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AUSLANDER GENERATORS

OF ITERATED TILTED ALGEBRAS

FLÁVIO ULHOA COELHO, DIETER HAPPEL, AND LUISE UNGER

(Communicated by Birge Huisgen-Zimmermann)

Abstract. Let Λ be an iterated tilted algebra. We will construct an Auslan-
der generator M in order to show that the representation dimension of Λ is
three in case Λ is representation infinite.

Recently there has been a lot of attention to compute the representation dimen-
sion of a finite dimensional algebra Λ, a notion introduced by Auslander in [A] in an
attempt to measure the complexity of the representation theory of Λ. It seems from
the results obtained in the last few years that it actually measures the homological
complexity of Λ, and we want to provide some further evidence.

We will not need the original definition, but rather the following characterization
already going back to Auslander in [A]; see also [EHIS] or [CP] for a more detailed
account.

For this let Λ be an arbitrary finite dimensional algebra. Let modΛ be the
category of finitely generated left Λ−modules. Let M ∈ modΛ be a generator-
cogenerator. So we have that ΛΛ⊕DΛΛ ∈ addM, where D is the standard duality
on modΛ and addM is the full subcategory of modΛ containing the direct sum-
mands of direct sums of M. Let d be the minimum such that there is a generator-
cogenerator with the following property: For each X ∈ modΛ there is an exact
sequence

0 → Md → · · · → M1 → M0 → X → 0 such that

0 → HomΛ(M,Md) → · · · → HomΛ(M,M0) → HomΛ(M,X) → 0

is exact, where M i ∈ addM for 0 ≤ i ≤ t. Then the representation dimension
rep.dimΛ of Λ is d + 2. It follows from Iyama’s result [I] that the representation
dimension of Λ is always finite. Trivially, if Λ is representation finite, then the
representation dimension of Λ is two. We call a generator-cogenerator where the
minimum is attained an Auslander generator.

As the main result of this article we will show here that for an iterated tilted
algebra Λ there is a generator-cogenerator M such that d = 1. We will recall the
definition of this class of algebras below. In particular we obtain that an iterated

Received by the editors April 7, 2009, and, in revised form, July 24, 2009.
2000 Mathematics Subject Classification. Primary 16E05, 16E10, 16G10.
The results presented here were obtained while the second and third authors were visiting

IME-USP. They thank their coauthor for his kind hospitality during their pleasant stay in São
Paulo. The project was made possible by a grant from FAPESP, Brazil. The first author also
acknowledges a grant from CNPq.

c©2010 American Mathematical Society

1587
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tilted algebra which is representation infinite has representation dimension three.
Note that this generalizes the result for tilted algebras in [APT]. For related results
we refer to [O] and the literature quoted there. We will include an easy example
of an iterated tilted algebra Λ showing that no proper direct summand M ′ of M
which still is a generator-cogenerator will have this property.

We now recall the concept of iterated tilted algebras. For this let H be a fi-
nite dimensional hereditary k−algebra over a field k. Let modH be the category of
finitely generated left H−modules. Iterated tilted algebras were introduced in [AH]
under the name of generalized tilted algebras. We will not use the original defini-
tion, but instead will use the characterization given in [HRS]. For this consider the
bounded derived category Db(H) of modH. Then the result in [HRS] states that a
finite dimensional k−algebra is an iterated tilted algebra if and only if the derived
category Db(Λ) of the category modΛ of finitely generated left Λ−modules is equiv-
alent as a triangulated category to Db(H) for some finite dimensional hereditary
k−algebra H, or equivalently, using [Ri], that there is a tilting complex T • ∈ Db(H)
such that Λ � EndDb(H)T

•. We call H the type of Λ, which is only defined up to
derived equivalence. So the class of iterated tilted algebras coincides with the class
of piecewise hereditary algebras of type H. In general the class of piecewise heredi-
tary algebras is defined to be those algebras being derived equivalent to hereditary,
abelian categories. It follows from [H2] that there is only one other class of piece-
wise hereditary algebras, namely those of type cohX for a weighted projective line
in the sense of [GL2]. Our result should also be true there, but the absence of
indecomposable projectives and indecomposable injectives in cohX shows that our
methods used in the second section will fail.

In the first section we will briefly recall some useful facts on iterated tilted
algebras. In section two we then will present the construction of a generator-
cogenerator with the property mentioned above and show the main result.

We denote the composition of morphisms f : X → Y and g : Y → Z in a
given category K by fg. The notation and terminology introduced here will be
fixed throughout this article. For unexplained representation-theoretic and derived
category terminology, we refer to [ARS], [H1] and [R].

1. Preliminaries

In this section we briefly recall some useful facts on iterated tilted algebras which
will be used in the next section. We keep the notation from the introduction. Let
T • ∈ Db(H) be a tilting complex and let Λ = EndDb(H)T

•. If X ∈ Db(H) is
indecomposable, then it is well known that X ∈ (modH)[i] for some i ∈ Z, where
we denote by [.] the shift functor on Db(H) and identify modH with (modH)[0],
the stalk complexes concentrated in degree zero. Then up to shift we may assume
that T • =

⊕r
t=0 Tt[t], where Tt ∈ modH. We denote by F : Db(H) → Db(Λ) the

triangle equivalence induced by T • and by G a quasi inverse to F. Thus for any
indecomposable Λ−module X we have that G(X) ∈

⋃r+1
t=0 (modH)[t]. For 0 ≤ t ≤

r + 1 we denote by Ut the full subcategory of modΛ with objects the direct sums
of those indecomposable Λ−modules X such that G(X) ∈ (modH)[t]. We refer to
[H1] for properties and more details of the subcategories Ut. In particular we will
use that HomΛ(X,Y ) = 0 for X ∈ Us, Y ∈ Ut such that |s− t| ≥ 2.

We will also need the following notation. For X ∈ modH we denote by T (X)
the full subcategory of modH containing those Y such that Ext1H(X,Y ) = 0 and by
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F(X) the full subcategory of modH containing those Y such that HomH(X,Y ) = 0.
So the right orthogonal category as defined in [GL1] is Xperp = T (X) ∩ F(X).

The next lemma collects some basic information on iterated tilted algebras; for
details, see [S].

Lemma 1.1. Let Λ be an iterated tilted algebra given by a tilting complex T • and
a triangle equivalence F as above. Then

(i) For i �= j we have that HomH(Ti, Tj) = 0 and for j �= i + 1 we have that

Ext1H(Ti, Tj) = 0.
(ii) For 0 ≤ t ≤ r + 1, let Vt ⊂ modH be defined as

Vt =
⋂

i �=t,t−1

T perp
i ∩ T (Tt) ∩ F(Tt−1).

Then the restriction of F to Vt[t] induces an equivalence of Vt[t] with Ut.

In the next proposition we collect some further properties of the subcategories
Vt ⊂ modH as defined in Lemma 1.1 The first two assertions follow easily from
Lemma 1.1(ii), and the last is contained in [HZ]. For the notion of functorial
finiteness of a given subcategory of modΛ we refer to [AS2].

Proposition 1.2. Let Λ be an iterated tilted algebra given by a tilting complex T •

and a triangle equivalence F as above.

(i) For 0 ≤ t ≤ r + 1, the subcategories Vt are closed under extensions, direct
summands, direct sums and images.

(ii) Let 0 → X → Y → Z → 0 be an exact sequence in modH with Y, Z ∈ Vt

and Ext1H(Tt, X) = 0; then X ∈ Vt.
(iii) For 0 ≤ t ≤ r + 1, the subcategories Vt are functorially finite in modH.

2. Construction of an Auslander generator

We keep the notation from the previous section. Fix an integer 0 ≤ t ≤ r + 1.
We consider the subcategory Vt ⊂ modH. By Proposition 1.2 we know that Vt is
functorially finite in modH. Let HH → Gt be a minimal left Vt−approximation of

HH and let Et → DHH be a minimal right Vt−approximation of DHH . By [AS2]
we know that Gt is Ext−projective in Vt, so Ext1H(Gt, X) = 0 for all X ∈ Vt, and
that Et is Ext−injective in Vt, so Ext1H(X,Et) = 0 for all X ∈ Vt. Let n be the
number of distinct simple H−modules. Since H is hereditary we know that an
Ext−injective in Vt is a partial tilting module, so has at most n indecomposable
direct summands up to isomorphism. Thus we may consider Ft the direct sum of all
indecomposable Ext−injectives in Vt up to isomorphism. Similarly we can define Rt

as the direct sum of all indecomposable Ext−projectives in Vt up to isomorphism.
It follows from Lemma 1.1 that Tt ∈ addRt.

Let T • ∈ Db(H) be the tilting complex and let Λ = EndDb(H)T
•. Moreover let

F : Db(H) → Db(Λ) be the triangle equivalence induced by T •. For 0 ≤ t ≤ r+1 set

Qt = F (Rt[t]) and Lt = F (Ft[t]). Finally, let M =
⊕r+1

t=0 Mt, where Mt = Qt ⊕Lt.
Clearly, if Xt is Ext−projective in Ut, then Xt ∈ addQt and, if Yt is Ext−injective
in Ut, then Yt ∈ addLt. So ΛΛ ∈ add

⊕r+1
t=0 Qt and DΛΛ ∈ add

⊕r+1
t=0 Lt; hence

the following is immediate.

Lemma 2.1. The module M is a generator-cogenerator for modΛ.
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Note that our choice of M does not only depend on Λ, but also on the concrete
realization of Λ as an endomorphism algebra of a tilting complex in Db(H).

We will now show certain useful properties of the H−modules Rt and Ft.

Proposition 2.2. Let 0 ≤ t ≤ r + 1 and X ∈ Vt.

(i) Let π : R0
t → X be a minimal right addRt−approximation of X. Then π is

surjective and ker π ∈ addRt.
(ii) Let α : F̃t → X be a minimal right addFt−approximation of X. Then α is

injective.

Proof. First we show (i). Let X ∈ Vt. Let ρ : P (X) → X be the projective

cover of X and h : P (X) → R̃t be a minimal left Vt−approximation of P (X).

Then R̃t ∈ addRt and so there is g : R̃t → X such that ρ = hg. Since ρ is
surjective, we infer that g is surjective. So a minimal right addRt−approximation
π : R0

t → X of X is surjective. Since Tt ∈ addRt, we have that Hom(Tt, π) is
surjective, and since Ext1H(Tt, Rt) = 0 we have that Ext1H(Tt, kerπ) = 0. So by
Proposition 1.2(ii) we infer that kerπ ∈ Vt. Since H is hereditary we see that
Ext1H(R0

t , Y ) → Ext1H(kerπ, Y ) is surjective, so Ext1H(kerπ, Y ) = 0 for Y ∈ Vt, so
kerπ ∈ addRt. �

For (ii) consider a minimal right addFt−approximation α : F̃t → X of X. If

α is not injective, we consider α = ρµ, where ρ : F̃t → imα is a proper sur-
jection and µ is the inclusion of imα → X. By Proposition 1.2(i) we have that

imα ∈ Vt. Since H is hereditary we have that Ext1H(Y, F̃t) → Ext1H(Y, imα) is sur-

jective, so Ext1H(Y, imα) = 0 for Y ∈ Vt, so imα ∈ addFt. Since HomH(Ft, F̃t) →
HomH(Ft, X) is surjective we infer that also HomH(Ft, imα) → HomH(Ft, X) is
surjective. So µ is a right addFt− approximation of X of smaller length, which
contradicts the minimality of α; hence α is injective.

Corollary 2.3. Let 0 ≤ t ≤ r + 1 and let X ∈ Vt. Then there is a short exact
sequence

0 −−−−→ R1
t −−−−→ Nt

f−−−−→ X −−−−→ 0

with f a right add (Rt ⊕ Ft)−approximation of X and R1
t ∈ addRt.

Proof. Let X ∈ Vt. From Proposition 2.2(i) we obtain a short exact sequence

0 −−−−→ R1
t −−−−→ R0

t
π−−−−→ X −−−−→ 0

with R0
t , R

1
t ∈ addRt and π a minimal right addRt−approximation of X. By

Proposition 2.2(ii) we have that a minimal right addFt−approximation α : F̃t → X
is injective. So we consider the following pullback diagram:

(∗)

0 −−−−→ R1
t −−−−→ B

γ−−−−→ F̃t −−−−→ 0∥∥∥ β

⏐⏐� α

⏐⏐�
0 −−−−→ R1

t −−−−→ R0
t

π−−−−→ X −−−−→ 0

Since α is injective, we see that β is injective. Since Vt is closed under extensions,
we infer that B ∈ Vt. Since H is hereditary we see that Ext1H(R0

t , Y ) → Ext1H(B, Y )
is surjective, so that Ext1H(B, Y ) = 0 for Y ∈ Vt, so B ∈ addRt. Clearly,

f =

(
α
π

)
: F̃t ⊕R0

t → X
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is a right add (Ft ⊕ Rt)−approximation of X. Since (∗) is a pullback diagram we
obtain a short exact sequence

0 −−−−→ B −−−−→ F̃t ⊕R0
t

f−−−−→ X −−−−→ 0

with f a right add (Rt ⊕ Ft)−approximation of X and B ∈ addRt, thus showing
the assertion. �

Lemma 2.4. Let Λ be an iterated tilted algebra with pieces U0, . . . ,Ur+1. For 0 ≤
t ≤ r + 1, let Qt, Lt ∈ Ut be as above. Let X ∈ Ut and Y ∈ Ut+1 for 0 ≤ t ≤ r.

(i) Any map f : X → Y factors over addQt+1.
(ii) Any map f : X → Y factors over addLt.

Proof. We show the first assertion. The second assertion follows by dual arguments.
So let X ∈ Ut and Y ∈ Ut+1 for 0 ≤ t ≤ r and let f : X → Y be a nonzero map.
Let X ′[t] = G(X) and Y ′[t+ 1] = G(Y ) for X ′ ∈ Vt and Y ′ ∈ Vt+1. Then

G(f) ∈ HomDb(H)(X
′[t], Y ′[t+ 1]) � HomDb(H)(X

′, Y ′[1]).

Let π : P (Y ′) → Y ′ be the projective cover of Y ′. Since H is hereditary
we have that Ext1(X ′, π) : Ext1(X ′, P (Y ′)) → Ext1(X ′, Y ′) is surjective. Since
Ext1H(X ′, Y ′) � HomDb(H)(X

′, Y ′[1]), we see that there is h : X ′[t] → P (Y ′)[t+ 1]

such that hπ[t+1] = G(f). Let g : P (Y ′) → R̃t+1 be a minimal left Vt+1−approxi-

mation of P (Y ′). Then R̃t+1 ∈ addRt+1. Thus there is h′ : R̃t+1 → Y ′ such that
gh′ = π. So G(f) = hπ[t+1] = hg[t+1]h′[t+1]. So using the equivalence F we see

that f = FG(f) = F (hg[t + 1])F (h′[t + 1]) and F (R̃t+1) ∈ addQt+1, so f factors
over addQt+1. �

Theorem 2.5. Let Λ be an iterated tilted algebra and let M =
⊕r+1

t=0 Mt, where
Mt = (Qt ⊕Lt) for 0 ≤ t ≤ r+1. Then M is a generator-cogenerator and for each
X ∈ modΛ there exists an exact sequence 0 → M1 → M0 → X → 0 with M0,M1 ∈
addM such that 0 → HomΛ(M,M1) → HomΛ(M,M0) → HomΛ(M,X) → 0 is
exact.

Proof. By Lemma 2.1 we know that M is a generator-cogenerator. It is clearly
enough to construct such a sequence for a Λ−module X ∈ Ut for 0 ≤ t ≤ r + 1.
Since X ∈ Ut there is Y ∈ Vt such that X = F (Y [t]). Using Corollary 2.3 we obtain
a short exact sequence

0 −−−−→ R1
t −−−−→ Nt

f−−−−→ Y −−−−→ 0

with f a right add (Rt⊕Ft)−approximation of Y and R1
t ∈ addRt. Then we obtain

an exact sequence of Λ−modules

0 −−−−→ F (R1
t [t]) −−−−→ F (Nt[t])

F (f [t])−−−−→ F (Y [t]) −−−−→ 0

with g = F (f [t]) a right add (Qt ⊕ Lt)−approximation of X and also F (R1
t [t]) ∈

addQt. Now HomΛ(Mi, X) = 0 for i > t and i < t − 1. By Lemma 2.4 any map
from Mt−1 to X factors over addQt, so we infer that g is an addM−approximation
of X. But then HomΛ(M, g) is surjective, which shows the assertion. �

Example 2.6. Next we give an example of an iterated tilted algebra Λ showing
that no proper direct summand M ′ of M which still is a generator-cogenerator will
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have this property. For this consider H to be the path algebra over k of the linearly
oriented quiver A6,

◦
1

α← ◦
2

β← ◦
3

γ← ◦
4

δ← ◦
5

η← ◦
6
.

We choose T0 = S(2), T1 = S(1) ⊕ P (3) ⊕ P (4) ⊕ P (6) ⊕ S(6), where S(i) is
the simple H−module associated with the vertex i and P (i) its projective cover.
Then T • = T0[0] ⊕ T1[1] ∈ Db(H) is a tilting complex with Λ = EndDb(H)T

• the
quotient of H by the two-sided ideal generated by βα and ηδ. Now U0 = addS(1)
and U2 = addS(6), while all other indecomposable Λ−modules belong to U1. Our
choice of M in this case is M = ΛΛ⊕DΛΛ ⊕ S(2)⊕ S(5). It is straightforward to
check that no proper direct summandM ′ ofM which is still a generator-cogenerator
will satisfy the assertion of Theorem 2.5.

As mentioned in the introduction the following is an immediate consequence of
Theorem 2.5.

Corollary 2.7. Let Λ be an iterated tilted algebra which is representation infinite.
Then the representation dimension of Λ is three.

It is well known that an iterated tilted algebra of type H, where H is a represen-
tation finite hereditary algebra is again representation finite. So also the following
is an immediate consequence of Theorem 2.5. A direct proof of this could provide
some further insight.

Corollary 2.8. Let Λ be an iterated tilted algebra of type H. Then rep.dimΛ ≤
rep.dimH.
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