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ON WEIGHTED INTEGRABILITY OF TRIGONOMETRIC SERIES

AND ̂ -CONVERGENCE OF FOURIER SERIES

WILLIAM O. BRAY AND CASLAV V. STANOJEVIC

Abstract. A result concerning integrability of f(x)L(l/x)(g(x)L(l/x)), where

f(x)(g(x)) is the pointwise limit of certain cosine (sine) series and £.(•) is slowly

vary in the sense of Karamata [5] is proved. Our result is an excluded" case in more

classical results (see [4]) and also generalizes a result of G. A. Fomin [1]. Also a

result of Fomin and Telyakovskii [6] concerning 0 -convergence of Fourier series is

generalized. Both theorems make use of a generalized notion of quasi-monotone

sequences.

1. Introduction. A classical problem in the theory of trigonometric series concerns

sufficient conditions in terms of the coefficients {a(n)) for the Fourier character of

cosine series

(1.1) ~2    +  L.a(n)cosnx
« = i

and the conjugate or sine series

00

(1.2) 2L a(n)sin nx.
B-l

All known results employ conditions which imply that the null sequence {a(n)) is of

bounded variation (£^=1|Aa(«)| < oo, ¡Xa(n) = a(n) - a(n + 1), and a(n) = o(l)

(n -» oo)). This further implies that the pointwise limit of (1.1) and (1.2) exist on

(0,77-]; these are denoted/(jt) and g(x), respectively. Consequently, for the Fourier

character of (1.1) or (1.2) it is necessary and sufficient that / or g be Lebesgue

integrable on (0, it]. A recent result in this direction is the following, due to Fomin

(see also [2, 3]).

Theorem 1.1. Let a(n) = o(l) (n -* oo), and for some p > 1 let

Y.^n\äa(k)\py/p
- <  00.

n )

Then

(i)feL\0, it], and

(ii) g e L\0, it] if and only ifY%_x\a(n)\/n < oo.
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Many authors have varied the point of view of the above problem by considering

weighted integrability of the sum functions (see the monograph of Boas [4] for a

survey). These results give criteria for the integrability of x~yf(x)L(l/x) and

x~yg(x)L(l/x), where y > 0 and L(-) is a slowly varying function in the sense of

Karamata [5]. In §3 an integrability result for f(x)L(l/x) and g(x)L(l/x) is

proved, generalizing Theorem 1.1 in the case of cosine series and giving a restricted

generalization in the case of sine series.

In the final section a generalization of the following theorem due to Fomin and

Telyakovskii [6] (see also [7]) is proved. For succinct formulation the «th partial

sums of the Fourier series of / e Ll(0, it] are denoted Sn(f) = Sn(f, x). Also recall

(Szasz [8]) that a null sequence {a(n)} is said to be quasi-monotone if, for some

a > 0, a(n)/na J, for n 3* n0(a).

Theorem 1.2. Let (1.1) be the Fourier series of f e 7.'(0, it] with quasi-monotone

coefficients. Then \\Sn(f) — f\\ = o(l) (n -* oo) if and only if a(n)\gn = o(l) (n ~»

oo).

An analogous result holds for sine series. Both our results make use of a

generalization of quasi-monotone sequence developed in §2.

2. Preliminaries. A positive measurable function L(u) is said to be slowly varying

in the sense of Karamata [5] if, for A > 0,

(2.1) lim    ^M-l.
u— +00     L(U)

Karamata [5] proved that (2.1) holds uniformly for A contained in a bounded closed

interval. Slowly varying sequences are defined analogously: a positive sequence

{/(«)} is said to be slowly varying if, for A > 0,

(2.2) .im mi-t.
«-• + 00       l\n)

The class of slowly varying functions (sequences) is denoted by SV(R) (SV(iV)).

In [9] Karamata introduced regularly varying sequences: a positive sequence

{/*(«)} is said to be regularly varying if, for A > 0 and some a > 0,

n->oo     r(n)

The class of such is denoted by RY(N). Regularly varying sequences are char-

acterized [9] in form as follows: {r(n)} e RV(N) if and only if r(n) = n"l(n), for

some a > 0 and some {/(«)} e SV(N).

A null sequence {a(n)} is said to be regularly varying quasi-monotone if for some

{/•(«)} s RV(N), a(n)/r(n)i for n > n0. The class of such sequences is denoted

RQM and properly contains quasi-monotone sequences. We can now give the

following generalization of the Cauchy condensation test.

Lemma 2.1. Let {a(n)} e RQM. Then the series Tj^=xa(n)l(n) and the series

L™=02"a(2")l(2") are equiconvergentfor every {/(«)} e SV(7V).
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Proof. For sufficiently large k, a(k)/kalx(k)i, where a > 0 and {/,(&)}

SV( TV). Consequently, for sufficiently large n,

a(2" + 1)        2"+'~1 2"+1~1
-^T-    E    kalx(k)l(k)^     Y    a(k)l(k)
n«(« + i)i (7"+ )

2" + 1-l

^^.H."1'"""»'

and so,

1   a(2n + l)2"      1 2„l

E   ¡i(k)l(k)<    E   a(/c)/(/c)
2" /i(2"+1)  t-2.

<2«f^-    E   /i(*)/(^)-
'1VZ   /     A = 2"

Since {lx(k)l(k)} e SV(N), the aforementioned uniform nature of (2.1) or (2.2)

gives

2" + 1-l

I   /,(*)/(*) - 2"/1(2")/(2")       (fl^oo),
A: = 2"

from which the conclusion follows.

Another basic property of slowly varying functions is the asymptotic relation [5]

ua  max s~aL(s) — L(u)        (u -* oo),
U<5< 00

for any a > 0. The following lemma resembles a classical Abelian theorem [10].

Lemma 2.2. Let {/(«)} e SV(7V) awd /e/ {wA}^ èe a positive sequence such that,

for some 0 < a < 1,

E  -T--o(-f-)       («-oo).

/(«*)
(2-3) E   ^ < oo

oho"

*-o    w*

ffel^/fc),  („^
»li 1      m

Proof. For N > n,

N    l{mk)

k=„      mk ^k>n ' k-n   m\
i ^<(suPWr/(-,))E -^.
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< oo.

Consequently (2.3) holds, and

£  &à<A(m:m»mi%mk))±,
k-n k k>n ' mn

where A is an absolute constant. This completes the proof.

3. Weighted integrability theorem. We prove the following theorem.

Theorem 3.1. Let L e SV(R) such that L(u) -» oo (u -* oo), let a(n) = o(l)

(n -+ oo), and for some p > 1, let

(3.1) £i(„)(3Äir:)'''

Then (ï)f(x)L(l/x) e L\0, tt], and

(ii) if{\a(n)\} e RQM, then g(x)L(l/x) e L\0, tt] if and only if

(3.2) EÍ^L(«)< oo.

Proof. Applying Lemma 2.1 and the methods of [2], the series in (3.1) is

equiconvergent with

oo /   -,    2"+1-l \l/p

(3-3) E 2»L(2»)  j-„    E    IM*)N     •
« = 0 \Z       A = 2" /

By Jensen's inequality, (3.1) implies T.^x\\a(n)\L(n) < oo, so that {a(n)} is of

bounded variation. Also, we may suppose 1 < p < 2, a necessary technicality. We

prove (ii); (i) is similar. Summation by parts yields the pointwise limit

00

g(x)= Z^(n)Dn(x),       xe(0,ir],
n = l

where

hi   1 - cos(*/2) ~~ cos(« + l/2)x

"(X) " 2sin(x/2)

is the conjugate Dirichlet kernel. Letting a(0) = 0 and

- , cos(/i + 1/2) x

nK   ] 2sin(x/2)     '

we may write

00

g(x)= ¿Z ^"(n)Dn(x),       xe(0,77].
B-0

The result will be obtained by means of the following estimate: forN= 1,2,...,

(3.4)    f \g(x)\L(l-)dx=Í\a(2")\r"    l(±) ^
hl^ + » \XJ ~0 nJn2-i.*U      \XJ    X

+ o|f 2ï(2")jiÊ|M*)f)1.
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the 0-term being uniform with respect to N. It follows that g(x)L(l/x) e Ll(0, tt]

if and only if

(3.5) *   .r"2~"    -IUdx

12 = 0

A change of variables gives

<""2 "    r i ^ ^x      /'2'7

t2

E   \a(2")\f2       L^<oo.

du

Thus, the series in (3.5) is equiconvergent with £"=0|a(2")|L(2"), completing the

proof by Lemma 2.1, provided we verify (3.4). For N = 1,2,...,

(3.7) f    \g(x)\L(1-) dx - í rn

< e r I Aa(£)7),(x)
A - 2"

A = 0

,1-1
X

L\^\dx.

Denote the right side by 7^; applying Holder's inequality (\/p + \/q = 1), followed

by the Riesz [11] extension of the Hausdorff-Young theorem, one obtains

1  ^  ( r«2-   L^l\      dx      ^"

N

(3-8)    /,<      E     r       L'¿
sin^x/^)

OO , j

E Aa(A:)cos Ar + - |x
*-2" ^

i//> / °°

e iA«(or
i//>

p < 52"</7-1)L"(2"),

where || • ||   is the Lq(0,wj-norm, and Ap is a constant dependent only on p. As in

(3.6),

r LP(-)-tyw2-<"+11     \xj xf

where B is an absolute constant. From (3.8),

N I   -.       oo \ 1/P

IN^Ap}Z 2-1,(2-)  £   E   M*)''
n = 0 \Z     A = 2"

where 7Î has been absorbed into j4 . Returning to (3.7), we have

E Aa(*)D*(x)
fc-0

(3.9)        f \g(x)\L"ß)dx=  E   r2"
7w2-,a/+i. \xj n=0Ki^*

I    oo /   1 00

+ t>   E 2-1,(2") ¿   E   M*)[

L|-|dx

i/^

uniformly in N. Denote the first term on the right side by JN. Applying the uniform

estimate

|Z>„(jc) + 1/jc| < ^4(« + 1),       xe(0,Tr],
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A being an absolute constant, we have

(3.10)
n = 0

EXAfl(A:)
A- = 0

,1-)-
X J   x

■ - y f
\ 42 —

<AZ   i"2" £   |Aa(Ar)|(Ar + l)Ll'±U.
„=n -V2-<"+1> , = a                                   \xl

N 2"-l
/•tt2~"

„=0    ^ A=0

Again similar to (3.6),

r2-     ./1\  .       7.(2")      0(L(2")
(« -» oo).

Consequently, denoting the right side of (3.10) by J^ and absorbing all absolute

constants into A, we get

/¿«ME ^E1 M*)|(* + i)
« = 0       Z A = 0

<¿  I   lAû(Ar)KAr-rl)       E        ^,
A = 0 n = [lg2(A + l)l

[lg2(Ar + 1)] denoting the greatest integer in the base two logarithm of Ar + 1.

Appealing to Lemma 2.2 one obtains

2"_i

J¿<¿  £   |Afl(*)|(* + l)       E
A = 0

2"-l

n = [lg2(* + D]

¿(2")

2"

ii E M*)|(* + i)^^

<^E 2"L(2»)Ui£|Afl(*)f
n = 0 \ Z

1/P

Returning to (3.10), we get

/*- E |a(2-)|f2;;   £(i)f+o( £ 2-L(2-)f^   £   M^f)^).

which concludes the proof of (3.4).

4. L1-convergence of Fourier series. In this section we prove the following theorem

concerning L1-convergence of Fourier cosine series, an analogous result holds for

Fourier sine series.

Theorem 4.1. Let (1.1) be the Fourier series of some f e L^O, tt] with {a(n)) e

RQM. 77!é7!||S„(/)-/H = o(l) (n -> oo) //and only if a(n)\g n = o(l)(n -» oo).
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Proof. Let a„(/) = an(f, x) denote the (C, 1) means of the Fourier cosine series

off. Summation by parts yields

1
S„(f, x) -a„(f,x) = -^¡-j- £ ka(k)coskx

k = l

n-\

—y EA(Mt))
A = l

*>*(*)-f
+ ÏT+Tfl(") ?-(*)-i

where

„ ,   ,      1       £ ,        sin(« + 1/2) jc
D„{x) = T +  £  cosArx =     ,; .        ' /

a=o 2sin(x/2)

is the Dirichlet kernel. Rearranging terms gives the following useful identity:

1      "-1
S„(f,x)-on(f,x) = ——  £ k!Xa(k)Dk(x)

A = l

1        "_1
- —^ E a(k + l)Dk(x) + a(n)Dn(x).

A=0

Applying the L'-norm and using the well-known estimate

||Z>J=(2A)lgn + 0(l)       (n-oo),

we get

(4.1)

K(/) - a„(/)|| < £ • -ly "¿^MfcJIlg* + | -pr "E   |«(Ar + l)|lg*
A=0 A = 0

2
-I—a(n)lgn 4- o(l)        (n -» oo).

For sufficiency, the hypothesis a(«)lg n = o(l) (« -» oo) implies that the second and

third terms on the right side are o(l) (n —> oo). Hence, we must show that

(4.2) ^j ¿*|Aa(*)|lg/i = o(l)        (n-oo).

Since  {a(n)} e RQM,  for  some a > 0  and  some  {/(«)} e SV(N),  we  have

a(n)/nal(n)[. This implies that

a(n + !)<(! + a/»)     ,,,   ^     fl(«),
/(«)

without loss of generality, for all n. Consequently,

Aa(n) +

and, finally,

(4.3) |Afl(«)|< Aa(n) + 2

V        nl    l(n)
a(n) > 0

1 +
a\ l(n + 1)

«/     l(n)
a(n).
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We apply (4.3) to estimate the expression in (4.2); i.e.,

-^ £ *|Aa(*)|lgn < ^y £ ArAa(Ar)lgAr
A = l A = l

+ — EÍ a\l(k + 1)
il + î)^i(kTa{k)lèk-

The second term is o(l) (n -> oo) since  {/(«)} e SV^) and a(«)lg« = o(l)

(n -» oo). For the first we apply summation by parts:

n-l

7lT£ArAû(Ar)lgAr = ^£Arlg(l+i)a(Ar + l)

n-l

+ —^ E4 + i)ig(* + i) - ^TTfl(" + 1)lg"■
A = 1

The first term is o(l) (n -» oo) since lg(l + 1/«) = l//i (« -» oo); the second and

third terms are o(l) (n -* oo) since a(«)lgn = o(l) (« -* oo). This concludes the

proof of sufficiency. For necessity we use the known estimate [6]

\\SAf) -f\\> L —i—•
A = l K

From the fact that {a(n)) e RQM we obtain the inequality

(4.4)
'X  a(n + k)

£
A- = l

a(n + Ar) (n + k)al(n + k)

k = x(n + k)al(n + k) k

a(2n)       y   (n + k)al(n + k)

(2n)"l(2n) ¿T, k

n + l\aa(2n)  y  l(n + Ar)

2«   )   /(2k) ¿        k       ■

The asymptotic relation /(Ar) ~ Ar^[supn>¿ «  ^/(«)] (Ar -» oo), gives for large n,

l(k)   .      £    ^supm>,m^/(m)

E  frt-   E
A = n + 1 *: = « + !

sup W   fy(m)
w> 2n

Ar — n

2n

k = n + l

kP
>(H + 1)' sup m  ^l(m)

1A = 1

2« (2«) sup m"ßl(m) £  i-i/(2»)Ig».
A = l

Returning to (4.4) concludes the proof.
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