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A SIMPLE PROOF  OF A THEOREM  OF ALBERT

M.   L.   RACINE1

Abstract. A simple proof is given of the following theorem of

Albert: An associative division algebra of degree 4 over its center

is of order 4 in the Brauer group if and only if it cannot be written

as a tensor product of quaternion algebras.

The following theorem is stated without proof in [3, Theorem 11.2],

where the reader is referred to [1] and [2].

Theorem 1. Let 3>\F be a central division algebra of degree 4. 3> has

order 4 in the Brauer group if and only if it cannot be written as a tensor

product of quaternion algebras.

In this note we show that this follows easily from other (by no means

trivial) results of Albert to be found in [3]. Albert's original proof is

involved and not readily accessible to the modern reader. First recall

that a finite dimensional division algebra has an involution of the first

kind if and only if it is of order 1 or 2 in the Brauer group [3, Theorem

10.19]. Since 2¿ has order 2 or 4 in the Brauer group, Theorem 1 is equiv-

alent to

Theorem 2. A central division algebra SjF of degree 4 has an involution

of the first kind if and only if2> = 2lx ®E 2L2, ât quaternion algebras over F.

Proof. Let 3>\F be a central division algebra of degree 4. Then S

contains a separable quadratic field extension E\F [3, Theorem 11.9].

Therefore E=F(x) for some xe3¡ such that x2 — x+ß = 0, ß e F. By

the Skolem-Noether theorem the automorphism of E\F mapping x into

1— x can be extended to an automorphism a of &¡F and a"=c^1ac,

Va e Si, for some fixed c e S¡. Assume that Q> has an involution of the

first kind. Then 3> has an involution * of the first kind such that * is the

identity on E [3, Theorem 10.15]. We wish to construct an involution

of the first kind which maps x into l—x. Consider the map <p:3i-*-3)

given by av = c~1a*c, aeS. If c* = ±c this is an involution. Suppose
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that c*9é—c. Then (c+c*)* = c + c*?£0 and c+c* = (l+c*c~1)c. Since

c*c~1x(c*c~1)~1 = c*c^1xc(c*)~1 = c*(l — x)(c*)_1

= (c-!(l - x)*c)* = (c~l(l - -*»*

= X* = X,

c*^"1 commutes with x. So, letting b = c if c* = —c, ¿»=c+c* otherwise,

aT=b~1a*b, a e Q¡ defines an involution on S such that xT=l—x. Since

£ is t stable, so is CÍE), the centralizer of E. Thus C(£)/£ is a quaternion

algebra with involution t of the second kind. Therefore C(E) = 2.X ®FE,

SLX a central quaternion algebra over F [3, Theorem 10.21]. Then 3=

2.x ®F 2.2, where £L2=C(2tx) the centralizer of 2tx. Since ^2 is a quaternion

algebra over F we have proved that if 3 has an involution of the first

kind then Q> is a tensor product of quaternion algebras. The converse is

obvious.

Professor Tamagawa has obtained another proof of this theorem in his

study of Clifford algebras.
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