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ANALYTICITY OF HOMOLOGY CLASSES
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(Communicated by Haynes R. Miller)

ABSTRACT. Let W be a real analytic manifold and {a} £- HP(W,Z2). We

shall say that {a} is analytic if there exists a compact analytic subset S of W,

such that: {a} = {fundamental class of S}. The purpose of this short paper

is to prove

THEOREM 1. Let W be a paracompact real analytic manifold; then any ho-

mology class {a} £ HP(W, Z2) is analytic.

We remember that a similar result does not hold in the real algebraic case

(see [1]).

1. Definitions and well-known facts. Let V, W be two differentiable (i.e.

C°°) manifolds; then, on the set M(V,W) of differentiable maps f:V—*W, we

shall consider the Whitney topology (see [2, p. 42]). In the following we shall use

the known result: if / e M(V, W), then there exists a neighborhood U, in the C°

topology, of / such that any g e U is homotopic to / (see [8]). By real algebraic

variety we shall mean: affine real algebraic variety. A regular algebraic variety

shall be called: algebraic manifold. An algebraic map is the restriction of a rational

regular map.

In the following we shall need

LEMMA 1. Let V C Rn, W cRq be two real algebraic manifolds and V —*W

a differentiable map. If V is compact and boarding to 4>, then, for any e > 0, there

exists an algebraic submanifold V C R"+?, an analytic isomorphism V —► V and

an algebraic map <p' :V —*W such that

(i) 6(<p(x), ip' o 7T_1 (x)) < e, x e V,

(ii) 6'((dp)(v),(d(<p' on-1))^)) < e

for any tangent vector v, to V in x, where 6, 6' are two metrics on R9 and on the

Grassmannian manifold.

PROOF. See [31

LEMMA 2. Let V C Rn, W C R9 be two real algebraic manifolds and <p: V —»

W an algebraic map. Let us suppose that V is irreducible and there exists a Zariski

open set V C V with the property: <p is infective on V. Under these hypotheses,

ifT is the Zariski closure of <p(V) in W, we have

(i) T D <p(V), dimT = dimF; T — <p(V) is contained in an algebraic set S,

dim S < dim V,

(ii) {fundamental class ofT} = <p* {fundamental class ofV}.
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PROOF, (i) is proved in [4, Lemma 1.1]. (ii) follows from the definition of the

fundamental class (see [5]) and the proof of the first part of the lemma.

Now let tp: V —► W be a differentiable map between differentiable manifolds.

Let us denote by 8?(V)X, ^(W)^x^ the stalks of the sheaves of the differentiable

functions on V, W. We recall

DEFINITION, tp is called finite, in the point x, il%?(V)x is a finite tp*(^(W)^^)

module.

We have

LEMMA 3. Let dimV < dimW and let us suppose that V is compact. Then

the set of differentiable maps that are finite in any point is an open dense subset of

M(V,W).

PROOF. See [6, p. 96] (see also [2, p. 169]).

2. The proof of the theorem. Now let us suppose that W is a compact real

analytic manifold and {a} e HP(W, Z2). It is known (see [7]) that we may suppose

VF is a real algebraic manifold. Moreover, there exists a compact differentiable

manifold V and a differentiable map <p: V —+ W such that {a} = <p (fundamental

class of V) (see [8]). By Lemma 1 we may suppose there exists an algebraic manifold

V = V U V" and an algebraic map tp: V —» W such that:

(i) V and V" are diffeomorphic to V,

(ii) {a} = (pt (fundamental class of V") = tp (fundamental class of V"),

(iii) <p\v is in general position with respect to <p(V").

Moreover, by Lemma 3, we may suppose

(iv) tp is finite in any x eV.

From Lemma 2, we may finally assume that

(v) if T is the Zariski closure of <p(V) in W, then T — <p(V) is contained in an

algebraic set S such that dim S < dim V = p.

Let now tp: V —► W be a complexification of tp, such tp exists (see [9]), and

we may suppose tp is finite in any point of V, because the finiteness is an open

condition (see [2, p. 168]).   We shall suppose that V = V' H V".  The map tp is

finite, hence the image of any analytic germ Vy is the germ of a complex analytic

set of IF, see [10, p. 162].

Let us now remark that the above facts imply that:

(a) T = real part of the closure in the Zariski topology of tp(V),

(b) dtp has maximum rank on an open dense set of V.

We deduce that, for any x e T, we have three disjoint analytic irreducible germs

ofrx:

(1) germs image of V', of dimension p,

(2) germs image of V", of dimension p,

(3) germ image of <p    (S), of dimension lower than p.

This proves that V = <p(V) U S is an analytic subset of W and, clearly,

{a} = {fundamental class of T'}.
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In fact, for any y e T, the germ Yy = |U¿ 'P^Yy,)\r is real analytic, where

U Vi = <¿>    (y) H V', \Z\R = real part of Z.
So Yy U Sy is real analytic and clearly Yy U Sy = T¿. In fact, in any point, T' is

the union of a finite set of irreducible germs of T. So the theorem is proved under

the hypothesis: W is compact. In the general case, let us remark that we may take

a representative element a of {a} contained in a relatively compact open set U of

W. We can now see U, up to analytic isomorphism, as an open set of a compact

analytic manifold Z (take the unique analytic structure on the double of U). We

can now prove the analyticity of {a} in Z and this implies, clearly, the analyticity

of {a} in W. The theorem is proved.
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