INJECTIVE HULLS OF CERTAIN S-SYSTEMS OVER A SEMILATTICE

C. S. JOHNSON, JR. AND F. R. McMORRIS

ABSTRACT. We construct, in the category of S-systems over a semilattice, the injective hulls of S-systems which are homomorphic images of S-subsystems of S.

- 1. Introduction. In [1] Berthiaume showed that injective hulls exist in the category of S-systems (or S-sets) over a semigroup S. In that paper he also showed that if S is a chain then the injective hull of S itself is its Dedekind-MacNeile completion. In the present paper we consider the case where S is a semilattice and construct the injective hulls of S-systems which are homomorphic images of S-subsystems of S (or, in the notation of [3], S-systems which are in HS(S)). We do this by adapting the techniques used by Bruns and Lakser in [2] to construct injective hulls in the category of semilattices. We obtain as corollaries Berthiaume's result for chains, a characterization of injective cyclic S-systems over a semilattice, and the result that a semilattice S is injective in the category of semilattices if and only if it is injective in the category of S-systems.
- 2. **Preliminaries.** Let S be a semigroup. A (right) S-system is a set M equipped with a map (written multiplicatively) from $M \times S$ to M such that $m(s_1s_2) = (ms_1)s_2$ for all $m \in M$ and all s_1 , $s_2 \in S$. If one thinks of each element of S as inducing a unary operation on an S-system M, then M is a finitary algebra and all the notions of universal algebra are available. Thus if M and N are S-systems we have $A \subseteq M$ is an S-subsystem of M if and only if $AS \subseteq A$, $\phi: M \rightarrow N$ is a homomorphism if and only if $\phi(ms) = \phi(m)s$ for all $m \in M$ and all $s \in S$, and an equivalence relation \sim on M is a congruence relation if and only if $m_1 \sim m_2$ implies $m_1 s \sim m_2 s$ for all $s \in S$. Unless otherwise stated, all algebraic notions will be in this category. We will assume throughout that the semigroup S is a semilattice (i.e., commutative and idempotent).
- LEMMA 1. If an S-system M has the property that MS=M, then it is partially ordered by the rule $m_1 \leq m_2$ if and only if $m_1=m_2s$ for some $s \in S$.

Presented to the Society, June 1, 1971; received by the editors June 1, 1971. AMS 1970 subject classifications. Primary 20M99; Secondary 16A52, 18B99. Key words and phrases. S-systems, injective S-systems.

PROOF. For each $m \in M$ we have $m = m_1 s$ for some $m_1 \in M$ and $s \in S$ (since MS = M), and hence m = ms, so $m \le m$. If $m_1 \le m_2$ and $m_2 \le m_1$ we have $s_1, s_2 \in S$ such that $m_1 = m_2 s_1$ and $m_2 = m_1 s_2$. Now $m_1 = m_2 s_1 = (m_1 s_2) s_1 = m_1 (s_2 s_1) = (m_2 s_1) (s_2 s_1) = m_2 (s_1 s_2 s_1) = (m_2 s_1) s_2 = m_1 s_2 = m_2$. Transitivity is obvious.

Notice that if S has an identity and M is a unitary S-system, then MS = M and Lemma 1 applies.

When we are dealing with a partial order on an S-system we will use the symbols " \bigvee " and " \bigwedge " to denote least upper bounds and greatest lower bounds, respectively.

We will refer to the partial order of Lemma 1 as the *natural partial order* on M.

If an S-system M is partially ordered in some way and if $A \subseteq M$ is such that $\bigvee A$ exists, we will say that $\bigvee A$ is S-distributive if and only if, for each $s \in S$, $\bigvee \{as | a \in A\}$ exists and equals $(\bigvee A)s$.

Recall the following definitions in a category of algebras: An algebra C is *injective* if and only if every homomorphism from a subalgebra A of an algebra B into C has an extension to all of B. An extension C of an algebra A is *essential* if and only if any homomorphism from C to an algebra B, whose restriction to A is one-to-one, is itself one-to-one. An *injective hull* of an algebra is an essential, injective extension.

LEMMA 2. Let C be an S-system which is partially ordered in such a way that $c = \bigvee \{cs | s \in S\}$ for each $c \in C$. If C is a complete lattice in which arbitrary joins are S-distributive, then C is injective.

PROOF. Let A be an S-subsystem of an S-system B and let $\phi: A \rightarrow C$ be a homomorphism. Define $\phi^*: B \rightarrow C$ by

$$\phi^*(b) = \bigvee \{\phi(a) \mid a \in A, a = bs \text{ for some } s \in S\}.$$

If $b \in A$, then

$$\phi^*(b) = \bigvee \{\phi(bs) \mid s \in S\} = \bigvee \{\phi(b)s \mid s \in S\} = \phi(b)$$

and thus ϕ^* extends ϕ . If $s_0 \in S$ it is easy to see that $\{as_0 | a \in A, a = bs \text{ for some } s \in S\} = \{a | a \in A, a = bs_0 s \text{ for some } s \in S\}$. Thus

$$\phi^*(b)s_0 = (\bigvee \{\phi(a) \mid a \in A, \ a = bs \text{ for some } s \in S\})s_0$$

$$= \bigvee \{\phi(a)s_0 \mid a \in A, \ a = bs \text{ for some } s \in S\}$$

$$= \bigvee \{\phi(as_0) \mid a \in A, \ a = bs \text{ for some } s \in S\}$$

$$= \bigvee \{\phi(a) \mid a \in A, \ a = bs_0s \text{ for some } s \in S\} = \phi^*(bs_0).$$

We will call a subset A of a poset C join-dense in C if and only if $c = \bigvee \{a \in A | a \leq c\}$ for each $c \in C$. If A and C are also S-systems we will say that S-distributive joins in A are preserved in C if and only if $a = \bigvee_{C} B$

whenever $B \subseteq A$ and $a = \bigvee_A B$ is S-distributive. We will call a map ϕ on a poset P decreasing if and only if $\phi(a) \leq a$ for all $a \in P$.

LEMMA 3. Let C be an S-system which is partially ordered in such a way that the unary operations induced by S preserve the order and are decreasing. Let A be an S-subsystem of C and suppose that for each $a \in A$ there is an $s_a \in S$ such that, for each $c \in C$, $c \land a$ exists and equals cs_a . If A is join-dense in C and if S-distributive joins in A are preserved in C, then C is an essential extension of A.

PROOF. Let $\phi: B \to C$ be a homomorphism with $\phi|_A$ one-to-one. If ϕ is not one-to-one there exist elements $a, b \in C$ with $a \neq b$ and $\phi(a) = \phi(b)$. Since A is join-dense in C we may suppose there exists $u \in A$ with $u \leq b$ and $u \leq a$. We have $\phi(a \wedge u) = \phi(a s_u) = \phi(a) s_u = \phi(b) s_u = \phi(b s_u) = \phi(b \wedge u) = \phi(u)$. Now suppose $s \in S$ and let $M = \{(u \wedge x)s | x \leq a, x \in A\}$. If we show that $u = \bigvee_A M$ we will have shown (considering the special case $s = s_u$) that $u = \bigvee_A \{u \wedge x | x \leq a, x \in A\} \leq a$, a contradiction. Since $u \wedge x \leq u$ implies $(u \wedge x)s \leq us$, it is clear that us is an upper bound for u. Let $u \in A$ be another upper bound for u with $u \neq us$. Since meets exist in u we may further assume that $u \in A$ and $u \in A$ an

$$(u \wedge a)s = \bigvee_C \{(u \wedge x)s \mid x \leq a, x \in A\} = \bigvee_C M \leq v.$$

Now we have

$$\phi(us) = \phi(u)s = \phi(a \wedge u)s = \phi((a \wedge u)s) = \phi((a \wedge u)s \wedge v) = \phi((a \wedge u)ss_v)$$

= $\phi(a \wedge u)ss_v = \phi(u)ss_v = \phi(uss_v) = \phi(us \wedge v) = \phi(v),$

a contradiction. This establishes the fact that $us = \bigvee_{A} M$ and finishes the proof.

3. Injective hulls. Let M be an S-system such that MS = M. Recall that, by Lemma 1, M is partially ordered by the rule $m_1 \le m_2$ if and only if $m_1 = m_2 s$ for some $s \in S$. Following Bruns and Lakser we will call a subset N of M admissible if and only if V N exists and is S-distributive, and we will call N a D-ideal if and only if $y \in N$ and $x \le y$ imply $x \in N$ (i.e., $NS \subseteq N$) and N is closed under S-distributive joins (i.e., $A \subseteq N$ and A admissible implies $V \in N$. Now $I_D(M)$, the set of all D-ideals of M, is closed under arbitrary intersections and is thus a complete lattice under set inclusion. An obvious modification of the proof of [2, Lemma 3] shows that the join operation in $I_D(M)$ is given by

$$\bigvee \{A_i \mid i \in I\} = \{\bigvee N \mid N \subseteq \bigcup \{A_i \mid i \in I\}, N \text{ admissible}\}.$$

It is easy to show that if N is a D-ideal of M then $Ns = \{ns | s \in S\}$ is also a D-ideal and that $Ns = N \cap Ms$. Thus $I_D(M)$ is a complete lattice in which arbitrary joins are S-distributive. Notice that $mS = \{x \in M | x \leq m\}$, that these principal ideals are clearly D-ideals and that $m \mapsto mS$ is an embedding of M in $I_D(M)$. Now, considering M as an S-subsystem of $I_D(M)$, notice that S-distributive joins in M are preserved in $I_D(M)$.

It is clear that S itself is an S-system and we now restrict our attention to HS(S), that is, to S-systems which are of the form A/\sim where A is an S-subsystem of S and \sim is a congruence relation on A. Notice that A is an ideal of S and \sim is a semigroup congruence on A (since we have assumed S to be commutative) and thus A/\sim is a semilattice as well as an S-system. It is easy to see that $(A/\sim)S=A/\sim$ and that the partial order on A/\sim as a semilattice coincides with the natural partial order of Lemma 1.

THEOREM. If $M \in HS(S)$, then $I_D(M)$ is the injective hull of M.

PROOF. $M=A/\sim$ where $A\subseteq S$ is an ideal and \sim is a congruence relation on A. Denoting arbitrary elements of A/\sim by [x] with $x\in A$, we have that [a]S=Ma since [a]s=[as]=[asa]=[as]a and [x]a=[xa]=[ax]=[a]x. Since a D-ideal N is the join of the principal ideals it contains we have

$$N = \bigvee \{[a]S \mid [a] \in N\} = \bigvee \{N \cap Ma \mid [a] \in N\}$$

$$\subseteq \bigvee \{N \cap Ms \mid s \in S\} = \bigvee \{Ns \mid s \in S\} \subseteq N.$$

Thus $N = \bigvee \{Ns | s \in S\}$ for each $N \in I_D(M)$ so the hypotheses of Lemma 2 are satisfied and $I_D(M)$ is injective. Since the unary operations in $I_D(M)$ are given by $Ns = N \cap Ms$, for each $s \in S$, it is apparent that they preserve the order and are decreasing and that for each $[a] \in M$ we have $Na = N \cap Ma = N \cap [a]S$. Thus, by identifying M with the S-subsystem of $I_D(M)$ consisting of the principal order ideals of M, we see that the hypotheses of Lemma 3 are satisfied and that $I_D(M)$ is an essential extension of M.

COROLLARY 1. If $M \in HS(S)$, then M is injective if and only if it is a complete lattice in which arbitrary joins are S-distributive.

PROOF. M is injective if and only if the embedding $m \mapsto mS$ of M in $I_D(M)$ is onto. This is true precisely when every D-ideal of M is principal. Clearly this is the case when M is a complete lattice in which arbitrary joins are S-distributive. Conversely, if every D-ideal is principal, then the partial ordering of $I_D(M)$ by set inclusion (under which $I_D(M)$ is a complete lattice with S-distributive joins) coincides with its natural partial order as an S-system, i.e., $m_1S \subseteq m_2S$ if and only if $m_1 = m_2s$ for some $s \in S$. Since in this case M is isomorphic to $I_D(M)$, M is also a complete lattice with S-distributive joins.

COROLLARY 2 (BERTHIAUME). If S is a chain, then its injective hull is its Dedekind-MacNeile completion.

PROOF. If S is a chain, then every order ideal is a D-ideal and hence $I_D(S)$ is the Dedekind-MacNeile completion.

COROLLARY 3. A semilattice S is injective in the category of semilattices if and only if it is injective in the category of S-systems.

PROOF. By Corollary 1, S is injective in the category of S-systems if and only if it is a complete lattice with the property that $(\bigvee M) \land s = \bigvee \{m \land s \mid m \in M\}$ for all $s \in S$, $M \subseteq S$. By [2, Theorem 1] these properties characterize injectivity in the category of semilattices.

COROLLARY 4. A cyclic S-system is injective if and only if it is a complete lattice (in its natural partial order) in which arbitrary joins are S-distributive.

PROOF. If M is a cyclic S-system, then M=xS for some $x \in M$. It is clear that MS=M, so M has a natural partial order (Lemma 1). Define a congruence relation on S by $s_1 \sim s_2$ if and only $xs_1=xs_2$. The map $xs \mapsto [s]$ is an isomorphism between M and S/\sim and hence $M \in HS(S)$ and Corollary 1 applies.

COROLLARY 5. Let M be an S-system such that MS = M. If for each $m \in M$ there exists an $s \in S$ such that mS = Ms, then M is injective if and only if it is a complete lattice in which arbitrary joins are S-distributive.

PROOF. Define a congruence relation on S by $s_1 \sim s_2$ if and only if $Ms_1 = Ms_2$. The map $m \mapsto [s]$, where mS = Ms, is an isomorphism between M and an S-subsystem of S/\sim . Since $SH(S) \subseteq HS(S)$ by [3, Theorem 1, p. 152], $M \in HS(S)$ and Corollary 1 applies.

REFERENCES

- 1. P. Berthiaume, *The injective envelope of S-sets*, Canad. Math. Bull. 10 (1967), 261–273. MR 35 #4321.
- 2. G. Bruns and H. Lakser, *Injective hulls of semilattices*, Canad. Math. Bull. 13 (1970), 115-118.
- 3. G. Grätzer, Universal algebra, Van Nostrand, Princeton, N.J., 1968. MR 40 #1320.

DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403

Current address (McMorris): Biomathematics Program, Box 5457, North Carolina State University, Raleigh, North Carolina 27607