x).

Substituting this value of E(x, £) in Fredholm's identity

£(*,£) +F(x,ii) = J Ê(x,t)F(t,Ç)dt

and differentiating with respect to x we obtain

- Kix(t,x) +/(*,£)=- -  f Ktx(t,x)F(t,0dt.
Ja

In this we may replace iC{ï(£, x) by its equivalent £$(£, x).   Then further

integrating the right hand member of the equation by parts we find that

- E((S,x) +J(x,0 = - E(b,x)F(b,£) + E(a,x)F(a,k) + j E(t,x)f(t,i-)dt.
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Because of (17a) and the formula analogous to (17b), however, the sum of

the first two terms on the right vanishes. Hence we have the relation

Et(S,x) - /(*,{) = - j f(t,i)E(t,x)dt.

On the other hand the interchange of the arguments in (15) and the subse-

quent differentiation of that relation yields

E(((,x) +/(£,*) = j f(Z,t)E(t,x)dt.

A comparison of the two results shows that

/(*,£) = -/(£,*)•

With this result and the formulas already noted above we find readily

(26a) ¡p(x) = ¿\v'(x) + j V(t)f(t,x)dt].

Lastly we observe that
]Í-x+ -]{-«+

= /(*,{)

Chapter 4.   The equivalence of the integro-differential

system and the integral equation

12. The transformation of equation (25a). To establish the equivalence

of system (25) and equation (5) it remains to show the converse of the

theorem of the preceding section, namely that every solution of system (25)

is also a solution of equation (5). To do this we shall retrace the steps taken

above and so deduce the equation (5) from the system.

Consider first the differential system

y'(x) = <p(x),

fiy(a) + vy(b) = 1.

Because of (7) it is possessed of a unique continuous solution. By (22) and

(24), however, <1?(x) is such a solution. Hence the system serves to determine

$(x) uniquely in terms of <p(x). In similar fashion because of (17b) and (24)

the   system

—:— = /(*.£) i
dx

(27)
p«(<M) + ™(6,£) = 0

serves to determine F(x, £) uniquely in terms of f(x, £).
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Let u(x) now be any solution of equation (25a), and with the functions

$(x) and F(x, £) determined construct

c(x) = u(x) - X f G(*,£)M(£)d£ -   f F(s,£)«(£)d£ - L(u)*(x).
Ja Ja

This function is obviously continuous.  Moreover, it is a solution of system

(6), for we find on the one hand by differentiation the relation

<r'(x) = u'(x) - \u(x) -  f /(s,£)w(£)d£ - L(u)v(x),
Ja

of which the right hand member vanishes by (25a), while it follows on the

other hand from property IV of G(x, £) and from (17b) and (22) that

pa(a) + v<r(b) = 0.

The system (6) is incompatible, however.    Hence a(a:)=0, that is, u(x)

satisfies  equation   (23).

The function F(x, £) was originally derived in Chapter 3 as a reciprocal

kernel. Hence it is itself possessed of a reciprocal, which is, moreover, pre-

cisely E(x, £) of the preceding chapter. The integral equations

(28)

e(x) = $(x) + f F(x,t)e(t)dt,

o(x,Z)=G(x,t) +  f F(x,t)u(t,l
Ja

are, therefore, uniquely solvable, and since by (21) and (14) we have as

solutions respectively W(x)/A and K(x, £), these functions are uniquely

determinable. We have at our disposal, therefore, the relations (14) and (21)

satisfied by them, while the substitution of (21) in (23) yields further the

relation (20).

Let (14) be written, now, in "solved" form, thus:

K(x,0=G(x,t) -   f E(x,t)G(t,0dt.
Ja

From this we obtain upon multiplying it by Xm(£) and integrating it with

respect to £

X fK(*,£)«(£)d£ = X f G(*,£)«(£)d£ -  f E(x,t)   \( G(/,£)«(£)d£di.
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We shall eliminate from this the quantity

xj G(x,Qu(Qdi,

by substituting for it its value as given by (20).  In this way we find, upon

collecting terms, that

W(x)
\ f K(x, {)«

va

(Ö<*£ = «(*) - L(u)

- J*{F(*.Ö + E(*¿) -jbE(x,t)F(t,0dt^ |«(Ö - L(«)^|d£.

This reduces, however, for by Fredholm's identity (15) the first factor in the

integrand on the right vanishes. It follows that every solution of (25a)

satisfies also the equation

(29) u(x) = X f K(x,Qu(Qdt + L(u)
Ja

W(x)

13. Application of equation (25b). If the solution u(x) of equation (25a)

satisfies also (25b), the value of L(u) may be eliminated between (25b)

and (29) above.  The result obtained is that

rhl                 W(x)V(t)\
(30) «(*) = Xj   jK(*,$) +--—|«(Öd£,

and since the bracket in the integrand is, by (10), K(x, £), this is precisely

equation (5).  This result we formulate as follows.

Theorem 3. Under the hypotheses of Theorem 2 every solution of the integro-

differential system (25) is also a solution of the related normalized integral

equation (5).

The proof of the equivalence of system (25) and equation (5) is thus

completed.

14. Generalization. In the deductions of this chapter we have been

concerned hitherto with the particular system (25) derived in Chapter 3

from equation (5), and because of this we were able to identify as previously

known functions the solutions of the various defining differential systems and

integral equations. In any case, however, we see from equation (30) and the

fact that W(x)/A and K(x, £) there involved are solutions of the respective
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equations (28), that the kernel of equation (30) is itself given as the solution

of the integral equation

(31) K(x,Q = [G(x,Q + Hx)V(Q] + f F(x,t)K(t,l-)dt.
Ja

It is clear from this that the method may be applied to the transformation

of the general system of type (25), provided that the function F(x, £)

defined as above is possessed of a reciprocal. We may state therefore the

following theorem.

Theorem 4. If an inlegro-differential system of type (25) satisfies the

condition that the solution of its related differential system (27) is possessed of

a reciprocal, then every solution of the integro-differential system solves also

a related linear integral equation of the second kind.

15. The associated system. Clearly all the methods employed above

are applicable to the system (25) as well as to (25). Hence we may conclude

that system (25) is equivalent to the equation (5).

Chapter 5.    The existence of a solution of the integro-differ-

ential equation for large values of the parameter

16. Matters of notation. For the sake of simplicity in the formulations

and deductions of this and subsequent chapters we shall make here certain

conventions of notation. To begin with, the relation |X¡ >N shall be inter-

preted as an abbreviation of the statement "|X| sufficiently large." It is to

be understood, therefore, that N does not necessarily mean the same con-

stant in any one case as it does in any other. Further we reserve B(x, £, X)

as a generic symbol for functions which for (x, £) in the region R and |x| >N

are possessed of the following properties:

(a) B(x, £, X) is uniformly bounded, i.e.

\B(x, £, X) | < B (a constant) ;

(b) B(x, £, X) is integrable in £ uniformly in x and X, that is, if the interval

(a, b) is subdivided by the points £o = a < £i < £2 < • • • <£„ = ¿> in any manner

so that |£t —£t-i| approaches zero as w—>oo, and if Ui(x, X) and L,(x, X) are

respectively the upper and lower bounds of B(x, £, X) on the sub-interval

(£i_i, £¡), then when any constant € >0 is prescribed there exists a numbe n i

such that
n

| JZ [Ui(x,\) - Li(x,\)}(Hi - £,-_,) | < €
i=i

for n = nx.
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Lastly a and ít will be used to designate the real and pure imaginary parts

of X, thus: \ = a+ñ, and a constant designated M shall be understood to be

positive or zero.

17. Lemmas. For use in the subsequent deductions we begin by estab-

lishing the following lemmas.

Lemma 1.   If a~z^b and

I(x,z,\) = f'e"-»B(x,t,\)dt,

then
lim   7 = 0
|X —*oo
a¿M

uniformly in x and z and the argument ofh.

To establish this let the interval (a, b) be subdivided in the manner de-

scribed under (b) above, the point z being taken as one of the points of

subdivision, i.e. £* = z. Then if £, is any point of the interval (£i_i, £0 we

have for £ on this interval

| B(x,t,\) - £(*,£.-,X) | < Ui(x,\) - Li(x,\).

Let I(x, z, X) be written now in the form

I(x,z,\) =   ¿Z Îb(x,Ïu\)  f V-í>#
«=1      V Jiir-1

+ J ' *W[B (x,£,X) - B (x,h,X)]d¿ .

Then since

I eX(2-o) |  = gM(b-a) for a = M) a g, Ç = z ^ b,

we have

\l(x,z,\)\ Ú  ¿Z\b
i=l     V

+eMii~)[ui(x,\) - Li(x,\)]f ' dt\

2kBeM(-b~a) *

Ú-¡—i-+ e«™ JZ [Ut(x,\)
| A | ¿-1

-Li(x,\)](ti -£,•_!).
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Now let e>0 be arbitrarily chosen.  Then since k^n the final sum will, by

hypothesis (b), be less than e for n = nx, and we have

, V2nxB        -]
\ I(x,z,\) | ^ eif(i->|_- + «J.

Since nx is fixed when e is chosen, we may by making |X| sufficiently large

reduce the right hand member of the inequality to less than 2eM^b~a)e.

This proves the lemma.

Lemma 2.  //

h(x,z,\) =  JV<«-f>.B(*,£,X)d£

then
lim   /, = 0
'X|-.a>

uniformly in x and z and the argument of X.

The proof of this lemma is in every way similar to that of Lemma 1.

18. Transformation of the integro-differential equation.      We   consider

now the integro-differential equation

(32) «'(*) - \u(x) = L(u)<p(x) +  C f(x,e)u(e)d£ + E(x,\).
Ja

The symbol E(x, X) is to be considered generical, designating a uniformly

bounded function which is analytic in X for |X|>iV. The equation (32)

reduces to equation (25a) in the special case E(x, X)=0. For subsequent

applications it is essential to consider the more general case.

If we consider equation (32) for the moment as a non-homogeneous

equation of the type

u' + pu = q,

it follows from the theory of differential equations that it may be written

in the form

(32a) u(x) = ce** + j   «*<*-'> |l(«M0 + f/(i,£)«(£)d£ + E(t,\)\dt ,

the limit * being any constant on the interval (a, b), and the coefficient c

being constant with respect to x but otherwise arbitrary.

For purposes of orientation we shall proceed to deduce the consequences

of the assumption that for such choices of the constants as will be made,

equation (32a) is possessed of a solution.    This deduction will be made
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separately for the cases in which X is confined to a left hand half-plane

ff^M, and in which X is confined to a right hand half-plane cr^—M.

19. Heuristic deductions when  a = M.     Let the arbitrary elements in

(32a) be chosen in this case as follows:

• = a, c = cxe~Xa,

where cx is any absolute constant. The equation becomes, then,

(32b)  u(x) = Ci«x<*-> + f e*<*-4L(u)<p(t) + f /(<,£)«(£)d£ + £(*,X)ld* .

Substituting the right hand member of this for u(x) in the expression L(u),

we obtain, upon solving for L(u),

(33) L(u) = C-4L(cxe"*->) + vf «*<»-'>|e(.,X) + j f(t,&u(QdÁdt\,

where

C=|l - vf e^»-»<p(t)dt\.

This solution is possible if |X| >AT. For, since p(£) is a function of the type

denoted by B(x, £, X) the integral in the expression for C decreases to zero

as |X| increases, by Lemma 1.  Hence C^O for |X| >N.

With the value of L(u) thus obtained equation (32b) takes the form

(32c) u(x) = 6(x,\) +   f a(*,£,X)«(£)d£,
J a

where

0(x,\) = ce«1""1 +   f ex<-*-»E(t,\)dt

+ C-HL(cxex«—>) + v f «x«*-'»£(/,X)ä| ■   f e^'-'Wfidt,

and

Q(*,£,X) =   I  e^t-»f(t,i)dt+C-1vi   eM»-»f(t,Ç)dl • J   ex<«-'V(0df.
Ja Ja Ja

The assumed solution of equation (32b) must, therefore, satisfy also equa-

tion (32c).

20. The existence of a solution of equation  (32) for agM.     Returning

now to equation (32a) we may construct, by the respective formulas above,
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the constant C, the functions 0(x, X) and il(x, £, X), the equation (32c), and

the series

(34) 6(x,\)+ f Ü(x,f-,\)0(í,\)di:

+ ffi(*,£,X) rn(£,£i,X)o(£1,X)¿£i¿£+  ••• .
Ja Ja

In the formulas for 6(x, X) and ü(x, £, X) the integrals involving E(t, X)

are uniformly bounded. The remaining integrals may be made arbitrarily

small by taking |X|>2V, since f(x, £), like ^(£), is a function of the type

B(x, £, X). Lastly e M,-o) is bounded, since a^M. Hence for |X| >N

| 6(x,X) \ < A        (a constant ),

|ß(*,£,X)|<—-r>
2(o — a)

and the terms of the series (34) are in absolute value less than the corre-

sponding terms of the series

A      A
A+-+~+  ••• •

2       22

The series (34) converges, therefore, uniformly to a function numerically

less than 2A. Since the terms of (34) are continuous in x and analytic in X

it follows that (34) converges to a function u(x, X) which is uniformly

bounded, continuous in x and analytic in X. On the other hand by the classi-

cal theory of integral equations* this function u(x, X) is a solution of (32c).

We observe that if E(x, X) =0, then the choice cx = 0 leads to 6(x, X) =0.

The solution found is in this case u(x, X)=0. We shall suppose, therefore,

in proceeding, that Ci has been so chosen that |ci| + |E(x, X)|^0.

Let the right hand member of (32c) be substituted now for u(x) in the

expression L(u). The result is found to be precisely (33) above. The right

hand member of (33) is contained, however, in the right hand member of

(32c). The elimination of it between the two equations yields equation

(32b), which is, therefore, satisfied by the function u(x, X) found. Lastly

differentiating (32b) we obtain equation (32), which completes the proof

that for a = M, \k\>N, equation (32) is possessed of a solution which is

uniformly bounded, continuous in x, and analytic in X.

*B6cher, loc. cit., p. 15.
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21. The case a= — M. When X is to be confined to a right hand half

plane a = — M the arbitrary elements in (32a) may be chosen as follows :

» = b,       c = c2e~Xb,

where c2 is any absolute constant. Reasoning precisely analogous to that

followed in § 19 and § 20 serves, then, to establish the fact that for a— — M

and |X|>7V equation (32) is also possessed of a solution with the char-

acteristics noted above.

22. The associated equation. The discussion of the equation obtained

from (25a) by adding on the right a function E(x, X) may be carried through

precisely like the discussion just concluded. In this way it is found that for

X confined to any half-plane a — Mora=—M, and |X | > N, such an equation

also is possessed of a uniformly bounded solution which is analytic in X

and continuous in x.

Summarizing the results of this chapter we have obtained the following

theorem.

Theorem 5. If the complex parameter X is restricted to a region bounded

by a line parallel to the axis of imaginaries and exterior to a circle sufficiently

large and with center at\ = 0, then the integro-differential equation (32) admits

of a solution which is uniformly bounded, continuous in x, and analytic in X.

Chapter 6. The formal solution of the integro-differential

equation

23. A lemma. In order to preclude interruption of the deductions about

to be made we begin by establishing the following lemma. The symbol

H (x, £, X) will be used to designate a function which is merely bounded

uniformly for |X | > iV, and is integrable in x and £.

Lemma 3.  If Zi and z2 are any points of the interval (a, b), and

2(zi,Z2,£,X) =  f W(|, t,\)dt,
Jz,

then the functional form of this integral is given by

7(z1(z2,£,X) = e^E(z2,i,\) + e**7J(2l,£,X).

This lemma follows almost immediately from the preceding ones. Thus

the integral may be written in the form

J(Zl,Z2,£,X) = e^"fe-^-'m(i,t,\)dt - e^'je-^«-'>H(t,t,\)dt,
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where * denotes any constant on the interval (a, b). If — <r^M we may

choose * = a. Then the factors of the integrands on the right are all uni-

formly bounded. The same is therefore obviously true of the integrals

themselves. On the other hand if — <r= — M we may choose * = b, with the

result that the integrals are again uniformly bounded. This proves the

lemma.

24. Heuristic investigation of the functional form of a solution of (25a).

The existence of a solution of (25a) has been shown. We shall suppose

now for purposes of orientation that such a solution may be obtained by the

method of successive approximations, and in particular by the approximating

scheme defined by the formula

(35) u/(x) - \Ui(x) = L(ui-X)<p(x) + f f(x,£)ui-x(!;)dt.

This formula is in the form of a differential equation for Ui(x) when u(-X(x)

is known.

With the initial approximating function w0 = 0 we have as a possible

choice ux = eKx. Substituting this in the right hand member of (35) and

applying Lemma 3 we find that u2(x) is given by an equation of the type

(35a) Ui'(x) - \Ui(x) = ey'bH(x,\) + euH(x,\).

The formula

ut(x) = eXx+ f e^oje^ff^X) + e*°H(t,\)\dt

yields a solution when the * is chosen arbitrarily for each term of the inte-

grand. We obtain a particular solution u2(x), then, by choosing * = b for

the terms of which e* is a factor, and * = o for the terms which contain ex .

By Lemma (3), then

(36) u2(x) = e*»H(x,\) + e**H(x,\) + e*°H(x,X).

Upon the substitution of this as Ui-X(x) in (35) and the application of

Lemma 3 we find that us(x) satisfies an equation of precisely the type (35a).

Hence there exists a u¡(x) of the same functional character as u2(x) given by

(36). Obviously the same argument may be applied in the course of each

successive substitution, and since we may consequently choose un(x) for

every n of the form of u2(x) above, the convergence of the procedure would

lead to a solution of equation (35a) of the form (36). Guided by this result

we proceed to substitute the form (36) into the equation with the purpose of

determining as far as possible the functions H(x, X).



610 R. E. LANGER [October

25. The formal determination of coefficients. The undetermined func-

tions H (x, X) are bounded for |X| >7V. We shall proceed on the hypothesis

that they are expansible in power series in 1/X, and shall write the assumed

form of the solution of (25a)

(37) u(x) = e**[y(x)] + e"[ß(x)] + «*•[<*(*)].

In the notation used here

K*)J =  2-, ——

The result of the substitution of form (37) in the equation (25a) involves

the integral

= f e"f(x,i)[y(&]dS.

We shall consider this in two parts, namely

•6 n~2 7*(£)

Ti= f e"f(x,Q tt2^^
Ja *-0        X*

and

Y*(Ö
/. =   f «Xf/(*,£)  £ ^^£

Ja k-n-l     X*

Integrating the &th term of Ii by parts (n — 2 — k) times, we obtain the for-

mula

t4"Ä*        ,.    e*bfy¿(x,b) - e**Jfy¿ - cXo/T**'(a;,o)
Ii -  2.   2-,(- 1),+ -rrrrr-l-

n—2       f%b n—2/  _  Ijn— 'A     po        n—z

+      ,    , e* ¿Z ( - l)7V*-*-*(*,Ö#.
Xn~2      Jo        *-o

The notation has been abbreviated here so that

/(*,£)?*(£)-/y»(*,£),

]£-*+
=

3'/7*(*,0

Jhk,

fy¿(x,&.
9V
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The substitution of (37) in the equation yields therefore

«'(*) - \u(x) - L(u)v(x) -   f /(x,£)«(£)d£
va

/ n-3 »t-3~* Jf i    \ i \

( \     ( — l)n~2 rb    n~2

+ <H t +        .       eXf S ( - Wy*"-2-h(x,ï)dt
I ) X"-2       Ja *_0

eX{/(x,£)E-2rr-d£ = 0,
t=n-l     X*-

where the coefficients of eXb and eXo are of the same general character as that

of eXx.

Equating now to zero the coefficient of eXx/X' for /=0, 1, 2, • ■ • , (n—2)

respectively we find that To'=0, whence we may choose 70 = 1, and that the

functions 7i(x) y2(x), ■ ■ ■ , yn-t(x) can be successively determined each by

means of a quadrature. Continuing in similar fashion and equating to zero the

coefficients of ext/X! and eXa/\l for /= — 1, 0, 1, • • • , (n — 3), respectively,

we find likewise that

0o = O,

ßi(x) = - v<p(x),

etc.,
(39)

«o = 0,

cti(x) = — ßip(x),

etc.,

and that ßt, • • • , ßn-2, ot2, ■ ■ ■ , an-2 may also be successively evaluated.

Hence we may construct the function ü(x) given by the formula

yx(x)    . ,   7n-S(*)l
ü(x) = exi <; 1 +

+ íx

ot\(x) an-2(x))

¡1 + yM j~Mï
I         X x»-2 j

Xh   l       ßl(x) ßn-t(x)\

I       X X-2 )

(     ax(x) an-2(x)\

I     x x--2 j
+ e

26. The equation satisfied by û(x).   The deductions above have been

purely formal.   A consideration of formulas involved shows, however, that
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since tp(x) is possessed of derivatives of order (n — 2), while f(x, £) is possessed

of partial derivatives of the same order, yi(x) may be differentiated (n—i)

times, while ßi(x) and at(x) are differentiable (n — 1 —i) times. The function

ü(x) determined is, therefore, differentiable and can be substituted into equa-

tion (25a).

The result of this substitution may be read directly from (38) above if the

coefficients with subscripts greater than (n — 2) are taken now to be zero,

and the symbols [y(x)] etc. are interpreted as representing the respective

polynomials instead of the formal infinite series. The coefficients have been

explicitly determined so that the terms in eXl/X*, eX6/Xi_1, and eXo/Xi_1 vanish

for i = 0, 1, • ■ • , (n — 2). Since the integral I2 of (38) does not now appear,

there remain merely a term of the form B(x)eyb/\n~2, an analogous term in

eXo/Xn_2,   and   the   integral

f _   JU-2   nb n-2i \n— ¿   no n—i

f—-    *X£ Ti ( - Wyf-t-Kx,
Ja *=0

£)d£.

Writing this integral in the form used in the proof of Lemma 3 we find readily

that the substitution yields the result

«'(*) - \a(x) - L(u)ip(x) - f f(x,Qü(Qdi

(41) l
{eXbB(x,X) + eXaB(x,\)},

X"

where, moreover, the functions B(x, X) are analytic in X. We shall call the

function ü(x) a formal solution to the order (n — 2) of equation (25a), since

for such values of X for which the exponential factors in (41) are bounded the

equations (41) and (25a) agree to terms of degree (n — 2) in (1/X).

27. The associated equation. Equation (25a) differs from equation

(25a) in that each function involved is replaced by the corresponding function

superscribed with a bar, and in that X is replaced by —X. With these altera-

tions formula (40) above yields the formal solution of (25a). Because of

relation (26b), therefore, this formal solution is

v(x) = e~Xx <    1-+ ( - I)""2->
I X x»-2 )

— ( ßl(x) ßn-t(x)\
(40) +e-x*j  _!i^+... + (_i)-£=iLij

( ax(x) an-2(x))
+ ,-,       - — +... + (-!)-—   ,
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the function 7i(a;) occurring here being that which occurs also in formula

(40).

Chapter 7.   The solution of the integro-differential equation

28. Relation of the formal solution to a true solution for a = M.   By the

conclusions of § 20 equation (25a) admits, for a = M, |x| >N, of a solution

u(x) which satisfies the relation (32b) with Ci any non-vanishing constant,

and 2£=0. Such a solution will not vanish for x = a, and hence upon being

multiplied by a suitable function of X alone, will satisfy the condition

u(a) = ü(a),

where ü(x) is the formal solution (40). This multiplication by a function

independent of x is permissible since the equation (25a) is homogeneous.

Inasmuch as the solution of (32b) originally chosen is analytic in X for

|X| >2V, while the same is true of the formal solution «0*0, the analyticity

of the final form u(x) is assured.

Consider now the function

(42) w(x) = \n-2e~u{u(x) - ü(x) ).

The bracket on the right obviously satisfies equation (41). Hence w(x) is a

solution of an equation

w'(x) - \w(x) = L(w)<p(x) + f /(*,£)w(£)¿£ + [eH*->B(x,\) + B(x,\)},
Ja

the functions B(x, X) being analytic in X. This equation is of the form (32)

since for a^M the bracket on the right is of the type E(x, X), and hence we

may apply to it the deductions of § 19 and § 20. Since w(a)=0 by (42),

we find from the form (32b) that we have before us a case in which the

coefficient Ci of § 19 is zero. The function B(x, X) reduces, therefore, in this

case to

0(x,\) =  f ex<-i>{ex<6-.>2j(<>X) +B(t,\)}dt

+ C-h f «*<»-'>{«M*^>2J(f,x) +B(t,\)\dt- f «x<--V0#i

and hence is, by Lemma 1, of the form e(x, X), where this symbol is used to

denote a function which approaches zero uniformly in * as |X|—>oo. In

consequence of this, as may be drawn from § 20, w(x) is itself of the form

e(*,X).
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Solving (42), then, for u(x) we obtain the result that there exists for

<r¿M, |X| >N, a solution of the form

e(x,\)eXa
u(x) = u(x) H-•

X,-2

This solution is moreover continuous in x and analytic in X.

29. The solution for a=—M. The deductions of § 21 estabUsh the exis-

tence of a solution of equation (25a) which for a = — M, |X | > N, is analytic in

X, continuous in x, and non-vanishing at x = b. Because of the homogeneity

of (25a) this solution may further be made to satisfy the condition

u(b) = ü(b).

We may conclude, then, in a manner entirely analogous to that of § 28,

that the function

z(x) = \"-2e-™{u(x) - û(x)\

satisfies an equation of the type (32) and, since it vanishes at x = b, is of the

form e(x, X). From this it follows further in the manner of § 28 that there

exists a solution of equation (25a) which, for |X|>/V, a^—M, is analytic

in X and continuous in x, and which is of the form

u(x) = ü(x) +
e(x,\)e*b

Inasmuch as zero is a particular function of the type e(x, X) the results

above may be summarized as follows.

Theorem 6. If the complex parameter X is restricted to a region bounded

by a line parallel to the axis of imaginarles and exterior to a circle sufficiently

large and with center at X = 0, then the integro-differential equation (25a)

admits of a solution of the form

/a     » /« , ?>(*) , y«-*(x)\
u(x) = e^< 1 +-+ • ■ • +-— >

{ X X—2 )

l      ßi(x) ß„-t(x)        €(X,\)\
(43) + e

I    cti(x) an-t(x)      i(*,X))
+ ex«<    -+■■+-+     . .  >■

I      X X""2 x—2 )

This solution is analytic in X and continuous in x.
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30. The associated equation. Clearly the analysis applied above to the

equation (25a) and its formal solution (40), may be applied equally well to

the associated equation (25a) and its formal solution (40). In this manner

it is found that when X is confined to any right or left-hand half-plane and

|X| >N, the equation (25a) admits of a solution v(x) which is continuous in

x, analytic in X, and of the form

{
v(x) = e-x* {1-1-  •■• + (- 1)»-

7i(*) .      ,,      7«-2(*))

-+  ••+(- I)""2-\
X X"-2 j

¿*Tn                        x.i         ^X)  . ■   /      «    J^x)   ,   e(x'X)\(43) + e-*b <-h ••+(- I)"-2-1->
I           X X"-2          X"-2 )

ax(x) â.n-i(x)      e(x,X)
+ e—Xa

( otx(x) an-2(x)      e(x,X) )
<-+  ■• + (- l)"-2-+->
I X X"-2 X-2 j

We remark lastly that since the coefficients and functions involved in

equation (25a) and (25a) are all real, conjugate imaginary values of X will

correspond to the conjugate imaginary solutions u(x) or v(x). Thus if we

denote by X,,, uc(x), and vc(x) the conjugates of X, u(x), and v(x) respectively,

u(x,\c) = uc(x,\),

v(x,\c) = vc(x,\).

Chapter 8.  The characteristic values

31. The characteristic equation. The immediately preceding sections

have been concerned with the form of a solution of equation (25a). By

Chapters 3 and 4 such a solution solves the given normalized integral equa-

tion if and only if equation (25b) is also satisfied. This imposes a restriction

on the choice of X which we proceed to consider.

Substituting for the factor \u(t) in (25b) its value as the second term of

(25a) we obtain the equation

L(u) = j  V(t){u'(t) - L(u)v(t) - j f(t,Qu(t)dfydt,

which, if we integrate by parts the term involving u'(t), takes the form

kxu(a) - ktu(b) + f A • «K£)«(£)d£.
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In this, A•*>(£) is given by formula (26a), and

ki=V(a)+Jl+ f V(Qv(Qdt\,

k» = V(b) - w{l + f 7(Ö*(Ö#J.

It is convenient to set

- A • £(£)
Oi(Ö=-—,

2ki
(44b)

A • ?(£)
Oitt) =

2 it

and to write the equation in the form

(45) kxlu(a) - J Qi(Qu(Qdï\ - klu(b) -  f Qt(&u(Qi¿\ = 0.

We shall call this equation the characteristic equation. Its roots, if such

exist, are values of X for which the solution of the integro-differential equa-

tion satisfies also the given integral equation. We shall call these roots

characteristic values and denote them by X,-.

We observe that since the coefficients of equation (45) are all real, the

equation is essentially unchanged if u(x) is replaced by its conjugate imagin-

ary uc(x). From this it follows, by § 30, that the characteristic values occur

in conjugate pairs.

Now for X in any right or left hand half-plane we have by Theorem 6 a

solution

u(x) = eXl + e™e(x,\) + ex"e(a;,X),

which is analytic in X for |x| >7V. The substitution of this in (45) yields for

the characteristic equation the form

(46) [ki + e(X) ]ex» - [k2 + e(X) ]ex& = 0,

in which the functions e(X) are analytic for |x| >N.

32. A further condition on the given equation. It is essential to the pro-

cedure which is to be followed in solving equation (46) that neither of the

coefficients ki and k2 shall vanish. Since ki and k2 are seen from the formulas

to be rational functions of p and v we may choose p and v subject to previous

restrictions so that ¿i^^O, provided only that neither ki nor ki vanishes



1926] DISCONTINUOUS KERNELS 617

identically in p and v. We shall suppose then that the given integral equation

is such that

(vi) *iGi,iO ̂ 0,       kt(p,v) ¿ 0.

From the formulas for kx and k2 it follows immediately that

(47) vkx(p,v) + pkt(p,v) = A(p,v).

It is a clear from this that a sufficient condition for (vi) is that

A(0,v) jí 0,        D(0,v) j¿ 0,

and
A(u,0) * 0,       D(p,0) * 0.

For if these conditions are fulfilled kx and k2 are defined for the values (p, 0)

and (0, v) and if either one vanished identically relation (47) would entail

a contradiction for p = 0 or for v = 0.

The restriction (vi) is an essential one, for we have in the Volterra equa-

tions, i.e. those in which K(x, £)=0 in one of the regions Rx and R2, an ex-

ample of equations which may satisfy all previous conditions, but to which

the subsequent results do not apply. To show that these equations are

ruled out by condition (vi) we may proceed as follows.

Let us suppose K(x, £)=0 for £>#. Then W(a) = v and vy^O because

of (8). We recall that E(x, £) =Kt(x, £), and hence that Fredholm's identity

(15) yields the formula

K£(a,£) +F(a,k) = f Kt(a,t)F(t,l-)dt.

Upon an integration by parts the right hand member of this assumes the

form

K(a,b)F(b,£) -K(a,a + )F(a,£) -  f K(a,t)Ft(t¿)dt,
Ja

of which the first two terms reduce because of (17b) and (12) to F(a, £).

Hence we may write

.6

K£(o,£) = - jK(a,t)Ft(t,ï)dt,

or, upon substituting from relation (10),

r"V(t)Ft(t,0dt        1   r r" 1      Y'(£)
I A = -^Hi K¿a>® +  I   Ft(t,it)K(a,t)dt   - —p.

J« A W(a)L Ja JA
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Multiplying this by W(£) and integrating we obtain the form

fv(t)^Ft(t,k)~tm = ̂ XWtt\_K¿a>® +fFt(t,t)K(a,t)dt^dt

1 rb        W(Q
- - [W(b)V(b) - W(a)V(a)] +  \    F(£)—— d£.

A Ja A

With the use of formulas (11) and a rearrangement of terms this leads finaUy

to the relation

IV(t)<p(t)dt =-

- w7a)~f W®[K¿a>$ + / Ft(t,OK(a,t)dtjd!;.
W(a)

From this form it is readily found, now, that since K(x, £)=0 for £>#, the

second term on the right vanishes, with the result that

kx = ix + vK(b,a),        kt = 0.

33. The solution of the characteristic equation. We consider to begin with

the related, simpler equation

(48) kxC" - k2e"b = 0.

Because of (vi) we may suppose p and v so chosen that ¿i^O, k2^0, and

the equation is easily solvable. Thus e'<6-°> =ki/k2, and by taking logarithms

the roots are found to be

1     ( ki)
(49) Pm =-{imici + log — } (m = 0, + 1, ± 2, • • •).

b — a \ k2)

Solving the equation (46) now formally in the same manner we find

ki + t(\m)\
=-<2w7

b - ai
Xm = --<¡2m7r¿ + log

kt + e(XTO).

Then inasmuch as in functional form

h + e(Xm) ki
l0g fc    i    /x   N =l°S— + ¿(Am) ,

«2 + i(Xm) ki

we have

(46a) Xm = Pm + e(Xm).

Consider now the function

0ÇK) =X- [Pm + €(X)],
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the function t being that of (46a). The function 0(X) is analytic, and if

S>0 be chosen arbitrarily but sufficiently small it will follow that ¡e(X)| <5

for |x| >N. If, therefore, a circle Cm with radius ô be drawn about each of

the points p„„ then for \m\ sufficiently large the point pm + e(X) will lie within

the corresponding circle Cm whenever X is a point on the circumference. As

X describes this circumference, therefore, the argument of 0(X) increases

by 27T, from which it follows that 0(X) =0 has precisely one root within Cm.

This means if we denote this root by Xm that the points Xm are represented

asymptotically by the points pm, namely

(50) Xm = pm + €m,

where ex, e», • ■ •, em, • • • is a sequence of constants such that limm..n em=0.

Moreover since the characteristic values occur in conjugate pairs, while pm

and p-m are conjugate,* we conclude that

A—m      Am.

From the significance of pm for the given integral equation, and from the

fact that by (49) pm involves the ratio kx/k2, it follows that this ratio is

determined by the integral equation alone and so must be independent!

of the parameters p and v.

34. A more precise formula for XM. In deducing the formula (50) we

assumed only that for the given integral equation n^2. If we have at our

disposal the existence of derivatives of higher order a formula more precise

than (50) may be deduced. We shall assume, now, for the following deduc-

tions that for the given integral equation

(vii) « è 4.

The assumption (vii) insures the existence of a solution u(x) of equation

(25a) which is of the form given by (43) for w = 4. Substituting this solution

in (45) and integrating by parts the integrals involving eXf ß(£) we obtain for

the characteristic equation the form

y(       .    k12       kxî + e(\)\ J *„       kM + eÇh)\
eXo< kx -t-+-} - exb< k2 +-+-> = 0,

I X X2       j I X X2       j

* It is assumed at this point that fei/ifc, is positive. If it is negative we may write log (h/ki) =

tí -f- log l&i/^zl, in which case it is evident that pm and p_m_i and hence also X„ and X_m_i are con-

jugate. To avoid unnecessary complications we shall continue only with the case ¿i/fe>0, the

modifications for k¡/kt<0 being reasonably obvious.

t The example of the appendix illustrates this.
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where the coefficients k are constants and in particular

[October

(51)

¿12 = ¿iJ7i(o) + «i(o) + 2Qx(a) - 2 f i2i(£)«i(£)d£J - k2ax(b),

kn = ktiyx(b) + ßx(b) - 2Qt(b) - 2 f Û2(£)0i(£)d£J - *ifc(a).

Solving this equation formally in the fashion of § 33 we obtain

logXm = pm +

1

¿12 kXt + i(Xm)

kX\v ¿iXm*

b — a kn       ktt + e(Xm)

kt\m kt'Kjf

or, upon expanding the logarithm as we may, because of (50), for \m\

sufficiently large, the form

f  kXt      kn

Xm  =  Pm +

1

b- oL
+

A' + t(\m)
-:

Am

A' representing a constant independent of m. From the formulas (46a)

and (49) we find readily, however, that

1      b - a     A" + t(m)— =-1-,
Xm      2miri i»2

A" being a constant. If this is substituted in the right hand member of the

preceding expression we obtain a result which is expressed in the second

part of the following theorem.

Theorem 7. // the kernel of the normalized integral equation (5) satisfies

the conditions (iii), (iv), (v) and (vi) then there exist infinitely many values of

the parameter X for which the integral equation admits of a solution. These

characteristic values are of the form

Xm =-\2m-Ki + log — \ + em    (m = 0, ± 1, ± 2, • • • ),
b — a { kt)

where
lim «m = 0.

|tn| -mo

// the kernel of the integral equation satisfies the conditions (iv), (v), (vi)

and (vii), these characteristic values may be determined more precisely by the

formula

1     ( kx\      (kx2/kx) - (ktt/ki)  t A+em
(50a)      X. =-< 2miri + log-} H-

b — a v kt J 2mri
+

m*
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The various constants k are given by formulas (44a) and (51), and A also is a

constant independent of m.

Obviously if a larger number of derivatives of the kernel of the given

equation are at hand the method applied above is applicable to the deduction

of a formula still more precise than (50a).

35. The associated equation. It is not necessary in this case to repeat

the discussion for the system (25). By the classical theory of integral equa-

tions the associated equations (5) and (5) have the same characteristic

values.  Hence formula (50a) serves both.

Chapter 9. The characteristic functions

36. The solutions of the integral equation. The characteristic values

Xm by their very determination are such that the functions u(x, Xm) satisfy

not merely equation (25a) but the entire system (25). As such these functions

are also solutions of the given normalized integral equation. For brevity

we shall denote them by um(x), and shall call them characteristic functions.

The form of the characteristic function um(x) is obviously obtained by

substituting the value X =Xm in the form u(x) given by formula (43). Divid-

ing this formula by eXa and observing that for \m\ sufficiently large e*m<*~a)

is uniformly bounded, we obtain because of (vii) the formula

«»(*) = eXm(l-o)< 1 -i-> + eXm{b-a>-1-1-

\ Xm    / Am Am Am

Since by (50a)

eXm(x-o)   _  e/,m(i-o)+[(l/2mT,')((ti,/*i)-(ta/t2)) + Af(m)/mi](i-o)

[x — a/kxt      ka\      H(x,m)~\

1 +-(-) + —-L-L \,
2miri\ ki        ki / m2    A

we find in terms of pm and m

,M, , , ,     ,L   , Qi(x)\   , Qt(x)      H(x,m)
(52) u„(x) = e'«<*-°> < 1 -j-} H-1-,

1 m   ) m m2

where

^ . ,      yi(x)(b -a) + ((kxt/kx)-(kti/kt))(x - a)
(53a) Qi(x) =-—-

27TI

and

Qt(x) = -^-fle>m<™ßi(x) + ai(x)\.
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Bv (48), however.
kx

kt

Hence the function Q2(x) is independent of m and substituting for ßi(x)

and cti(x) their values from formulas (39) we find that

- (b- a)r        kx "I
(53b) Qi(x) = -------  p + -v Ux).

2wi       L k2  A

Deductions precisely similar to those above based on the function (43)

yield the characteristic functions of equation (5). We have first

(        7i(.v)l                        ßx(x)       ax(x)       H(x,\m)
;',„(.t) = (-x'"u "' 11 - .— I - f x"'"' "'-1-

\ Xm     / X,„ A,„ Xm

from which in the manner above we obtain

_ , . Í       Qx(x)\      Qt(x)      ll(x,m)
(52) vjx) = c '«'-' "■' -1 -    -> +    --.H-

l m   ) m m2

In this Qi(.r) is the function occurring also in (52), and

_ b - aV ktl-
(53b) (),(*) =-;- \v + p —\ v(x).

2ti   L kxJ

37. The normalized set.    By the classical theory of integral equations

the set of functions um(x), vm(x) is biorthogonal, that is,

I   um(x)vj,(x)dx = 0,        m 5¿ p.
Ja

The set of functions is said to be normalized if further

I  um(x)vm(x)dx = 1.
J a

Forming the product um(x) vm(x) from formulas (52) and (52) we obtain

Qt(x)e-»« (x-<,) + Qsia;)«'"'*-0'      U(x,m)
um(x)vm(x) = 1 +

m m'

Then since \pm\ is of the order m, while Qi(x) and Qt(x) are possessed of a

derivative, we obtain as the result of an integration by parts

'bQi(x)ci"m<.^)dx      H(m)f —
Ja m m2
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Accordingly

•6 H(m)
um(x)vm(x)dx = (b — a) +I m'

We may therefore normalize the solutions given by (52) and (52) by multi-

plying them by a suitable factor of the form

1 H(m)
+

y/b — a        m2

Thus we obtain the following theorem.

Theorem 8. 2/ the kernel of the normalized integral equation (5) satisfies

the conditions (iv), (v), (vi), and (vii), and the kernel of the associated integral

equation satisfies condition (v), then the normalized characteristic solutions of

these equations are given respectively, for \m\ sufficiently large, by the formulas

(54)

1       r      ,     , L   , Qi(x)\   ,   Qt(x)      H(x,m)l
um(x) =       -   «*.<*-> \l +-\ +-+-—.   ,

Vo -sL v. m   ) m m'    A

vm(x) =       -   e-'**™) < 1-} +-+-—-   .
y/o — aL l mi m m2    A

Finally we remark that by § 30 and § 33 the functions um(x) and u-m(x),

as well as the functions vm(x) and V-m(x), are conjugate imaginary.

Chapter 10.    The closure of the set of characteristic functions

38. Birkhoff's theorem. It has been shown in the preceding chapters

that for \m\ sufficiently large the characteristic values of the given integral

equation are simple, and that the corresponding biorthogonal set of char-

acteristic functions um(x), vm(x) may be normalized. We shall now make the

further assumption:

(viii) All the characteristic values of the given integral equation are simple.

Then the entire set of solutions um(x), vm(x) may be normalized. We

wish to show that the set is also closed. To this end we shall employ the

following theorem which is a generalization of a theorem given by Birkhoff*

for orthogonal sets.

* Birkhoff, Proceedings of the National Academy of Sciences, vol. 3 (1917), p. 656.
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Theorem. Ifwm(x), zm(x), m = 0, ±1, ±2, • ■ ■ , is a closed normalized

biorthogonal set of functions, and if wm(x), zm(x) is a second normalized

biorthogonal set, then this second set is also closed provided (a) the series

GO

[wo(x) - w0(x)]zo(y) +  2^Z {[»»(«) - Wm(x)]zm(y)
m=l

+   [W-m(x)   —   W_m(*)]Z-m(y)}

converges to a function H(x, y) less than 1/2(6 —a) in numerical magnitude, and

(b) the convergence is such that the series multiplied through by an arbitrary

continuous function f(x) can be integrated term by term with respect to x, and

yields a series which converges uniformly on any closed sub-interval of a<y<b,

and of which the sum of any number of terms remains uniformly bounded for

o£y£b.

The proof, except for minor modifications, is that given by Birkhoff.

Thus if the set wm(x), zm(x) is not closed, there exists a function f(x)^0

which is continuous on (a, b) and such that

I
b

f(x)wm(x)dx = 0   for alb».

In this event if we multiply through the equation of definition for H(x, y)

by this f(x) and integrate term by term as we may by hypothesis, we find

I   E(x,y)f(x)dx =   I   f(x)wo(x)z0(y)dx
•/ a Ja

+ 2~Z  I f(x)[wm(x)zm(y) + w-m(x)z-m(y)]dx,
m=l Ja

where the series on the right hand side converges under the hypothesis to a

bounded function which is continuous for a<y<b. This function on the

open interval is precisely f(y).   In fact the difference

f(y) - \ I f(x)wo(x)zo(y)dx + JZ   I  f(x)[wm(x)zm(y) + if_m(*)z-m(y)]dx>
\Ja m—1 Ja s

is a function <p(y) bounded on (a, b), continuous for a<y<b, and such that

I   <p(y)wi(y)dy = 0   for all/.

This latter property is readily drawn from the fact that the series involved

may be integrated term by term, while the set wm(y), zm(y) is normalized
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biorthogonal. But the set wm(y), zm(y) is closed by hypothesis. Hence we

infer that xp(y)=0, a<y<b, and that the right hand member of the pre-

ceding equation has the value/(y).  That equation may now be written

.6

E(x,y)f(x)dx= f(y), a<y<b.f*/o

If the upper bound of \f(x)\ on (a, b) is 2<V0 we obtain from this since

\H(x, y)\<l/2(b-a) the relation

\f(y)\<\F.

But this is impossible since the left hand member either takes on the value

F or comes arbitrarily near to it. The set wm(x), zm(x) is therefore closed

also.

39. The   integro-differential   system   with   an   additional   parameter.

We consider now the system

(55)

(a) u'(x) - \u(x) = tÍlM^) + f f(x,Qu(Qds\,

(b) L(u) =r,\f F(£)«(£)á£.
Ja

For 77 = 1 this is simply the system (25) and defines the set of functions

um(x, l)=um(x). For 77 = 0 it is an ordinary differential system and defines

a set m m (a;, 0). For both these values of 77 there exists an associated or adjoint

system with its corresponding set of solutions vm(x, 1) or vm(x, 0) which is

biorthogonal to the respective set above. It is our purpose to show that for

other suitable values of 77 in the circle C : \t)\ ^ 1 of the complex 77 plane the

system (55) also defines a set of functions um(x, 77) and that there exists a

biorthogonal normal set vm(x, 77). Subsequently it will be shown that the

repeated application of Birkhoff's theorem makes it possible to conclude the

closure of the set um(x, 1), vm(x, 1) from the known closure of the set um(x, 0),

vm(x, 0).

The system (55) will be equivalent to an integral equation of the form

(5) provided the hypotheses of Chapter 4 as applied to system (55) are met.

The extension of the deductions of Chapter 4 to system (55) is made formally

by replacing respectively <p(x),f(x, £), and F(£), by r¡<p(x), r¡f(x, £) and t7F(£).

This is readily found to result in replacing F(x, £) by r¡F(x, £), and <&(x) by

$(x, i?) = ï(l — y)+r}$(x). The essential hypothesis to be met is that the

function vF(x, £) be possessed of a reciprocal function E(x, £, 77). By the

classical theory of integral equations this reciprocal is a meromorphic function
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of j?. Hence its poles within the circle C are finite in number and may be

denoted by 77,-. Then for 77 in any closed sub-region of C, call it C, which

excludes these points rji, the function E(x, £, if) is analytic, and by Theo-

rem 4 the system (55) is equivalent to an integral equation

(56) u(x,v) = \j *(*,*,,)«(*,,)#.

The kernel K(x, £, 17), since it satisfies the relation (31) with the formal

modifications noted above, is readily found to be continuous in x and 77,

and in fact analytic in 77 in the region C.

Consider now the associated equation

(56) v(x,V) = \j m,x,r,)v(í,rí)dí,

and the deductions of Chapter 3 as applied to it. From the analytic character

of K(£, x, 77) and its relation to the kernel of (56), the function E(x, £, 77)

of § 11 is readily found to be analytic in 77. From the classical theory of

integral equations we draw again the fact that E(x, £, 77) possesses a recipro-

cal F(x, £, 77) which is meromorphic in 77. If we add to the set of points 77.

those poles of F(x, £, 77) which lie within C and denote by C" any closed

sub-region of C which excludes also these values 77,-, it follows that F(x, £, 77)

exists and is analytic in C". By Chapter 3 it follows then that the equation

(56) is also equivalent to an integro-differential system which is the asso-

ciated system of (55).

It is essential to observe that in obtaining this result we have not excluded

from C" either 77 = 1 or 77 = 0. The case 77 = 1 is covered by the hypotheses of

the preceding chapters. For 77 = 0 the system (55) is equivalent to the integral

equation

i»(*,0) = X f G(*,£)w(£,0)d£,
Ja

and the associated equation

C(*,0)=xJ*G(£,sM£,0)d£

is equivalent to the system

v'(x,0) + \v(x,0) = 0,

L(v) = 0.

The extension of the deductions of Chapters 5, 6, and 7 to the system

(55) and its associated system may be made now with the formal modifica-
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tions noted. For the deductions of Chapters 8 and 9 the condition (vi),

which in the present case takes the form

ki(v) = r,V(a) + M[l + V2J V(Qv(Qdt] * 0,

*•(*) = vV(b) - „[l + „2J" F(£)^(£)á£] * o,

must be met. For 77 = 1 this is assured by previous hypotheses. Hence ¿1

and kt as functions of 77 are not identically zero, and there are at most four

values of 77 for which either ki or kt will vanish. Let such of these values*as

lie in C" be added to the set of points 77* and denote by C" any closed sub-

region of C" which excludes also these points. This does not exclude 77 = 1,

and if we suppose, as we may and shall, that p?*0, v ?¿0, it does not exclude

77 = 0. For 77 in the region C", then, the biorthogonal set of functions

Um(x, 77), vm(x, 77) are for \m\ sufficiently large, normaUzed in the form

I r x-a ( Ql(x,v))
um(x,v) = —=    e2m"i=-a +c*-»> «(,) ) 1 +)E±JJil

y/b — a L ( mi

(57)

Qj(x,v)     H(x,y,mY

m m

1    r     *-o        í    Qi(x,v))
Vm(x,V)   =       , e-tmri^-ix-a)^) U   _ lUJil

y/b — a L l m    )

]•

Qi(x,ri)     H(x,y,my

m m'

where

0(v) = 7-log77T'
b — a       kt(i¡)

and the functions Qi(x, 77), Q2(x, 77), Q3(x, 77), H(x, n, m) are found from

formulas (53), (39), and an analysis of the deductions of Chapters 7, 8 and 9

to be continuous in x and 77 for 77 in the region C".

It remains to consider the functions of the set um(x, r¡),vm(x,ri) for smaU

index m. Let us denote by D(r¡, X) the Fredholm determinant for the kernel

of equation (56). By the classical theory of integral equations this determin-

ant is analytic in X and 77 for 77 in the region C", and the characteristic values

of equation (56) are the roots X=X(tj) of the equation

(58) D(r,,\) = 0.

For 77 = 1 the roots of this equation are all simple by the hypothesis (viii),
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and for 77 = 0 they may be explicitly determined from system (55) and are

also found to be simple. It follows* that the equations

D(v,\) = 0,

dD(v,\) =

d\

admit of common roots, which will of course be multiple roots of (58), only

for isolated values of 77.  If we add such of these values as lie in C" to the

set 77 ¿, then for 77 in any closed sub-region of C", call it C17, which excludes

also these values, the roots of (58) are all simple and are analytic in 77.

We observe that by the remarks above 77 = 0 and 77 = 1 are not excluded from

Cw. We shall designate by Xm(??) that root of (58) which joins analytically

with Xm(0).   It is easily seen that for large values of \m\ this agrees with

the notation previously adopted in Chapter 8. It follows from the simplicity

of the values Xm(7?) that the entire biorthogonal set um(x, 77), vm(x, v) may be

considered normalized.    Likewise it is readily found that the functions

um(x, 77), vm(x, 77) are continuous in * and 77.

40. A change of variable. The set um(x, 77), vn(x, 77) is not directly

adaptable to the application of Birkhoff's theorem. For this reason we

introduce the set wm(x, 77), zm(x, 77) defined by the relations

Wm(x,ri) = um(x,r¡)e~(-x-^B^\

Zm(x,v)  = !>m(*,77)e(l-a)('(*').

The points 77 ,• in the circle C form a finite set which includes neither 77 = 0

nor 77 = 1. The constant r >0 may be so chosen, therefore, that of the circles

drawn with radii r and centers 77 ¡ no two have a point in common and none

includes the point 77 = 0 or 77 = 1. We shall suppose such circles drawn and

their interiors removed from the circle C. The remaining region is of the

type denoted by CIV and in this region we may draw a curve T of finite length

connecting 77 = 0 with 77 = 1. For 77 on the curve T, then, 0(77) is analytic and

therefore bounded. Inasmuch as wm(x, 77) zp(x, v)=u„(x, 77) vv (x, 77), it

follows that the set wm(x, 77), zm(x, 77) is also biorthogonal and normal.

From formulas (57) we obtain readily

.     . If tmri^jx   , Qi(*,v)\   , Q2f(x,y)     E(x,y,m)-\
u>m(x,v) =-    e      MH-> -1-1-—

y/b — a L V m     j m m2     J

Qi(x,y)\      Qt'(x,y)     H(x,r,,m)-l

m     ) m m2      a

* Forsyth, A. R., Theory of Functions of two Complex Variables, Cambridge University Press,

1914, pp. 206-209.

{X'V)=~Jb^=a[e~Í"Íra{
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in which the functions Qi, Q2, Q»' and H are continuous in x and 77, and

therefore uniformly continuous for 77 on T and x on the interval (a, b).

41. The application of Birkhoff's theorem.   From   formulas   (57a)   we

obtain now

1    r 2mri^SQM  ,   5Q'2(x)       8H(x,m)-]
V>m(x,v)  -   Wm(x,v)   = "-« b-a-1-1-

0 — a L m m m2       J

where

6Q(x) =Q(x,v) -Q(x,v),    etc.

It follows then that
00

(59)        [w0(x,v) - wQ(x,v)]zo(y,v) + JZ {wm(x,ii) - wm(x,l¡)]zm(y,v)
m_l

+ [w-m(x,7¡) - w-m(x,rj)]z-m(y,v)

A/-1

=   JZ      [v>m(x,ri) - wm(x,rj)]zm(y,v)
m—M+1

.x—y A     .*—y

oQi(x)   _, e      b-a — e        &-¿

b — a m-M m

-2mri?—-ç./-, //    \        00 —2mri-- 2n(Tj —
5Q2 (x)     ^    e b-a — e b-a

+ — 2-1
b — a   m^M m

1       -^ SH(x,m) • H(y,y,m)

b — a m=Af m2

Let us consider separately each of the series occurring on the right of this

expression. The first series is a finite sum which is small in numerical value

for 77 and 77 on T and |-»7 — 771 small. Also since H(x, 77, m) is uniformly bounded

in m, and is uniformly continuous in x and 77 for 77 on T and x on (a, b), it

follows that the last series converges uniformly in x and y to a value which

is numerically small for ¡77 — 771 small.

The second and third series may be written respectively in the forms
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Now series of the type 2[(sin mz)/m] are known to converge uniformly save

in the immediate neighborhood of z = 0, ±2tt, ±4ir, • • • , where, however,

the sum of any number of terms remains uniformly bounded.* It follows

that each of the series in question here converges to a value numerically

small because of the uniform smallness of the coefficients 8Qx(x), SQ2'(x)

for 177—771 small. Moreover when multiplied through by a continuous

function of x the series may be integrated term by term with respect to x,

and will yield in the case of the former a series which converges uniformly

îoi a^y^b, and in the case of the latter a series which converges uniformly

on any closed sub-interval of a<y<b, and of which the sum of any number

of terms remains bounded for aSySb. It is evident, therefore, that for a

properly chosen constant 5>0 and ¡77 — 771 ¿8, 77, íjonT, the convergence of

the series (59) fulfills the hypotheses of Birkhoff's theorem. We may con-

clude, therefore, that the set of functions wm(x, 77), zm(x, Tj) is closed if

the set wm(x, 77), zm(x, 77) is closed.

Let the curve T be divided now by points 770) such that

and let the number of divisions be s, so that t7(,) = 1. For t7(0) we have the

set of functions

1 •      .*—« 1 •      .*—»
(/\\ 2mx»- /      /\\ —2m«-»-
x,0) = e    '»-o ,      Zm(x,0) = e       »-.,

V» — a y/b — a

which is known to be closed. By an application of Birkhoff's theorem we

may conclude then that the set wm(x, tj0''), zm(x, 77*) is closed îor j = l,

and by successively repeated applications for_; = 2, 3, • • • , s. This last

application proves the closure of the set wm(x, 1), zm(x, 1). This, however,

implies that the relation

f um(x)f(x)dx =   f wm(x,l)eb~°l°s¿f(x)dx = 0
%/a Ja

can be true for all m only if

x-a     k,

eb-a°Sk,f(x)  = 0,

i.e. if f(x)=0. It follows from this, however, that the set um(x), vm(x) is

closed. This is the closure we wished to establish and hence we have the

following theorem:

* Cf., e. g., Jackson, D., Rendiconti del Circolo Matemático di Palermo, vol. 32 (1911),

pp. 257-262, and Bôcher, M., Annals of Mathematics, ser. 2, vol. 7 (1906), pp. 110, 111.
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Theorem 9. If the kernel of the given integral equation satisfies the condi-

tions (iv)-(viii), and that of the associated integral equation satisfies condition

(v), then the set of characteristic solutions um(x), vm(x) is closed.

Chapter 11. The non-existence of other characteristic

values or functions

42. The possibilities of omission. The deduction of a solution of equa-

tion (25a), and hence also the deduction of the characteristic values, was

based on the methods of Chapter 6. It is conceivable that other methods

might yield a different form of solution, from which either different charac-

teristic values or different characteristic functions or both might result.

We shall consider in turn the following questions:

(a) May there exist a characteristic value X and a corresponding solution

u(x)^0 which are not included in the sets Xm and um(x)?

(b) May there exist a characteristic function ü(x) 4^0 which corresponds,

say, to Xj, but is not identical with the u¡(x) found?

(c) May the characteristic function u¡(x) found correspond also to a

characteristic value X not identical with Xi?

Case (a). Suppose the value X and the function ü(x) mentioned under

(a) above to exist. From the biorthogonaUty of the solutions of associated

integral equations it follows that

b

ü(x)vn(x)dx = 0 (m = 0, ± 1, ± 2, • • • ).

Since the set um(x), vm(x) is closed, however, this demands u(x)=0.

Case (b). Suppose ü(x) is a solution which corresponds to the value Xj.

Then from the biorthogonaUty we conclude that

I   ü(x)vm(x)dx = 0, m 9e I.

If for m = l the integral also vanishes we may conclude as above from the

closure of the set um(x),vm(x), that û(x) =Q. If this is not the case we may

suppose the solution ü(x) normalized by multiplication with a suitable

constant so that

b

ü(x)vi(x)dx = 1.

Then, however,

f   {«(*) - u,(x)}vm(x)dx = 0       (m - 0, ± 1, - • • ),

.

.



632 R. E. LANGER [October

and from the closure of the set um(x), vm(x) it follows that

ü(x)= Ui(x).

Case (c). Suppose that the function u¡(x) corresponds to a characteristic

value X^Xi.  We have in this case

ui(x) = X/ j   K(x,Ç)ui(x)dx,
Ja

ui(x) = X  I K(x,£)ui(x)dx,

from which, since X —Xj^O,

.6

#(*,£)wi(£)d£ = 0.r
This, however, is impossible since wj(x) is a solution of the given integral

equation and u¡(x)^0.

It is seen, therefore, that there exist no characteristic values or functions

other than those determined in Chapters 8 and 9.

Chapter 12.   The expansion or an arbitrary function

43. The related differential system. The method by which the proper-

ties of the solutions um(x) for the expansion of an arbitrary function are to be

deduced is based on a suitable comparison of the set um(x) with the set of

solutions ym(x) of the differential system

(60) y'(x) - py(x) = 0,

*iy(o) - k2y(b) = 0.

This system is related to the given integral equation in that the constants

kx and k2 are those which occur also in the characteristic equation (45).

It is essential, therefore, to have at hand the expansion theorem for a

system of type (60). In a form which may be found by specialization of

results obtained by the author* for more general differential systems this

theorem may be stated as follows:

* Developments associated loilh a boundary problem not linear in the parameter, these Trans-

actions, vol. 25 (1923), pp. 155-172. If in the theorem there stated (p. 171) we set n = 1, ai(x) = 1

and change the dependent variable and the parameter respectively by the substutitions

._ —log-' 1 l k,
u(x) = y/b — a k\y(x) eb~a    *■, p =-log —,

X — a\        b — a k\
the system considered takes the form (60) above.
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If f(x) is any function which on the interval (a, b) consists of at most a

finite number of pieces, each real and continuous and having a continuous

derivative, then/(#) may be expanded in a series of the form

/(*)~  Z   f f(t)zm(t)dt ■ ym(x),
m—oo J a

where the functions ym(x) and zm(x) are respectively the normalized solutions

of system (60) above and its adjoint system. This series will converge to

5{/(*+) +/(*-)} for a<x<b, to (l/2ki){klf(a+)+k2f(b-)} tor x = a,

and to (l/2k2)\kif(a+)+k2f(b-)\ for x = b.
44. The function <p(x, £, p).   We consider now the function <p(x, £, p)

defined by the relation

(61) *(x¿,p) =  JZ [um(x)vm(Q - y«(*)»«(|)J.
m=—P

Its explicit form may be obtained from the solution of system (60), which

yields

1
ym(x)zm(%) =-«»»<-«,

b — a

and the formulas (54).  It is found in this way that for \m\ sufficiently large

1 it-
««(*)f-(Ö - ym(*)zm(Ü =-1-e'*<*-i> +-e-'mß-i

b — a \ m m

l    {Qi(x) - öi(Ö    _„ , Qt(x)
r

H(x,m)H(Í,m)      ft(ac) «»■<»->'

mí m

With the use, now, of the notation of Chapter 10, i.e.

2mvi 1 ki
Pm = --+ e,      e = --log — ,

b — a b — a        kt

and with the choice of a number M fixed and sufficiently large, we obtain

the formula

4

(62) *»(*,{,#) = <p(x,t,M) + 2ZUx,S,P),
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where

sin 2wir(-)
2»    , , A \b — a/

Mx,Z,P) =-{Qi(x) - Öi(£)}e*<*-i> ¿2 -
à — a m-jif+i m

sin 2m7Ti

Ux,Í,P) =f-^Q2(x)e->«-°>  ¿ -
o — a m=Af+i m

\b- a)

(63)                            *   H(x,m)H(Z,m)
tt(*,t,P) - 2- -:-'

m-M+1 W

sin 2w7T

^(^,£,í)=7^-e3(£)e9^-'  £
(^0

O m-Jtf+l f»

Now sums of the type S [(sin mz)/m] as already noted remain uniformly

bounded for all values of z. Since this is obviously true also of a sum

Z[.r7(z,m)/w2] we may conclude that

(64) | <p(x,t,p) | < A ( a constant ),

for all a; and £ on (a, b) and all p.

Let a and ß be chosen now as any two points of the interval (a, 6). We

have then from (62) for p>M

(65) f ?(*,£,¿)d£=   f ?(*,£,M)d£+ £   {**«(*,€,*)#.

It is our purpose to consider the convergence of this integral as p—*<x>.

The first term on the right is free from p and is clearly continuous over the

interval (a, b). It is likewise clear that the integral involving \p3 will con-

verge uniformly to a function which is continuous on (a, b). For the consider-

ation of the remaining terms we recall the fact, also noted previously, that

sums of the type 2[(sin mz)/m] converge for all values of z and do so uni-

formly except in the immediate neighborhood of z = 0, ±2ir, • • ■ . It follows

because of the integration involved that the integrals containing \¡/x and \pt

converge uniformly over the entire interval, and hence further because of

the continuity of the individual terms that the limiting functions are con-

tinuous over (a, a).

The integral containing ^4 is exceptional. The trigonometric sum in-

volved remains in this case unaffected by the integration, and while this

sum converges for all x it does so uniformly only over an interval which

does not extend to x = a, or x = b.   Hence the integral converges uniformly
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for a<ai = x = bi<b, and the limiting function is continuous only on the

open interval a<x<b.   We may write, then, upon collecting our results,

(66) lim       <p(x¿,p)di- = *(*)r" ^ ,„      ,, v uniformly for

ai = x = bi,

where $(x) is continuous for a<x<b.

45. The evaluation of <£(*).    Let f(x) now be the function defined as

follows :

/lfora^ x£ß,
f(x) = <

(0 for a = x < a and ß < x = b.

This function satisfies the conditions of the theorem in § 43 for expansibility

in terms of the solutions ym(x), whence we have

¿Z  f /(£)zm(£)<*£ -ym(x) = /(*),
m— oo Ja

where f(x) is bounded and differs from f(x) only in the points a, ß, a and b.

Inasmuch as
,o nß

f f(íMx,i,p)dt = f <p(x,ç,p)dz,
Ja Ja

we obtain with the use of (61) and (66) the result

*(*) =  Z   f /(Ö"«(Öaf • «»(*) -/(*).
m=— oo •/ a

Multiplying this equality by v¡(x) and integrating* it with respect to x

we find, since the set um(x), vm(x) is normalized biorthogonal, that

f *(x)vi(x)dx =   f f(t)vt(Qdt -   f f(x)vt(x)dx = 0.
•/a ** a va

Since this result may be derived for all values of /, whereas the set um(x),

vm(x) is closed, it follows that $(x) =0, a <x <b. The relation (66) now takes

the form

Cß uniformly for
(67) Urn       <p(x,Z,p)d£ = 0 I

r~*>J« il^ïi bi,

and this relation holds for all choices of the Umits a and ß on (a, b).

* From the character of the series as shown by the asymptotic forms of um(x), vm(x) this in-

tegration term by term is seen to be permissible.
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The properties (64) and (67), which have thus been established for the

function (p(x, £, p), are the hypotheses of a theorem by Lebesgue* in accord-

ance with which it follows that if f(x) is any function which is summable

over the interval (a, b) then

uniformly for

oi ^ x ^ bx.
(68) lim   f f(0<p(x,C,p)dZ = 0

P-.00 Ja

We defer the complete formulation of this result to the end of the chapter.

46. The evaluation of $(x) at the end points of (a, b). It was observed

in the derivation of (66) from (65) that the final term of (65) alone fails to

converge to a function which is continuous over the entire closed interval

(a, b).   Accordingly we have

]*—o r /»£ -ii—&

=     lim      Mx,t,p)dt
x=fc— L   p-*x> Ja Jx=b-

»(H)
2/   r"

-     <?,(£)# • e'w
— aJa

sin 2rm

£
>— m-iir+i m —'1=6-

In virtue of the discussion just completed, however, <p(a —) =0. On the other

hand the series on the right is, except for a finite number of continuous terms,

the Fourier expansion of the function ■jr(? — (x — a)/(x — b)). The value of

the bracket on the right is, therefore, readily found to be 7r/2. Substituting,

then, for Q3(£) its value as given by (53b), and for eHb~a) its value kx/k2, we

obtain the relation

*(*)=—("*i+^ r í(o#.
2k2 Ja

which reduces further because of (47) and (44b) to

(69a) <t>(b) =  f Í22(£)d£.
Ja

The function ß2(£) involved here is that which occurs also in the char-

acteristic equation (45).  It is found in an entirely similar fashion that

(69b) *(a) =  j Qi(&dS.

* Annales de la Faculté des Sciences de Toulouse, ser. 3, vol. 1 (1909), p. 52 and p. 68.
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Let the functions #>¿(£, p), i = l, 2, be defined now by the relations

Viti.P) =xp(a,i,p) -Qi(Q,

<Pi(i,p) = <p(b,t,P) -a*(Q.

It follows immediately from the bounded character of Bi(£) and fiz(£), and

from the relations (64), (66) and (69) that

\<Pi(i;,p)\<Ai (¿=1,2)

for all £ on (a, b) and all p, and further that

lim f <pi(t,p)dí = 0
P-*oo J«

for all choices of a and ß on (a, b).   By Lebesgue's theorem, then, we may

conclude that

(70) lim f f(Q<p&,p)dl = 0,
J>-«oo Ja

for every function f(x) which is summable over (a, b).

47.    The expansion theorems.   If we observe now that

f f(Q<p(xtS,p)di =   Z   f/(Ö»-(Ö# •«-(*)- ¿   Í f(Ö'm(Qd(.ym(x),
%J a m=~-p */ a m=—pva

we may formulate of the results embodied in the relations (67) and (69)

as follows.

Theorem 10.   If f(x) is any function which is summable over the interval

(a, b), and if Fip(x) and F2p(x) are the corresponding sums

Fip(x) =   É   f /(£K(£)<*£ • «»(*),
m=— p va

FtP(x) = JZ f/(Ö*«(ÖaE-y«(*),
m—p va

where um(x), vm(x) are respectively the normalized solutions of the given integral

equation and its associated equation, and ym(x), zm(x) are respectively the

normalized solutions of the related differential system (given by (60) above) and

its adjoint system, then
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uniformly for
lim [Fip(x) - F2p(x)] = 0 J       '\
„■.» o < ax S x g »i < b,

lim [Flp(a) -F2j)(a)] =  f /(£)Ûi(£)d£,
J>-»00 "O

lim [FXp(b) -F2p(b)] =   f /(£)ß2(£)d£.
J>-^o »'o

The functions Í2i(£) and ß2(£) are determined by the integral equation and are

independent of the function f(x).

A more explicit but less general formulation becomes possible if we

utilize the known expansion theorem for the related differential system as

given in § 43.  Thus we may state

Theorem 11. If f(x) is any function which on the interval (a, b) consists

of at most a finite number of pieces, each real and continuous and having a con-

tinuous derivative, thenf(x) may be expanded in a series of the form

f(x)~ Z   f/(£K(£)d£ •«„(*).
m——oo J a

This series converges to

*{/(* + )+/(*-)} fora<x<b;
to

•0

—- {kxf(a + ) + k2f(b - )} +   f /(£)«i(£)d£        forx = a;
2kX Ja

- {kxf(a + ) + k2f(b - )\ +  f /(£)íM£)d£        forx = b.
ki Ja

to

2k

Appendix. An example

It is of interest to apply the preceding theory to a specific example par-

ticularly because of the fact that the theory demands in Chapters 8 and 11

that the ratio kx/k2 and the functions tix(x) and Q2(x) be independent of the

parameters p and v. We consider therefore the integral equation

u(x) = X f #(*,£)«(£)d£,
Jo

where

Klx.ï) m {
U2£2 + 1 for * < £.

*(    A      (**? + 2 for*££,
K(x,£) = <
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The equation is in normal form, and computing the various functions by the

respective formulas we find readily

A = m2 + (64 + 3)p* + 2„2,

W(x) = 2v + li(b2x2+ 1),

F(£)=p + v(62£2 + 2),

2(u + 2v)
E(x,0 = -^—-- [(m + v)x2 - vb2]t,

A

(/1 + í,)[(2-¿4)p + (4+204>]
D =-,

2A
- E(x,£)

D
- 8Qi + 2i>)«{

(2-i4)/i + (4 + 2&4)/

862s

(2 - í4)m + (4 + 2b*)v '

2ô4[2p+ (4 + ¿>4)»]

(2 - ¿4)/x + (4 + 2Ô4)/

(2 + 64)(M + v)

D

(2 - Ô4)(M + v)

fV(£)„
Jo

F(*,& =

f(*,& =

<p(x) =

(Ö« =

¿i =

&2 =

2Z?

The ratio ki/k2 is thus free from ¡i, v, having the value

ki _ 2(2 + Ô4)

kt ~    2-b*
Further we find

rb - 2b2x(n + v)
V'(x)+ I   V(t)f(t,x)dt =-^-L,

Jo D
whence

b2x
Slx(x) =-,

2 + 64

,   x - 2b*X
n2(x) =-

2 - 64

These values are thus also free from p and v as they should be.

Dartmouth College,

Hanover, N. H.


