ANALYTICITY OF HOMOLOGY CLASSES

ALBERTO TOGNOLI

(Communicated by Haynes R. Miller)

ABSTRACT. Let W be a real analytic manifold and $\{\alpha\} \in H_p(W, \mathbb{Z}_2)$. We shall say that $\{\alpha\}$ is analytic if there exists a compact analytic subset S of W, such that: $\{\alpha\} = \{\text{fundamental class of } S\}$. The purpose of this short paper is to prove

THEOREM 1. Let W be a paracompact real analytic manifold; then any homology class $\{\alpha\} \in H_p(W, \mathbb{Z}_2)$ is analytic.

We remember that a similar result does not hold in the real algebraic case (see [1]).

1. Definitions and well-known facts. Let V, W be two differentiable (i.e. C^{∞}) manifolds; then, on the set M(V,W) of differentiable maps $f\colon V\to W$, we shall consider the Whitney topology (see [2, p. 42]). In the following we shall use the known result: if $f\in M(V,W)$, then there exists a neighborhood U, in the C^0 topology, of f such that any $g\in U$ is homotopic to f (see [8]). By real algebraic variety we shall mean: affine real algebraic variety. A regular algebraic variety shall be called: algebraic manifold. An algebraic map is the restriction of a rational regular map.

In the following we shall need

- LEMMA 1. Let $V \subset \mathbf{R}^n$, $W \subset \mathbf{R}^q$ be two real algebraic manifolds and $V \xrightarrow{\varphi} W$ a differentiable map. If V is compact and boarding to ϕ , then, for any $\varepsilon > 0$, there exists an algebraic submanifold $V' \subset \mathbf{R}^{n+q}$, an analytic isomorphism $V' \xrightarrow{\pi} V$ and an algebraic map $\varphi' : V' \to W$ such that
 - (i) $\delta(\varphi(x), \varphi' \circ \pi^{-1}(x)) < \varepsilon, x \in V$,
 - (ii) $\delta'((d\varphi)(v), (d(\varphi' \circ \pi^{-1}))(v)) < \varepsilon$

for any tangent vector v, to V in x, where δ , δ' are two metrics on \mathbf{R}^q and on the Grassmannian manifold.

PROOF. See [3].

- LEMMA 2. Let $V \subset \mathbb{R}^n$, $W \subset \mathbb{R}^q$ be two real algebraic manifolds and $\varphi \colon V \to W$ an algebraic map. Let us suppose that V is irreducible and there exists a Zariski open set $V' \subset V$ with the property: φ is injective on V'. Under these hypotheses, if T is the Zariski closure of $\varphi(V)$ in W, we have
- (i) $T \supset \varphi(V)$, dim $T = \dim V$; $T \varphi(V)$ is contained in an algebraic set S, dim $S < \dim V$,
 - (ii) $\{fundamental\ class\ of\ T\} = \varphi_*\ \{fundamental\ class\ of\ V\}.$

Received by the editors November 22, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 55M57; Secondary 14G58.

PROOF. (i) is proved in [4, Lemma 1.1]. (ii) follows from the definition of the fundamental class (see [5]) and the proof of the first part of the lemma.

Now let $\varphi \colon V \to W$ be a differentiable map between differentiable manifolds. Let us denote by $\mathscr{E}(V)_x$, $\mathscr{E}(W)_{\varphi(x)}$ the stalks of the sheaves of the differentiable functions on V, W. We recall

DEFINITION. φ is called *finite*, in the point x, if $\mathscr{E}(V)_x$ is a finite $\varphi^*(\mathscr{E}(W)_{\varphi(x)})$ module.

We have

LEMMA 3. Let dim $V \leq \dim W$ and let us suppose that V is compact. Then the set of differentiable maps that are finite in any point is an open dense subset of M(V,W).

PROOF. See [6, p. 96] (see also [2, p. 169]).

- 2. The proof of the theorem. Now let us suppose that W is a compact real analytic manifold and $\{\alpha\} \in H_p(W, \mathbb{Z}_2)$. It is known (see [7]) that we may suppose W is a real algebraic manifold. Moreover, there exists a compact differentiable manifold V and a differentiable map $\varphi \colon V \to W$ such that $\{\alpha\} = \varphi$ (fundamental class of V) (see [8]). By Lemma 1 we may suppose there exists an algebraic manifold $\widehat{V} = V' \cup V''$ and an algebraic map $\widehat{\varphi} \colon \widehat{V} \to W$ such that:
 - (i) V' and V'' are diffeomorphic to V,
 - (ii) $\{\alpha\} = \hat{\varphi}_*$ (fundamental class of V') = $\hat{\varphi}$ (fundamental class of V''),
 - (iii) $\hat{\varphi}|_{V'}$ is in general position with respect to $\hat{\varphi}(V'')$.

Moreover, by Lemma 3, we may suppose

(iv) $\hat{\varphi}$ is finite in any $x \in \hat{V}$.

From Lemma 2, we may finally assume that

(v) if T is the Zariski closure of $\hat{\varphi}(\hat{V})$ in W, then $T - \hat{\varphi}(\hat{V})$ is contained in an algebraic set S such that $\dim S < \dim V = p$.

Let now $\widetilde{\hat{\varphi}} \colon \widetilde{\hat{V}} \to \widetilde{W}$ be a complexification of $\hat{\varphi}$, such $\widetilde{\hat{\varphi}}$ exists (see [9]), and we may suppose $\widetilde{\hat{\varphi}}$ is finite in any point of $\widetilde{\hat{V}}$, because the finiteness is an open condition (see [2, p. 168]). We shall suppose that $\widetilde{\hat{V}} = \widetilde{V}' \coprod \widetilde{V}''$. The map $\widetilde{\hat{\varphi}}$ is finite, hence the image of any analytic germ $\widetilde{\hat{V}}_y$ is the germ of a complex analytic set of \widetilde{W} , see [10, p. 162].

Let us now remark that the above facts imply that:

- (a) T= real part of the closure in the Zariski topology of $\widetilde{\hat{\varphi}}(\widehat{\widetilde{V}}),$
- (b) $d\hat{\varphi}$ has maximum rank on an open dense set of \hat{V} .

We deduce that, for any $x \in T$, we have three disjoint analytic irreducible germs of T_x :

- (1) germs image of \widetilde{V}' , of dimension p,
- (2) germs image of \tilde{V}'' , of dimension p,
- (3) germ image of $\hat{\varphi}^{-1}(S)$, of dimension lower than p. This proves that $T' = \hat{\varphi}(V') \cup S$ is an analytic subset of W and, clearly,

$$\{\alpha\} = \{\text{fundamental class of } T'\}.$$

In fact, for any $y \in T$, the germ $Y_y = |\bigcup_i \widetilde{\hat{\varphi}}(\widetilde{V}'_{y_i})|_R$ is real analytic, where $\bigcup y_i = \widetilde{\hat{\varphi}}^{-1}(y) \cap \widetilde{V}', |Z|_R = \text{real part of } Z.$

So $Y_y \cup S_y$ is real analytic and clearly $Y_y \cup S_y = T_y'$. In fact, in any point, T' is the union of a finite set of irreducible germs of T. So the theorem is proved under the hypothesis: W is compact. In the general case, let us remark that we may take a representative element α of $\{\alpha\}$ contained in a relatively compact open set U of W. We can now see U, up to analytic isomorphism, as an open set of a compact analytic manifold Z (take the unique analytic structure on the double of U). We can now prove the analyticity of $\{\alpha\}$ in Z and this implies, clearly, the analyticity of $\{\alpha\}$ in W. The theorem is proved.

BIBLIOGRAPHY

- 1. R. Benedetti and M. Dedo, Counterexamples to representing homology classes by real algebraic varieties up to homeomorphisms, Compositio Math. 53 (1984).
- M. Golubisky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, Berlin and New York, 1973.
- 3. A. Tognoli, Algebraic approximation of manifolds and spaces, Sem. Bourbaki 548 (1979-80).
- 4. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104 (1980).
- A. Borel and A. Haefliger, La classe d'homologie fondamentale d'une espace analytique, Bull. Soc. Math. France 89 (1961).
- A. Andreotti and P. Holm, Quasianalytic and parametric spaces, Real and Complex Singularities, Noordhoff, Oslo, 1976.
- 7. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Cl. Sci. Pisa (3) 27 (1973).
- 8. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954).
- 9. A. Tognoli, Algebraic geometry and Nash functions, Institutiones 3 (1978),.
- 10. L. Kaup and B. Kaup, Holomorphic functions of several variables, De Gruyter, 1983.

ISTITUTO MATEMATICO, UNIVERSITÀ DI TRENTO, TRENTO, ITALY