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Abstract. Let H®n denote the mod-p cohomology of the classifying space

B(Z/p)n as a module over the Steenrod algebra sf . Adams, Gunawardena,

and Miller have shown that the nxs matrices with entries in Z/p give a basis

for the space of maps Horn^ (H , H ). For n and í relatively prime, we

give a new basis for this space of maps using recent results of Campbell and

Selick. The main advantage of this new basis is its compatibility with Campbell

and Selick's direct sum decomposition of H      into (pn - 1)  si -modules.

Our applications are at the prime two. We describe the unique map from H

to D(n), the algebra of Dickson invariants in H , and we give the dimensions

of the space of maps between the indecomposable summands of H     .

Introduction

Let sf be the mod-p Steenrod algebra. And let H be the mod-p cohomol-

ogy of the classifying space B(Z/p), so H®n = H*(B(Z/p)n ; Z/p). The set

of degree-preserving j/-linear algebra maps from H®n to H®s is Mn s(Z/p),

the nxs matrices with entries in Z/p . By a result of Adams, Gunawardena,

and Miller, these algebra maps form a basis for the space of j/-module maps
from H®n to H®s [AGM, LZ, Wo].

The main result of this paper is to give a new basis for the sé -module maps

from H®n to H®s when n and 5 are relatively prime. Our maps are defined

using Campbell and Selick's description of H®" together with their decom-

position of H®n into a direct sum of (pn - 1) sf -modules [CS]. The main

advantage of our new basis over the basis of algebra maps mentioned above is

its compatibility with Campbell and Selick's decomposition, which although not

complete is of considerably greater simplicity than the complete decomposition.

Most of the paper deals with the case p - 2. In § 1, we recall Campbell

and Selick's results and prove our main theorem (1.3). In §2, we recall some

of the work of the first author and Kuhn regarding the complete decomposition

of H®n . In §3, we show that there is a unique nonzero map from H to Dn,

the algebra of Dickson invariants. We also determine the kernel and image of
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this map. In §4, we give the dimensions of the spaces of maps between the

indecomposable summands of H® . These dimensions are also the entries in

the Cartan matrix for the modular representations of M3 3(Z/2). In §5, we

show how our computations are related to the dimensions of certain Morava

.rv-theories. In §6, we sketch the modifications necessary when p is an odd

prime.

1

In this section, we recall Campbell and Selick's results and prove our main

theorem.

Let Mn = F2[x¡ | i G Z/n] with degx; = 1. Give Mn the structure of an sé-

module by letting Sq1^) = x¡_x and using the Cartan formula on products.

(One may check the Adem relations directly, or see [CS].) Note that Mn ' is

an unstable sé -module and an sé -algebra but that Mn is not, in general, an

unstable sé -algebra. The following theorem of Campbell and Selick provides

the motivation and setting for this entire paper:

Theorem 1.1 [CS, 1].  Mn s H®n as sé-modules.

Define weights w(m) G Z/(2" - 1) for monomials m in Mn by u;(l) = 0,

w(xi) = 2l, and w(ab) = w(a) + w(b). For ; e Z/(2" - 1), let Mn(j) be

the subspace spanned by the weight j monomials. Clearly, Sq and hence

all Steenrod operations preserve weight, so there is a decomposition Mn =

®jez/(2"-i)MnU) as ^-modules.

Let nn - : Mn —► Mn(j) and in ¡ : Mn(j) —* Mn be the projection and

inclusion. The algebra homomorphisms cpn ns : Mn —> Mns and yns n : Mns ->

Mn are defined on polynomial generators as specified by the following two

equations:

yns,n(Xi)=Xi> ^n,ns(Xi)= E        XJ '
j=i (mod n)

Definition 1.2. For ; e Z/(2ni - 1), let fnsj :Mn^Ms be the composite

Mn*^ Mnsn^> Mns(j)>^ Mj^ Ms.

Let Mn be the subspace of elements of degree greater than zero. Thus

~Mn(j) - MnU) >f°r J' ¥" 0 > and Mn(0) is the augmentation ideal in Mn(0).

Theorem 1.3. If (n, s) = I, then the maps fnsj, for j G Z/(2nî - 1), are

linearly independent and give a basis for the space of maps from Mn to Ms.

Proof. First note that the previously known basis mentioned in the introduction

tells us that if the maps are linearly independent, then they form a basis.

Fix k with 1 < k < (2ns - 1). It suffices to show that fn s j(x0 ) is the sum

of xQ with other monomials if and only if j = k . Under the map 4>n ns, x0
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maps to

(1-4) 2_j (l0> ll>'•• > ls-l'X0Xn '"X(s-l)n>

<o+i,+-+/,-i-*

where (z0, ix, ... , is_x) is the multinomial coefficient. Since (n, s) = 1, yn ns

sends the elements x0, xn, ... , x,s_x< in Afni to some ordering of the gen-

erators x0, xx, ... , xs_x  in Ms. Hence, the only terms in (1.4) that project

under yn ns to x¡   for some i are x0 , xn , ... , and x,s_x,n, and x0  is the

only one of these that projects to x0 . The self-map ins k°nns k of Mns sends

x0 to itself, so the image fn s k(x0) contains xQ as a summand when written

in the monomial basis. But, if j ^ k, then the self-map tns ¡ o nns . sends xQ

to zero, so the image fn s j(x0) does not contain x0 .   □

Corollary 1.5. If (n, s) = I, i G Z/(2" - 1), and k G Z/(2* - 1), then

dimF2 Hom^(F„(/), Ms(k)) = ^^"^i) ■

Proof. The map ns k°fn s ¡°tn , is nonzero if and only if j = i    (mod2"-l)

and j = k (mod 2s - 1 ). The number of such j is (2M—n(2^—1> ky tne hi-

ñese Remainder Theorem, which applies by the following elementary observa-

tion.   G

Lemma 1.6. If(n,s) = l, then (2n - 1, 2s - 1) = 1.

Proof. Consider the set of relatively prime pairs (n, s) of positive integers

ordered lexicographically.   Suppose (nQ, sQ) is a minimal counterexample to

the lemma (so n0 < s0). Then (2"° - 1, 2J° - 1) = (2"° - 1, 2S° - 2n°) =

(2"° - 1, 2s°~n° - 1), so (n0, s0- n0) is a smaller counterexample.   D

Remark 1.7. (1) Theorem 1.3 is false without the assumption (n, s) = 1. For

example, f223 = f2i2,6-

(2) For all n and 5, any map / : Mn -» Ms can be realized as a linear

combination of compositions of maps of the form fk ¡ ,.   Since 7/®    is a

direct summand of H®^ + , Mk is isomorphic to a direct summand of Mk+X .

Hence, / factors as Mn —► Af r —► A/^ for any r no smaller than either n or

5. Our observation follows by choosing r to be relatively prime to both n and

We end this section with a related theorem due to the third author.

Theorem 1.8 [SI, 5.4, 5.6]. For any n  and s,  dimF Hom^(Ms(j), Mn) =

^Jor JGZ/(2s-l).

Proof. First notice that Hom^(Ms(j), Mn) s Hom^(Ms(j), H®n). Let V

be the category of unstable sé -modules and let T : % -> & be the left adjoint

to _® H defined by Lannes [L] (so Hom^,(F(^), JB) S Hom^(^ ,B®H)).\t
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is shown in [SI, 3.9] that T(Ms(j)) S Ms(j)®Hw . It is then easy to calculate

that

Hom^(Ms(j),H®n) s Hom^(TMs(j),H®{n-X))

s Hornea), #•<-») © Hom^H®*, H®{n~x))

*Hom^(Ms(j),F2)

© Horn^tf®*, F2) © • • • © Hom^(H®s, H®(n~x))

The dimension of the last line is 0 + 1 + 2s + ■ ■ ■ + 2s{n  l) = £ D

2

In this section, we recall some of the work of the first author and Kuhn

regarding the complete decomposition of H®n . We begin with the relevant

representation theory (see [HK, §6]).

There are 2" distinct irreducible F2-representations of the ring R =

F2[Mnn(Z/2)], which are denoted by {Sx   ,      x |0 < ki < 1} .   (S{X) is the

top quotient of the Weyl module Wa associated to the partition (ax, ... , an),

where Xt = a¡—aí+l.) Let F(A) be the projective cover of S,x, (i.e., the smallest

projective representation with a surjection onto S,A)), and let e,X) be a primitive

idempotent in R with P,X) = Re,x,.

For (p) = (ßx, ß2, ... , ßn), with 0 < ßl < 1, let cßX be the number of

times S, , occurs in a composition series for P,X). The 2" x 2" matrix (c x)

is called the Cartan matrix for R. In the following proposition, we summarize

the relevant results:

Proposition 2.1.

(i)  [HK,4.1] R^@(X)dim¥i(S(X))Pw.

(ii) [CR, 54.15, 54.16] cpX = dimF HomR(P{p), P{X)).

(iii) [K3] cßX = cXp .

(iv) [K4] Let k = (1, ... , 1).  Then Pw is both projective and irreducible,

so c x is 1, if ß = k, and 0 otherwise.

Remark 2.2. (1) Parts (i) and (ii) follow from the fact that the S,x, are abso-

lutely irreducible and F2 is a splitting field for R.

(2) Part (i) is one of the main ingredients in the proof of Theorem 2.3 below.

(3) The symmetry of the Cartan matrix is standard for group rings, but not

generally true for semigroup rings.

(4) We thank Kuhn for showing us the following proof of part (iv): Let

e be the Steinberg idempotent In+xBn+x/[GLn+x : Un+X] in F2[GLn+1(Z/2)]
[MP, 2.6]. Then A ■ e = 0 for any matrix A with rank < n - 1 [Kl, 2.3(1)].

There is a primitive orthogonal idempotent decomposition e = en+x + en  in
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F2[A/"n+1 n+1(Z/2)], and the idempotent en is conjugate to an idempotent e,x,

in F2[Mn „(Z/2)] inducing F(A). It follows that A • e,X) = 0 for any matrix A

with rank < n-1, so F2[Af„ „(Z/2)]e(/l) - F2[GLn(Z/2)]ew . This vector space

is irreducible as a GLn(Z/2)-module (since it is isomorphic to the Steinberg

representation), so it is irreducible as an Mn „(Z/2)-module.

Now we relate the above results to the sé -module decompositions of H®" .

The ring R acts on the stable classifying space B(Z/2)"+, and X,k, =

e,X)B(Z/2)n+ denotes the stable wedge summand associated to (k).

Theorem 2.3 [HK, A, §6]. The following two decompositions are complete:

(i) B(Z/2)n+~\J0<x^xdim^(Sx¡.K)XX^   tK, asspectra.

(ii) H®n 3 0^, dim¥2(SXt^)H*(Xx¡.¡), as sé-modules.

Remark 2.4.  X.      .      n ~ X,      ,     , so each wedge summand (resp. sé -

module summand) of B(Z/2)n~x (resp. H®(n~x)) appears as a well-identified

summand of B(Z/2)n+ (resp. H®n).

We now state a special case of the theorem of Adams, Gunawardena, and

Miller referred to in the introduction.

Theorem 2.5 [AGM, p. 438].  R = Y2[Mnn(Z/2)] & Hom^(H®n, H®").

Corollary 2.6. e[p)Re(X) Si HomR(P{fl), P(X)) s Hom^(H*(X{p)), H*(X(X))), as

vector spaces.

Remark 2.7. (1) By Proposition 2.1 (ii), this corollary relates the Cartan invari-

ants c x to the dimensions of the maps between the indecomposable sé -module

summands.

(2) Note that

dimF2(pm) = dimF2 HomÄ(Ä, Pw) = dimp2 Hom^(H®n , H*(X{X))).

By definition, the first of these is equal to ^ x dimF (S, <.)c x . These "weighted

column sums" will be used in §4.

Now let Yn(j) denote the stable wedge summand of B(Z/2)n+ corresponding

to Mn(j) (i.e., H*(Yn(j)) = Mn(j)). The complete decompositions of the

Yn(j) are described by the first author in [H], The next proposition will be

used in §3.

Proposition 2.8 [H, 4.12]. Let X(m) = X0 0 1 0 0, where the 1 is in the

mth position. Then X(a(j)) is a summand of Yn(j), for 1 < j < (2n - I),

where a(j) is the number of 1 's in the dyadic expansion of j.
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Note X(m) is a summand of B(Z/2)n+ for each n > m , by Remark 2.4.

3

Here we study the properties of the unique nonzero map fXnk from Mx

to Mn(k) and give an application regarding the Dickson invariants. First we

determine the indecomposable summand of Mn(k) in which the image of this

map lies.

Theorem 3.1. The image of~M\ - Mn(k), l<k< (2"-l), liesin H*(X(a(k)).

Proof. By induction on n and Proposition 2.8, the statement is true for 1 <

k < (2" - 1). (Of course, when n = 1, M, is indecomposable and iso-

morphic to H*(X(l)).) From Theorem 2.3 and the known dimensions of the

irreducibles S0     0 x 0     0 [JK, 8.3.9], it follows that

B(Z/2)n^^X(l)V^X(2)V.--v(n"_^X(n-l)VX(n)VZ,

with Z a wedge of other indécomposables each with multiplicity greater than

one. Since M, has (2n - 1) linearly independent maps to Mn, it follows that

there must be a map Mx —> H*(X(n)).   D

Theorem 3.2. The kernel of the map M\ -* Mn(k), 1 < k < (2n - 1), has basis

{xJ0\a(j) < a(k)}.

By Theorem 3.1, the map Mx —» Mn(k) has the same kernel as the map

M\ —> M,kAQi), so it suffices to prove the following special case:

Theorem 3.3. The kernel of the map M\ —► Mn(Q) has basis {xJQ\a(j) < n] .

Proof. Write j = (jmjm_x ■ ■ ■ j0) in its dyadic expansion (j¡ = 0 or 1). Then

4~(x0 + ---+xn_xy

= (*o   +--- + xn-lYm(xo     +-+x«-i )'-'---(*o + --- + *«-i)0

under Mx -+ Mn .

In each of the polynomials (x0 -\-\-xn_x), the terms have weights 1,2,...,

2"~ modulo (2n - 1) (after some reordering). When the product (3.4) is ex-

panded, there are na^' distinct terms, each with a weight that is a sum of a(j)

2-powers. Also, each set of a(j) 2-powers occurs at least once.

(i) If a(j) < n, then none of the monomials in (3.4) has weight congruent

to zero modulo (2" - 1).

(ii) If a(j) > n, then at least one monomial in (3.4) has weight zero. This

follows from the fact that any number modulo (2" - 1) can be written in at

least one way as a sum of a 2-powers if a > n  (e.g.,   1 = 2n~   + 2n~   =
2n-\ + 2«-2 + 2n-2 _ ^ ̂     {mQd 2" _ 1)) .     D

2'-l
It is well known and not hard to see that the elements {x0     \l = 1, 2, ...}
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generate Mx as an sé -module. We can restate Theorem (3.3) as follows:

Corollary 3.5. The map Mx —* Mn(0) has coimage

Mx/sé(x[0,x¡,...,x2    ~x).

Now we identify the map Mx -> Mn(0) in the basis of algebra maps [AGM].

Recall that the sé -algebra maps from H to H®" are given by the matrices

MxJfZ/2).   Write H®n = F2[i0> ... , tn_A with the usual Steenrod algebra

action Sq1^.) - t2. Recall that the Dickson algebra, Dn , the subalgebra of

H®n which is fixed under the GL/!(Z/2) action, is a polynomial algebra on

elements ai with deg(af) = 2" - 2n~l [D, Wi].

Definition 3.6. Let O : H —► H®n be the sum of all of the sé -algebra maps.

That is, O(l) = 2" = 0, and, for / > 0,

*(f0) = o'' + 4 + '! + ••• + Ci + Co + 'i )' + ••• + ('o + ••• + '„-i )'' •

Theorem 3.7. The map from M\  to Mn corresponding to O : H —► //®"  «

*l,H,0'

Proof. The symmetric group £2"-i acts on me set °^ nonzer° degree-one ele-

ments of H®n. The image of <P is invariant under this action. Since GLn(Z/2)

Cl2,_, , this image is contained in the Dickson invariants, Dn.

Selick and Campbell show that there is an isomorphism of sé -modules,

Mn(0) S (H®")T, where F is a certain matrix in GL„(Z/2). So the image

of the map from Mx -» Mn corresponding to O must be contained in Mn(0)

(actually in Mn(0) since O(l) = 0). The only such map is /, n 0 .   D

By Theorem (3.3), the least-degree element in Mx  with a nonzero image

under fx n 0 is x0 . Therefore <I> is nonzero on t0 . Indeed, t0 hits

the top polynomial generator, an, for the Dickson algebra (since an is the only

element with degree 2" - 1 ).

IT -yn—\ _ . -yn _ |

Corollary 3.8. A se -submodule of H/sé (t0, t0, ... , tQ        ) generated by t0

is isomorphic to the se-submodule of the Dickson invariants Dn generated by

an-

Remark 3.9. As mentioned above, the isomorphism H®" = Mn is as sé -

modules, but not as rings. It has been shown by the second author and Selick

that, when restricted to the Dickson invariants, this map is multiplicative.

Hence A/"n(0) contains a polynomial subalgebra, as does (H®S)T.

4

In this section, we give the dimensions of the spaces of sé -module maps

between the indecomposable summands of H® . By Corollary 2.6, these di-

mensions are the entries in the Cartan matrix for ~F2[M3 3(Z/2)]. We should
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mention that the Cartan matrix for Fp[M2 2(Z/p)] is known for all p by work

of Glover [G].

Most of the wedge summands Xx x x   of B(Z/2)3+ have been identified

in more familiar terms as follows:   X0 0 0 ~ S°, X{ a,i — ^168 '   ^0,1,0

BA4, Xl00 ~ BZ/2,  X1,1,0 L(2), and X1,1,1 L(3), where G168 IS

a semidirect product of (Z/2)   with an order-21 subgroup of GL3(Z/2), A4

is the alternating group on 4 letters, and L(n) = X~"(d>2"(S°)/Sp2" (S0)).

(Note that ¿(1) ~ BZ/2.) We use Y for X0 x x and W for Xx Q x. (We

assume all spectra have been localized at 2.)

By abuse of notation, for the rest of this section we will use the notations

S , BGX6S, etc., for the cohomologies of these spectra: H*(S ), H*(BGm),

etc. The weight summands in H®n for n < 3 decompose as follows:

Proposition 4.1 [H, 6.1].

MAO) Si S ©5Z/2,

M2(0)SíS @BA4,

M2( Y)SiM2(2)Si BZ/2 © L(2),

A/3(0) S 5° © BGm © 21.(2) © 2L(3),

M3(l) S M3(2) S Af3(4) S BZ/2 @W® L(2) © L(3),

M3(3) S M3(5) S Af3(6) S BA4 © T © L(2) © L(3).

Theorem 4.2. The dimensions   dimF Hom^,(FT*(X ,), H*(X,^))  for   X^,

X,X) summands of B(Z/2)+ are given by the following array:

5G168

ßZ/2
W

BA4

Y

L(2)

1(3)

Sü BGl6ñ BZ/2 W BA. Y L(2) L(3)
1

0

0
0
0
0
0
0

0
5

1
3
3
1
0
0

0
1
1
0
1
0
0
0

0     0    0    0
3
0
6
2
3
1

3
1
2
3
0
0

1 0

0 0
3 1
0 0
4 1

1 1

0     0    0    0

0
0
0
0
0
0
0
1

Proof. This matrix is symmetric by Proposition 2.1(iii).

(i) S   is concentrated in dimension zero, so the S   row is easy.

(ii) The 5Z/2 row follows from Corollary 1.5.

(iii) The L(3) row follows from Proposition 2.1(iv).
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(iv) Using maps from M2 to M2, we have the submatrix

BA. BZ/2 L(2)
1 BA,

2 BZ/2
2 L(2)

a

1
0

1

1
0

0
0
1

where the left-hand column of numbers denotes multiplicities in H     and the

bottom row of numbers denotes dimF Homj/(Af2, H*(X,X))).  Since BA4 =

M2(0), its weighted column sum (see Remark 2.7) is h=l = 5 by Theorem

1.8. Hence the unknown a must be 3.  (Alternatively, one can show directly

,> Ji. ■ /,,,, and /,that the three self-maps /323 °f2t3¡3, -/3,2,24 ^2,3,3

Af2(3) are linearly independent.)

(v) Now consider the submatrix giving maps M2 to M3

BGlM BZ/2 W BA4 Y L(2) L(3)

°/23,2,45    •/2,3,3 Of

BA4

BZ/2
L(2)

b        1
1        1
e        0

c 3 d 0
0 10 0

/    0    g    1

0
0
0

Using Theorem 1.3, we have dimF Ylom^(M2(Q), M3(0)) = 3. Using

Proposition 4.1, we then have è + 2-0 + 2-0 = 3,so b = 3. Similarly,

dimF Hom^(M2(0), M3(l)) = 3, so l+c + 0 + 0 = 3, and c = 2. The values

d = 0, e = 0, f = I, and g = 1 are found the same way.

(vi) The remaining unknowns are indicated in the following table:

BG^ BZ/2 W BA4 Y L(2) ¿(3)

1 BGm
3 BZ/2
3 H7

3 BA4

3 F
8 L(2)
8 L(3)

1
i
3

;
0
0

1

1

0

1
0
0
0

3 j 0
1 0 0
2 / 1
3 0 0
0 m 1

0 1 1
0     0 0 0

0
k
2

/
1

0
0
0
0
0
0
1

p    21    q    14      8

Again, in this table, the left-hand column denotes multiplicities in M3 and the

bottom row gives dimF Hom^(A/3, H*(X,X))).

By Theorem 1.8, dimF Hom^(M3, M3(0)) = 73 , so n + 2(14) + 2(8) = 73

(by Proposition 4.1), and n = 29. Similarly, p = 44 and q = 30.
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From the weighted column sums (see Remark 2.7),

(1) A + 3 + 3/ + 9 + 3/ = 29, so h + 3/ + 3; = 17 ;
(2) / + 3k + 6 + 3/ + 8 = 44, so i + 3k + 3/ = 30 ; and
(3) j + 31 + 3m + 8 = 30, so j + 31 + 3m = 22.

It follows from ( 1 ) and (2) that / = 0 or 3. We show below that / > 0, so

i = 3. This, (1), and (3) imply j = 1. Then (1) implies h = 5.

To show / > 0, we need to produce a nonzero map from BGX68 to W.

Consider the compositions M3(0) —► M2(0) —► M3(l). Any such composition

must be zero on 2L(2) © 2L(3) and cannot hit L(2) © L(3), since the middle

term is BA4. Hence any such composition gives a map 5C716g —► BZ/2 ©

W. The two compositions f2 3 15 o f3 2 21 and f2 3 36 o /3 2 21  are linearly

independent (their images on x0xxx2 differ). Since there is only one nonzero

map from BGm to BZ/2, either one of the above compositions or their sum

is a map from BGm to W.

(vii) To determine k , I, and m , we construct linearly independent maps

M3(l) -» M3(l) and M3(l) -> M3(3) via compositions through M4(l). From

what we already know,

dim¥2Hom^(M3(l),M3(l)) = 5 + k,

dmy Hom^(M3(l), M3(3)) = 7 + 1,

dimv Homs/(M3(3),M3(3)) = 7+ m,        k + l = 9,    and   l + m = l.

The following lemma shows that k > 6 and / > 3, so k = 6, 1 = 3, and

m = 4.   D

Lemma 4.3. There are at least eleven linear independent maps Af3(l) —» M3(l)

and at least ten linearly independent maps M3(l) -» M3(3).

Proof. For simplicity, let gj = f4 3 y. o/3 41.

(i) The maps g, , g106, g526,'¿136, kù56, 8lil(s, and #2626 have linearly

independent images on x015. The maps g316, g631, ^1891, and g2206 are zero

on x0X5 and have linearly independent images on xlx^x2xx.

(ii) The maps gx36, g556, gxm , g2656, and g3076 have linearly independent

images on xx05. The maps g34(¡, gin, gx606, gm6, and g2236 are zero on xQxs

and have linearly independent images on x0xxx2 .   O

Remark 4.4. (1) We note that part (iv) of the proof of Theorem 4.2 and part

(i) of the proof of Lemma 4.3 show that /2 3 3 and f3 4 , are injections,

and therefore split. We would not be surprised to find that fn n+x ¡ : Mn(j) —►

Mn+l(j), 1 < j < (2n-1), is always an injection. (Note that n^ j°<t>n>ns°in j ■

Mn(j) -» Mns(j) is an injection [CS, 4].)

(2) Paul Selick has observed that the weighted sums of the diagonal elements

(J2tX)dim(S,X))cxx) for n = 1, 2, and 3 are 2, 8, and 64.   We do not know

fB+l,
whether this pattern (»i-»2   2   ) continues.
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In this section, we show how our computations are related to the dimensions

of certain Morava ^-theories. The following theorem provides the connec-

tion between these dimensions and the sé -module maps. For X any (2-local)

spectrum, let kn(X) = dim^. K(n)t(X), where K(n)t is the «th Morava

AT-theory.

Theorem 5.1 [K2, 1.7]. If X is a stable wedge summand of B(Z/2)S+ for any

s, then kn(X) = dim^ Hom^(H®n, H*(X)).

For example, the numbers at the bottom of the table in part (vi) of the proof

of Theorem 4.2 give values of k3.

Combining Theorems 5.1 and 1.8, we obtain the following.

Theorem 5.2 [SI, 5.7].  kn(Ys(j)) = Cf¿.
■a

The kn's for the wedge summands of B(Z/2)+ can now be calculated using

Theorems 5.2 and 4.1 and the next proposition.

Proposition 5.3 [K2, 5.2(1), 6.5].  kn(L(m)) = {r~x){2"~2¡2¡n{2"x~2m~').

Theorem 5.4.

kn(BA4) = \(2"-l)(2n + l),

kn(BGm) = ±(2n-l)(22n + 2n + l5),

kn(W) = ^(2"-l)(2n-2)(2n + 3),

kn(Y) = ^(2n-l)(2n-2)(2n-l2).

Remark 5.5. The methods in [HKR] can be used to find kn(BG) for any finite

group G, so could be used for BA4 and BGx6g.

6

In this section, we sketch the modifications necessary when p is an odd

prime. Let H®n = H*(B(Z/p)n; Fp) as in the introduction. Let Mn be the

free graded commutative algebra on {yt\iGZ/n} and {xt\iGZ/n} where the

y's have degree 1 and the x's have degree 2. Give Mn the Steenrod algebra

action extending /?(y.) = x¡ and ^(x/) = xf_, .

Theorem 6.1 [CS, §3].  H®" s Mn as sé-modules.

Define weights w(m) G Z/(p" - 1) by w(yi) = w(x¡) = pl and w(ab) =

w(a) + w(b). Define the weight summands Mn(j) and the projections

and inclusions nn ¡, in ¡ as before. Define the maps cpn ns and yns n as before

and extend to the y's by the same formulas. Finally, define fn s ¡, : Mn —> Ms

for ;' G Z/(pns - 1) as in Definition 1.2.
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The proofs of the following are essentially the same as in § 1 :

Theorem 6.2. If (n, s) = I, then the maps fnsj, for j G Z/(pns - I), are

linearly independent and give a basis for the space of maps from Mn to Ms.

Corollary 6.3. If (n, s) = I, i G Z/(pn - I), and k G Z/(ps -I), then

dimFHom^(Mn(i),Ms(k))

(P_1)(?^Tx73Tj'       ifi = k(modp-l);

0, otherwise.

Lemma 6.4. If (n,s) = l, then (pn - 1, ps - 1) = (p - 1).

ns      .

Theorem 6.5. For any n and s,  dimF Hom^, (MJJ), Mn) = yEr, for j G

Z/(y-l).

We suspect that the results in §3 also have odd-primary analogs. For example,

the analog of Theorem 3.3 says that the kernel of the map Mx(0) —> Mn(0) has

basis {x'0, x'0~iy0\i > 0, i = 0 (mod p - 1), a(i) < n(p - 1)} . (Note that

Mx(0) has basis {x'0, XQ~xy0\i = 0  (modp - I)} .)
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