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THE STABILITY OF A ROTATING VISCOUS JET*
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1. Introduction. The purpose of this paper is to discuss the stability of a column
of homogeneous viscous liquid rotating as a rigid body. We shall show that the motion
will be stable for perturbations of azimuthal wave number s and axial wave number
¢ if and only if

T > pa’’(@’¢® + 8* — )77, )]

where T is the surface tension, p the density of the liquid, a the radius of the column,
and o its angular velocity. This condition is to hold, provided that the right-hand-side
of (1) is positive; when the right-hand-side of (1) is negative (i.e. when s = O and af < 1),
the motion is always unstable.

Special results on this problem which are to be found in the literature are all im-
mediately deducible from (1). Rayleigh [1] discussed axisymmetric disturbances of a
non-rotating column (i.e., w = s = 0) and found that the equilibrium was stable or
unstable according as af > or < 1. While his result was established in the first place
for a non-viscous liquid, he later [2] extended it to liquids of very high viscosity. Much
more recently, Hocking [3] has considered the effect of rotation on the stability of a
column to axisymmetric disturbances and has shown that, in the limiting case
of very high viscosity, the necessary and sufficient condition for stability is that
T > pa’w’(a’¢® — 1)~*. Another particular problem considered by Hocking was that of
disturbances which are confined to cross-sectional planes, and are the same in all such
planes, i.e., both ¢ and the axial velocity component are zero. For the special cases of
very high and very low viscosity, he showed that the condition for stability was
T > pa’w’(s® — 1)7'. This result was shown [4] to hold quite generally for all values
of the viscosity. It should be noted that, for plane disturbances, we need consider only
s> 2.

It is of interest that the critical value of the surface tension defined by (1) is inde-
pendent of the coefficient of viscosity.

2. Equations of motion. The physical constants in our problem are: », the angular
velocity of the rotating column; a, the radius of the unperturbed column; p, the density
of the liquid; g, its viscosity, which enters only in the combination » = p/p (kinematic
viscosity); T, the surface tension. We make use of cylindrical coordinates, and denote
velocities of the fluid in the r-,¢- and z-directions by: u, v, and w, respectively. In these
coordinates, the Navier-Stokes equations are
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v = 6r2+ rar+r’6¢2 2’
while the continuity equation is written as
10 1 ov
ar(m)+ra¢+ “ ~ 0. 3)

The solution of the equation for unperturbed flow is given by

u=0=w, v=r, p= iwr + const,
and the constant is fixed by the requirement that at the boundary of the cylinder
p(a) = T/a. Thus, p = 3pw’(r® — a*) + T/a.

For the perturbed flow, we take our functions in the form:

u = U*(r, 2) exp [i(sp — a2)]

v = 1w+ V*r,2) exp [t(s¢p — ot)]

w = W(r, 2) exp [i(sp — ot)] i 4)
p = 3(" — @) + = + pg*(r,2) exp lilss — ot

and assume that U*, V*, W*, ¢* as well as their derivatives, are small quantities whose
squares may be neglected. For convenience, we shall at times use the symbol x for
exp [¢(s¢ — ot)]. We have used starred letters U*, etc. for convenience of notation when
we subsequently go over to Fourier transforms.

The Navier-Stokes and continuity equations may then be written

s+1

isw — o) U* — 20 V*

i(sw — o) V* + 20U*

U(sw — ) W*

—g* +v[U,’t +1o -

———q*+v[V +iyr ]

U*+ U*+ V*_'_W*-

2
—gt+ »[W:': + % wE = S W+ W;':]

v+ v ?SU} ©)

(6)

where subscripts indicate differentiation. The necessary and sufficient condition for
stability is that 9(¢) < 0, 9(s) denoting the imaginary part of o.
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3. The boundary conditions. (a) We shall assume that the perturbed boundary is
the surface

2 =r—a— H*@) exp [i(sp — af)] = 0.
Since the surface moves with the fluid, we have

Dz _ (& 9 ,vao 3_). -

Dt_( +u6r+ +w Z=0.

at r d¢ 0z
Applying this condition to the perturbed functions, and neglecting terms of order higher
than the first, we are left with

i(sw — o)H*(z) = U*(a, 2). )]
(b) The normal stress condition states that, at the boundary, the normal stress,
Pmn = P — Men., , must be balanced by the normal force due to surface tension,

T(1/R, + 1/R,), where R, and R, are the principal radii of curvature of the perturbed
boundary. The mean curvature (1/R, + 1/R,) is obtained by elementary methods of
differential geometry (see [5], Chap. III), in terms of the first and second derivatives
of the vector

r = ([a + H*x] cos ¢, [a + H*x] sin ¢, 2).
We find that

1,1 __1 x g 1= *]
R1 + . - a + X[Hii a2 H . (8)

e,, is the component of the stress-tensor, referred to an orthogonal coordinate system
where n is the normal to the perturbed surface. (The other two directions may be de-
noted by ¢’ and z’.) However, all the components of the stress-tensor, referred to the
coordinate system of the unperturbed surface, are already themselves quantities of the
first order. Hence, to the approximation which we are using, e,, =~ e,, (and similarly,
€nr €, , €4 ~2e,,). For e, we have

e, = 2— = 2U*,

du
ar
so that
T T
- zgw’(F — @) + 7 + pg*x — 2uU%x = (’H*a + pg* — 2uU%)x + ’h
Thus we obtain for the normal stress condition at r = a

2
T[H;s =t H] = 2uU% — pg* — p'aH*. ©

In view of (7), we may rewrite this condition as:

— 2
1 [T(U:‘: 1 p g U*) + pwzaU*] — 2uU% + pg* = 0. (10)

i(sw — o)

(c) The tangential shear conditions require that

s = npr = 0.
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As remarked above, we may instead require
end> = e:n = 0’

to the order of approximation which we are using throughout.
Since

r Iv/r)

1 du ou , ow
€y =10 =— and e -—

+Ta¢ rs='£ ar '

it follows that the conditions on our functions at r = a are
Byt vE—2vr=0 (11)

Ur+wk=0. (12)

4. Fourier transforms. We now set U(r, §) = 1/(2m)"? [°., U*(r, 2)e”*** dz, etc.,
and apply the operator 1/(2x)*/* [=, --- exp (—i¢2) dz to our equations and boundary
conditions. The effect of this Fourier transformation is to replace U*, V*, etc. in the
equations by U, V, etc.; U* is replaced by i¢U and U* by —¢*U, where the functions
U, V, W, Q now depend on r, {. We shall keep { fixed throughout, and thus our functions
depend only on the variable r. (This is equivalent to considering a purely sinusoidal
disturbance, of wave number ¢{, instead of one which depends upon z in a general manner.)

The new form of the equations of motion is now

° . ‘
i@—au—mv=—%-Htu+%a—i%iv—fu—%v]

.. [~ 2 .
i@—@v+&ﬂ=-ﬁq+yV"+lu—st1V~fV+¥U]
r L r r r
- , L (13)
i®—®W=—wq+vWW+b%—%W—fW]
v.+iv+Bv+aw=o.
The boundary conditions become (all functions taken at r = a)
—JL—&W+§‘¢T—pw§— + 20U, = 0
1(sw — o) a® Pq b
iU —V+Va=0 us
WU+ W, =0. J

Dimensionless quantities can be introduced, which also simplify the equations.
We define

R = ¢r,
and then
dU
Ur = {E = IU,,
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and

v§
We further observe that it is useful to introduce the combinations X = U + ¢V and
Y = U — 4V, in terms of which the first two equations of motion are recombined, to
give one equation which involves only X and @, while the other involves only Y and Q.
The final form of the equations of motion, in terms of the newly defined B, o, w, ,
X and Y, becomes

(1+a+2iwo)X=[—Q'+I%Q]+[Xn+}%X; @Dy ] @)

(1 + a — 2e)Y = [-Q' —%Q] + [Y” + 2V - (1}21 i Y], ®)

A+ aW=—iQ + [W” + S W - 7 W] ©
R s+1 _s—1

—uW = [X’ + & X] + [Y’ 7 Y]. (D)

The boundary conditions become (R = R,., = a)

2

0=20" - Q+ U R+ 2 — 11 - 1) ®
0=14U—V 4+ RV’ (€))
0 =W +iU, (®)
where all functions are taken at r = a, M being defined as the dimensionless quantity

T/po’a
5. Solution of the transformed equations of motion. The differential operator
which appears in (4), (B) and (0), i.e.,

1d m2>
( "t RIETE
suggests that we might try a solution in terms of Bessel functions. We start with (C),

and assume W = J,(kR), where k is a constant to be determined. It follows that

Q = QoJ.(kR),
where

Qo =il + a + k) = iy.
Hence

;.S sJ, (kR) .
- +5Q= tktﬁ{ a(eR) [J.(kR)] + } = ikyJ,4.1(kR)

and similarly,
—Q' — 5 Q = —ikyJ,(kR).
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Using these in equations (4) and (B) respectively, we see that (4) may be satisfied
by setting

X = XoJ,.(kR),
and (B) by setting
Y = YoJ,..(kR).

In particular, we have from (4)

. . k
Xo(l + a + 2iw) = k¢ — Xok*, or X, = T—T-—‘éz:o
and from (B)
. . — ‘k
Yol +a — 2iw)) = —iky — Yo" or Yo = —12‘1{;0‘

The solution is then

W = J,(kR),

Q = J,(kR),
_ __tky

X = v+ Zien Joni(kR),
- _—tky

Y = 7= Zien J.(kR).

These functions satisfy (4) — (C) for all values of k. Substituting them in (D), we get
Cor _ _ a2 2y __21"1'2('!/—1—&),
21 = ’C(Xo Y()) = 7](: ¢ 'pz + 4‘0(2) = ‘02 + 4(.03

This is a cubic equation for ¢
¥ — ay’ + 4wy = 0. (15)

For each root ¢;(j = 1, 2, 3) we obtain a value of k; = (¢; — 1 — «)"’%. Thus we have
three independent systems of solutions deriving from

W, =J(kE), W,=J,(kR), and W, = J,(kkR).
The general solution will be a linear combination of these
Wv = XIJ,(ICIR) + Ast(kZR) + AaJ,(kaR),

with a corresponding form for @, U, V. The boundary conditions (E), (F), (G) will now
constitute a set of three homogeneous equations in the \;(j = 1, 2, 3), so that a non-
trivial solution can exist if and only if the determinant of the coefficients of A; vanishes.
Thus we obtain the secular equation

2U; — Q. + 80U, isU, — Vo, 4+ R,V Ws;+U|=0 (16)
2U:§ - Qs + 3U3 iSUs - Va + RoV§ W:; + U
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where we have used the abbreviation

2
Rowo

o

g = (MIR? + s* — 1] — 1}. 17)

6. Conditions for Stability. The relevant physical variables are M, R, , wo , s and
so also, by (17), is 8. We can rewrite (16) as

N+8D=0, (18)
where
2U] — Ql wsU, — Vi + R V{ Wi + U,
N=|2U,—-Q, isU,— Vo4 RV}, Wi+ iU, (19)
20; — Qs isUs — Vs + RV} Wi+ U,
and

U, RV -7V, w1
D=|U, RV;—-V, W (20)
Us RJV;— 7V, Wi
The determinants N, D depend on ¢ via the k;’s. Equation (17) may be again rewritten as

o o RGM@E + 5~ 1) — 1] 1)

from which ¢ is to be determined. A set of physical variables will correspond to stable
motion if and only if all the roots of (21) satisfy 9(¢) < 0. Since a = i(sw — o)/,
this is the same as ®(a) < 0.

However, finding all the roots of the transcendental equation is a hopeless task.
Instead, we invert the problem. In principle, such an inversion implies that we should
scan the half-plane ®(a) > 0, and for each point determine all sets of the physical
variables to which this value of « corresponds. The aggregate of all such sets of physical
variables would then define precisely the aggregate of unstable motions. In practice,
the following procedure was adopted. For fixed R, , w, , s we wrote « = ¥ + ¢4, with
v > 0. Each pair (v, 8) determined, by (21) and (17), a value of M = M(«). In general
this value was complex, and hence without physical meaning. However, for each fixed
v there was found to exist a unique 8(y) = &(y, Ro , wo , 8) such that M is real. This
special value of M was denoted by M (y).

For typical sets B, , w, , s the functions §(v), M (y) were computed for a range of
values of v. It transpired that

(i) for s = 0, R, < 1, M(v) increased idefinitely with v for v > 0;
8(v) = 0.

(ii) for all other cases, M (v)-decreased as vy increased;
8(y) increased from zero as v increased.

Both of these results concerning M (v) could have been predicted on physical grounds.
It was pointed out by Rayleigh [1] that a small perturbation with s = 0, B, < 1 actually
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produces a decrease in the total surface area and hence releases surface energy. In case
(i), then, the surface tension has a destabilizing effect so that one might expect that
larger values of T would correspond to larger values of 9(o), i.e., M (y) increases with +.
In all other cases, however, the effect of surface tension is in the direction of stabilizing
the motion. Hence one might expect that larger values of T, and so of M, should corre-
spond to smaller values of 9(¢), and hence of .

Concentrating, therefore, on case (ii), we see that if we let « = v + 75 tend to zero
through those values which give a physically meaningful value of M, then M attains
its highest value at o = 0. We deduce that the necessary and sufficient condition for
stability is that

M > lim M@ = M,. (22)
a—0
As to the value of this limit, we found from the computation that N/D remained finite
as a — 0, and so

lim a K- 23)
Hence, by (21),
1 1

M, (24)

T RS -1 &+ -1
recalling the definition of R, . Relations (22) and (24) imply (1).

For the limiting case B, < 1, one can obtain adequate approximations to N and D
by expanding the Bessel functions. Equation (21) for « then becomes algebraic, and its
roots can be determined quite simply. This was done, and condition (1) for stability
was confirmed. An interesting special case of this is s = 1, where the condition becomes
M > R;* Fors > 1,we find M > (s* — 1)™' + O(R2). These results are of course con-
sistent with (1).

All of the computational work referred to above was executed on WEIZAC, the
digital electronic computer of the Weizmann Institute of Science.

Note added in proof. (a) It should be pointed out that the stability condition (1)
is unaffected if the unperturbed motion has a steady axial component W, in addition to
the rotational velocity. It is easily seen from (2) that the only change necessary in (13)
is to replace the expression (sw — o) in all three of its occurrences by (sw — ¢ + W,),
and hence a redefinition of « in Sec. 4 as

= ;%‘2'(8(0 - 0'+ IWO)'

Since R(«) is unaffected by this change the stability condition is unaltered.
(b) The fact noted in Sec. 6 that lim,_, 6(y) = 0 is an example of the Pellew-South-
well principle of exchange of stability [see Proc. Roy. Soc. A 176, 312 (1940)].
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