EQUIVALENCE OF CONNECTIVITY MAPS AND PERIPHERALLY CONTINUOUS TRANSFORMATIONS

MELVIN R. HAGAN

In [1] and [2] O. H. Hamilton and J. Stallings have shown that a local connectivity mapping, and hence a connectivity mapping, of a locally peripherally connected polyhedron into a regular Hausdorff space is peripherally continuous. The purpose of this paper is to prove the converse of this theorem.

Some definitions will now be recalled. A mapping $f\colon S\to T$ is a connectivity mapping if for every connected set A in S, the set g(A) is connected, where $g\colon S\to S\times T$ is the graph map of f defined by $g(p)=(p,\,f(p))$ [1, p. 750]. The mapping f is a local connectivity mapping if there is an open covering $\{U_\alpha\}$ of S such that $f|U_\alpha$ is a connectivity mapping for every α [2, p. 249]. The mapping f is peripherally continuous if for every point f in f and f and f and f containing f and f are in f and f and f and f are in f are in f and f are in f

In this paper S will denote a connected, locally connected, locally peripherally connected, unicoherent metric space and T a space such that $S \times T$ is completely normal.

The following lemma, proved by Stallings [2, p. 255], is used in the proof of Theorem 1.

LEMMA 1. If $f: S \rightarrow T$ is peripherally continuous, then for every point p in S and every pair of open sets U and V containing p and (p, f(p)), respectively, there is an open connected set $N \subset U$ and containing p such that F(N) is connected and $g(F(N)) \subset V$.

LEMMA 2. Let W be an open connected subset of S such that F(W) is connected. Let W_1 and W_2 be open connected sets such that $W_1 \cap W_2 \neq \emptyset$, $F(W_1)$ and $F(W_2)$ are connected, and $cl(W_1) \cup cl(W_2) \subset W$. Then there is a connected open set W_3 such that (1) $W_1 \cup W_2 \subset W_3 \subset W$, (2) $F(W_3)$ is contained in $F(W_1) \cup F(W_2)$, and (3) $F(W_3)$ is connected.

PROOF. The proof is similar to the proof of Lemma 1. Let $X = W_1 \cup W_2$. Then F(X) is connected and separates F(W) and X. Let

Received by the editors July 6, 1964.

 $C = F(X) \cup \{y \in W; F(X) \text{ separates } y \text{ and } F(W)\}$ and $W_3 = \text{component of int } C \text{ containing } X$. Then by standard theorems concerning unicoherence [3, p. 51], $F(W_3) \subset F(X)$ and $F(W_3)$ is connected.

The following theorem is the converse of Hamilton's and Stallings' theorem.

THEOREM 1. If $f: S \rightarrow T$ is peripherally continuous, then f is a connectivity map.

PROOF. Suppose that f is not a connectivity map and let A be a connected subset of S such that $g(A) = M \cup N$, where M and N are separated. Let $g^{-1}(M) = H$ and $g^{-1}(N) = K$. Then $A = H \cup K$, where $H \cap K = \emptyset$. Since A is connected H and K are not separated and hence one must contain a limit point of the other. Let p be a point of H that is a limit point of K. Since $S \times T$ is completely normal there exist open disjoint sets U and V in $S \times T$ containing M and N, respectively.

Let R be an open set containing p such that A is not contained entirely in R. By Lemma 1 there is an open connected set W containing p and contained in R such that W and F(W) are both connected and $g(F(W)) \subset U$. Since p is a limit point of K there is a point q of K in W.

Let Q be the collection of all open connected sets D such that q is in D, $\operatorname{cl}(D) \subset W$, F(D) is connected, and $g(F(D)) \subset V$. The collection Q is nonempty since f is peripherally continuous at the point q. Denote by Q^* the point-set union of all sets in Q. Then Q^* is an open subset of W. Since the connected set A intersects both Q^* and $S-Q^*$, it follows that $A \cap F(Q^*) \neq \emptyset$.

Since $F(Q^*) \cap A \neq \emptyset$, then $F(Q^*)$ either contains a point of H or a point of K. Suppose there is a point h in $F(Q^*) \cap H$. Then there is an open set E containing h but not q such that F(E) is connected and $g(F(E)) \subset U$. Since h is a limit point of Q^* , E must intersect some set D belonging to the collection Q. Now $E \subset D$ since h is in E - D and $D \subset E$ since q is in D - E. Thus E and D both have points interior and exterior to one another and F(D) and F(E) being connected implies $F(D) \cap F(E) \neq \emptyset$. But this contradicts the fact that $g(F(D)) \subset V$, $g(F(E)) \subset U$ and $U \cap V = \emptyset$. Hence $F(Q^*) \cap H = \emptyset$ and therefore $F(Q^*) \cap K \neq \emptyset$.

Let k be a point of $F(Q^*) \cap K$. Now k is not a point of F(W) since $g(F(W)) \subset U$ and g(k) is in V. Thus k is in W and there is an open connected set W_1 containing k and contained in W such that $F(W_1)$ is connected, $cl(W_1) \subset W$ and $g(F(W_1)) \subset V$. Since k is a limit point of Q^* there is a set W_2 in the collection Q such that $W_1 \cap W_2 \neq \emptyset$.

Now form the set W_3 referred to in Lemma 2. By this lemma the set W_3 is open, connected, $F(W_3)$ is connected, $\operatorname{cl}(W_3) \subset W$, and q is in W_3 . Further, $g(F(W_3)) \subset V$ since $F(W_3) \subset F(W_1) \cup F(W_2)$. Therefore W_3 possesses all the requirements to belong to Q, but W_3 is not in Q since k is in $(W_3 \cap F(Q^*))$. Therefore the assumption that g(A) is not connected leads to a contradiction. Hence f is a connectivity map.

Stallings' theorem, [2, p. 253], and Theorem 1 imply, in particular, that on an n-cell, $n \ge 2$, into itself there is no distinction among local connectivity maps, connectivity maps, and peripherally continuous transformations. Thus, the question posed on p. 752 of [1] and question 5, p. 262 of [2] are answered. The following theorem will complete the theory of equivalence of the local connectivity maps and the connectivity maps of an n-cell, $n = 1, 2, \cdots$, into itself.

THEOREM 2. If f is a local connectivity map of the closed unit interval I into itself, then f is a connectivity map.

PROOF. Since f is a local connectivity map there is an open covering $\{U_{\alpha}\}$ of I such that f restricted to U_{α} is a connectivity map for each α . Since I is compact the covering $\{U_{\alpha}\}$ can be reduced to an irreducible number of intervals I_1, \dots, I_n , such that $I_i \cap I_{i+1} \neq \emptyset$, and f is a connectivity map on each I_i . Then if K is any connected subset of I, K is an interval and $K = (K \cap I_1) \cup \dots \cup (K \cap I_n)$, where each $K \cap I_i$ is an interval contained in I_i . Thus $g(K \cap I_i)$ is connected and since $g(K \cap I_i) \cap g(K \cap I_{i+1}) \neq \emptyset$, g(K) is connected. Therefore f is a connectivity map.

REFERENCES

- 1. O. H. Hamilton, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8 (1957), 750-756.
- 2. J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 48 (1959), 249-263.
- 3. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ. Vol. 32, Amer. Math. Soc., Providence, R. I., 1949.

OKLAHOMA STATE UNIVERSITY