EQUIVALENCE OF CONNECTIVITY MAPS AND
PERIPHERALLY CONTINUOUS
TRANSFORMATIONS

MELVIN R. HAGAN

In [1] and [2] O. H. Hamilton and J. Stallings have shown that a
local connectivity mapping, and hence a connectivity mapping, of a
locally peripherally connected polyhedron into a regular Hausdorff
space is peripherally continuous. The purpose of this paper is to prove
the converse of this theorem.

Some definitions will now be recalled. A mapping f: S—7T is a
connectivity mapping if for every connected set 4 in S, the set g(4)
is connected, where g: S>SXT is the graph map of f defined by
g(p)=(p, f(#)) [1, p. 750]. The mapping f is a local connectivity
mapping if there is an open covering { U.} of S such that f | U.isa
connectivity mapping for every a [2, p. 249]. The mapping f is periph-
erally continuous if for every point p in .S and for every pair of open
sets U and V containing p and f(p), respectively, there is an open set
NCU and containing p such that f(F(N)) CV, where F(N) is the
boundary of N [1, p. 751]. A space S is locally peripherally connected
if every point has arbitrarily small neighborhoods with connected
boundary [2, p. 252].

In this paper S will denote a connected, locally connected, locally
peripherally connected, unicoherent metric space and T a space such
that SX T is completely normal.

The following lemma, proved by Stallings [2, p. 255], is used in the
proof of Theorem 1.

LeEMMA 1. If f: S—T is peripherally continuous, then for every point
p in S and every pair of open sets U and V containing p and (p, f(p)),
respectively, there is an open connected set N C U and containing p such
that F(N) is connected and g(F(N)) CV.

LEMMA 2. Let W be an open connected subset of S such that F(W) is
connected. Let W1 and W, be open connected sets such that WiN\W,# &,
F(Wy) and F(Ws) are connected, and cl(Wy)\Jcl(W,) CW. Then there
is a connected open set Ws such that (1) WiIW,CW;CW, (2) F(W5)
is contained in F(W1)\JF(Ws), and (3) F(Ws;) is connected.

Proor. The proof is similar to the proof of Lemma 1. Let X
=W1UW,. Then F(X) is connected and separates F(W) and X. Let
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C=F(X)\J {yE W; F(X) separates y and F(W) } and W;=com-
ponent of int C containing X. Then by standard theorems concerning
unicoherence [3, p. 51], F(Ws) C F(X) and F(Ws) is connected.

The following theorem is the converse of Hamilton's and Stallings’
theorem.

TueOREM 1. If f: S—T is peripherally continuous, then f is a con-
nectivity map.

PRrROOF. Suppose that f is not a connectivity map and let 4 be a
connected subset of S such that g(4)=M\UN, where M and N are
separated. Let g=}(M)=H and g~'(N) =K. Then 4 = H UK, where
HNK= . Since A is connected H and K are not separated and
hence one must contain a limit point of the other. Let p be a point of
H that is a limit point of K. Since SX T is completely normal there
exist open disjoint sets U and Vin SX T containing M and N, respec-
tively.

Let R be an open set containing p such that A is not contained
entirely in R. By Lemma 1 there is an open connected set W con-
taining p and contained in R such that W and F(W) are both con-
nected and g(F(W)) C U. Since p is a limit point of K there is a point
gof K in W.

Let Q be the collection of all open connected sets D such that ¢ is
in D, cl(D) CW, F(D) is connected, and g(F(D)) C V. The collection
Q is nonempty since f is peripherally continuous at the point g. De-
note by Q* the point-set union of all sets in Q. Then Q* is an open
subset of . Since the connected set 4 intersects both Q* and S—Q*,
it follows that ANF(Q*) = .

Since F(Q*)N\A = &, then F(Q*) either contains a point of H or a
point of K. Suppose there is a point % in F(Q*)N\H. Then there is an
open set E containing & but not ¢ such that F(E) is connected and
g(F(E)) CU. Since k is a limit point of Q*, E must intersect some set
D belonging to the collection Q. Now E{D since k is in E—D and
D{E since ¢ is in D—E. Thus E and D both have points interior
and exterior to one another and F(D) and F(E) being connected im-
plies F(D)NF(E)# . But this contradicts the fact that g(F(D))
CV, g(F(E)) CU and UNV=¢. Hence F(Q*)\H= and there-
fore F(Q*) K= &.

Let & be a point of F(Q*)MK. Now £ is not a point of F(WW) since
g(F(W))CU and g(k) is in V. Thus k is in W and there is an open
connected set Wi containing k and contained in W such that F(W))
is connected, cl(W;y) CW and g(F(W,)) CV. Since k is a limit point
of O* there is a set W, in the collection Q such that WiN\W,= .
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Now form the set W; referred to in Lemma 2. By this lemma the
set W is open, connected, F(Ws3) is connected, cl(W;) CW, and q is
in Ws. Further, g(F(W3)) CV since F(W;) CF(Wy)\JF(W3). There-
fore W; possesses all the requirements to belong to @, but Wj; is not
in Q since k is in (W3 F(Q*)). Therefore the assumption that g(4)
is not connected leads to a contradiction. Hence f is a connectivity
map.

Stallings’ theorem, [2, p. 253], and Theorem 1 imply, in particular,
that on an n-cell, # =2, into itself there is no distinction among local
connectivity maps, connectivity maps, and peripherally continuous
transformations. Thus, the question posed on p. 752 of [1] and ques-
tion 5, p. 262 of [2] are answered. The following theorem will com-
plete the theory of equivalence of the local connectivity maps and
the connectivity maps of an n-cell, =1, 2, - - -, into itself.

THEOREM 2. If f is a local connectivity map of the closed unit interval
I into itself, then f is a connectivity map.

Proor. Since f is a local connectivity map there is an open covering
{ U.} of I such that f restricted to U, is a connectivity map for each
a. Since I is compact the covering { U.} can be reduced to an ir-
reducible number of intervals Iy, - - -, I,, such that I;N\I; 2,
and f is a connectivity map on each I,. Then if K is any connected
subset of I, K is an interval and K=(KNHLH)\U - - - U(KNI,),
where each KNI; is an interval contained in I;. Thus g(KNI,) is
connected and since g(KNI)Ng(KNI;)# &, g(K) is connected.
Therefore f is a connectivity map.
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