
ON THE MOMENTAL CONSTANTS OF A
SUMMABLE FUNCTION*

BY

R. E. LANGER

I.  Introduction

The definition of the momental constants vn of a summable function

f(x), and the first deductions concerning their relations with the generating

function/ were given by Haskins in 1916.f Proofs were supplied by both

JacksonJ and Van Vleck§ for the fundamental theorem enunciated by

Haskins concerning these constants. Van Vleck, moreover, by his defini-

tion and use of the "measure function" showed the existence of a rela-

tion between the momental constants of any one function and the moments

of another associated with it.

The point of view maintained in the papers cited is roughly this : given

a function/(x) (or a pair of functions/(x) and <p(x)), to determine certain

of its (or their) characteristics by a study of the set (or sets) of momental

constants. The problem dealt with in the present paper is on the other

hand that of deducing a set of necessary and sufficient conditions that an

enumerable set of constants be momental constants, the generating function

to be defined on an arbitrarily chosen interval and to possess certain speci-

fied characteristics.

Section II in the following contains the deduction of certain necessary

conditions. In Section HI the sufficiency of these conditions is established.

This end is attained by drawing upon Stieltjes' classic solution of the

"problem of moments," and constructing theoretically through its use a

function having the given constants as its momental constants. The function

so derived is monotonie and as such is a typical representative of its class

under Haskins' classification of summable functions. For the basis of this

classification and for a statement of the significance of the momental

constants the reader is referred to the original paper by Haskins. ||

II. The deduction of certain necessary conditions that a

set of constants be momental constants

1. Introduction. In this section a function/(x) of specified character

is considered and certain relations satisfied by its momental constants are

* Presented to the Society, February 28, 1925; received by the editors in January, 1925.

t These Transactions, vol. 17 (1916), p. 181.

Î These Transactions, vol. 17 (1916), p. 178.

§ These Transactions, vol. 18 (1917), p. 326.

Il Loc. cit., pp. 185 and 194.
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deduced. These relations are independent of the choice of /(x), subject

only to the enumerated specifications. Hence they constitute conditions

which must necessarily be fulfilled by any set of constants if they are to

be the momental constants of a function of the kind in question.

2. Character of functions considered. Suppose given any function

f(x) possessed of the following characteristics :

(.4) it is a real, singled-valued function of the real variable x, defined

at every point of an interval a = x = b ;

(B) it is integrable in the sense of Lebesgue over the interval (a, b) ;

(C) it has on the interval (a, b) a finite upper measurable bound H*

and a finite lower measurable bound h.

3. The momental constants. The hypotheses (B) and (C) imply the

summabiUty over (a, b) of the functions {/(x)}" for all non-negative in-

tegral values of «.   It is assured, therefore, that the constants

(1) vn= — f {f(x)}ndx (n = 0, 1, 2,  • • • ) ,
b—aJa

exist. They are by definition the momental constants of f(x) on (a, b),

and it is to a deduction of relations satisfied by them that we proceed.

4. A first necessary condition. Setting « = 0 in (1) we obtain the

fact that

(a) vo = 1 .

5. A second necessary condition. From hypotheses (A) and (C) it

follows that the function {/(x)} is non-negative and is possessed on (a, b)

of a finite upper measurable bound. As such it fulfils the hypotheses of a

theorem by Haskinsf which asserts for the case in hand that if pn is the

«th momental constant of {/(x)} and if L2 is the upper measurable bound

of {/(x)} then lim,,^ p„/pn-i = L2. Inasmuch as the substitution of \f(x)}2

for/(x) in (1) is equivalent to the substitution of 2« for «, it is clear that

Pn = vtn.  We have, therefore, as a second result

The constant L2 is readily seen to be identical with the larger of the two

numbers H2 and h2.

* For the definition of the measurable bounds see Haskins, loc. cit., p. 184.

t Loc. cit., p. 188.
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6. Deduction of a relation between the momental constants and Stieltjes'

moments. For use in the further deductions let the function F(x) be

defined by the identity

(2) f(x)+LmF(x).

Since L ^ | h \, the lower measurable bound of F(x) on (a, b) is positive

or zero.   It is with the purpose of introducing such a function to replace

f(x) in our considerations that the substitution (2) is made.

By virtue of relations (2) and (1) we have now

"n=— f {F(x)-L\ndx,
b — aJa

or, upon expanding the integrand,

(3) Vn=~ ± (;) (-LyfjF(x)ridx.

The Lebesgue integrals in  this  expression  may  be   transformed   into

Stieltjes' integrals by the following method due to Van Vleck.*

The identical relation

(4) 4>(y)*smE(F(x)£y)\

defines a real single valued function of the real variable y which is known

as the measure function of F(x). It is seen to measure the distribution of

the functional values of F(x) over the range  — oo <y<».    Now

w£(F(x)<0) = 0 , and mE(F (x)>H+L) =0 .t

The structure of the Lebesgue integrals in question is, therefore, explicitly

given by the formulas

X
B+L

dim Yi mE(yi-i<F (x)£yi)+mE(F (x) = 0) ,for; = 0,

= lim £ y'.mE(yi-X<F(x)^yi) , forj=l , 2 ,
o

* Loc. cit., p. 327.
f The difference between this formula and Van Vleck's is accounted for by the fact that he

considers only bounded functions while here F(x) is not so restricted.

X From the definition of the measurable bounds.
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Since the element under the sign of summation in terms of the function

yp(y) is precisely

y'iW (yù-t (y*-i)} -yt&<1> (y)
we have the identities

fH+L

b f=J       dyp(y)+yp(0) ,ÍOTJ = 0,

(5)   J> (*)}'-*]      '
U I       yW(y) ,for/=l, 2,   •   •   •   .

»'O

From (4), yp(y) is seen to be a monotonie non-decreasing function.

It may be considered, therefore, to define a distribution of mass over the

positive axis of y, the value yp(y) representing for any y the mass on the

interval (0, y). Denoting by c, the/th moment of this distribution about

y = 0 we have, since yp(y) is constant for y>H+L,

(+(f+L), for; = 0,

<6) e'")J**V-¥(y), for y-1,2,

The substitution of (6) into (5) and (3) produces the relation

(7) Vn = lrÍ-   Z   (")   (-LVCn-i  .
o — a ,_o \J/

On the other hand the substitution of (2) into (5) and the expansion of the

result yields in virtue of (6) the inverse relation, namely

(8) c„= (b-a) 2Z lj-\L\n-j

By means of formula (8) any relation subsisting between the constants

c„ may be translated into a relation fulfilled by the constants vn. The

following deduction of such a relation was given (except for small modifica-

tions) by Stieltjes.*

7. Relations satisfied by Stieltjes' moments.    The quadratic form

P*,«= I       r{Tu+yTl+ •   ■   ■+ymTm}dp(y)+50,pyp(0)fli,
Jo

* Annales de la Faculté des Sciences de Toulouse, vol. 8 (1894), p.  J21, or CEuvres

Complètes, vol. 2, p. 422.
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*B+L

y+i+idHy)+8o.pHO)Tù,

in which 5o.p = 0 for p^O and S0,o= 1, is expressible alternatively in the forms

J-E+L m
v £ TiTjy'+'diKy) +Í0.-*(0)ZÍ

0 »,;«Q

m a

»,,_o Jo

or by virtue of (6) in the form

m

rp,m =    ¿_, Cp+i+jl il j.

i,j~0

From the first expression for Fp,m above it is clear, however, that the form

is positive definite. Consequently its determinant is positive, and reading

this determinant from the last expression given we have

(9) DP.m =

Cp C p-|-1

Cp+l Cp+2

Cp+»

Cp+n

Cp+2m

>0

This result obviously holds for p and m any positive integers or zero.   It

holds then in particular for p = 0 and p = l*

8. Further necessary conditions on the vn. The substitution from (8) in

(9) yields a further relation among the momental constants vn. To facilitate

the reduction of this relation we shall use in place of formula (8) an equiva-

lent symbolic form obtained as follows. Comparing the sum in (8) with the

polynomial (u+L)" it is seen that the former may be obtained from the

latter by replacing each power of u by the constant v with the corresponding

subscript, i. e. by replacing m' by vt, i = 0, 1, 2, • • • . If it is agreed to

indicate that this change is to be made in a given polynomial by enclosing

in brackets,  [ ], we may write (8) in the form

(10) cn=(b-a)[(u+L)"].

* The converse, namely, if Do,™ and A,™ are positive for m = 0, 1, 2, • • • then Dp¡m is positive

for all non-negative integral values of p and m, is not required in the reasoning of this paper. It can

be shown, however, by the use of the determinant formula (8) page 26 of H. Weber's Lehrbuch der

Algebra, Klein Ausgabe, Braunschweig, 1921.
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Substituting from (10) in the determinant of (9) for p = 0 and removing

the factor (b — a) from each row we obtain the form

(11) ->•.«-(i-a)"+l

[1]        l(«+£)l
[(u+L)}   [(u+L)2]

[(u+L)2]

[(u+L)«]

[(«+£)-]

[(u+L)2"]

This may be simpUfied by replacing the jth column successively for

j*=m+l, m, - - ■ ,2, by the combination [column j — column (j — 1)].

Because of the relation

[w(u+Ly]-L[w(u+L)r-l]=[u'+l(u+L)r-1],

which is easily verified, the net result of the operation is to replace in each

element of the columns operated on one factor (u+L) within brackets

by a factor u. A repetition of the operation in obvious fashion on both

columns and rows ultimately results in replacing all factors (u+L) in this

way.   Dropping the symbolism and setting

Am = D0,m/(b-a)m+i

we have the result

va vi

Vl v2

vt

Vt Vm

l>2»

Again, substituting from (10) in the determinant of (9) for p = 1 we ob-

tain the form

(12)      Di,m=(b-a)^

[(u+L)]     [(u+L)2]

[(u+L)2]     [(u+L)3]

[(«+£)-«l

[(u+L)«*1]

[(«+L)2«+l]



174 R. E. LANGER [January

The same sequence of operations as was resorted to in the preceding case

reduces this to the form

Z?i.m=(ô-a)m+1

[(u+L)]      [u(u+L)]

[u(u+L)]     [u2(u+L)]

[u«(u+L)]

[u*(u+L)]

[«*" («+£)]

A further reduction is attained by replacing this (m + 1)-rowed determinant

by an equivalent one of (m+2) rows, namely by

Di.m=(b-a)m+1

1 0                 0

[1] [(u+L)]   [u(u+L)]

[u] [u(u+L)]

W]

[um]  [um(u+L)]

[«-(«+/.)]

[u2"(u+L)]

Performing now once more on the columns successively for/= 2, 3, • ■ • ,

(m+2), the same operation as was previously employed results in re-

placing the remaining factors (u+L) by u. Dropping the symbolism and

setting

Bm=Di,m/(b-a)^

we have

Bm =

1 (-L) (-L)2

Vo Vl              Vl

Vi Vl

Vi

(_£)m+l

Vm+1

»"2in+l

Since Am and Bm differ from the positive determinants Do,„ and Di,m

respectively only by the positive factor (b — a)m+1 we have as a third rela-

tion

(c) An>0,   Bm>0 (m = 0, 1,2,  •   •   •)•
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Relations (a), (b), and (c) together comprise a set of necessary con-

ditions on any set of constants vn if they are to be the momental constants

of a function possessed of properties 04), (B), and (C).

III.  Proof of the sufficiency of the set of conditions deduced

9. Introduction. In this section an enumerably infinite set of constants

vn satisfying the relations (a), (b), and (c) will be assumed as given, to-

gether with an interval a g x ^ b for the real variable x. A function f(x)

defined on (a, b) and possessing the vn as its momental constants will be

constructed, and it will be shown that this function is possessed of the

characteristics (A), (B), and (C). With the success of this procedure the

sufficiency of the conditions imposed upon the constants vn is established.

10. Hypotheses concerning the constants vn. Suppose given the set of

constants vn, satisfying the relations

(a) »'0=1,

(b) lim^-=L2,
„-»oo V2n-i

(c)

Vo    vx

V\    v2

v2    ■

>0,      Bm =

1  (-L)

Vo        Vl

vx     v2

(-L) m+l

Pm+l

•^m+l

(m = 0, 1, 2,

>0

•)

11. Introduction of a related set of constants. Consider first the condi-

tions (c). The reverse of the operations through which the forms Am and

Bm were deduced in the preceding section show these determinants to differ

only by a positive factor respectively from the determinants D0,m and Dx,m

as given by formulas (11) and (12). Let the new set of constants cn (» =

0, 1, 2, • • • ) be defined now by means of formula (8), namely

Cn=   (b-a)   2_    (jjL'Vn-i,

or its equivalent (10),

Cn=(b-a)[(u+L)»]
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The steps following the derivation of the relation (9) in the preceding

chapter are now reversible. Retracing them, the conditions (c) on the set

of constants vn are found to be equivalent to the conditions

(13)

Co     Ci

Ci       C2

C2

C2„

>0,

Ci       c2

C2 C3

c3

Cm+1

Cm+1

C2m+1

>o,

on the constants of the associated set c„.

12. Outline of Stieltjes' solution of the problem of moments. The con-

ditions (13) on a set of constants are famiUar ones. Stieltjes showed* that

when they are fulfilled then the series

Cn Ci C2

is the formal expansion of a continued fraction of the type

1        1 1
-+ — + — + •   •   •   ,
a\Z       Û2       a3z

with positive coefficients a,. On the other hand he showed how the con-

vergents of such a fraction may be utilized in the construction o a sequence

of functions <p„ (y) from which an associated function f>(y) may be de-

termined. The existence of this function solves the "problem of moments,"

for it follows from its mode of derivation first that <f>(y) defines a distribu-

tion of mass in the manner of yp(y) in the preceding section and second that

fJo
ynd$(y) = Cn (« = 0,1 ,2, )•

Two cases are distinguished by Stieltjes in his deductions. Under the

conditions (13) the ratio cn+\/cn increases with «.f He showed that when

it approaches a finite limit the function $(y) is determined uniquely save

for its values at its points of discontinuity. In the alternative case there

are infinitely many such functions.

* Loc. cit., A n n a 1 e s, p. Jl, Œuvres p. 402.

f This can be shown as follows: By the footnote on page 172,conditions(13) imply that ZJn,o>0,

A>+i,o>0, and A,,i>0 for all positive n. Hence r>„,i/(A>,oA.+i,o)>0, that is, c+j/c+^c+i/c«.



1926] MOMENTAL  CONSTANTS 177

We shall not distinguish at this time between the two cases, but shall

summarize those of Stieltjes' results which are of importance for the purpose

before us as follows. Given any set of constants e„ satisfying the conditions

(13), there exists at least one function <ï>(y) which

(i)       is defined and single valued for 0 ^ y < °o,

(ii)      is monotonie non-decreasing,

(iii)     vanishes at zero, i. e. i>(0)=0,

(iv)     satisfies the relations

Jo
y«¿4>(y) = c„ (n = 0, 1,2,   •   ■   •)

13. The function \p(y). The properties enumerated restrict the discon-

tinuities of 4>(y) to occur in the points of an enumerable set.* Because of

this the values taken on by $(y) at its points of discontinuity (excepting

the point y = 0 if it is among them) may be changed at pleasure without

affecting the integrals in (iv). In particular the value at every such point

may be made equal to the right hand limiting value, i. e.

4>(y)= hm $(y+i)
«-•o
«>o

We shall suppose this to have been done, and since this alteration is to be

made at y = 0 also, if $(y) is discontinuous there we shall denote the new

function so obtained by ^(y). Obviously \[i(y) is possessed of properties

(i) and (ii).  In place of (iii) and (iv) it has the characteristics that

(iii)' it is non-negative, i. e. ^(0)^0,

(iv)' it satisfies the relations

J-»oo
¿iKy)+iK0)=c0,

0

J«Q0
ydHy)=Cn (»=i,2, • • •)•

0

In addition we have by construction that

(v) it is continuous toward the right.

14.   A   lemma.     The end toward which our deductions point is the

construction of a suitable function of x.   The following lemma is to serve

as a basis upon which such a function may be derived from the $(y) at

hand.

* See Stieltjes, loc. cit., chap. vi.
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Lemma.   Given a function w(y) which is

(a) defined and single-valued for O ̂  y < °o or O^y^Y,

(ß) monotonie non-decreasing,

(y) non-negative on its interval of definition,

(S) continuous to the right, i. e.

w(y)= lim w(y+e) .
«-•o
«>o

Then if M(x) is the measure function of u(y), conversely w(y) is the measure

function of M(x).
The function œ(y) has 0 as a lower bound, whence, by the definition of

the measure function for the case in hand,

(14) M(x)mmE,(Oûu(y)£x).

The subscript (y in this case) is appended to the E to assist one in follow-

ing the reasoning. It denotes the axis along which the point set in question

is measured. It is clear from the identity (14) that every measure function

is possessed of the properties (a), (ß), (y), and (S) as enumerated above.

If we denote the measure function of M(x) by ü(y) we have accordingly

(15) Q(y)**MEx(0£M(x)£y) .

Moreover, Í2(y) will have the properties (a), (ß), (y), and (ô) in common

with w(y). We wish to show that fi(y)=w(y). Because of the right-handed

continuity of both functions it will suffice to show that their values are the

same at every point at which co(y) is continuous. We shall consider separately

the cases when y is a value at which a>(y) is increasing and when y is a value

at which w(y) is stationary.

Case 1.   Let y = yi be a point at which (i) w(y) is continuous, and (ii)

co(y) is increasing, i. e.,

co(yi)<co(;yi-f-e) for every e>0 .

By hypothesis w(y) is defined at every point of the interval O^y^yi.

Moreover it is monotonie and non-negative.   It follows that

(16) mEy(0=w(y)u(*(yi))=yi .

Defining Xi by the relation xi = w(yi) and comparing (16) with (14) we see

that

(17) ifxi = co(yi),   then   M(x/)=yi.

Now since w(y) is continuous and increasing at the point y = yi, a small

increase in yi is correlated with a small increase in co(yi), namely in xi.
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Because of the relation Af(xi)=yi from (17) this means that M(x) is con-

tinuous and increasing at x = Xi.

Proceeding, one sees from (14) that M (x) is defined at every point of the

interval O^x^xi. Inasmuch as it is also non-decreasing and non-negative

the reasoning which leads from (14) to (17) may be applied again and leads

from (15) to the fact

(18) ifyi = Jlf(xi)    then    ü(yx)=xx .

In consequence of (17) and (18) we have

Í2(yi)=íü(yi) .

Case 2. Let y be a point in which co(y) is continuous but stationary, i. e.

w(y)=ü)(y+e)    for    0^t<5 .

In this case w(y) is constant throughout an interval, namely

ü>(y)=E#i   for   yi^y<y2 •

From formula (14), then,

M(xx-0) = mEy(0^u(y)<xx)=yx ,

while
M(xx) = mEy(OSo>(y)^xx)=yi .

The function M(x) is seen to be discontinuous in x = Xi. It takes on no values

lying between yx and y2 and hence

(19) mEx(O^M(x)^y) = mEx(d^M(x)^yx) ,

when yi^y<y2. But since M(x) is defined for every x on the interval

O^x^Xi, and is non-decreasing and non-negative, the right hand member

is simply Xi. The left hand member on the other hand is ü(y) by (15).

Hence (19) yields Q(y) =xx for yx^y<y2. This together with the hypothesis

of Case 2 gives

Ü(y) = co(y) , for yi = y<y2 .

This concludes the proof of the lemma.

15. Application of the lemma. Returning now to 4>(y), let its measure

function be constructed and denoted by F(x). This function is defined on

the interval 0^x = ^(oo). But the properties (i), (ii), (iii)' and (v) of \fi(y)

are precisely the properties (a) to (5) of the hypothesis for u(y) in the lemma.

It follows then by the lemma that ^(y) is in turn the measure function of
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F(x).    By the reasoning employed to estabUsh the relation (5) we may

deduce then that

r(oo)[F(x)]ndx

= f dp(y)+yp(0) ,  for« = 0,
Jo

J->00
y"dp(y) , for »=1, 2 ,   •

o

But because of the property (iv)' of yp(y) the right hand expressions for any

» are precisely c„. Since (iv)' yields also yp(<*>)=Co, it follows that the

function F(x) constructed in the manner shown satisfies the relations

(20) (°{F(x)}ndx=Cn (« = 0,1,2,   •   •   •)•
Jo

16. Construction of the function f(x) having the vn as its momental

constants. Formula (8) defines the constants c„ in terms of the constants

vn. The inverse relation is given by (7), and substituting in this the value

of c„ as given by (20) we obtain

*.«— i(%-Lyr{F(x)ridx,
b — a ,=o \J/ Jo

that is,

(21) «-»- —   C\F(x)-L\ndx
b — a Jo

From (8) and hypothesis (a) we have, moreover, c0=(b — a), which sub-

stituted in (21) shows the interval of integration to be from 0 to (b — a).

This is changed to the given interval (a, b) by further setting

x' = x+a ,
(22)

F(x)-L=f(x') .

Upon dropping the primes on the variable of integration the resulting

expression becomes

"n=-^   f{f(x)\'dx.
b — a Ja

The function f(x) therefore has the given constants vn as its momental

constants on (a, b).   The characteristics of f(x) remain to be determined.

17. The properties of f(x).   A review of the mode of derivation given

readily shows that f(x) is possessed of the characteristics (^4) and (B)
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enunciated at the beginning of this section.    Further, we have by hypo-

thesis (b) that

„-.00   V2n-2

But v2n is the wth momental constant of the non-negative function {/(x) }2.

It follows by Haskins' theorem* that {/(x)} has the upper measurable bound

L2, and hence that the measurable bounds of f(x) are restricted from ex-

ceeding in absolute value the constant L. The function f(x) is, therefore,

also possessed of the property (C).

Summarizing our results we have the

Theorem. The conditions (a), (b), and (c) enunciated above are both

necessary and sufficient that the enumerable set of constants vn be the momental

constants of a function possessed of the properties (A), (B), and (C).

IV.  Concluding remarks

18. Introduction. With the result of the preceding section the prin-

cipal problem of this paper is solved. It is clear, however, that the pro-

cedure of Section III besides constituting a proof of the sufficiency of the

conditions on the vn, embodies also a theoretical method for the construction

of a non-decreasing function which is continuous on the right and has the

Vn as its momental constants. The uniqueness of this function may be shown

as follows.

19. The uniqueness of the solution. The measurable bounds of/(x) on

(a, b) do not exceed in absolute value the constant L. Hence the measur-

able bounds of the function F(x) in (18) are restricted to lie on the range

from 0 to 2L. This implies, however, that $(y), the measure function of

F(x), is constant for y^2L, or in other words that the distribution of

matter defined by it is confined to a finite interval. But it was shown

by Van Vleckf that under these conditions the ratio c„+i/cn approaches

a finite limit. This is the distinguishing characteristic of Stieltjes' deter-

minate case, namely the case in which <£(y) is unique save for its values

in the points of discontinuity. The function \¡/(y) satisfying the conditions

enumerated in Section III is, therefore, unique.

Suppose now that/2(x) is distinct from/(x) but shares with it the prop-

erties that its momental constants are vn and that it is non-decreasing and

continuous toward the right. Because of the last named property the points

in which f(x) and f2(x) are distinct comprise a set of positive measure.

* See note on page 169.

f Loc. cit., p. 330.



182 R. E. LANGER

Hence the related functions F(x) and ¿^(x) will also differ on the points

of a set of positive measure and it follows that their measure functions yp(y)

and yp2(y) are not identical. Since they share the properties enumerated for

yp(y) in Section III this is in contradiction with the uniqueness of \p(y) already

shown. The hypothesis that/2(x) and/(x) are distinct is, therefore, untenable.

If the requirement of right handed continuity is dropped the uniqueness

of f(x) at its points of discontinuity is lost, for an alteration of the values

of f(x) at these points need not impair its non-decreasing character and will

not affect its Lebesgue integral. Otherwise, however, f(x) remains deter-

mined and hence the deductions made constitute a new proof of the fact

observed by Haskins and first proved by Jackson,* namely that the non-

decreasing function with given momental constants is determined uniquely

save at the points of an enumerable set.

20. A means for obtaining the typical representative of a class of sum-

mable functions. One further observation may be made, namely, if/(x)

is a bounded summable function and belongs to a certain class C under

Haskins' classification,! then /(x), the measure function of the measure

function of f(x), also belongs to C and is a typical representative of that class.

The proof of this is immediate. If H and h are the bounds of/(x), and

M(y) is its measure function on (a, b), then

f {](x)\"dx=  fByndM(y)+hnM(h)

By definition/(x) is the measure function of M(y), and since M(y) satisfies

the hypotheses of the lemma in Section III (a fact which is easily verified)

it follows that M(y) is in turn the measure function of f(x). We have, there-

fore, also

f {f(x)}"dx= fBy»dM(y)+hnM(h) ,

that is,

Ç\f(x)Ydx^Ç\f(x)Ydx,

i. e. /(x) has the same momental constants as/(x), and so is a member of

the class C. Being a measure function, however, f(x) is non-decreasing.

This completes the proof.

* These Transactions, vol. 17 (1916), p. 179.

t See last foot note on page 168.
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