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INJECTIVE HULLS OF CERTAIN S-SYSTEMS
OVER A SEMILATTICE

C. S. JOHNSON, JR. AND F. R. McMORRIS

ABSTRACT. We construct, in the category of S-systems over a
semilattice, the injective hulls of S-systems which are homomorphic
images of S-subsystems of S.

1. Introduction. In [1] Berthiaume showed that injective hulls exist in
the category of S-systems (or S-sets) over a semigroup S. In that paper he
also showed that if S is a chain then the injective hull of S itself is its
Dedekind-MacNeile completion. In the present paper we consider the
case where S is a semilattice and construct the injective hulls of S-systems
which are homomorphic images of S-subsystems of S (or, in the notation
of [3], S-systems which are in HS(S)). We do this by adapting the tech-
niques used by Bruns and Lakser in [2] to construct injective hulls in the
category of semilattices. We obtain as corollaries Berthiaume’s result for
chains, a characterization of injective cyclic S-systems over a semilattice,
and the result that a semilattice S is injective in the category of semilattices
if and only if it is injective in the category of S-systems.

2. Preliminaries. Let S be a semigroup. A (right) S-system is a set M
equipped with a map (written multiplicatively) from M X .S to M such that
m(s,8,)=(ms,)s, for all meM and all s,, s,€S. If one thinks of each element
of S as inducing a unary operation on an S-system M, then M is a finitary
algebra and all the notions of universal algebra are available. Thus if M
and N are S-systems we have A< M is an S-subsystem of M if and only if
ASS A, ¢: M—N is a homomorphism if and only if ¢(ms)=d¢(m)s for all
meM and all seS, and an equivalence relation ~ on M is a congruence
relation if and only if m;~m, implies m,s~my,s for all s€S. Unless other-
wise stated, all algebraic notions will be in this category. We will assume
throughout that the semigroup S is a semilattice (i.e., commutative and
idempotent).

LemMma 1. If an S-system M has the property that MS=M, then it is
partially ordered by the rule my =m, if and only if m,=mys for some s€S.
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Proor. For each meM we have m=m,s for some m,eM and seS
(since MS=M), and hence m=ms, so m=m. If m;<m, and my<m, we
have s, 5,€S such that m; =mys, and my=m,s,. Now m,=m,s, = (m,s,)s,=
1y (5281) = (M3S1) (5251) =Mx(515251) =My (5152) = (MyS1)s,=m 5, =m,. Transi-
tivity is obvious.

Notice that if S has an identity and M is a unitary S-system, then MS=
M and Lemma 1 applies.

When we are dealing with a partial order on an S-system we will use the
symbols “\/”> and “A” to denote least upper bounds and greatest lower
bounds, respectively.

We will refer to the partial order of Lemma 1 as the natural partial order
on M.

If an S-system M is partially ordered in some way and if A< M is such
that \/ 4 exists, we will say that \/ 4 is S-distributive if and only if, for each
seS, \ {as|acA} exists and equals (\/ 4)s.

Recall the following definitions in a category of algebras: An algebra C
is injective if and only if every homomorphism from a subalgebra 4 of an
algebra B into C has an extension to all of B. An extension C of an algebra
A is essential if and only if any homomorphism from C to an algebra B,
whose restriction to A4 is one-to-one, is itself one-to-one. An injective hull
of an algebra is an essential, injective extension.

LeMMA 2. Let C be an S-system which is partially ordered in such a way
that c=\/ {cs|s€S} for each ceC. If C is a complete lattice in which arbitrary
Jjoins are S-distributive, then C is injective.

PrROOF. Let 4 be an S-subsystem of an S-system B and let ¢: 4A—C be
a homomorphism. Define ¢*:B—C by
¢*(b) =V {¢(a) | a € 4, a = bs for some s € S}.
If beA, then
$*() = V {$(bs) [ s€ S} = V {$(b)s | s € S} = $(b)
and thus ¢* extends ¢. If s,€S it is easy to see that {ase|acd, a=bs for
some seS}={a|aeA, a=bs,s for some s€S}. Thus
¢*(b)so = (V {¢(a) | a € 4, a = bs for some s € S})s,
=V {¢(a)s, | a € 4, a = bs for some s € S}
=V {¢(as,) | a € A, a = bs for some s € S}
=V {¢(a) | a € 4, a = bs,s for some s € S} = $*(bs,).
We will call a subset 4 of a poset C join-dense in C if and only if c=

V {aeA|a§c} for each ceC. If 4 and C are also S-systems we will say
that S-distributive joins in A are preserved in C if and only if a= \/; B
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whenever BS 4 and a= \/,4 B is S-distributive. We will calla map ¢ ona
poset P decreasing if and only if ¢(a)=<a for all acP.

LemMA 3. Let C be an S-system which is partially ordered in such a way
that the unary operations induced by S preserve the order and are decreasing.
Let A be an S-subsystem of C and suppose that for each acA there is an
5,68 such that, for each ceC, cAa exists and equals cs,. If A is join-dense in C
and if S-distributive joins in A are preserved in C, then C is an essential
extension of A.

PrOOF. Let ¢:B—C be a homomorphism with ¢|, one-to-one. If ¢
is not one-to-one there exist elements a, beC with a#b and ¢(a)=¢(b).
Since 4 is join-dense in C we may suppose there exists ue4 with u<b and
ufa. We have ¢(anu)=¢(as,)=¢(a)s,=¢(b)s,=¢(bs,)=d(bAu)=(u).
Now suppose s€S and let M ={(qu)s|x§a, x€A}. If we show that
us=\/4 M we will have shown (considering the special case s=s,,) that
u=\/4 {u/\x]xéa, x€A} and is an S-distributive join. Hence wu=
Ve {u/\x|x§a, x€A}=a, a contradiction. Since uAx=u implies (uAX)s=
us, it is clear that us is an upper bound for M. Let v€A be another upper
bound for M with v7us. Since meets exist in 4 we may further assume
that v<us. If ce4 and ¢ = (uAa)s we have cSusand c=usAc=uss,=us s=
(uAc)s with cSas=<a. Hence we can again use the fact that 4 is join-dense
in C and obtain

(uAa)s=VC{(qu)slxéa,xeA}=\/CM§U.
Now we have

$(us) = (u)s = ¢(a A u)s = ¢((a A u)s) = $((a A u)s A v) = ((a A u)ss,)
= ¢(a A u)ss, = $(u)ss, = $(uss,) = p(us A v) = $(v),

a contradiction. This establishes the fact that us= \/, M and finishes the
proof.

3. Injective hulls. Let M be an S-system such that MS=M. Recall
that, by Lemma 1, M is partially ordered by the rule m, =m, if and only if
my=mys for some seS. Following Bruns and Lakser we will call a subset
N of M admissible if and only if \/ N exists and is S-distributive, and we
will call N a D-ideal if and only if yeN and x<y imply xeN (i.e., NSS N)
and N is closed under S-distributive joins (i.e., ASN and A admissible
implies \/ AeN). Now Ip(M), the set of all D-ideals of M, is closed under
arbitrary intersections and is thus a complete lattice under set inclusion.
An obvious modification of the proof of [2, Lemma 3] shows that the join
operation in I (M) is given by

V{4;|iel} ={VN|N< U{4,|i€l}, N admissible}.
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It is easy to show that if N is a D-ideal of M then Ns={ns|seS} is also a
D-ideal and that Ns = NNMs. Thus I,(M) is a complete lattice in which
arbitrary joins are S-distributive. Notice that mS={xeM |x§m}, that
these principal ideals are clearly D-ideals and that m—mS is an em-
bedding of M in I,(M). Now, considering M as an S-subsystem of I,(M),
notice that S-distributive joins in M are preserved in I5,(M).

Itis clear that Sitself is an S-system and we now restrict our attention to
HS(S), that is, to S-systems which are of the form 4/~ where A4 is an S-
subsystem of S and ~ is a congruence relation on 4. Notice that 4 is an
ideal of S and ~ is a semigroup congruence on A (since we have assumed
S to be commutative) and thus 4/~ is a semilattice as well as an S-system.
It is easy to see that (4/~)S=A/~ and that the partial order on A/~ asa
semilattice coincides with the natural partial order of Lemma 1.

THEOREM. If MEHS(S), then Ip(M) is the injective hull of M.

PROOF. M=A|~ where ASS is an ideal and ~ is a congruence
relation on 4. Denoting arbitrary elements of 4/~ by [x] with xeA4, we
have that [a]S=Ma since [a]s=[as]= [asa]=[as]a and [x]a= [xa]=[ax]=
[alx. Since a D-ideal N is the join of the principal ideals it contains we have

N=V{[a]S| [a]e.N}=V{Nr'\Ma| [a] e N}
= V{NthIseS}:V{NslseS}SN.

Thus N=V {NslseS} for each Nelp (M) so the hypotheses of Lemma 2 are
satisfied and 75,(M) is injective. Since the unary operations in I,(M) are
given by Ns=NNMs, for each seS, it is apparent that they preserve the
order and are decreasing and that for each [a]JeM we have Na=NNMa=
NN[a]S. Thus, by identifying M with the S-subsystem of Ij,(M) consisting
of the principal order ideals of M, we see that the hypotheses of Lemma 3
are satisfied and that /(M) is an essential extension of M.

COROLLARY 1. If MeHS(S), then M is injective if and only if it is a
complete lattice in which arbitrary joins are S-distributive.

PROOF. M is injective if and only if the embedding m—mS of M in
Ip(M) is onto. This is true precisely when every D-ideal of M is principal.
Clearly this is the case when M is a complete lattice in which arbitrary
joins are S-distributive. Conversely, if every D-ideal is principal, then the
partial ordering of (M) by set inclusion (under which I,(M) is a com-
plete lattice with S-distributive joins) coincides with its natural partial
order as an S-system, i.e., m;S<m,S if and only if m,=my,s for some s€S.
Since in this case M is isomorphic to I(M), M is also a complete lattice
with S-distributive joins.
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COROLLARY 2 (BERTHIAUME). If S'is a chain, then its injective hull is its
Dedekind-MacNeile completion.

Proor. If Sis a chain, then every order ideal is a D-ideal and hence
Ip(S) is the Dedekind-MacNeile completion.

COROLLARY 3. A semilattice S is injective in the category of semilattices
if and only if it is injective in the category of S-systems.

Proor. By Corollary 1, S is injective in the category of S-systems if
and only if it is a complete lattice with the property that (\/ M)As=
V {mAs ] meM} for all seS, M< S. By [2, Theorem 1] these properties
characterize injectivity in the category of semilattices.

COROLLARY 4. A cyclic S-system is injective if and only if it is a complete
lattice (in its natural partial order) in which arbitrary joins are S-distributive.

Proor. If M is a cyclic S-system, then M=xS for some xeM. It is
clear that MS=M, so M has a natural partial order (Lemma 1). Define
a congruence relation on S by s;~s, if and only xs, =xs,. The map xs—[s]
is an isomorphism between M and S/~ and hence MeHS(S) and Corollary
1 applies.

COROLLARY 5.  Let M be an S-system such that MS= M. If for eachmeM
there exists an s€S such that mS=Ms, then M is injective if and only if it is a
complete lattice in which arbitrary joins are S-distributive.

ProoF. Define a congruence relation on S by s,~s, if and only if
Ms,=Ms,. The map m— [s], where mS= Ms, is an isomorphism between
M and an S-subsystem of S/~. Since SH(S)< HS(S) by [3, Theorem 1, p.
152}, MeHS(S) and Corollary 1 applies.
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