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Abstract. We construct, in the category of S-systems over a

semilattice, the injective hulls of S-systems which are homomorphic

images of S-subsystems of S.

1. Introduction. In [1] Berthiaume showed that injective hulls exist in

the category of S-systems (or S-sets) over a semigroup S. In that paper he

also showed that if S is a chain then the injective hull of S itself is its

Dedekind-MacNeile completion. In the present paper we consider the

case where S is a semilattice and construct the injective hulls of S-systems

which are homomorphic images of S-subsystems of S (or, in the notation

of [3], S-systems which are in HS(S)). We do this by adapting the tech-

niques used by Bruns and Lakser in [2] to construct injective hulls in the

category of semilattices. We obtain as corollaries Berthiaume's result for

chains, a characterization of injective cyclic S-systems over a semilattice,

and the result that a semilattice S is injective in the category of semilattices

if and only if it is injective in the category of S-systems.

2. Preliminaries. Let S be a semigroup. A (right) S-system is a set M

equipped with a map (written multiplicatively) from MxS to M such that

m(s1s2)=(ms1)s2 for all meM and all sv s2eS. If one thinks of each element

of S as inducing a unary operation on an S-system M, then Misa finitary

algebra and all the notions of universal algebra are available. Thus if M

and N are S-systems we have A ç M is an S-subsystem of M if and only if

AS^A, <f>:M--N is a homomorphism if and only if fams) = fam)s for all

meM and all seS, and an equivalence relation ~ on M is a congruence

relation if and only if m-i^m2 implies mxs^->m2s for all seS. Unless other-

wise stated, all algebraic notions will be in this category. We will assume

throughout that the semigroup S is a semilattice (i.e., commutative and

idempotent).

Lemma 1. If an S-system M has the property that MS=M, then it is

partially ordered by the rule m^m2 if and only ifm1=m2sfor some seS.
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Proof. For each meM we have m=mxs for some m^M and seS

(since MS=M), and hence m=ms, so m^m. If m^km2 and m2^m1 we

have slt s2eS such that m1=m2s1 and m2=m1s2. Now m, =w2Ji=(m^s^

m1(s2sl) = (m2s1)(s2s1)=m2(s1s2s1)=m2(s1s2) = (m2s1)s2=m1s2=m2. Transi-

tivity is obvious.

Notice that if S has an identity and M is a unitary 5-system, then MS=

M and Lemma 1 applies.

When we are dealing with a partial order on an S-system we will use the

symbols "V" and "/\" to denote least upper bounds and greatest lower

bounds, respectively.

We will refer to the partial order of Lemma 1 as the natural partial order

on M.

If an S-system M is partially ordered in some way and if A £ M is such

that V A exists, we will say that V A is S-distributive if and only if, for each

seS, V {as[ae^} exists and equals (V A)s.

Recall the following definitions in a category of algebras : An algebra C

is injective if and only if every homomorphism from a subalgebra A of an

algebra B into C has an extension to all of B. An extension C of an algebra

A is essential if and only if any homomorphism from C to an algebra B,

whose restriction to A is one-to-one, is itself one-to-one. An injective hull

of an algebra is an essential, injective extension.

Lemma 2. Let C be an S-system which is partially ordered in such a way

that c=\J {cs\seS}for each ceC. If C isa complete lattice in which arbitrary

joins are S-distributive, then C is injective.

Proof. Let A be an S-subsystem of an S-system B and let <f> : A—>C be

a homomorphism. Define (f>*:B->-C by

4>*(b) = V {^(°) \ae A, a = bs for some s e S}.

If be A, then

4>*(b) = V Mbs) | 5 e S} = V {<Kb)s \seS} = <f(b)

and thus <p* extends <f>. If s0eS it is easy to see that {as0\aeA, a=bs for

some seS}={a\aeA, a=bs0s for some seS}. Thus

(f>*(b)s0 = (V {(/»(a) | a £ A, a = bs for some s e S})s0

= V {(f>(a)s01 a e A, a = bs for some s e S}

= V {<f>(aso) \ae A, a = bs foi some s eS}

= V {<l>(a) \a e A, a = bs0s for some s e S} = (f>*(bs0).

We will call a subset .4 of a poset C join-dense in C if and only if c=

V {aeA\a^c} for each ceC. If A and C are also S-systems we will say

that S-distributive joins in A are preserved in C if and only if a= \JC B
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whenever B^A and a= \fA B is S-distributive. We will call a map ^ on a

poset P decreasing if and only if <f>(a)^a for all aeP.

Lemma 3. Let C be an S-system which is partially ordered in such a way

that the unary operations induced by S preserve the order and are decreasing.

Let A be an S-subsystem of C and suppose that for each aeA there is an

saeS such that, for each ceC, cha exists and equals csa. If A is join-dense in C

and if S-distributive joins in A are preserved in C, then C is an essential

extension of A.

Proof. Let <j>:B^C be a homomorphism with <f>\A one-to-one. If <j>

is not one-to-one there exist elements a, beC with a^b and <f>(a)=fab).

Since A is join-dense in C we may suppose there exists ueA with u^b and

u-^a. We have faaAu) = faasv}=faä)su=fab)su=4>(bsu)=fabAu)=<l>(ü).
Now suppose seS and let M={(uAx)s\x^a, xeA}. If we show that

us= \JA M we will have shown (considering the special case s=su) that

u= \JA {uAx\x^a, xeA) and is an S-distributive join. Hence u=

Vc {uAx\x^a, xeA}^a, a contradiction. Since uax^u implies (uax)s^

us, it is clear that us is an upper bound for M. Let veA be another upper

bound for M with vj^us. Since meets exist in A we may further assume

that v<us. If ceA and c^(uAa)s we have c^usand c=usAc=ussc=uscs=

(uac)s with c^as^a. Hence we can again use the fact that A is join-dense

in C and obtain

(u A a)s = Vc {(" A x)s I x = a> x £ A} = Vc M 5= v.

Now we have

<f>(us) = <j>(u)s = <f>(a A u)s = <f>((a A u)s) = <j>((a A u)s A v) = <f>((a A u)ssv)

= <f>(a A u)ssv = <f>(u)ssv = <f>(ussv) = <f>(us A v) = <f>(v),

a contradiction. This establishes the fact that us— \/A M and finishes the

proof.

3. Injective hulls. Let M be an S-system such that MS=M. Recall

that, by Lemma 1, M is partially ordered by the rule mx ̂ m2 if and only if

m1=«225 for some seS. Following Bruns and Lakser we will call a subset

N of M admissible if and only if\JN exists and is S-distributive, and we

will call 7Y a D-ideal if and only if yeN and x^y imply xeN (i.e., NS^ N)

and yV is closed under S-distributive joins (i.e., A^N and A admissible

implies V AeN). Now ID(M), the set of all D-ideals of M, is closed under

arbitrary intersections and is thus a complete lattice under set inclusion.

An obvious modification of the proof of [2, Lemma 3] shows that the join

operation in ID(M) is given by

\/ {Ai\ieI} = {\/N\NçU{Ai\ie I}, N admissible}.
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It is easy to show that if TV is a D-ideal of M then /Vj={/ij|ieS} is also a

D-ideal and that Ns = NdMs. Thus ID(M) is a complete lattice in which

arbitrary joins are S-distributive. Notice that mS={xeM\x^m}, that

these principal ideals are clearly D-ideals and that mh->mS is an em-

bedding of Min ID(M). Now, considering M as an S-subsystem of ID(M),

notice that S-distributive joins in M are preserved in ID(M).

It is clear that S itself is an S-system and we now restrict our attention to

HS(S), that is, to S-systems which are of the form A/^ where A is an S-

subsystem of S and ~ is a congruence relation on A. Notice that A is an

ideal of S and ~ is a semigroup congruence on A (since we have assumed

S to be commutative) and thus A¡~ is a semilattice as well as an S-system.

It is easy to see that (Al~)S=A¡^-> and that the partial order on A/r^ as a

semilattice coincides with the natural partial order of Lemma 1.

Theorem.   If MeHS(S), then ID(M) is the injective hull of M.

Proof. M=A/~ where A^S is an ideal and ~ is a congruence

relation on A. Denoting arbitrary elements of A/^ by [x] with xeA, we

have that [a]S=Ma since [a]s= [as]= [asa]= [as]a and [x]a= [xa]= [a*] =

[a]x. Since a D-ideal N is the join of the principal ideals it contains we have

N =. V {[a]S | [a] e N} = V {^ n Ma \ [a] e N}

£ V {N C\Ms\seS} = V {Aft | s e S} £ TV.

Thus 7V"= V {Ns|.seS} for each NeID(M) so the hypotheses of Lemma 2 are

satisfied and ID(M) is injective. Since the unary operations in ID(M) are

given by Ns=NC\Ms, for each seS, it is apparent that they preserve the

order and are decreasing and that for each [a]eM we have Na=Nf\Ma=

Nn[a]S. Thus, by identifying M with the S-subsystem of ID(M) consisting

of the principal order ideals of M, we see that the hypotheses of Lemma 3

are satisfied and that ID(M) is an essential extension of M.

Corollary 1. If MeHS(S), then M is injective if and only if it is a
complete lattice in which arbitrary joins are S-distributive.

Proof. M is injective if and only if the embedding m^mS of M in

ID(M) is onto. This is true precisely when every D-ideal of M is principal.

Clearly this is the case when M is a complete lattice in which arbitrary

joins are S-distributive. Conversely, if every Z)-ideal is principal, then the

partial ordering of ID(M) by set inclusion (under which ID(M) is a com-

plete lattice with S-distributive joins) coincides with its natural partial

order as an S-system, i.e., m1S^m2S if and only if m1=m2s for some seS.

Since in this case M is isomorphic to ID(M), M is also a complete lattice

with S-distributive joins.
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Corollary 2 (Berthiaume). If S is a chain, then its injective hull is its

Dedekind-MacNeile completion.

Proof. If S is a chain, then every order ideal is a D-ideal and hence

ID(S) is the Dedekind-MacNeile completion.

Corollary 3. A semilattice S is injective in the category of semilattices

if and only if it is injective in the category of S-systems.

Proof. By Corollary 1, S is injective in the category of S-systems if

and only if it is a complete lattice with the property that (V M)as=

V {mAs | meM} for all seS, M^S. By [2, Theorem 1] these properties

characterize injectivity in the category of semilattices.

Corollary 4. A cyclic S-system is injective if and only if it is a complete

lattice (in its natural partial order) in which arbitrary joins are S-distributive.

Proof. If M is a cyclic S-system, then M=xS for some xeM. It is

clear that MS=M, so M has a natural partial order (Lemma 1). Define

a congruence relation on S by s±~s2 if and only xs1=xs2. The map xsi-»r.s]

is an isomorphism between M and S/~ and hence MeHS(S) and Corollary

1 applies.

Corollary 5. Let M be an S-system such that MS=M. If for each meM

there exists an seS such that mS=Ms, then M is injective if and only if it is a

complete lattice in which arbitrary joins are S-distributive.

Proof. Define a congruence relation on S by sx~s2 if and only if

Ms1=Ms2. The map m\—>[s], where mS=Ms, is an isomorphism between

M and an S-subsystem of S/~. Since SH(S)^HS(S) by [3, Theorem 1, p.

152], MeHS(S) and Corollary 1 applies.
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