A SIMPLE PROOF OF A THEOREM OF ALBERT

M. L. RACINE¹

ABSTRACT. A simple proof is given of the following theorem of Albert: An associative division algebra of degree 4 over its center is of order 4 in the Brauer group if and only if it cannot be written as a tensor product of quaternion algebras.

The following theorem is stated without proof in [3, Theorem 11.2], where the reader is referred to [1] and [2].

THEOREM 1. Let $\mathcal{D}|F$ be a central division algebra of degree 4. \mathcal{D} has order 4 in the Brauer group if and only if it cannot be written as a tensor product of quaternion algebras.

In this note we show that this follows easily from other (by no means trivial) results of Albert to be found in [3]. Albert's original proof is involved and not readily accessible to the modern reader. First recall that a finite dimensional division algebra has an involution of the first kind if and only if it is of order 1 or 2 in the Brauer group [3, Theorem 10.19]. Since $\mathcal D$ has order 2 or 4 in the Brauer group, Theorem 1 is equivalent to

THEOREM 2. A central division algebra \mathcal{D}/F of degree 4 has an involution of the first kind if and only if $\mathcal{D} = \mathcal{Q}_1 \otimes_F \mathcal{Q}_2$, \mathcal{Q}_i quaternion algebras over F.

PROOF. Let \mathscr{D}/F be a central division algebra of degree 4. Then \mathscr{D} contains a separable quadratic field extension E/F [3, Theorem 11.9]. Therefore E=F(x) for some $x \in \mathscr{D}$ such that $x^2-x+\beta=0$, $\beta \in F$. By the Skolem-Noether theorem the automorphism of E/F mapping x into 1-x can be extended to an automorphism σ of \mathscr{D}/F and $a^{\sigma}=c^{-1}ac$, $\forall a \in \mathscr{D}$, for some fixed $c \in \mathscr{D}$. Assume that \mathscr{D} has an involution of the first kind. Then \mathscr{D} has an involution * of the first kind such that * is the identity on E [3, Theorem 10.15]. We wish to construct an involution of the first kind which maps x into 1-x. Consider the map $\varphi: \mathscr{D} \to \mathscr{D}$ given by $a^{\varphi}=c^{-1}a^*c$, $a \in \mathscr{D}$. If $c^*=\pm c$ this is an involution. Suppose

Received by the editors July 10, 1973.

AMS (MOS) subject classifications (1970). Primary 16A28, 16A40.

¹ The author is a Postdoctoral Fellow of the National Research Council of Canada.

that $c^* \neq -c$. Then $(c+c^*)^* = c + c^* \neq 0$ and $c+c^* = (1+c^*c^{-1})c$. Since $c^*c^{-1}x(c^*c^{-1})^{-1} = c^*c^{-1}xc(c^*)^{-1} = c^*(1-x)(c^*)^{-1}$ $= (c^{-1}(1-x)^*c)^* = (c^{-1}(1-x)c)^*$ $= x^* = x$,

 c^*c^{-1} commutes with x. So, letting b=c if $c^*=-c$, $b=c+c^*$ otherwise, $a^r=b^{-1}a^*b$, $a\in \mathscr{D}$ defines an involution on \mathscr{D} such that $x^r=1-x$. Since E is τ stable, so is C(E), the centralizer of E. Thus C(E)/E is a quaternion algebra with involution τ of the second kind. Therefore $C(E)=\mathscr{Q}_1\otimes_F E$, \mathscr{Q}_1 a central quaternion algebra over F [3, Theorem 10.21]. Then $\mathscr{D}=\mathscr{Q}_1\otimes_F\mathscr{Q}_2$, where $\mathscr{Q}_2=C(\mathscr{Q}_1)$ the centralizer of \mathscr{Q}_1 . Since \mathscr{Q}_2 is a quaternion algebra over F we have proved that if \mathscr{D} has an involution of the first kind then \mathscr{D} is a tensor product of quaternion algebras. The converse is obvious.

Professor Tamagawa has obtained another proof of this theorem in his study of Clifford algebras.

REFERENCES

- 1. A. A. Albert, New results in the theory of normal division algebras, Trans. Amer. Math. Soc. 32 (1930), 171-195.
- 2. —, Normal division algebras of degree four over an algebraic field, Trans. Amer. Math. Soc. 34 (1932), 363-372.
- 3. —, Structure of algebras, Amer. Math. Soc. Colloq. Publ., vol. 24, Amer. Math. Soc., Providence, R.I., 1939. MR 1, 99.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706