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COMMON OPERATOR PROPERTIES

OF THE LINEAR OPERATORS RS AND SR

BRUCE A. BARNES

(Communicated by Palle E. T. Jorgensen)

Abstract. Let S and R be bounded linear operators defined on Banach
spaces, S : X → Y , R : Y → X. When λ 6= 0, then the operators λ − SR
and λ − RS have many basic operator properties in common. This situation
is studied in this paper.

Introduction

It is a well-know and useful result that when A and B are elements of a Banach
algebra, then

σ(AB)\{0} = σ(BA)\{0}
([BD, Prop. 6, p. 16], [R, Lemma (1.4.17)], [P, Prop. 2.1.8]). Here σ(A) denotes
the spectrum of A. The case where the Banach algebra is B(X), the algebra of all
bounded linear operators on a Banach space X , is of special interest.

More generally, let both X and Y be Banach spaces, and let S : X → Y and
R : Y → X be bounded linear operators. Again, it is known that

σ(SR)\{0} = σ(RS)\{0}.
Here RS ∈ B(X) and SR ∈ B(Y ). In this paper we study this situation, showing
that, in fact, for λ 6= 0, λ − SR and λ − RS have many basic operator properties
in common (for example: λ− SR has closed range if and only if λ−RS has closed
range). Throughout we assume that X , Y , S, and R are as stated above.

For T ∈ B(X), let N (T ) denote the null space of T , and let R(T ) denote the
range of T .

1. Spectrum

Let A and B be elements of a ring with unit I. We recall some notation: A◦B =
A + B − AB; I − (A ◦ B) = (I − A)(I − B). When A ◦ B = B ◦ A = 0, then B
is the unique element with this property. In this case we write B = Aq. Thus,
(I −A)(I −Aq) = (I −Aq)(I −A) = I, and so (I −A)−1 = I −Aq.

We have the following known basic computation (which holds in a ring with
unit). Of course, the computation holds with the roles of R and S reversed.
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Proposition 1 (The basic computation). For any W ∈ B(X), let

V = S(W − I)R ∈ B(Y ).

(1) (SR) ◦ V = S((RS) ◦W )R; and
(2) V ◦ (SR) = S(W ◦ (RS))R.

We verify (1):

(SR) ◦ V = SR+ S(W − I)R − SRS(W − I)R = S[I + (W − I)−RS(W − I)]R

= S[W +RS −RSW ]R = S[(RS) ◦W ]R.

Suppose that I − RS is invertible in B(X), and set W = (RS)q ∈ B(X). Thus as
remarked above, (RS) ◦W = W ◦ (RS) = 0. Define V ∈ B(Y ) as in Proposition 1,
so by that result, (SR) ◦ V = V ◦ (SR) = 0. Therefore V = (SR)q, and I − SR is
invertible in B(Y ). From this it follows that:

σ(SR)\{0} = σ(RS)\{0}.
We will show later in this section that similar equalities hold for all the usual parts
of the spectrum. Note that Proposition 1 also implies:
I − SR has a left (right) inverse if and only if I −RS has a left (right) inverse.

Proposition 2. (1) S(N (I −RS)) = N (I − SR);
(2) N (S) ∩ N (I −RS) = {0}.

Proof. Statement (2) clearly holds. Assume x ∈ N (I − RS), so RSx = x. Then
SRSx = Sx, and thus, S(N (I − RS)) ⊆ N (I − SR). To verify the opposite
inclusion, suppose y ∈ N (I − SR). Arguing as above, we have

R(N (I − SR)) ⊆ N (I −RS).

Therefore, Ry ∈ N (I −RS). Then y = SRy ∈ S(N (I −RS)). This proves (1).

We use σp, σap, σr, and σc to denote the point, approximate point, residual, and
continuous spectrum, respectively.

Theorem 3. (1) σ(RS)\{0} = σ(SR)\{0};
(2) σp(RS)\{0} = σp(SR)\{0};
(3) σap(RS)\{0} = σap(SR)\{0};
(4) σr(RS)\{0} = σr(SR)\{0};
(5) σc(RS)\{0} = σc(SR)\{0}.

Proof. As noted previously, (1) follows from Proposition 1. Also, (2) is an imme-
diate corollary of Proposition 2 (1).

Now assume λ ∈ σap(RS)\{0}. This means there exists {xn} ⊆ X , ‖xn‖ = 1 for
all n, and ‖(λ−RS)xn‖ → 0. Therefore, ‖(λ− SR)(Sxn)‖ = ‖S(λ−RS)xn‖ → 0.
Also, ‖Sxn‖, n ≥ 1, is bounded away from zero, for if not, ‖Sxnk‖ → 0 for some
subsequence {xnk} of {xn}. But then,

|λ| = |λ|‖xnk‖ ≤ ‖(λ−RS)xnk‖+ ‖RSxnk‖ → 0,

a contradiction. This proves λ ∈ σap(SR).
(4): λ ∈ σr(RS)\{0} means exactly that λ 6= 0, λ /∈ σp(RS), and R(λ−RS)− 6=

X . We use T ′ to denote the adjoint of an operator T . We have N (λ − S′R′) =
N (λ − (RS)′) 6= {0}. By Proposition 2 (1), N (λ − (SR)′) = N (λ − R′S′) 6= {0}.
Therefore N (λ− SR)− 6= Y , and so λ ∈ σr(SR).
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(5):

σc(RS)\{0} = σ(RS)\[σp(RS) ∪ σr(RS) ∪ {0}]
= σ(SR)\[σp(SR) ∪ σr(SR) ∪ {0}] = σc(SR) ∪ {0}.

2. Closed range

Recall that I −RS has pseudoinverse (or generalized inverse) I −W means that

(I −RS)(I −W )(I −RS) = (I −RS).

The existence of a pseudoinverse for I −RS implies that R(I −RS) is closed (and
more) [TL, Theorem 12.9, p. 251].

Theorem 4. I−RS has a pseudoinverse if and only if I−SR has a pseudoinverse.

Proof. Assume I −RS has pseudoinverse I −W (as above). Let V = S(W − I)R.
From Proposition 1 we have

(I − SR)(I − V ) = I − (SR) ◦ V = I + S[−(RS) ◦W ]R

= I + S[(I −RS)(I −W )]R − SR.

Thus,

(I − SR)(I − V )(I − SR)

= I + S[(I −RS)(I −W )]R− SR− SR− S[(I −RS)(I −W )]RSR+ SRSR

= I − 2SR+ SRSR+ S[(I −RS)(I −W )(I −RS)]R

= I − 2SR+ SRSR+ S[I −RS]R = I − SR.

Note that the argument in the proof of Theorem 4 is completely algebraic, so
the result holds in any ring with unit.

Let T ∈ B(X). Equip X/N (T ) with the usual quotient norm. A standard
condition which is equivalent to R(T ) being closed is:

there exists a bounded linear operator M : R(T ) → X/N (T ) such that

MTx = x+N (T ) for all x ∈ X.

Theorem 5. R(I −RS) is closed if and only if R(I − SR) is closed.

Proof. Assume I −RS has closed range Z. Write (I −RS)∼ : X/N (I − RS) → Z
where (I − RS)∼(x + N (I − RS)) = (I − RS)x. There exists a bounded linear
operator

L : Z → X/N (I −RS)

such that for all x ∈ X ,

L(I −RS)∼(x+N (I −RS)) = x+N (I −RS).

Define S̃ : X/N (I −RS) → Y/N (I − SR) by

S̃(x+N (I −RS)) = Sx+N (I − SR).

Note that S̃ is well-defined by Proposition 2. Also, it is straightforward to check

that S̃ is continuous.
Now define M : R(I−SR) → Y/N (I−SR) by M(w) = w+N (I−SR)+ S̃LRw.

Note here that w = y−SRy for some y, so Rw = (I −RS)Ry ∈ R(I −RS). Thus,
LRw is well-defined.
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Also, since by definition M is an algebraic combination of continuous maps, M
is continuous. Finally,

M(y − SRy) = y − SRy +N (I − SR) + S̃LR(y − SRy)

= y − SRy +N (I − SR) + S̃Ry = y +N (I − SR).

Therefore R(I − SR) is closed.

3. Fredholm properties

An operator T ∈ B(X) is semi-Fredholm if R(T ) is closed and either nul(T ) =
dim(N (T )) or nul(T ′) is finite (as before, T ′ is the adjoint of T ); see [CPY, 1.3 and
Chapter 4]. We use the notation:

Φ+ = {T ∈ B(X) : R(T ) is closed and nul(T ) <∞};
Φ− = {T ∈ B(X) : R(T )is closed and nul(T ′) <∞};

Φ = Φ+ ∩ Φ−.

Recall, when T is semi-Fredholm, then ind(T ) = nul(T )− nul(T ′).

Theorem 6. I −RS ∈ Φ (Φ+,Φ−) if and only if I − SR ∈ Φ (Φ+,Φ−). Further-
more, when I −RS ∈ Φ, then ind(I −RS) = ind(I − SR).

Proof. The first statement follows directly from Theorem 5 and Proposition 2.
Also, when I − RS ∈ Φ, Proposition 2 implies that nul(I − RS) = nul(I − SR)
and nul(I − RS)′) = nul(I − S′R′) = nul(I − R′S′) = nul(I − (RS)′). Thus,
ind(I −RS) = ind(I − SR).

4. Functional calculus

In this section we derive a useful relationship between the holomorphic functional
calculi of RS and SR.

Theorem 7. Let g(λ) be a holomorphic function on some open set U such that
σ(SR) ∪ {0} ⊆ U . Let f(λ) = λg(λ). Then f(SR) = Sg(RS)R.

Proof. Set Γ = σ(SR) ∪ {0}, and let γ be a cycle which is contained in U\Γ with
indγ(z) = 1 for all z ∈ Γ, and indγ(z) = 0 for all z /∈ U . For λ 6= 0, we have

λ−1[I − (λ−1SR)q] = (λ − SR)−1.(1)

Also, by Proposition 1 with W = (λ−1RS)q,

(λ−1SR)q = −λ−1S[I − (λ−1RS)q]R.(2)
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Therefore,

f(SR) = (2πi)−1

∫
γ

f(λ)(λ− SR)−1 dλ

= (2πi)−1

[∫
γ

λ−1f(λ) dλ−
∫
γ

f(λ)λ−1(λ−1SR)q dλ

]
(by (1))

= (2πi)−1

[
0 +

∫
γ

g(λ)λ−1S[I − (λ−1RS)q]Rdλ

]
(by (2), and since f(0) = 0)

= S

[
(2πi)−1

∫
γ

g(λ)(λ −RS)−1 dλ

]
R = Sg(RS)R (by (1)).

Corollary 8. Let f and g be as above. Set R1 = g(RS)R. Then f(SR) = SR1,
and since f(λ) = g(λ)λ, f(RS) = g(RS)RS = R1S.

Therefore the results of this paper apply to f(SR) and f(RS).

5. Poles

Let λ0 6= 0 be an isolated point of σ(RS). We adopt the notation and terminology
in [TL, pp. 328–331]. In particular, for n 6= 1, let

f−n(λ) =

{
(λ − λ0)

n−1 if |λ− λ0| < r;

0 if |λ− λ0| > 2r.

(Here r > 0 is chosen so that (σ(RS) ∪ {0})\{λ0} ⊆ {λ : |λ − λ0| > 2r.) Let
Bn(RS) = f−n(RS), and note that B1(RS) is the spectral projection corresponding
to the spectral set {λ0}. We use the same notation relative to SR; Bn(SR) =
f−n(SR). Define

h(λ) =

{
λ−1 if |λ− λ0| < r;

0 if |λ− λ0| > 2r.

We have f−n(λ) = (λf−n(λ)h(λ)), which gives:
(1) Bn(SR) = SRBn(SR)h(SR); and
(2) B1(SR) = S[B1(RS)h(RS)]R.

((2) follows by applying Theorem 7.)
By definition λ0 is a pole of order p of the resolvent of RS if Bp(RS) 6= 0, and

Bn(RS) = 0 for all n > p [TL, p. 330].

Theorem 9. An isolated point λ0 6= 0 of σ(RS) is a pole of order p of the resolvent
of RS if and only if λ0 is a pole of order p of the resolvent of SR. Furthermore,
R(B1(RS)) is finite dimensional if and only if R(B1(SR)) is finite dimensional.

Proof. We use the notation introduced above. Assume Bn(RS) = 0 for some n > 1.
By Theorem 7 with g(λ) = f−n(λ), f(λ) = λg(λ), it follows that SRBn(SR) =
S[Bn(RS)]R = 0. By (1) it follows that Bn(SR) = 0. This argument establishes
that Bn(RS) = 0 if and only if Bn(SR) = 0. The statement of the theorem
concerning poles follows from this.

The second statement of the theorem follows from (2), since ifR(B1(RS)) is finite
dimensional, then B1(SR) = S[B1(RS)h(RS)]R has finite dimensional range.
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Recall that the smallest integer p ≥ 0 such that N (T p) = N (T p+1) is called
the ascent of the operator T (the ascent of T is infinite if N (T n) 6= N (T n+1) for
all n ≥ 0) [TL, Section V6]. The property that λ0 − T has finite ascent is closely
connected to λ0 being a pole of the resolvent of T ; see [TL, Section V10].

Let n ≥ 0 be an integer. There exists Un such that

(I − SR)n+1 = I − SUn; (I −RS)n+1 = I − UnS.

In fact, by direct computation, Un =
∑n+1

k=1(−1)k−1
(
n+1
k

)
R(SR)k−1 works.

Proposition 10. I −RS has finite ascent p if and only if I −SR has finite ascent
p.

Proof. Suppose, for some n ≥ 0, N ((I−RS)n) = N ((I−RS)n+1). By the existence
of Uk as indicated above, Proposition 2 applies to (I −SR)k+1 for all k ≥ 0. Thus,

N ((I − SR)n+1) = N (I − SUn) = S(N (I − UnS)) = S(N ((I −RS)n+1))

= S(N ((I −RS)n)) = N ((I − SR)n).

This implies that I −RS has ascent p.

6. Examples, applications

In this section we look at several situations where the results of the previous
sections apply.

Example 11. Assume that the Banach space X is continuously embedded as a
subspace of a Banach space Y . Assume that T ∈ B(X) has an extension T ∈
B(Y ). In [B1] operator properties of T and T are studied with the hypothesis that
T (Y ) ⊆ X . All of the main results of [B1, §2] (and more!) can be derived from
results in this paper. For let S : X → Y be the continuous embedding, S(x) = x.
Let R : Y → X be the bounded operator, R(y) = T (y) ∈ X . Then T = RS and
T = SR. Therefore in this situation the results of the previous sections apply to T
and T .

Example 12. Let H be a Hilbert space. Assume S : X → H and R : H → X have
the special property that SR is selfadjoint. Then T = RS has many of the operator
properties of a selfadjoint operator. Exactly this situation is studied in [B2].

In particular, suppose X = H , R ≥ 0, and S = S∗. Then an operator of the
form SR is called symmetrizable. The operator SR has many operator properties

in common with the selfadjoint operator R
1
2SR

1
2 .

Example 13. Let (Ω, µ) be a σ-finite measure space. Let K(x, t) be a kernel on
Ω× Ω with the property

k(x) = ess sup
t∈Ω

|K(x, t)| ∈ L1(µ).

The linear integral operator

TK(f)(x) =

∫
Ω

K(x, t)f(t) dµ(t), f ∈ L1(µ),

is an operator in B(L1(µ)). In this case TK is a Hille-Tamarkin operator, TK ∈ H11;
see [J, Sections 11.3 and 11.5].
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We may assume that k(x) is everywhere defined and nonnegative. Define

J(x, t) =

{
k(x)−

1
2K(x, t) if k(x) > 0;

0 if k(x) = 0.

Since

ess sup
t∈Ω

|J(x, t)|2 = k(x) ∈ L1(µ), t ∈ Ω,

the integral operator, TJ : L1 → L2, is in the Hille-Tamarkin class H21. Also, define

H(x, t) = J(x, t)k(t)
1
2 .

Since |H(x, t)|2 ≤ k(x)k(t), it follows that TH is a Hilbert-Schmidt operator on
L2(µ).

Now consider the operators S : L2 → L1 and R : L1 → L2 given by

S(f) = k
1
2 f (f ∈ L2); R(g) = TJ(g) (g ∈ L1).

Then SR = TK and RS = TH . We summarize:

Theorem 14. Let TK : L1 → L1 be a Hille-Tamarkin operator in class H11. Then
there exist bounded operators S : L2 → L1, R : L1 → L2 such that TK = SR and
RS is a Hilbert-Schmidt operator.

Corollary 15. Let TK : L1 → L1 be a Hille-Tamarkin operator in class H11. Then
T 2
K is compact, and the nonzero eigenvalues of TK (counted according to multiplic-

ities) form a square summable sequence.

Proof. Let TK = SR with RS Hilbert-Schmidt. Then T 2
K = S(RS)R, so T 2

K is
compact. Also, the sequence of nonzero eigenvalues (counted according to mul-
tiplicities) of TK and RS are the same by Proposition 2 and Theorem 3. This
sequence is square summable by [Rg, Corollary 2.3.6, p. 89].
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