
ON TWO THEOREMS OF JESSEN

DOROTHY MAHARAM

1. Introduction. Let X he the measure-theoretic product of a se-

quence of measure spaces Xx, X2, ■ ■ ■ , Xn, ■ • • , each of measure 1,

and let / be a summable1 real-valued function on X. Jessen2 has

proved the following two theorems: As n—><», and for almost every

x = (xx, x2, ■ ■ • ), we have

(1) II'' ' f(x)dxndxn+x • ■ ■ —>/(*)

and

(2) I   I    • • •    I   f(x)dxxdx2 • • • <2xn—>   I   f(x)dx.

We shall extend these theorems to products of arbitrarily many fac-

tor spaces.3 The most natural such extension would be to take the

integrals on the left-hand sides to be over all finite subsets of the

factor spaces for (2), and over the complementary sets of factors for

(1), and interpret the limits as directed limits. This does lead to

results on mean convergence; but we shall be concerned with point-

wise convergence, for which Dieudonne [4] has shown this natural

extension is false, at least for (1). Apparently the order of the factors

is significant. We shall show that the extension is valid if the factors

are well-ordered, the limits being transfinite limits. The proofs of

the two extended theorems are very similar, so we give the argument

only for (1); it depends on a lemma on the convergence of countable

transfinite sequences of measurable functions (§3) which may be of

some interest in itself.

It may be remarked that the restriction of finite integrability of/

is easily seen to be superfluous in (2), but is essential in (1), even if

the spaces Xn are unit intervals. (Example:/(xi, x2, • • • ) = 2l/4n*n.)

All measures occurring below are to be countably additive, non-

negative, o--finite and complete; and the measure on a product space

is always to be the product measure.
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1 That is, / is measurable and fx\f(x)\dx< °°.

2 [3]; see also [l, pp. 23-25; 2; 4].

8 The extended form of (1) is needed in a forthcoming paper of the author.
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2. Cylinder sets and functions. Suppose that F and Z are measure

spaces, and that X is their product YXZ. A measurable subset A of

X is said to be a cylinder on Y if it is of the form BXZ where 73 is a

(necessarily measurable) subset of Y. (The empty set is, of course,

always a cylinder on F.) Equivalently, A is a cylinder on F if and

only if, for each yEY, the "fibre" yXZ is either contained in or dis-

joint from A.

Similarly, a real-valued measurable function /, defined on a meas-

urable subset of X, is a cylinder function on Y if there exists a (nec-

essarily measurable) function g, defined on a subset of F, such that

for each y£ Fand zEZ we have/(y, z) =g(y). (Here, and throughout

this paper, an unqualified equality between functions means that if

either is defined then so is the other and they are equal.) It follows

that the set on which/ is defined is itself a cylinder on F. An equiva-

lent condition for / to be a cylinder function on F is that, for each real

(or rational) number p, the set {(y, z)\f(y, z)>p} is a cylinder set

on F.

It will be convenient to note the following obvious facts for refer-

ence.

(3) If / is a cylinder function on F, and meas Z = l, then/(y, z)

= fzf(y, z)dz (whenever either has a meaning).

(4) If / is a summable function, defined almost everywhere on

YXZXT, which is a cylinder function on YXT and if meas Z = \,

then

f f(y,z,t)dt =   ff      f(y, z, t)dzdt,
J T J   J Zx T

and the common set on which they fail to exist is a null cylinder on F.

Now let X he the product of an uncountable family {a7|X(EA}

of measure spaces X\, each of total measure 1. A sub-product F

= XI{A7|X£M} (where M is a nonempty proper subset of A) is

said to be "countable" if M is countable. For any sub-product F, if

Z denotes the product of the remaining factors {A7|XGA — M}, the

product YXZ is of course isomorphic to X, and we shall not dis-

tinguish between them. The properties of X can to a large extent be

deduced from those of countable products, in view of the following

results.

(5) Given any measurable subset A of X, there exist a countable sub-

product Y, and cylinders Ai, A2 on Y, such that AiEAEA2 and

meas (At — Ai) = 0.

For the family of subsets of X having this property is a Borel field

containing the cylinders on products of finitely many factors, and
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thus containing also all null sets. Hence it contains all measurable

sets.

(6) Each measurable function f on X differs from a cylinder function

on some countable sub-product by a null function.

This is proved by applying (5) to the sets {x|/(x)>p}, where p

runs over the rational numbers.

Further, applying (5) to the set {x|g(x);^o}, we obtain:

(7) Each null function g on X vanishes outside some null set which

is a cylinder on a countable sub-product.

3. Transfinite sequences of functions.

Lemma. Let a* be a countable limit ordinal, and let \fy\y<a*} be a

transfinite sequence of measurable real-valued functions on a measure

space X, with the property that every cofinal simple sub-sequence of

[fy} converges for almost all xEX.4 Then there is a measurable function

f on X such that, for almost all xEX, fy(x)—>/(x) as 7—>a*.

We first show that there is a simple cofinal sub-sequence

|/tw} (« = 1, 2, • • • ), with 7(1) <7(2) < • • • and sup y(n)=a*,

such that lim sup/7(n>(x) =lim sup/Y(x) for almost all x. There is no

loss of generality in assuming that meas X=l, and that the func-

tions/,, are uniformly bounded. Now take a sequence an (« = 1, 2, • • •)

of ordinals such that «i<a2< • • • and sup an=a*. Define t3x=ax,

gx(x) =sup \fy(x)\r3x^y<a*}. By renumbering the (countably many)

functions fy occurring here into a simple sequence, it is easy to see

that we can choose a finite number of values of 7, say7(l), 7(2), • • •,

y(nx), such that 0x^y(i)<a* and max {fy<u, • • • , fy<.ni)} >gi(x) — 1

except on a subset Ex of X of measure less than 1/2. We may of course

suppose that 7(1) <7(2) < ■ • ■ <7(«i) <a*. We iterate the process,

taking/32 = max (y(nx)+l, a2) and g2(x) =sup {/T(x)|/32^7<a*}; and

so on. In this way we construct recursively (for i = 2, 3, • • • ) an

increasing sequence of integers «,- and an increasing sequence of ordi-

nals7(l), • • -,y(ni), ■ ■ ■, so that, on writing/3i = max (a,-, 7(wj_i)+1)

and g,(x)=sup   \fy(x) | /3<^7<a*}, we have

max {/r(m)(x)|»,_i + 1 i »« g «i)  > gi(x) — \/i

except for xEE{, where meas 2J,<2-'. Clearly sup y(n) =«*, for

y(ni)^at. Let &(x)=lim sup {/T(„)(x)| w = 1, 2, • ■ • } ; it is easy to

see that k(x) ^limsup/T(x) for each xGJY", and that k(x) ^limsup/7(x)

— l/m if xEU{Ei\i^m}, a set of measure less than l/2m_1. It fol-

lows that &(x) =lim sup/7(x) almost everywhere.

4 Note that the exceptional null set will depend, in general, on the subsequence.
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Similarly we construct a sequence of ordinals 5(1) <5(2) < • • •

<a*, with sup 8(n)=a* and lim inf fsw(x) =lim inf/7(x) almost

everywhere. The combined set of ordinals 7(1), 7(2), • • • , 5(1),

5(2), • • • , numbered in increasing order as a single sequence, pro-

vides a cofinal simple subsequence of {fy] which has almost every-

where the same lim sup and lim inf as [fy}. By hypothesis, this sub-

sequence converges almost everywhere to a (necessarily measurable)

function/; hence/7(x)—»/(x) almost everywhere.

4. The theorems. For any limit ordinal a*, let {Xa|a<a*} be a

well-ordered collection of measure spaces, each of measure 1, and

let X=Y[Xa- For each ordinal y<a* (but >1) we write Yy

= U{Xa\a<y}, ZT=XI{A7|7^a<a*}, and identify X with
YyXZy. Let/be any integrable real-valued function on X (the values

+ co are allowed), and let fy be the cylinder function on Yy defined

(almost everywhere) by: fy(x)=fy(yy, zy)=JZyf(yy, zy)dzy. Similarly

we define p to be the cylinder function on Zy defined (almost every-

where) by

fy(x) = p(yyj Zy) =   J      f(yyj Zy)dy.
J Yy

Theorem 1. 7/ fx\f(x)\dx< co, then /T(x)—>/(x) as y-^>a*, for al-

most every xEX.

Theorem 2. p(x)-^fxf(x)dx as 7—>a*, for almost every xEX.

The proof of Theorem 1 is built up by combining several special

cases.

I. If a*=coo, the theorem reduces to Jessen's original theorem (1).

II. Suppose now that a* is countable, and let }/3n} (w = l, 2, ■ • • )

be a cofinal simple sequence (i.e., j3i</32< • • • and sup j3„=a*). We

may assume ft>l. Let Ri=Y[{Xa\a<fii}, and 77 = XI{Xa|/3„_i
^a<j3n} (n = 2, 3, ■ ■ ■), and write Fn_=77X7?2X • • • X77>, Zn

= J\{Xa\pn-ga<a*}; thus X=\\Rn=YnXZn. From I we obtain

that, if

fn(x) =   |_ f(%, zn)dzn,
J Zn

then ]n(x)—»/(x) for almost all x. But Yn=Y?n, Zn = Z^n and/„ =fpn.

Thus every simple cofinal sub-sequence {/^} of {fy} converges to /

almost everywhere; and, by the lemma, so does {fy}.

III. Next, let a* he uncountable, but suppose that/ is a cylinder

function on a countable subproduct, say on H{X*\ aEB } where B

is countable; and let sup 73=a0. If aa<a*, we observe that, when-
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ever a0<7<a*, fy(x)=f(x) for all xEX (by (3), applied to F= Yy

and Z = Zy), so trivially fy(x)—*f(x).6 If however a0 = a*, let (}(y) de-

note, for each y<a*, the least member of B which ^7. Suppose for

the moment that 7</3(7) (i.e., yEB), and apply (4) to Y=Yy,

Z= Tl{Xa\y?H=a<i3(y)}, T = ZpM; we see that/7(x) =/s(T)(x) ior all

xEX (for which either is defined).6 If 7=/3(/y) this is still true, so it

is enough to prove that fp(x)—>/(x) almost everywhere as 23—>a*

through values in 23; but this follows from II applied to the product

of the spaces Xp = n{Xa|/3 = a</3+}, where l3EB and j3+ denotes

the successor of (3 in 23.

IV. Now suppose that/ is a null function. By (7), / vanishes out-

side a null set E which is a cylinder on some countable subproduct

{-Xa|a£23}. As it is enough to prove the theorem under the assump-

tion that/is bounded, we may assume \f(x)\ fkM%(x) for all xEX,

where 2l7 is a constant and x is the characteristic function of E. From

III there is a null set N such that, if xEX — N, we have Xy(x) —*x(x)

as 7—>a*. But |/y(x)| Sjzy\f(y-y, zy)\dzy^Mxy(x), and therefore, if

xEX-(N\JE), we have/7(x)^0=/(x).

Theorem 1 in full generality is now an immediate consequence of II,

III and IV, in view of (6).

The proof of Theorem 2 is entirely similar; the extra argument

needed to deal with the case in which / is infinite on a set of positive

measure, or has an infinite integral, is trivial.

Remark. If we denote by {/} the class of all functions which

differ from/ by a null function, then, given f, there are at most countably

many different classes \fy} and {fi} .6 This is shown by the reasoning

in case III, together with the fact that if/ is null then all the func-

tions fy and fi are null.
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