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Abstract

This monograph introduces a framework for genuine proper equivariant stable
homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that
equivalences are tested on compact subgroups, and that the objects are built from
equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates
that the theory comes with appropriate transfers and Wirthmüller isomorphisms,
and the resulting equivariant cohomology theories support the analog of an RO(G)-
grading.

Our model for genuine proper G-equivariant stable homotopy theory is the
category of orthogonalG-spectra; the equivalences are those morphisms that induce
isomorphisms of equivariant stable homotopy groups for all compact subgroups of
G. This class of π∗-isomorphisms is part of a symmetric monoidal stable model
structure, and the associated tensor triangulated homotopy category is compactly
generated. Consequently, every orthogonal G-spectrum represents an equivariant
cohomology theory on the category of G-spaces. These represented cohomology
theories are designed to only depend on the ‘proper G-homotopy type’, tested by
fixed points under all compact subgroups.

An important special case of our theory are infinite discrete groups. For these,
our genuine equivariant theory is related to finiteness properties in the sense of
geometric group theory; for example, the G-sphere spectrum is a compact object
in our triangulated equivariant homotopy category if the universal space for proper
G-actions has a finite G-CW-model. For discrete groups, the represented equivari-
ant cohomology theories on finite proper G-CW-complexes admit a more explicit
description in terms of parameterized equivariant homotopy theory, suitably sta-
bilized by G-vector bundles. Via this description, we can identify the previously
defined G-cohomology theories of equivariant stable cohomotopy and equivariant
K-theory as cohomology theories represented by specific orthogonal G-spectra.
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Introduction

This monograph explores proper equivariant stable homotopy theory for Lie
groups. The theory generalizes the well established ‘genuine’ equivariant stable ho-
motopy theory for compact Lie groups, and the adjective ‘proper’ indicates that the
theory is only sensible to fixed point information for compact subgroups. In other
words, hardwired into our theory are bootstrap arguments that reduce questions to
equivariant homotopy theory for compact Lie groups. Nevertheless, there are many
new features that have no direct analog in the compact case.

Equivariant stable homotopy theory has a long tradition, originally motivated
by geometric questions about symmetries of manifolds. Certain kinds of features
can be captured by ‘naive’ stable equivariant theories, obtained one way or other
by formally inverting suspension on some category of equivariant spaces. The naive
stable theory works in broad generality for general classes of topological groups, and
it can be modeled by sequential spectra of G-spaces, or functors from a suitable
orbit category to spectra (interpreted either in a strict sense, or in an∞-categorical
context).

A refined version of equivariant stable homotopy theory, usually referred to as
‘genuine’, was traditionally only available for compact Lie groups of equivariance.
The genuine theory has several features not available in the naive theory, such as
transfer maps, dualizability, stability under ‘twisted suspension’ (i.e., smash prod-
uct with linear representation spheres), an extension of the Z-graded cohomology
groups to an RO(G)-graded theory, and an equivariant refinement of additivity
(the so called Wirthmüller isomorphism). The homotopy theoretic foundations of
this theory were laid by tom Dieck [72, 73, 74, 75], May [35, 22, 23] and Segal
[65, 66, 67] and their students and collaborators since the 70’s. A spectacular re-
cent application was the solution, by Hill, Hopkins and Ravenel [24], to the Kervaire
invariant 1 problem. This monograph extends genuine equivariant stable homotopy
theory to Lie groups that need not be compact; this includes infinite discrete groups
as an important special case.

A major piece of our motivation for studying equivariant homotopy theory for
infinite discrete groups and not necessarily compact Lie groups comes from the
Baum-Connes Conjecture and the Farrell-Jones Conjectures. The Baum-Connes
Conjecture was originally formulated in [2], and subsequently considered in the
formulation stated in [3, Conjecture 3.15 on page 254]. The Farrell-Jones Con-
jecture was formulated in [20, 1.6 on page 257]; two survey articles about these
isomorphism conjectures are [43] and [77]. Roughly speaking, these conjectures
identify the theory of interest – topological K-groups of reduced group C∗-algebras
or algebraic K-and L-groups of group rings – with certain equivariant homology
theories, applied to classifying spaces of certain families of subgroups. Many appli-
cations of these conjectures to group homology, geometry, or classification results
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2 INTRODUCTION

of C∗-algebras are based on computations of the relevant equivariant homology
theories, and of their cohomological analogues. Even if one is interested only in
non-equivariant (co)homology of classifying spaces, it is useful to invoke equivari-
ant homotopy theory on the level of spectra; examples are [18, 33, 40]. Our book
provides a systematic framework for such calculations, capable of capturing ex-
tra pieces of structure like induction, transfers, restriction, multiplication, norms,
global equivariant features, and gradings beyond naive Z-grading.

For example, one might wish to use the Atiyah-Hirzebruch spectral sequence
to compute K-theory or stable cohomotopy of BG for an infinite discrete group G;
this will often be a spectral sequence with differentials of arbitrary length. How-
ever, the completion theorems for equivariant K-theory [42] and for equivariant
stable cohomotopy [41] provide an alternative line of attack: one may instead com-
pute equivariant cohomology of EG by the equivariant Atiyah-Hirzebruch spectral
sequence (see Construction 3.2.14), and then complete the result to obtain the non-
equivariant cohomology of BG. Even if BG is infinite dimensional, EG might well
be finite-dimensional and relatively small, in which case the equivariant Atiyah-
Hirzebruch spectral sequence is easier to analyze. For example, for a virtually
torsion free group, this spectral sequence has a vanishing line at the virtual coho-
mological dimension.

Among other things, our formalism provides a definition of the equivariant
homotopy groups πG∗ for infinite groups G. These equivariant homotopy groups
have features which reflect geometric group theoretic properties of G. As the group
G = Z already illustrates, the sphere spectrum need not be connective with respect
to πG∗ , compare Example 2.3.8. If the group G is virtually torsion free, then the
equivariant Atiyah-Hirzebruch spectral sequence shows that the equivariant homo-
topy groups πG∗ (S) vanish below the negative of the virtual cohomological dimension
of G.

We conclude this introduction with a summary of the highlights of this mono-
graph.
• Our model for proper equivariant stable homotopy theory of a Lie group

G is the category of orthogonal G-spectra, i.e., orthogonal spectra equipped with
a continuous action of G. This pointset level model is well-established, explicit,
and has nice formal properties; for example, orthogonal G-spectra are symmet-
ric monoidal under the smash product of orthogonal spectra, endowed with the
diagonal G-action.
• All the interesting homotopy theory is encoded in the notion of stable equiv-

alences for orthogonal G-spectra. We use the π∗-isomorphisms, defined as those
morphisms of orthogonal G-spectra that induce isomorphisms on Z-graded H-
equivariant homotopy groups, for all compact subgroups H of G. These H-equi-
variant homotopy groups are based on a complete universe of orthogonal H-re-
presentations. In [21, Prop. 6.5], Fausk has extended these π∗-isomorphisms to a
stable model structure on the category of orthogonal G-spectra, via an abstract
Bousfield localization procedure. We develop a different (but Quillen equivalent)
model structure in Theorem 1.2.22, also with the π∗-isomorphisms as weak equiva-
lences, that gives better control over the stable fibrations; in particular, the stably
fibrant objects in our model structure are the G-Ω-spectra as defined in Defini-
tion 1.2.15 below. Our model structure is compatible with the smash product
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of orthogonal G-spectra, and compatible with restriction to closed subgroups, see
Theorem 1.2.22.
• A direct payoff of the stable model structure is that the homotopy cate-

gory Ho(SpG) comes with a triangulated structure. This structure is made so that
mapping cone sequences of proper G-CW-complexes become distinguished trian-
gles in Ho(SpG). As a consequence, every orthogonal G-spectrum represents a
G-equivariant cohomology theory on proper G-spaces, see Construction 3.2.3. The
triangulated homotopy category Ho(SpG) comes with a distinguished set of small
generators, the suspension spectra of the homogeneous spaces G/H for all compact
subgroups H of G, see Corollary 1.3.11. This again has certain direct payoffs, such
as Brown representability of homology and cohomology theories on Ho(SpG), and
a non-degenerate t-structure.
• The triangulated categories Ho(SpG) enjoy a large amount of functoriality

in the group G: every continuous homomorphism α : K −→ G gives rise to a
restriction functor α∗ : SpG −→ SpK that in turn admits an exact total left derived
functor Lα∗ : Ho(SpG) −→ Ho(SpK), see Theorem 1.4.17. These derived functors
assemble to a contravariant pseudo-functor from the category of Lie groups and
continuous homomorphisms to the category of triangulated categories and exact
functors. Moreover, conjugate homomorphisms and homotopic homomorphisms
induce isomorphic derived functors.
• The proper equivariant stable homotopy theory should be thought of as a

‘weak homotopy invariant’ of the Lie group G. More precisely, we show in Theorem
1.4.31 that for every continuous homomorphism α : K −→ G between Lie groups
that is a weak equivalence of underlying spaces, the derived restriction functor
Lα∗ : Ho(SpG) −→ Ho(SpK) is an equivalence of tensor triangulated categories.
A special case is the inclusion of a maximal compact subgroup M of an almost
connected Lie group G. In this case, the restriction functor resGM : Ho(SpG) −→
Ho(SpM ) is an equivalence. So for almost connected Lie groups, our theory reduces
to the classical case of compact Lie groups. In this sense, the new mathematics in
this memoir is mostly about infinite versus finite component groups.
• When G is discrete, the heart of the preferred t-structure on Ho(SpG) has a

direct and explicit algebraic description: it is equivalent to the abelian category of
G-Mackey functors in the sense of Martinez-Pérez and Nucinkis [49], see Theorem
2.2.9. In particular, every G-Mackey functor is realized, essentially uniquely, by an
Eilenberg-MacLane spectrum in Ho(SpG). The cohomology theory represented by
the Eilenberg-MacLane spectrum is Bredon cohomology, see Example 3.2.16.
• For discrete groups G, the rational G-equivariant stable homotopy theory is

completely algebraic: the rationalization of Ho(SpG) is equivalent to the derived
category of rational G-Mackey functors, see Theorem 2.3.4. When G is infinite,
the abelian category of rational G-Mackey functors is usually not semisimple, so
in contrast to the well-known case of finite groups, a rational G-spectrum is not
generally classified in Ho(SpG) by its homotopy group Mackey functors alone.
• Our theory is the analog, for general Lie groups, of ‘genuine’ equivariant

stable homotopy theory; for example, the equivariant cohomology theories arising
from orthogonal G-spectra have a feature analogous to an ‘RO(G)-grading’ in the
compact case. In the present generality, however, representations should be re-
placed by equivariant real vector bundles over the universal space EG for proper
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G-actions, and so the analog of an RO(G)-grading is a grading by the Grothendieck
group KOG(EG) of such equivariant vector bundles, see Remark 3.2.10.
• For discrete groups we identify the cohomology theories represented by G-

spectra in more concrete terms via fiberwise equivariant homotopy theory, see The-
orem 3.2.7. This allows us to compare our approach to equivariant cohomology
theories that were previously defined by different means. For example, we show
in Example 3.2.9 that for discrete groups the theory represented by the G-sphere
spectrum coincides, for finite proper G-CW-complexes, with equivariant cohomo-
topy as defined by the third author in [38]. In Theorem 3.4.22 we show that if G is
a discrete group, then the equivariant K-theory based on G-vector bundles defined
by the third author and Oliver in [42] is also representable in Ho(SpG).

Conventions. Throughout this memoir, a space is a compactly generated space
in the sense of [51], i.e., a k-space (also called Kelley space) that satisfies the weak
Hausdorff condition. Two extensive resources with background material about com-
pactly generated spaces are Section 7.9 of tom Dieck’s textbook [76] and Appendix
A of the fifth author’s book [60]. Two other influential – but unpublished – sources
about compactly generated spaces are the Appendix A of Gaunce Lewis’s thesis [34]
and Neil Strickland’s preprint [71]. We denote the category of compactly generated
spaces and continuous maps by T.



CHAPTER 1

Equivariant spectra

1.1. Orthogonal G-spectra

In this section we recall the basic objects of our theory, orthogonal spectra and
orthogonal G-spectra, where G is a Lie group. We start in Proposition 1.1.3 with
a quick review of the Com-model structure for G-spaces, i.e., the model structure
where equivalences and fibrations are tested on fixed points for compact subgroups
of G. The homotopy category of this model structure is equivalent to the category
of proper G-CW-complexes and equivariant homotopy classes of G-maps. Proposi-
tion 1.1.6 records how the Com-model structures interact with restriction along a
continuous homomorphism between Lie groups. We recall orthogonal G-spectra in
Definition 1.1.9, and we end this section with several examples.

We let G be a topological group, which we take to mean a group object in the
category T of compactly generated spaces. So a topological group is a compactly
generated space equipped with an associative and unital multiplication

µ : G×G −→ G

that is continuous with respect to the compactly generated product topology, and
such that the shearing map

G×G −→ G×G , (g, h) 7−→ (g, gh)

is a homeomorphism (again for the compactly generated product topology). This
implies in particular that inverses exist in G, and that the inverse map g 7→ g−1 is
continuous. A G-space is then a compactly generated space X equipped with an
associative and unital action

α : G×X −→ X

that is continuous with respect to the compactly generated product topology. We
write GT for the category of G-spaces and continuous G-maps. The forgetful
functor from G-spaces to compactly generated spaces has both a left and a right
adjoint, and hence limits and colimits of G-spaces are created in the underlying
category T.

Remark 1.1.1. We mostly care about the case when G is a Lie group. Then
the underlying space of G is locally compact Hausdorff, and for every compactly
generated space X , the space G×X is a k-space (and hence compactly generated)
in the usual product topology. So for Lie groups, the potential ambiguity about
continuity of the action disappears.

For G-spaces X and Y we write map(X,Y ) for the space of continuous maps
with the function space topology internal to T (i.e., the Kelleyfied compact-open
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6 1. EQUIVARIANT SPECTRA

topology). The group G acts continuously on map(X,Y ) by conjugation, and these
constructions are related by adjunctions, i.e., natural homeomorphisms of G-spaces

map(X,map(Y, Z)) ∼= map(X × Y, Z) ;
in particular, the category of G-spaces is cartesian closed.

The category GT is enriched, tensored and cotensored over the category T of
spaces, as follows. The tensor and cotensor of a G-space X and a space K are
the product X × K and the function space map(K,X), respectively, both with
trivial G-action on K. The enrichment in T is given by the G-fixed point space
mapG(X,Y ), i.e., the space of G-equivariant continuous maps.

A G-space X is proper if the map

G×X −→ X ×X , (g, x) 7−→ (gx, x)

is proper, i.e., inverse images of compact subsets are compact. Because the inverse
image of a diagonal point (x, x) is homeomorphic to the isotropy group of x, all
isotropy groups of proper G-spaces are compact. Any irrational rotation action
of the group Z on a circle shows that the converse is not generally true, i.e., a
continuous G-action with compact stabilizers need not be proper in general.

A G-CW-complex is a G-space X equipped with an exhaustive increasing fil-
tration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . .

by closed G-invariant subspaces such that

• each Xn is obtained from Xn−1 by attaching a disjoint union of G-spaces
G/Hi×Dn along G/Hi×Sn−1, for some set {Hi}i∈I of closed subgroups
of G, and
• the space X has the colimit topology (weak topology) of the sequence.

A G-CW-complex is finite-dimensional if the filtration stabilizes, i.e., Xn = X for
some n ≥ 0. A G-CW-complex is of finite type if in each dimension n, the number
of equivariant cells is finite. A G-CW-complex is finite if it is finite-dimensional
and of finite type, i.e., if the total number of equivariant cells is finite. Equivalently,
a G-CW-complex X is finite if and only if the action is cocompact, i.e., the orbit
spaceX/G is compact. For a G-CW-complex, properness of the action is equivalent
to the requirement that all of the isotropy groups are compact, see for example [36,
Theorem 1.23].

Definition 1.1.2. Let G be a Lie group.

(i) A map f : X −→ Y of G-spaces is a Com-equivalence if for every compact sub-
group H of G the map fH : XH −→ Y H is a weak equivalence of topological
spaces.

(ii) A map f : X −→ Y of G-spaces is a Com-fibration if for every compact sub-
group H of G the map fH : XH −→ Y H is a Serre fibration of topological
spaces.

(iii) A map i : A −→ B of G-spaces is a Com-cofibration if it has the left lifting
property with respect to every map which is a Com-equivalence and Com-
fibration.

(iv) A map i : A −→ B of G-spaces is a G-cofibration if it has the left lifting
property with respect to every map f : X −→ Y such that fΓ : XΓ −→ Y Γ is
a weak equivalence and Serre fibration for every closed subgroup Γ of G.



1.1. ORTHOGONAL G-SPECTRA 7

We alert the reader that our use of the expression ‘G-cofibration’ is different
from the usage in some older papers on the subject, where this term refers to
the larger class of G-maps with the equivariant homotopy extension property. In
this book, morphisms with the homotopy extension property will be referred to as
h-cofibrations, see Definition 1.2.8 below.

Clearly, every Com-cofibration of G-spaces is a G-cofibration. The following
proposition is a special case of [21, Prop. 2.11] or [60, Prop.B.7]. For the definition
of a cofibrantly generated model category see for example [25, Sec. 2.1].

Proposition 1.1.3. Let G be a Lie group.

(i) The Com-equivalences, Com-fibrations and Com-cofibrations form a proper,
topological, cofibrantly generated model structure on the category of G-spaces,
the Com-model structure. A morphism i : A −→ B is a Com-cofibration if and
only if it is a G-cofibration and the stabilizer group of every point in B− i(A)
is compact.

(ii) The set of maps

G/H × ik : G/H × ∂Dk −→ G/H ×Dk

serves as a set of generating cofibrations for the Com-model structure, as H
ranges over all compact subgroups of G and k ≥ 0. The set of maps

G/H × jk : G/H ×Dk × {0} −→ G/H ×Dk × [0, 1]

serves as a set of generating acyclic cofibrations, as H ranges over all compact
subgroups of G and k ≥ 0.

(iii) For every G-cofibration i : A −→ B and every Com-cofibration j : K −→ L of
based G-spaces, the pushout product map

i� j = (i × L) ∪ (B × j) : (A× L) ∪A×K (B ×K) −→ B × L
is a Com-cofibration. If moreover one of i or j is a Com-equivalence, then
i� j is also a Com-equivalence.

Proof. As we already mentioned, parts (i) and (ii) are proved in detail in
[60, Prop.B.7]. Since smash product has an adjoint in each variable, it preserves
colimits in each variable. So it suffices to check the pushout product properties in
(iii) when the maps f and g are from the sets of generating (acyclic) cofibrations,
compare [25, Cor. 4.2.5]. The set of inclusions of spheres into discs is closed under
pushout product, in the sense that ik�il is homeomorphic to ik+l. Similarly, the
pushout product of ik with jl is isomorphic to jk+l. So all claims reduce to the
fact that for every pair of closed subgroups Γ and H of G such that H is compact,
the G-space G/Γ×G/H with the diagonal G-action is Com-cofibrant. Indeed, this
product is G-homeomorphic to G×H (G/Γ), with G-action only on the left factor
of G. Illman’s theorem [27, Thm. 7.1] implies that G/Γ admits the structure of an
H-CW complex; hence G×H (G/Γ) admits the structure of a G-CW-complex, and
its isotropy groups are compact. �

Every proper G-CW-complex is in particular Com-cofibrant. On the other
hand, every Com-cofibrant G-space is G-equivariantly homotopy equivalent to a
proper G-space that admits the structure of a G-CW-complex. So for all prac-
tical purposes, Com-cofibrant G-spaces are as good as proper G-CW-complexes.
Since all G-spaces are fibrant in the Com-model structure, the abstract homotopy
category HoCom(GT), defined as the localization at the class of Com-equivalences,
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is equivalent to the concrete homotopy category of proper G-CW-complexes and
equivariant homotopy classes of G-maps.

We denote by EG a universal proper G-space, i.e., a universal G-space for the
family of compact subgroups ofG. It is characterized up toG-homotopy equivalence
by the following properties:

(i) EG admits the structure of a G-CW complex.
(ii) The H-fixed point space (EG)H is contractible if H is compact, and empty

otherwise.

The existence of EG follows for example from [39, Thm. 1.9]. We note that for
every G-space X , the projection EG × X −→ X is a Com-equivalence. Indeed,
taking H-fixed points for a compact subgroup H of G we have

(EG×X)H ∼= (EG)H ×XH

which maps by a homotopy equivalence to XH since (EG)H is contractible. The
unit of the cartesian product (the one-point G-space) is not Com-cofibrant unless
the group G is compact; since the unique map EG −→ ∗ is a Com-equivalence, EG
is a cofibrant replacement of the one-point G-space.

Here are some examples of universal spaces for proper actions.

• If the Lie group G is compact, then the one-point G-space is a model for
EG.
• Suppose that G has no non-trivial compact subgroups; for example, G
could be discrete and torsion free. Then any universal G-space for free
G-actions, usually denoted by EG, is also a universal G-space for proper
G-actions.
• If G is discrete and can be exhausted by an ascending sequence of finite
subgroups, then it has a 1-dimensional model for EG, see Example 1.4.5.
• Suppose that G is almost connected, i.e., its group of path components is
finite. ThenK has a maximal compact subgroup, i.e., a compact subgroup
K such that every compact subgroup is subconjugate to K. In this situ-
ation, the orbit space G/K is a model for EG. We refer to the discussion
immediately preceding Theorem 1.4.4 for more details and references.

Example 1.1.4 (A universal proper D∞-space). We offer the case G = D∞ =
Z ⋉ Z/2 of the infinite dihedral group as an explicit example to keep in mind; the
group D∞ is also isomorphic to the free product Z/2 ∗ Z/2. Besides the trivial
subgroup, D∞ has two other conjugacy classes of finite subgroups, both of order
2; the subgroup H1 generated by (0, 1 + 2Z) and the subgroup H2 generated by
(1, 1 + 2Z) are representatives.

The groups Z and Z/2 act on the real line by translation and reflection at the
origin, respectively. These two actions conspire into an action of the semidirect
product D∞ = Z⋉Z/2 on R. The real line has a 1-dimensional D∞-CW-structure
with 3 equivariant cells, as follows. The 0-skeleton is the union of the transitive
subsets Z and 1/2 + Z; so each of these two invariant subspaces is an equivariant
0-cell, and the respective stabilizers are the conjugacy classes of H1 and H2. There
is a single equivariant 1-cell, with trivial stabilizer. The fixed point spaces of this
D∞-action on R are either empty (for infinite subgroups), they are single points
(for two-element subgroups), or all of R (for the trivial subgroup). So the real line
is a universal proper D∞-space.
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We briefly discuss how change of group functors interact with the Com-model
structures. We let α : K −→ G be a continuous homomorphism between Lie groups.
Restriction of scalars along α is a functor

α∗ : GT −→ KT ;

here α∗(X) has the same underlying space as X , with K acting through the homo-
morphism α. The restriction functor α∗ has a left adjoint

G×α − : KT −→ GT

and a right adjoint

mapK,α(G,−) : KT −→ GT .

For any based K-space X , the G-space G ×α X is the quotient of G × X by the
equivalence relation (gα(k), x) ∼ (g, kx). The G-space mapK,α(G,X) is the space
of those continuous maps f : G −→ X that satisfy k · f(g) = f(α(k) · g) for all
(k, g) ∈ K ×G, with G acting by

(γ · f)(g) = f(gγ) .

An important special case is when α is the inclusion of a closed subgroup Γ of G.
In that case we write resGΓ for the restriction functor, and we simplify the notation
for the left and right adjoint to G×Γ − and mapΓ(G,−), respectively.

Proposition 1.1.5. Let H and Γ be closed subgroups of a Lie group G, such
that moreover H is compact. Then the (H × Γ)-action on G given by (h, γ) · g =
hgγ−1 underlies an (H × Γ)-CW-complex.

Proof. We claim that the (H × Γ)-action is proper, i.e., the map

(H × Γ)×G −→ G×G , ((h, γ), g) 7−→ (hgγ−1, g)

is a proper map in the sense that preimages of compact sets are compact. Indeed,
we can factor this map as the composite of three proper maps, namely the inclusion
of the closed subspace H ×Γ×G into H ×G×G, followed by the homeomorphism

H ×G×G ∼=−−→ H ×G×G, (h, γ, g) 7−→ (h, hgγ−1, g)

and the projection of H ×G×G to the last two factors. Since the (H × Γ)-action
onG is also smooth, Theorem I of [28] provides an (H×Γ)-equivariant triangulation
of G, and hence the desired equivariant CW-structure, by [28, Prop. 11.5]. �

We recall that a Quillen adjunction is an adjoint functor pair (F,G) between
model categories such that the left adjoint F preserves cofibrations and the right
adjoint G preserves fibrations. Equivalent conditions are to require that the left
adjoint F preserves cofibrations and acyclic cofibrations; or that the right adjoint G
preserves fibrations and acyclic fibrations.

Proposition 1.1.6. Let α : K −→ G be a continuous homomorphism between
Lie groups.

(i) The restriction functor α∗ : GT −→ KT takes Com-equivalences of G-spaces
to Com-equivalences of K-spaces.

(ii) The adjoint functor pair

G×α − : KT
// GT : α∗oo

is a Quillen adjunction with respect to the Com-model structures.
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(iii) If the image of α is closed in G and the kernel of α is compact, then the
adjoint functor pair

mapK,α(G,−) : KT // GT : α∗oo

is a Quillen adjunction with respect to the Com-model structures.

Proof. For every compact subgroup L ≤ K the image α(L) is a compact
subgroup of G, and for every based G-space X , we have the equality (α∗(X))L =
Xα(L). So the restriction functor takes Com-equivalences of G-spaces to Com-
equivalences of K-spaces, and it takes Com-fibrations of G-spaces to Com-fibrations
of K-spaces. This establishes parts (i) and (ii).

As a left adjoint, the restriction functor α∗ preserves colimits. So for part
(iii) we only have to check that the restriction of each of the generating G-Com-
cofibrations specified in Proposition 1.1.3 (ii) is a Com-cofibration of K-spaces.
This amounts to the claim that for every compact subgroup H of G the K-space
α∗(G/H) is Com-cofibrant. We let Γ = α(K) denote the image of α, which is
a closed subgroup of G by hypothesis. Since G admits a (Γ × H)-CW-structure
by Proposition 1.1.5, the orbit space G/H inherits a Γ-CW-structure. We let
β : K −→ Γ denote the same homomorphism as α, but now considered as a
continuous epimorphism onto its image. For every closed subgroup ∆ of Γ we have

β∗(Γ/∆) ∼= K/β−1(∆) .

Since the restriction functor β∗ : ΓT −→ KT commutes with colimits and products
with spaces, this shows that it takes Γ-CW-complexes to K-CW-complexes. In
particular, α∗(G/H) = β∗(resGΓ (G/H)) admits the structure of a K-CW-complex.
TheK-stabilizer group of a coset gH is α−1(Hg). SinceH is compact and the kernel
of α is compact by hypothesis, all stabilizer groups of α∗(G/H) are compact. So
α∗(G/H) is Com-cofibrant as a K-space. �

Remark 1.1.7. One should beware that restriction to a closed subgroup does
not preserve general equivariant cofibrations without an isotropy condition. This
should be contrasted with the fact that h-cofibrations (i.e., maps with the equi-
variant homotopy extension property) are stable under restriction to closed sub-
groups. For example, the left translation action makes R/Z an R-CW-complex and
a cofibrant R-space; the R-space R/Z is not Com-cofibrant, however, because the
stabilizer group Z is not compact. On the other hand, if Γ is the additive subgroup
of R generated by an irrational number, then the underlying Γ-action on the circle
R/Z is not proper, and R/Z is neither a Γ-CW-complex nor cofibrant as a Γ-space.

In the application to orthogonal G-spectra, we will also need the based version
of the Com-model structure, and the modification of some of the previous results
to the based context. We write T∗ for the category of based compactly generated
spaces. A based G-space is a G-space equipped with a G-fixed basepoint; we write
GT∗ for the category of based G-spaces and based continuous G-maps.

A standard result in model category theory lets us lift the Com-model structure
from unbased to based G-spaces. A morphism in GT∗ is a Com-equivalence, Com-
fibration or Com-cofibration if and only if it is so as an unbased G-map, see [25,
Prop. 1.1.8]. We will freely use the based version of Propositions 1.1.3 and 1.1.6 in
what follows.
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After discussing equivariant spaces, we now move on to equivariant spectra. An
inner product space is a finite-dimensional real vector space equipped with a scalar
product. We denote by L(V,W ) the space of linear isometric embeddings between
two inner product spaces, topologized as the Stiefel manifold of dim(V )-frames in
W .

Construction 1.1.8. We let V and W be inner product spaces. The orthogo-
nal complement vector bundle over the space L(V,W ) of linear isometric embeddings
has total space

ξ(V,W ) = { (w,ϕ) ∈ W × L(V,W ) | w ⊥ ϕ(V ) } .
The structure map ξ(V,W ) −→ L(V,W ) is the projection to the second factor.
The vector bundle structure of ξ(V,W ) is as a vector subbundle of the trivial vector
bundleW ×L(V,W ), and the fiber over ϕ : V −→W is the orthogonal complement
W − ϕ(V ) of the image of ϕ.

We let O(V,W ) be the Thom space of the orthogonal complement bundle, i.e.,
the one-point compactification of the total space of ξ(V,W ). Up to non-canonical
homeomorphism, we can describe the space O(V,W ) differently as follows. If the
dimension ofW is smaller than the dimension of V , then the space L(V,W ) is empty
andO(V,W ) consists of a single point at infinity. If dimV = m and dimW = m+n,
then L(V,W ) is homeomorphic to the homogeneous space O(m + n)/O(n) and
O(V,W ) is homeomorphic to O(m+ n)⋉O(n) S

n.
The Thom spaces O(V,W ) are the morphism spaces of a based topological

category O. Given a third inner product space U , the bundle map

ξ(V,W )× ξ(U, V ) −→ ξ(U,W ) , ((w,ϕ), (v, ψ)) 7−→ (w + ϕ(v), ϕψ)

covers the composition map L(V,W ) × L(U, V ) −→ L(U,W ). Passage to Thom
spaces gives a based map

◦ : O(V,W ) ∧O(U, V ) −→ O(U,W )

which is clearly associative, and is the composition in the category O. The identity
of V is (0, IdV ) in O(V, V ).

Definition 1.1.9. Let G be a Lie group. An orthogonal G-spectrum is a based
continuous functor from O to the category GT∗ of based G-spaces. A morphism of
orthogonal spectra is a natural transformation of functors. We denote the category
of orthogonal G-spectra by SpG.

A continuous functor to based G-spaces is the same as a G-object of continuous
functors. So orthogonal G-spectra could equivalently be defined as orthogonal
spectra equipped with a continuous G-action. Since we will not consider any other
kind of spectra in this memoir, we will often drop the adjective ‘orthogonal’; in
other words, we use ‘G-spectrum’ as a synonym for ‘orthogonal G-spectrum’.

If V andW are inner product spaces, we define a distinguished based continuous
map

(1.1.10) iV,W : SV −→ O(W,V ⊕W ) by v 7−→ ((v, 0), (0,−)) ,
the one-point compactification of the fiber over the embedding (0,−) : W −→
V ⊕W as the second summand. If X is an orthogonal spectrum, we refer to the
composite

σV,W : SV ∧X(W )
iV,W∧X(W )−−−−−−−−→ O(W,V ⊕W ) ∧X(W ) −→ X(V ⊕W )
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as the structure map of X .
Limits and colimits in enriched functor categories are created objectwise. In

particular, all small limits and colimits in SpG exist and are created ‘levelwise’.
Moreover, limits and colimits of based G-spaces are created on underlying non-
equivariant based spaces; hence all limits and colimits in SpG are created in the
category of underlying non-equivariant orthogonal spectra. By [31, Sec. 3.8] we
conclude that the category SpG is enriched complete and cocomplete.

Remark 1.1.11. If G is compact, then the above definition is equivalent to the
original definition of orthogonal G-spectra given by Mandell and May in [48], in
the following sense. In [48, II.2], Mandell and May define G-equivariant orthogonal
spectra indexed on a G-universe U . Such a G-spectrum is a collection of G-spaces
indexed on those representations that embed into U , together with certain equi-
variant structure maps. It follows from [48, Thm. II.4.3, Thm.V.1.5] that for any
G-universe U , the category of orthogonal G-spectra indexed on U and the cate-
gory of orthogonal G-spectra as in Definition 1.1.9 are equivalent. This shows that
universes are not really relevant for the pointset level definition of an orthogonal
G-spectrum. However, they become important when one considers the homotopy
theory of orthogonal G-spectra.

Here are some basic examples of orthogonal G-spectra; further examples will
be discussed along the way.

Example 1.1.12 (Suspension spectra). The sphere spectrum S is the orthog-
onal spectrum given by S(V ) = SV . The orthogonal group O(V ) acts on V and
hence on the one-point compactification SV . The structure maps are the canonical
homeomorphisms SV ∧ SW ∼= SV⊕W . The G-sphere spectrum SG is the orthog-
onal sphere spectrum equipped with trivial G-action. We will show in Example
3.2.9 that for discrete groups, the sphere spectrum represents G-equivariant stable
cohomotopy as defined by the third author in [38].

More generally we consider a based G-space A. The suspension spectrum Σ∞A
is defined by (Σ∞A)(V ) = SV ∧ A. The group G acts through the second factor
and the orthogonal groups act through the first factor. The structure maps are
given by the canonical homeomorphisms SV ∧ (SW ∧A) ∼= SV⊕W ∧A. The sphere
spectrum S is isomorphic to Σ∞S0.

Example 1.1.13 (Trivial G-spectra). Every orthogonal spectrum becomes an
orthogonal G-spectrum by letting G act trivially. For example, the G-sphere spec-
trum SG arises in this way. This construction derives to an exact functor from
global stable homotopy theory to G-equivariant stable homotopy theory, compare
Theorem 3.3.3 below. The G-equivariant cohomology theories that arise in this way
from global stable homotopy types have additional structure and special properties,
i.e., they form ‘equivariant cohomology theories’ for all Lie groups and not just for
a particular group and its subgroups. We return to this class of examples in more
detail in Section 3.3.

Construction 1.1.14. We let G andK be Lie groups. Every continuous based
functor F : GT∗ −→ KT∗ between the categories of based equivariant spaces gives
rise to a continuous functor

F ◦ − : SpG −→ SpK
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from orthogonal G-spectra to orthogonal K-spectra by postcomposition: it simply
takes an orthogonal G-spectrum X to the composite

O
X−−→ GT∗

F−−→ KT∗ .

If A is a based G-space, then smashing with A and taking based maps out of A
are two such functors (for K = G). So for every orthogonal G-spectrum X , we can
define two new orthogonal G-spectra X ∧A and XA by smashing with A or taking
maps from A levelwise. More explicitly, we have

(X ∧ A)(V ) = X(V ) ∧ A respectively (XA)(V ) = X(V )A = map∗(A,X(V ))

for an inner product space V . The structure maps and actions of the orthogonal
groups do not interact with A. Just as the functors − ∧ A and map∗(A,−) are
adjoint on the level of based G-spaces, the two functors just introduced are an
adjoint pair on the level of orthogonal G-spectra.

The previous Construction 1.1.14 provides tensors and cotensors for the cat-
egory of orthogonal G-spectra over the closed symmetric monoidal category (un-
der smash product) of based G-spaces. There is also enrichment of orthogonal
G-spectra in based G-spaces as follows. The mapping space map(X,Y ) between
two orthogonal G-spectra is the space of morphisms between the underlying non-
equivariant orthogonal spectra of X and Y ; on this mapping space, the group G
acts by conjugation.

Example 1.1.15 (Free spectra and evaluation on representations). Every real
inner product space V gives rise to a representable functor O(V,−) : O −→ T∗,
which we denote by FV . For example, the sphere spectrum S is isomorphic to the
representable functor O(0,−). We turn FV into a G-orthogonal spectrum by giving
it the trivial action. As a consequence of the enriched Yoneda lemma, the functor

GT∗ −→ SpG , A 7−→ FV ∧ A
is left adjoint to the evaluation functor at V .

More generally, we let H be a closed subgroup of G and V an H-representation.
Then the evaluation X(V ) is an (H × H)-space by the ‘external’ H-action on X
and the ‘internal’ H-action from the action on V and the O(V )-functoriality of X .
We consider X(V ) as an H-space via the diagonal H-action. Via this action, if W
is another H-representation, the structure map

SV ∧X(W ) −→ X(V ⊕W )

becomes H-equivariant, with H acting diagonally on the domain. Moreover, the
resulting evaluation functor

−(V ) : SpG −→ HT∗

also has a left adjoint which sends a based H-space A to the orthogonalG-spectrum
G⋉H (FV ∧ A). Here H acts on FV by precomposition with the H-action on V .

1.2. The stable model structure

In this relatively long section we establish the stable model structure on the
category SpG of orthogonal G-spectra and investigate how it interacts with the
smash product. We begin by recalling the equivariant homotopy groups πH∗ for
compact Lie groups H in Construction 1.2.2, which are used to define the π∗-
isomorphisms of orthogonalG-spectra, see Definition 1.2.4. As an application of our
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theory we will later also define equivariant homotopy groups for non-compact Lie
groups, see Definition 2.1.1 below, but these do not play a role in the construction
of the model structure. Theorem 1.2.9 and Corollary 1.2.10 show that certain
induction constructions preserve π∗-isomorphisms. The stable model structure on
the category of orthogonal G-spectra in Theorem 1.2.22 is the main result of this
section. This model structure is Quillen equivalent to the one previously obtained by
Fausk in [21, Prop. 6.5]; our model structure has more cofibrations and we provide
an explicit characterization of the stable fibrations by certain homotopy pullback
requirements. The proof of the stable model structure proceeds by localizing a
certain level model structure.

We also review the smash product of orthogonal spectra in Definition 1.2.25
and establish various homotopical properties of the smash product of orthogonal
G-spectra, with diagonal G-action. Theorem 1.2.27 shows that smashing with a
fairly broad class of orthogonal G-spectra that we call ‘quasi-flat’ preserves π∗-
isomorphisms; Proposition 1.2.28 (‘pushout product property’) and Proposition
1.2.30 (’monoid axiom’) show that the smash product of orthogonal G-spectra in-
teracts well with the stable model structure. The final result of this section is
Proposition 1.2.33, which shows that the Thom space of a G-vector bundle over
the universal G-space EG for proper actions is smash invertible in Ho(SpG). This
result is the first indication that the role of the representation ring RO(G) in the
realm of compact Lie groups is now taken by KOG(EG), the Grothendieck group
of G-vector bundles over EG.

Definition 1.2.1. Let H be a compact Lie group. A complete H-universe
is an orthogonal H-representation of countably infinite dimension such that every
finite-dimensional H-representation embeds into it.

For every compact Lie group H , we choose a complete H-universe UH . Up to
equivariant isometry, such a complete H-universe is given by

UH ∼=
⊕

λ∈Λ

⊕

N

λ ,

where Λ is a set of representatives of all irreducibleH-representations. We let s(UH)
denote the poset, under inclusion, of finite-dimensionalH-subrepresentations of UH .

Construction 1.2.2 (Equivariant homotopy groups). Let k be any integer,
X an orthogonal G-spectrum and H a compact subgroup of G; we define the H-
equivariant homotopy group πHk (X). We start with the case k ≥ 0. We recall that
for an orthogonal H-representation V , we let H act diagonally on X(V ), through
the two H-actions on X and on V . For every V ∈ s(UH) we consider the set

[SV⊕R
k

, X(V )]H

of H-equivariant homotopy classes of based H-maps from SV⊕R
k

to X(V ). We can
stabilize by increasing V ⊂W along the maps

[SV⊕R
k

, X(V )]H −→ [SW⊕R
k

, X(W )]H

defined as follows. We let V ⊥ = W − V denote the orthogonal complement of V

in W . The stabilization sends the homotopy class of f : SV⊕R
k −→ X(V ) to the
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homotopy class of the composite

SW⊕R
k ∼= SV

⊥ ∧ SV⊕Rk SV ⊥
∧f−−−−−→ SV

⊥ ∧X(V )
σ
V ⊥,V−−−−−→ X(V ⊥ ⊕ V ) ∼= X(W ) ,

where the two unnamed homeomorphisms use the preferred linear isometry

V ⊥ ⊕ V ∼= W , (w, v) 7−→ (w + v) .

These stabilization maps define a functor on the poset s(UH). The k-th equivariant
homotopy group πHk (X) is then defined as

(1.2.3) πHk (X) = colimV ∈s(UH) [S
V⊕Rk

, X(V )]H .

The abelian group structure arises from the pinch addition in the source variable,
based on a G-fixed unit vector in V , for large enough V . For k < 0, the definition

of πHk (X) is the same, but with [SV⊕R
k

, X(V )]H replaced by [SV , X(V ⊕ R−k)]H .

Definition 1.2.4. Let G be a Lie group. A morphism f : X −→ Y of orthogo-
nal G-spectra is a π∗-isomorphism if for every compact subgroup H of G and every
integer k, the induced map

πHk (f) : πHk (X) −→ πHk (Y )

is an isomorphism.

In the case of compact groups, this definition recovers the notion of π∗-isomorphism
from [48, Sec. III.3] or [60, Def. 3.1.12].

Construction 1.2.5 (Loop and suspension isomorphism). An important spe-
cial case of Construction 1.1.14 is when A = S1 is a 1-sphere with trivial action.
The suspension X ∧ S1 is defined by

(X ∧ S1)(V ) = X(V ) ∧ S1 ,

the smash product of the V -th level of X with the sphere S1. The loop spectrum

ΩX = XS1

is defined by

(ΩX)(V ) = ΩX(V ) = map∗(S
1, X(V )) ,

the based mapping space from S1 to the V -th level of X .
We define the loop isomorphism

(1.2.6) α : πHk (ΩX) −→ πHk+1(X) .

For k ≥ 0, we represent a given class in πHk (ΩX) by a based H-map f : SV⊕R
k −→

ΩX(V ) and let f̃ : SV⊕R
k+1 −→ X(V ) denote the adjoint of f , which represents an

element of πHk+1(X). For k < 0, we represent a class in πHk (ΩX) by a based H-map

f : SV −→ ΩX(V ⊕R−k) and let f̃ : SV⊕R −→ X(V ⊕R−k) ∼= X((V ⊕R)⊕R−(k+1))
denote the adjoint of f , which represents an element of πHk+1(X). Then we can set

α[f ] = [f̃ ] .

The loop isomorphism is indeed bijective, by straightforward adjointness.
Next we define the suspension isomorphism

(1.2.7) − ∧S1 : πHk (X) −→ πHk+1(X ∧ S1) .
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For k ≥ 0 we represent a given class in πHk (X) by a based H-map f : SV⊕R
k −→

X(V ); then f ∧ S1 : SV⊕R
k+1 −→ X(V ) ∧ S1 represents a class in πHk+1(X ∧ S1).

For k < 0 we represent a given class in πHk (X) by a based H-map f : SV −→
X(V ⊕R−k); then f∧S1 : SV⊕R −→ X(V ⊕R−k)∧S1 ∼= X((V ⊕R)⊕R−(k+1))∧S1

represents a class in πHk+1(X ∧ S1). Then we set

[f ] ∧ S1 = [f ∧ S1] .

The suspension isomorphism is indeed bijective, see for example [60, Prop. 3.1.30].

Next we recall the concept of an h-cofibration of orthogonal G-spectra; this
notion occurs in the proof of the Theorem 1.2.9, and we will use it at several
later points. In the case when G is a compact Lie group, the basic properties of
h-cofibrations are discussed in [48, III Thm. 3.5].

Definition 1.2.8. A morphism i : A −→ B of orthogonal G-spectra is an
h-cofibration if it has the homotopy extension property: for every orthogonal G-
spectrum X , every morphism ϕ : B −→ X and every homotopy H : A∧ [0, 1]+ −→
X starting with ϕ ◦ i, there exists a homotopy H̄ : B ∧ [0, 1]+ −→ X starting with
ϕ that satisfies H̄ ◦ (i ∧ [0, 1]+) = H .

There is a universal test case for the homotopy extension property, and a
morphism i : A −→ B is an h-cofibration if and only if the canonical morphism
(A∧[0, 1]+)∪iB −→ B∧[0, 1]+ admits a retraction. For every continuous homomor-
phism α : K −→ G between Lie groups, the restriction functor α∗ : SpG −→ SpK
preserves colimits and smash products with based spaces; so if i is an h-cofibration
of G-spectra, then α∗(i) is an h-cofibration of K-spectra. In particular, restriction
to a closed subgroup preserves h-cofibrations.

Similarly, if i : A −→ B is an h-cofibration of orthogonal G-spectra, then for
every compact subgroup H of G and every orthogonal H-representation V , the H-
equivariant map i(V ) : A(V ) −→ B(V ) is an h-cofibration of based H-spaces. This
uses that the evaluation functors also commute with colimits and smash products
with based spaces.

In the next theorem we consider two Lie groups K and Γ. We call a (K × Γ)-
space bifree if the underlying K-action is free and the underlying Γ-action is free.
Equivalently, the stabilizer group of every point intersects both of the two subgroups
K×{1} and {1}×Γ only in the neutral element. The compact subgroups of K×Γ
with this property are precisely the graphs of all continuous monomorphisms α :
L −→ Γ, defined on compact subgroups of K. In the following theorem we turn the
left Γ-action on A into a right action by setting a · γ = γ−1 · a, for (a, γ) ∈ A× Γ.

Theorem 1.2.9. Let Γ and K be Lie groups and A a bifree Com-cofibrant
(K × Γ)-space. Then the functor

A+ ∧Γ − : SpΓ −→ SpK

takes π∗-isomorphisms of orthogonal Γ-spectra to π∗-isomorphisms of orthogonal
K-spectra.

Proof. We start with the special case when the groupK is compact. Since the
functor A+∧Γ− commutes with mapping cones, and since mapping cone sequences
give rise to long exact sequences of equivariant homotopy groups [60, Prop. 3.1.36],
it suffices to show the following special case: we letX be any orthogonal Γ-spectrum



1.2. THE STABLE MODEL STRUCTURE 17

that is Γ-π∗-trivial, i.e., all of whose equivariant homotopy groups, for all compact
subgroups of Γ, vanish. Then A+ ∧Γ X is K-π∗-trivial. For this we assume first
that A is a finite-dimensional proper (K × Γ)-CW-complex, with skeleta An. We
argue by induction over the dimension of A. The induction starts with A−1, which
is empty, and there is nothing to show. Then we let n ≥ 0 and assume the claim
for An−1. By hypothesis there is a pushout square of (K × Γ)-spaces:

∐

j∈J (K × Γ)/∆j × ∂Dn //

��

∐

j∈J (K × Γ)/∆j ×Dn

��
An−1 // An

Here J is an indexing set of the n-cells of the equivariant CW-structure and ∆j

is a compact subgroup of K × Γ. Since the (K × Γ)-action on A is bifree, each of
the subgroups ∆j must be the graph of a continuous monomorphism αj : Lj −→ Γ
defined on a compact subgroup Lj of K.

The inclusion An−1 −→ An is an h-cofibration of (K × Γ)-spaces, so the
morphism An−1+ ∧Γ X −→ An+ ∧Γ X is an h-cofibration of orthogonal K-spectra.
The long exact homotopy group sequence [60, Cor. 3.1.38] thus reduces the in-
ductive step to showing that the K-equivariant homotopy groups of the cofiber
(An+ ∧Γ X)/(An−1+ ∧Γ X) vanish. This cofiber is isomorphic to

∨

j∈J

(K × Γ/∆j)+ ∧Γ X ∧ Sn .

Since equivariant homotopy groups take wedges to sums [60, Cor. 3.1.37 (i)] and
reindex upon smashing with Sn (by the suspension isomorphism (1.2.7), com-
pare [60, Prop. 3.1.30]), it suffices to consider an individual wedge summand with-
out any suspension. In other words, we may show that the orthogonal K-spectrum

(K × Γ)/∆+ ∧Γ X ∼= K ⋉L α
∗(X)

isK-π∗-trivial, where L is a closed subgroup ofK and ∆ is the graph of a continuous
monomorphism α : L −→ Γ. Now X is Γ-π∗-trivial by hypothesis, so α∗(X) is L-
π∗-trivial. Since K and L are compact, [60, Cor. 3.2.21] lets us conclude that
K ⋉L α

∗(X) is K-π∗-trivial. This completes the inductive step.
Now we suppose that A is a proper (K × Γ)-CW-complex, possibly infinite

dimensional. As already noted above, the morphisms

An−1+ ∧Γ X −→ An+ ∧Γ X
induced by the skeleton inclusions are h-cofibrations of orthogonalK-spectra. Since
A+ ∧Γ X is a colimit of the sequence of spectra An+ ∧Γ X , each An+ ∧Γ X is K-π∗-
trivial, and a colimit of π∗-isomorphisms over a sequence of h-cofibrations is another
π∗-isomorphism (compare [48, III Thm. 3.5 (v)] or [60, Prop. 3.1.41]), we conclude
that A+ ∧Γ X is K-π∗-trivial. A general Com-cofibrant (K × Γ)-space is (K × Γ)-
homotopy equivalent to a proper (K×Γ)-CW-complex, so this concludes the proof
in the special case where K is compact.

Now we treat the general case. We let L be any compact subgroup of K. The
underlying (L×Γ)-space of A is again bifree, and it is Com-cofibrant as an (L×Γ)-
space by Proposition 1.1.6 (iii). So the composite functor resKL ◦(A+∧Γ−) : SpΓ −→
SpL preserves π∗-isomorphisms by the special case above. Since π∗-isomorphisms of
K-spectra can be tested on all compact subgroups of K, this proves the claim. �



18 1. EQUIVARIANT SPECTRA

Corollary 1.2.10. Let Γ be a closed subgroup of a Lie group G. The induction
functor

G⋉Γ : SpΓ −→ SpG
takes π∗-isomorphisms of orthogonal Γ-spectra to π∗-isomorphisms of orthogonal
G-spectra.

Proof. We let H be a compact subgroup of G. Then the (H×Γ)-action on G
given by (h, γ) ·g = hgγ−1 underlies a proper (H×Γ)-CW-complex, by Proposition
1.1.5. In particular, G is Com-cofibrant as an (H × Γ)-space. The action is bifree,
so Theorem 1.2.9 applies and shows that the functor resGH ◦(G ⋉Γ −) takes π∗-
isomorphisms of orthogonal Γ-spectra to π∗-isomorphisms of orthogonal H-spectra.
Since H was an arbitrary compact subgroup of G, this proves the claim. �

We let H be a compact subgroup of a Lie group G, and X is an orthogonal
G-spectrum. We recall from Example 1.1.15 that if V is an H-representation, then
we equip the evaluation X(V ) with the diagonal H-action of the two H-actions on
X and on V .

Definition 1.2.11. Let G be a Lie group and f : X −→ Y a morphism of
orthogonal G-spectra.

(i) The morphism f is a level equivalence if f(V )H : X(V )H −→ Y (V )H is a
weak equivalence for every compact subgroup H of G and every orthogonal
H-representation V .

(ii) The morphism f is a level fibration if f(V )H : X(V )H −→ Y (V )H is a Serre
fibration for every compact subgroup H of G and every orthogonal H-re-
presentation V .

It follows from the definition that if f : X −→ Y is a level equivalence (level
fibration), then f(V ) : X(V ) −→ Y (V ) is an H-weak equivalence (H-fibration) for
every compact subgroup H , simply because every orthogonal H-representation is
also a K-representation for every K ≤ H .

In order to define the cofibrations of orthogonalG-spectra, we recall the skeleton
filtration, a functorial way to write an orthogonal spectrum as a sequential colimit
of spectra which are made from the information below a fixed level. The word
‘filtration’ should be used with caution because the maps from the skeleta to the
orthogonal spectrum need not be injective.

Construction 1.2.12 (Skeleton filtration of orthogonal spectra). We let O≤m
denote the full topological subcategory of O whose objects are the inner product
spaces of dimension at most m. We write Sp≤m for the category of continuous
based functors from O≤m to T∗. Restriction to the subcategory O≤m defines a
functor

(−)≤m : Sp −→ Sp≤m .

This functor has a left adjoint

lm : Sp≤m −→ Sp ,

an enriched left Kan extension. The m-skeleton of an orthogonal spectrum X is

skmX = lm(X≤m) ,

the extension of the restriction of X to O≤m. The skeleton comes with a natural
morphism im : skmX −→ X , the counit of the adjunction (lm, (−)≤m). Kan
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extensions along a fully faithful functor do not change the values on the given
subcategory [31, Prop. 4.23], so the value

im(V ) : (skmX)(V ) −→ X(V )

is an isomorphism for all inner product spaces V of dimension at most m. The
m-th latching space of X is the based O(m)-space

LmX = (skm−1X)(Rm) ;

it comes with a natural based O(m)-equivariant map

νm = im−1(R
m) : LmX −→ X(Rm) ,

the m-th latching map. We set sk−1X = ∗, the trivial orthogonal spectrum, and
L0X = ∗, a one-point space.

The different skeleta are related by natural morphisms jm : skm−1X −→
skmX , for all m ≥ 0, such that im ◦ jm = im−1. The sequence of skeleta sta-
bilizes to X in a strong sense: the maps jm(V ) and im(V ) are isomorphisms as
soon as m > dim(V ). In particular, X(V ) is a colimit, with respect to the maps
im(V ), of the sequence of maps jm(V ). Since colimits in the category of orthogonal
spectra are created objectwise, the orthogonal spectrum X is a colimit, with respect
to the morphisms im, of the sequence of morphisms jm.

Moreover, each skeleton is built from the previous one in a systematic way
controlled by the latching map. We write Gm for the left adjoint to the evaluation
functor

evRm : Sp −→ O(m)T∗ .

Then the commutative square

(1.2.13)

GmLmX
Gmνm //

��

GmX(Rm)

��
skm−1X

jm
// skmX

is a pushout of orthogonal spectra, see [60, Prop.C.17]. The two vertical morphisms
are instances of the adjunction counit.

Since the skeleta and latching objects are continuous functors in the orthogonal
spectrum, and since the latching morphisms are natural, actions of groups go along
free for the ride. More precisely, the skeleta of (the underlying orthogonal spec-
trum of) an orthogonal G-spectrum inherit a continuous G-action by functoriality.
In other words, the skeleta and the various morphisms between them lift to endo-
functors and natural transformations on the category of orthogonalG-spectra. If X
is an orthogonal G-spectrum, then the O(m)-space LmX comes with a commuting
action by G, again by functoriality of the latching space. Moreover, the latching
morphism νm : LmX −→ X(Rm) is (G × O(m))-equivariant. Since colimits of
orthogonal G-spectra are created in the underlying category of orthogonal spectra,
the square (1.2.13) is a pushout square of orthogonal G-spectra.

Definition 1.2.14. Let G be a Lie group. A morphism i : A −→ B of orthog-
onal G-spectra is a cofibration if for every m ≥ 0 the latching map

νmi = νBm ∪ i(Rm) : LmB ∪LmA A(R
m) −→ B(Rm)
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is a Com-cofibration of (G × O(m))-spaces and, moreover, the action of O(m) is
free away from the image of νmi.

If X is an orthogonal spectrum and V and W are inner product spaces, we
write

σ̃V,W : X(W ) −→ map∗(S
V , X(V ⊕W ))

for the adjoint of the structure map σV,W : SV ∧ X(W ) −→ X(V ⊕W ). Here
map∗(−,−) denotes the space of based continuous maps.

Definition 1.2.15. A morphism f : X −→ Y of orthogonal G-spectra is a
stable fibration if it is a level fibration, and moreover, for every compact subgroup
H of G and all H-representations V and W the square

(1.2.16)

X(W )H

f(V )H

��

(σ̃V,W )H // mapH∗ (S
V , X(V ⊕W ))

mapH
∗ (SV ,f(V⊕W ))

��
Y (W )H

(σ̃V,W )H
// mapH∗ (S

V , Y (V ⊕W ))

is homotopy cartesian. An orthogonal G-spectrum is a G-Ω-spectrum if for every
compact subgroup H of G and all H-representations V and W the map

(σ̃V,W )H : X(W )H −→ mapH∗ (S
V , X(V ⊕W ))

is a weak equivalence.

We note that an orthogonal G-spectrum is a G-Ω-spectrum precisely when the
unique morphism to any trivial spectrum is a stable fibration. In other words,
G-Ω-spectra come out as the fibrant objects in the stable model structure on SpG.

Proposition 1.2.17. Let G be a Lie group. Every π∗-isomorphism that is also
a stable fibration is a level equivalence.

Proof. This is a combination of Proposition 4.8 and Corollary 4.11 of [48,
Ch. III]. In more detail, we let f : X −→ Y be a π∗-isomorphism and a stable
fibration, and we consider a compact subgroup H of G. Since f is a stable fibration,
[48, III Prop. 4.8] shows that the morphism resGH(f) of underlying orthogonal H-
spectra has the right lifting property with respect to a certain set K of morphisms
specified in [48, III Def. 4.6]. Since f is also a π∗-isomorphism, [48, III Cor. 4.11]
then shows that for everyH-representation V the map f(V )H : X(V )H −→ Y (V )H

is a weak equivalence. �

Now we name explicit sets of generating cofibrations and generating acyclic cofi-
brations for the stable model structure on SpG. We fix once and for all a complete
set VH of representatives of isomorphism classes of finite-dimensional orthogonal
H-representations, for every compact Lie group H . We let IGlv denote the set of
morphisms

(G⋉H FV ) ∧ ∂Dk
+ −→ (G⋉H FV ) ∧Dk

+ ,

for all k ≥ 0, whereH runs through all compact subgroups of G and V runs through
all representations in VH . Here FV is the free spectrum in level V , see Example
1.1.15. Similarly, we let JGlv denote the set of morphisms

(1.2.18) (G⋉H FV ) ∧ (Dk × {0})+ −→ (G⋉H FV ) ∧ (Dk × [0, 1])+ ,
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with (H,V, k) running through the same set as for IGlv .
Every morphism of orthogonal G-spectra j : A −→ B factors through the

mapping cylinder as the composite

A
c(j)−−→ Z(j) = (A ∧ [0, 1]+) ∪j B

r(j)−−→ B

where c(j) is the ‘front’ mapping cylinder inclusion and r(j) is the projection, which
is a homotopy equivalence. In our applications we will assume that both A and B
are cofibrant, and then the morphism c(j) is a cofibration, compare [26, Lemma
3.4.10]. We then define Z(j) as the set of all pushout product maps

c(j)�ik+ : A ∧Dk
+ ∪A∧∂Dk

+
Z(j) ∧ ∂Dk

+ −→ Z(j) ∧Dk
+

for k ≥ 0, where ik : ∂Dk −→ Dk is the inclusion.
LetH be a compact subgroup of the Lie groupG. For a pair ofH-representations

V and W , a morphism of orthogonal H-spectra

(1.2.19) λH,V,W : FV⊕WS
V −→ FW

is defined as the adjoint of the H-map (1.1.10)

iV,W : SV −→ O(W,V ⊕W ) = FW (V ⊕W ) ,

compare [48, Sec. III.4]. So λH,V,W represents taking H-fixed points of the adjoint
structure map:

(σ̃V,W )H : X(W )H −→ mapH(SV , X(V ⊕W )) .

The morphism λH,V,W is a π∗-isomorphism of orthogonal H-spectra by [48, III
Lemma 4.5].

We set

KG =
⋃

H,V,W

Z(G⋉H λH,V,W ) ,

the set of all pushout products of sphere inclusions ∂Dk −→ Dk with the map-
ping cylinder inclusions of the morphisms G ⋉H λH,V,W . Here the union is over
a set of triples (H,V,W ) consisting of a compact subgroup H of G and two H-
representations V andW from the set VH of representatives of isomorphism classes
of H-representations. We let

JGst = JGlv ∪ KG

stand for the union of JGlv and KG. The sets IGlv and JGst will serve as sets of
generating cofibrations and acyclic cofibrations for the stable model structure on
SpG.

Proposition 1.2.20. A morphism of orthogonal G-spectra is a stable fibration
if and only if it has the right lifting property with respect to the set JGst .

Proof. The right lifting property with respect to JGlv is equivalent to being
a level fibration. By [60, Prop. 1.2.16], the right lifting property of a morphism
f : X −→ Y with respect to JGst = JGlv ∪ KG is then equivalent to the additional
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requirement that the square of mapping spaces

mapG(G⋉H FW , X)
mapG(G⋉HλH,V,W ,X) //

mapG(G⋉HFW ,f)

��

mapG(G⋉H FV⊕WS
V , X)

mapG(G⋉HFV ⊕WSV ,f)

��
mapG(G⋉H FW , Y )

mapG(G⋉HλH,V,W ,Y )

// mapG(G ⋉H FV⊕WS
V , Y )

is homotopy cartesian, where mapG(−,−) is the space of morphisms of orthogonal
G-spectra. This proves the claim because the orthogonal G-spectrum G ⋉H FW
represents the functor X 7→ X(W )H , the orthogonal G-spectrum G⋉H (FV⊕WS

V )
represents the functor X 7→ mapH∗ (S

V , X(V ⊕ W )), and the morphism G ⋉H
λH,V,W represents H-fixed points of the adjoint structure map σ̃V,W : X(W ) −→
map∗(S

V , X(V ⊕W )). �

Proposition 1.2.21. Every morphism in JGst is a π∗-isomorphism and a cofi-
bration.

Proof. All morphisms in JGlv are cofibrations. They are also level equivalences,
and hence also π∗-isomorphisms by [48, III Lemma 3.3], applied to the underlying
orthogonal H-spectra, for all compact subgroups H .

Since for any compact subgroup H of G, the orthogonal G-spectra G ⋉H
FV⊕WS

V and G ⋉H FW are cofibrant, the morphisms in KG are cofibrations.
The morphism λH,V.W is a π∗-isomorphism of orthogonal H-spectra by [48, III
Lemma 4.5]. So the mapping cylinder inclusion c(λH,V,W ) is then also a π∗-
isomorphism, because it differs from λH,V,W only by a homotopy equivalence of
orthogonal H-spectra. The pushout product c(G ⋉H λH,V,W ) � ik+ is isomorphic

to G ⋉H (c(λH,V,W ) � ik+). By [48, III Sec. 4], the morphism c(λH,V,W ) � ik+ is
a π∗-isomorphism of orthogonal H-spectra. Now Corollary 1.2.10 implies that
G⋉H (c(λH,V,W ) � ik+) is a π∗-isomorphism. �

Now we assemble the ingredients and construct the stable model structure. As
we already mentioned, the following model structure is Quillen equivalent to the
one established by Fausk in [21, Prop. 6.5]. We refrain from comparing the two
model structures, since that is not relevant for our purposes.

Theorem 1.2.22 (Stable model structure). Let G be a Lie group.

(i) The π∗-isomorphisms, stable fibrations and cofibrations form a model structure
on the category of orthogonal G-spectra, the stable model structure.

(ii) Every cofibration of orthogonal G-spectra is an h-cofibration.
(iii) Let i : A −→ B be a cofibration of orthogonal G-spectra and j : K −→ L a

G-cofibration of based G-spaces. Then the pushout-product morphism

i� j = (i ∧ L) ∪ (B ∧ j) : A ∧ L ∪A∧K B ∧K −→ B ∧ L

is a cofibration of orthogonal G-spectra. If moreover i is a π∗-isomorphism or
j is a Com-equivalence, then i� j is a π∗-isomorphism.

(iv) The stable model structure is proper, stable, topological and cofibrantly gener-
ated.

(v) The fibrant objects in the stable model structure are the G-Ω-spectra.
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Proof. (i) We start by establishing a level model structure for orthogonal
G-spectra. Orthogonal G-spectra are continuous based functors from O to the
categoryGT∗, so we can employ the machinery from [60, Prop.C.23] that produces
level model structures on enriched functor categories. Here the base category is
V = GT∗, with smash product as monoidal structure. The index category is
D = O, where the group G acts trivially on all morphism spaces. The category D∗
of enriched functors from O to GT∗ then becomes SpG. The dimension function on
O is the vector space dimension, and then the abstract skeleta of [60, Con.C.13]
specialize to the skeleta above.

To apply [60, Prop.C.23] we need to specify a model structure on the category
of O(m)-objects in GT∗, i.e., on the category of based (G×O(m))-spaces. We use
the C(m)-projective model structure, in the sense of [60, Prop.B.7], where C(m) is
the family of those closed subgroups of G×O(m) that are the graph of a continuous
homomorphism to O(m) defined on some compact subgroup of G. Equivalently,
a closed subgroup ∆ of G × O(m) belongs to C(m) if and only if it is compact
and ∆ ∩ (1 × O(m)) consists only of the neutral element. The restriction functor
from (G × O(m + n))-spaces to (G × O(m))-spaces takes C(m + n)-fibrations to
C(m)-fibrations, so its left adjoint

O(m+ n)⋉O(m) − : (G×O(m))T∗ −→ (G×O(m+ n))T∗

preserves acyclic cofibrations. This establishes the consistency condition of [60,
Def. C.22]. With respect to the C(m)-projective model structures on (G × O(m))-
spaces, the level equivalences, level fibrations and cofibrations in the sense of [60,
Prop.C.23] are precisely the level equivalences, level fibrations, and cofibrations of
orthogonal G-spectra. So [60, Prop.C.23] shows that the level equivalences, level
fibrations and cofibrations form a model structure on the category SpG, the level
model structure.

The right lifting property against the set IGlv detects the level acyclic fibrations,
simply by the adjunction

SpG((G⋉H FV ) ∧K,X) ∼= T∗(K,X(V )H) ,

whereK is a non-equivariant based space. So the set IGlv serves as a set of generating
cofibrations.

Before proceeding with the stable model structure, we prove part (ii). If X is
any orthogonal G-spectrum, then evaluation at the point 0 ∈ [0, 1] is a level equiv-
alence and level fibration X [0,1] −→ X , by direct inspection. So every cofibration
has the left lifting property with respect to this evaluation morphism, which means
that every cofibration is an h-cofibration.

Now we continue with the stable model structure. The π∗-isomorphisms satisfy
the 2-out-of-3 property (MC2) and the classes of π∗-isomorphisms, stable fibrations
and cofibrations are closed under retracts (MC3). The level model structure shows
that every morphism of orthogonal G-spectra can be factored as a cofibration fol-
lowed by a level equivalence that is also a level fibration. Level equivalences are in
particular π∗-isomorphisms, and for them the square (1.2.16) is homotopy carte-
sian. So level acyclic fibrations are also stable fibrations. Hence the level model
structure provides one of the factorizations as required by MC5.

For the other half of the factorization axiom MC5 we exploit that the set
JGst detects the stable fibrations, compare Proposition 1.2.20. We apply the small
object argument (see for example [16, 7.12] or [25, Thm. 2.1.14]) to the set JGst .
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All morphisms in JGst are cofibrations and π∗-isomorphisms by Proposition 1.2.21.
The small object argument provides a functorial factorization of every morphism
ϕ : X −→ Y of orthogonal G-spectra as a composite

X
i−−→ W

q−−→ Y

where i is a sequential composition of cobase changes of coproducts of morphisms
in JGst , and q has the right lifting property with respect to JGst ; in particular, the
morphism q is a stable fibration. All morphisms in JGst are π∗-isomorphisms and
cofibrations, hence also h-cofibrations. The class of h-cofibrations that are simulta-
neously π∗-isomorphisms is closed under coproducts, cobase changes and sequential
compositions by [48, III Thm. 3.5]. So the morphism i is a cofibration and a π∗-
isomorphism.

Now we show the lifting properties MC4. By Proposition 1.2.17 a morphism
that is both a stable fibration and a π∗-isomorphism is a level equivalence, and
hence an acyclic fibration in the level model structure. So every morphism that is
simultaneously a stable fibration and a π∗-isomorphism has the right lifting property
with respect to cofibrations. Now we let j : A −→ B be a cofibration that is also
a π∗-isomorphism and we show that it has the left lifting property with respect
to stable fibrations. We factor j = q ◦ i, via the small object argument for JGst ,
where i : A −→ W is a JGst -cell complex and q : W −→ B is a stable fibration,
see Proposition 1.2.20. Then q is a π∗-isomorphism since j and i are, so q is an
acyclic fibration in the level model structure, again by Proposition 1.2.17. Since j
is a cofibration, a lifting in

A
i //

j

��

W

q
∼
��

B

>>

B

exists. Thus j is a retract of the morphism i that has the left lifting property with
respect to stable fibrations. But then j itself has this lifting property. This finishes
the verification of the model category axioms for the stable model structure.

(iii) Pushouts of orthogonal spectra and smash products with based spaces are
formed levelwise. So

Lm(B ∧ L) ∪Lm(A∧L∪A∧KB∧K) (A ∧ L ∪A∧K B ∧K)(Rm)

= Lm(B) ∧ L∪Lm(A)∧L∪Lm(A)∧KLm(B)∧K

(A(Rm) ∧ L ∪A(Rm)∧K B(Rm) ∧K)

∼= (Lm(B) ∪Lm(A) A(R
m)) ∧ L ∪(Lm(B)∪Lm(A)A(Rm))∧K B(Rm) ∧K .

Moreover, (B∧L)(Rm) = B(Rm)∧L. Under these identifications, them-th latching
map for the morphism i � j becomes the pushout product of νmi : LmB ∪LmA

A(Rm) −→ B(Rm) with the map j : K −→ L. By hypothesis, νm(i) is a Com-
cofibration of (G×O(m))-spaces. Since j is a G-cofibration, it is also a (G×O(m))-
cofibration for the trivial O(m)-action. So

νm(i � j) = νm(i) � j

is a Com-cofibration of (G × O(m))-spaces by Proposition 1.1.3 (iii). Also by hy-
pothesis, the group O(m) acts freely away from the image of νm(i); hence it also
acts freely off the image of νm(i) � j. This proves that i � j is a cofibration of
orthogonal G-spectra.
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Now we suppose in addition that i is a π∗-isomorphism or j is a Com-equivalence.
Since the morphism i � j is a cofibration by the above, it is in particular an h-
cofibration. So to show that i � j is a π∗-isomorphism, the long exact homotopy
group sequence allows us to show that its cofiber (B/A) ∧ (K/L) is π∗-isomorphic
to the trivial spectrum. Now we let H be a compact subgroup of G. In the case
where i is a π∗-isomorphism, its long exact homotopy group sequence shows that
B/A is H-π∗-trivial; since K/L is a cofibrant based H-space, the smash product
(B/A)∧ (K/L) is H-π∗-trivial, by [48, III Thm. 3.11] or [60, Prop. 3.2.19]. If j is a
Com-equivalence, then the underlying based H-space of K/L is equivariantly con-
tractible. So (B/A) ∧ (K/L) is H-equivariantly contractible, and hence π∗-trivial.

(iv) Alongside with the proof of the model structure we have also specified sets
of generating cofibrations IGlv and generating acyclic cofibrations JGst . Sources and
targets of all morphisms in these sets are small with respect to sequential colimits
of cofibrations. So the model structure is cofibrantly generated.

Left properness of the stable model structure follows from the fact that ev-
ery cofibration is in particular an h-cofibration of orthogonal G-spectra. So for
every compact subgroup H , the underlying morphism of orthogonal H-spectra is
an h-cofibration, and pushout along it preserves π∗-isomorphisms of orthogonal H-
spectra, by [48, III Thm. 3.5 (iii)] or [60, Cor. 3.1.39]. Right properness follows
from the fact that stable fibrations are in particular level fibrations, and hence the
natural morphism from the strict fiber to the homotopy fiber is a level equivalence.
Source, target and homotopy fiber of any morphism of orthogonal G-spectra are
related by a long exact sequences of equivariant homotopy groups (see for example
[60, Prop. 3.1.36]), so the five lemma concludes the argument.

The loop functor Ω : SpG −→ SpG and the suspension functor −∧S1 : SpG −→
SpG preserve π∗-isomorphisms by the loop isomorphism (1.2.6) and the suspension
isomorphism [60, Prop. 3.1.30]. Moreover, the loop functor preserves stable fibra-
tions by direct inspection. So the adjoint functor pair

− ∧ S1 : SpG
// SpG : Ωoo

is a Quillen adjunction with respect to the stable model structure, and these func-
tors model the model categorical suspension and loop functors. Furthermore, the
unit η : X −→ Ω(X ∧ S1) and counit (ΩX) ∧ S1 −→ X of the adjunction are
π∗-isomorphisms [60, Prop. 3.1.25]. Hence the adjunction is a Quillen equivalence,
which proves stability of the stable model structure.

Every cofibration of non-equivariant spaces is in particular aG-cofibration when
given the trivial G-action. So the stable model structure is topological as a special
case of part (iii). Part (v) is clear from the definitions. �

Remark 1.2.23 (Relation to previous stable model structures). For compact
Lie groups, the proper equivariant stable homotopy theory reduces to the ‘gen-
uine’ equivariant stable homotopy theory. In this special case, several stable model
structures have already been constructed that complement the π∗-isomorphisms by
different classes of cofibrations and fibrations. We explain how our stable model
structure relates to the previous ones for compact Lie groups.

For compact Lie groups H , model structures on orthogonal H-spectra with
π∗-isomorphisms as weak equivalences were established by Mandell and May [48],
Stolz [70], Brun, Dundas and Stolz [9], and Hill, Hopkins and Ravenel [24].
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The cofibrations in these model structures each admit a characterization in
terms of the latching maps, with different conditions on the allowed isotropy away
from the image; however, these characterizations are not explicitly stated in the
other papers. A morphism of orthogonalH-spectra i : A −→ B is an ‘S-cofibration’
in the sense of Stolz [70, Def. 2.3.4] and Brun-Dundas-Stolz [9, Def. 2.9.11] precisely
when the latching morphism

νmi = νBm ∪ i(Rm) : LmB ∪LmA A(R
m) −→ B(Rm)

is a cofibration of (H×O(m))-spaces, with no additional constraint on the isotropy.
The morphism i is a ‘q-cofibration’ in the sense of Mandell and May [48, III Def. 2.3]
precisely when the latching morphism νmi is a cofibration of (H × O(m))-spaces
and additionally the isotropy group of every point that is not in the image of
νmi is the graph of a continuous homomorphism K −→ O(m), for some closed
subgroupK of H , that admits an extension to a continuous homomorphism defined
on H . In particular, Stolz’ S-model structure has more cofibrations than our model
structure, and we have more cofibrations than Mandell and May. For finite groups,
our cofibrations of orthogonal H-spectra specialize to the ‘complete cofibrations’ in
the sense of Hill, Hopkins and Ravenel, i.e., to the variant of the positive complete
cofibrations of [24, B.63] where the positivity condition is dropped. So for finite
groups H , the stable model structure specified in Theorem 1.2.22 is ‘essentially’ the
positive complete model structure of [24, B.4.1].

Example 1.2.24 (No compact subgroups). We already emphasized that when
G is compact, our theory just returns the well-known G-equivariant stable homo-
topy theory, based on a complete G-universe. There is another extreme where we
also recover a well-known homotopy theory. Indeed, suppose that the only com-
pact subgroup of G is the trivial subgroup. For example, G could be discrete and
torsion free, or the additive group of Rn. The category of orthogonal G-spectra is
isomorphic to the category of module spectra over the spherical group ring S[G] –
this is a pointset level statement and holds for all Lie groups G. But if the trivial
group is the only compact subgroup of G, then a morphism of orthogonal G-spectra
is a π∗-isomorphism or stable fibration if and only if the underlying morphism of
non-equivariant orthogonal spectra is a π∗-isomorphism or stable fibration, respec-
tively. So not only is the category SpG isomorphic to module spectra over S[G],
also the model structure is the one on modules over an orthogonal ring spectrum,
lifted along the forgetful functor, compare [47, Thm. 12.1 (i)]. So in particular,

Ho(SpG)
∼= Ho(S[G]-mod)

i.e., the stable G-equivariant homotopy category ‘is’ the homotopy category of
module spectra over S[G].

The category Sp of orthogonal spectra supports a symmetric monoidal smash
product, which is an example of a convolution product considered by category the-
orist Day in [14]; like the tensor product of abelian groups, it can be introduced
via a universal property or as a specific construction. The indexing category O

for orthogonal spectra was introduced in Construction 1.1.8. A based continuous
functor

⊕ : O ∧O −→ O
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is defined on objects by orthogonal direct sum, and on morphism spaces by

O(V,W ) ∧O(V ′,W ′) −→ O(V ⊕ V ′,W ⊕W ′)
(w,ϕ) ∧ (w′, ϕ′) 7−→ ((w,w′), ϕ⊕ ϕ′) .

A bimorphism b : (X,Y ) −→ Z from a pair of orthogonal spectra (X,Y ) to an
orthogonal spectrum Z is a natural transformation

b : X∧̄Y −→ Z ◦ ⊕
of continuous functors O ∧O −→ T∗; here X∧̄Y is the ‘external smash product’
defined by (X∧̄Y )(V,W ) = X(V ) ∧ Y (W ). A bimorphism thus consists of based
continuous maps

bV,W : X(V ) ∧ Y (W ) −→ Z(V ⊕W )

for all inner product spaces V and W that form morphisms of orthogonal spectra
in each variable separately. A smash product of two orthogonal spectra is now a
universal example of a bimorphism from (X,Y ).

Definition 1.2.25. A smash product of two orthogonal spectra X and Y is
a pair (X ∧ Y, i) consisting of an orthogonal spectrum X ∧ Y and a universal
bimorphism i : (X,Y ) −→ X∧Y , i.e., a bimorphism such that for every orthogonal
spectrum Z the map

Sp(X ∧ Y, Z) −→ Bimor((X,Y ), Z) , f 7→ fi = {f(V ⊕W ) ◦ iV,W }V,W
is bijective.

A smash product of two orthogonal spectra can be constructed as an enriched
Kan extension of the external smash product X∧̄Y : O ∧ O −→ T∗ along the
continuous functor ⊕ : O ∧O −→ O. This boils down to presenting (X ∧ Y )(Rn)
as a quotient space of the wedge, over 0 ≤ k ≤ n, of the O(n)-spaces

O(n)⋉O(k)×O(n−k) X(Rk) ∧ Y (Rn−k) .

However, we feel that this explicit construction does not give much insight beyond
showing the existence of an object with the desired universal property. Anyhow,
Day’s general theory [14] shows that the smash product X ∧ Y supports preferred
natural associativity isomorphisms (X ∧ Y ) ∧Z ∼= X ∧ (Y ∧Z), symmetry isomor-
phisms X ∧ Y ∼= Y ∧X and unit isomorphisms X ∧ S ∼= X ∼= S ∧X , see also [60,
Con.C.9]. Moreover, there exists an adjoint internal function orthogonal spectrum.
All this data makes the smash product into a closed symmetric monoidal structure
on the category of orthogonal spectra.

IfX and Y are orthogonalG-spectra, then the smash productX∧Y inherits the
diagonalG-action, and G acts on the internal function spectrum by conjugation. So
the category SpG forms a closed symmetric monoidal category under smash product.
We will now show that the category SpG of orthogonal G-spectra, equipped with
the stable model structure and the smash product, is a monoidal model category in
the sense of [25, Def. 4.2.6]. We also show that the stable model structure satisfies
the monoid axiom [62, Def. 3.3]. This allows us to automatically lift the stable
model structure to the categories of module G-spectra and ring G-spectra.

Definition 1.2.26. Let G be a Lie group. An orthogonal G-spectrum X is
quasi-flat if for every compact subgroup H of G and every m ≥ 0, the latching map
νm : LmX −→ X(Rm) is an (H ×O(m))-cofibration.
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An orthogonal G-spectrum X is quasi-flat precisely if for every compact sub-
group H of G, the underlying orthogonal H-spectrum is H-flat in the sense of [60,
Def. 3.5.7]. When G is compact, ‘quasi-flat’ is the same as ‘G-flat’; in this case, the
G-flat orthogonal spectra are the cofibrant objects in the S-model structure of Stolz
[70, Thm. 2.3.27] and Brun-Dundas-Stolz [9, Def. 2.9.11]. Every quasi-cofibrant or-
thogonal G-spectrum in the sense of Definition 1.4.14 below is in particular quasi-
flat.

Theorem 1.2.27. Let G be a Lie group. For every quasi-flat orthogonal G-
spectrum X, the functor −∧X preserves π∗-isomorphisms of orthogonal G-spectra.

Proof. We let H be any compact subgroup of G. Then the underlying or-
thogonal H-spectrum of X is H-flat in the sense of [60, Def. 3.5.7]. Now we let
f : A −→ B be a π∗-isomorphism of orthogonal G-spectra. Since the G-action on
a smash product is defined diagonally, we have resGH(A ∧X) = resGH(A)∧ resGH(X),
and similarly for B ∧ X . Since X is H-flat, the morphism resGH(f ∧ X) is a π∗-
isomorphism of orthogonal H-spectra by [60, Thm. 3.5.10]. Since H was an arbi-
trary compact subgroup of G, this proves the claim. �

Proposition 1.2.28. Let G be a Lie group.

(i) Let i : A −→ B and j : K −→ L be cofibrations of orthogonal G-spectra. Then
the pushout-product morphism

i� j = (i ∧ L) ∪ (B ∧ j) : A ∧ L ∪A∧K B ∧K −→ B ∧ L

is a cofibration of orthogonal G-spectra. If, in addition, i or j is a π∗-
isomorphism, then so is i� j.

(ii) The category SpG equipped with the stable model structure is a monoidal model
category under the smash product of orthogonal G-spectra.

Proof. (i) We start with the claim that only involves cofibrations. It suffices
to check the statement for the generating cofibrations. The pushout product, in
the category of spaces, of two sphere inclusions is homeomorphic to another sphere
inclusion. So it suffices to show that for all compact subgroups H and K of G, all
H-representations V and all K-representations W , the G-spectrum

(1.2.29) (G⋉H FV ) ∧ (G⋉K FW ) ∼= ∆∗((G×G)⋉H×K FV⊕W )

is cofibrant, where ∆ : G −→ G×G is the diagonal embedding. Since (G×G)⋉H×K
FV⊕W is a cofibrant (G × G)-spectrum, Theorem 1.4.1 (ii) below shows that the
orthogonal G-spectrum (1.2.29) is cofibrant.

Now we suppose that in addition the morphism i is a π∗-isomorphism, the
other case being analogous. Since i is a cofibration, the long exact homotopy group
sequence (see [60, Cor. 3.1.38]) shows that its cofiber B/A is π∗-trivial. Since j
is a cofibration, its cofiber L/K is cofibrant, hence G-flat, so the smash product
(B/A) ∧ (K/L) is π∗-trivial by Theorem 1.2.27. Since the morphism i � j is a
G-cofibration with cofiber isomorphic to (B/A) ∧ (K/L), its long exact homotopy
group sequence shows that i � j is a π∗-isomorphism.

(ii) The pushout product property is established in part (i). The suspension
spectrum Σ∞+ EG is a cofibrant replacement of the G-sphere spectrum SG, the
monoidal unit object. For every compact subgroup H of G the underlying H-space
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of EG is H-equivariantly contractible. So for every orthogonal G-spectrum X , the
projection

X ∧ EG+
∼= X ∧ Σ∞+ EG −→ X

is a homotopy equivalence of underlying orthogonal H-spectra, and thus induces
an isomorphism on πH∗ . Since H was any compact subgroup, the projection is a
π∗-isomorphism. This establishes the unit axiom of [25, Def. 4.2.6]. �

Proposition 1.2.30 (Monoid axiom). Let G be a Lie group and i : A −→ B a
cofibration of orthogonal G-spectra which is also a π∗-isomorphism.

(i) For every orthogonal G-spectrum Y , the morphism i∧Y : A∧ Y −→ B ∧ Y is
an h-cofibration and a π∗-isomorphism.

(ii) Let D denote the class of maps of the form i ∧ Y , where i is a stably acyclic
cofibration and Y any orthogonal G-spectrum. Then any map in the class
D-cell (maps obtained as transfinite compositions of cobase changes of small
coproducts of morphisms in D) is a π∗-isomorphism.

Proof. The class of h-cofibrations which are also π∗-isomorphisms is closed
under transfinite compositions, coproducts and cobase changes by [48, III Thm. 3.5].
Hence part (ii) is a consequence of part (i).

The proof of part (i) is very similar to the proof of the corresponding statement
in the non-equivariant case, compare [47, Prop. 12.5]. For the sake of completeness
we provide the details here. Since i : A −→ B is a cofibration, the cofiber B/A is
cofibrant. Let α : Y c −→ Y be a cofibrant approximation of Y . Then (B/A)∧α is a
π∗-isomorphism by Theorem 1.2.27. Furthermore the cofiber B/A is π∗-isomorphic
to the trivial G-spectrum, by the long exact sequence of homotopy groups, see
[48, III Thm. 3.5 (vi)]. Using again Theorem 1.2.27, we see that (B/A) ∧ Y c and
hence (B/A) ∧ Y are π∗-isomorphic to the trivial G-spectrum. Now the morphism
i∧Y : A∧Y −→ B∧Y is an h-cofibration and its cofiber is isomorphic to B/A∧Y .
Since (B/A)∧Y is π∗-isomorphic to the trivialG-spectrum, the long exact homotopy
group sequence [60, Cor. 3.1.28] shows that the map i∧Y is a π∗-isomorphism. �

The previous proposition almost immediately implies that the stable model
structure on SpG lifts to the category of orthogonal ring G-spectra and the category
of module spectra over an orthogonal ring G-spectrum R, by the results of the fifth
author and Shipley [62, Thm. 4.1]. We will not go into further details here.

For compact Lie groups, the spheres of linear representations become invertible
objects in the genuine equivariant stable homotopy category. In our more general
context, the role of linear representations is taken up by equivariant vector bundles
over EG, the universal G-space for proper actions. We recall that a G-vector bundle
is a map ofG-spaces ξ : E −→ X equipped with the structure of a real vector bundle,
and such that the map g · − : ξx −→ ξgx is R-linear for all (g, x) ∈ G × X . By
one-point compactifying the fibers we obtain a G-equivariant fiber bundle Sξ −→ X
with fibers the spheres of dimension equal to the dimension of ξ. This bundle has
two preferred G-equivariant sections

s0, s∞ : X −→ Sξ

which send a point in X to the zero element and the point at infinity, respectively,
in the corresponding fiber.
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Proposition 1.2.31. Let G be a Lie group and (X,A) a relative proper G-
CW-pair. Then for every G-vector bundle ξ over X, the G-map

s0 ∪ s∞ ∪ incl : X × {0,∞}∪A×{0,∞} Sξ|A −→ Sξ

is a Com-cofibration of G-spaces.

Proof. The G-vector bundle ξ admits a G-invariant euclidean metric by the
real analog of [42, Lemma 1.4]. We choose a relative G-CW-structure on (X,A)
with skeleta Xn and such that X−1 = A. We let ξn : En −→ Xn denote the
restriction of the given euclidean vector bundle to Xn. In a first step we show that
the inclusion S(En−1) −→ S(En) of the total spaces of the sphere bundles is a
Com-cofibration of G-spaces. Lemma 1.1 (iii) of [42] provides a pushout square of
G-spaces:

∐

j∈J (G×Hj S(Vj))× ∂Dn //

��

S(En−1)

��
∐

j∈J (G×Hj S(Vj))×Dn) // S(En)

Here J is an indexing set of the equivariant n-cells of X , Hj is the stabilizer group of
the cell indexed by j, Vj is an orthogonal representation of Hj , and S(Vj) is its unit
sphere. In particular, each of the groups Hj is compact by our hypotheses. The
pushout arises from choices of characteristic maps for the equivariant n-cells of X
and choices of trivializations of ξ over each equivariant cell. SinceHj is compact, the
unit sphere S(Vj) admits an Hj-CW-structure by Illman’s theorem [27, Thm. 7.1],
so it is H-cofibrant. Hence G×Hj S(Vj) is a Com-cofibrant G-space, and so the left
and right vertical maps in the pushout square are Com-cofibrations of G-spaces.
Since Com-cofibrations are closed under sequential colimits, this proves that the
inclusion S(ξ|A) = S(E−1) −→ colimn S(E

n) = S(E) is a Com-cofibration.
The fiberwise one-point compactification participates in a pushout square of

G-spaces:

S(E)× {0,∞}∪S(ξ|A)×{0,∞} S(ξ|A)× [0,∞]

��

// X × {0,∞}∪A×{0,∞} Sξ|A

s0∪s∞∪incl

��
S(E)× [0,∞] // Sξ

Here the lower horizontal map crushes S(E)×{0} and S(E)×{∞} to the sections
at 0 and∞, respectively. Since the inclusion S(ξ|A) −→ S(E) is a Com-cofibration,
so is the left vertical map, and hence also the right vertical map. �

We let ξ : E −→ X be a G-vector bundle over a G-space X . By dividing out
the image of the section at infinity s∞ : X −→ Sξ, we get a based G-space

(1.2.32) Th(ξ) = Sξ/s∞(X) ,

the Thom space of ξ.

Proposition 1.2.33. Let G be a Lie group and ξ a G-vector bundle over EG.

(i) For every compact subgroup H of G and every H-fixed point x ∈ (EG)H , the
composite map

Sξx
incl−−→ Sξ

proj−−→ Th(ξ)
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is a based H-equivariant homotopy equivalence.
(ii) The endofunctors −∧Th(ξ) and map∗(Th(ξ),−) of the category of orthogonal

G-spectra preserve and detect π∗-isomorphisms.
(iii) For every orthogonal G-spectrum X the adjunction unit

ηX : X −→ map∗(Th(ξ), X ∧Th(ξ))

is a π∗-isomorphism.
(iv) The adjoint functor pair

− ∧ Th(ξ) : SpG
// SpG : map∗(Th(ξ),−)oo

is a Quillen equivalence. Consequently, the suspension spectrum of the Thom
space Th(ξ) is an invertible object in Ho(SpG).

Proof. (i) The restriction of the G-space EG is H-equivariantly contractible.
Therefore, by the homotopy invariance theorem [42, Thm. 1.2], the underlying H-
vector bundle of ξ is H-equivariantly isomorphic to the trivial bundle ξx×EG −→
EG. This implies that the underlying H-space of the Thom space Th(ξ) is H-
equivariantly isomorphic to Sξx ∧EG+. Since EG is H-equivariantly contractible,
the claim follows.

(ii) We let H be any compact subgroup of G. We choose an H-fixed point x ∈
(EG)H . Part (i) shows that the fiber inclusion induces an H-equivariant based
homotopy equivalence

ϕ : Sξx −→ resGH(Th(ξ)) .

This map induces homotopy equivalences of orthogonal H-spectra

ϕ∗ : resGH(X) ∧ Sξx −→ resGH(X ∧Th(ξ))

and

ϕ∗ : resGH(map∗(Th(ξ), X)) −→ Ωξx(resGH(X)) .

Since H is compact, the fiber ξx can be endowed with an H-invariant inner product,
making it an orthogonal H-representation. Now the representation sphere Sξx

admits the structure of a finite based H-CW-complex. So the functor − ∧ Sξx
preserves π∗-isomorphisms by [48, III Thm. 3.11] or [60, Prop. 3.2.19 (ii)], and the
functor Ωξx preserves π∗-isomorphisms by [48, III Prop. 3.9] or [60, Prop. 3.1.40
(ii)].

Furthermore, if f : X −→ Y is a morphism of orthogonal H-spectra such that
f ∧ Sξx : X ∧ Sξx −→ Y ∧ Sξx is a π∗-isomorphism, then Ωξx(f ∧ Sξx) is a π∗-

isomorphism by the previous paragraph. Since the adjunction unit ηξxX : X −→
Ωξx(X ∧ Sξx) is a π∗-isomorphism (by [48, III Lemma 3.8] or [60, Prop. 3.1.25
(ii)]), the original morphism f is a π∗-isomorphism. So smashing with Sξx detects

π∗-isomorphisms. By the same argument, using that the adjunction counit ǫξxX :
(ΩξxX)∧Sξx −→ X is a π∗-isomorphism (see [60, Prop. 3.1.25 (ii)]), it follows that
Ωξx detects π∗-isomorphisms of H-orthogonal spectra.

Since H was any compact subgroup of G, this shows that smashing with Th(ξ)
and taking map∗(Th(ξ),−) detect and preserve π∗-isomorphisms of orthogonal G-
spectra.

(iii) Again we let H be any compact subgroup of G, and we choose an H-fixed
point x ∈ (EG)H . The fiber inclusion ϕ : Sξx −→ resGH(Th(ξ)) is a based H-
equivariant homotopy equivalence by part (i). The following square of orthogonal
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H-spectra commutes:

X //

��

map∗(Th(ξ), X ∧ Th(ξ))

map∗(ϕ,Id)

��
map∗(S

ξx , X ∧ Sξx)
map∗(Id,X∧ϕ)

// map∗(S
ξx , X ∧ Th(ξ))

The two morphisms starting at X are the adjunction units. The left vertical mor-
phism is a π∗-isomorphism by [48, III Lemma 3.8] or [60, Prop. 3.1.25 (ii)]; the
right vertical and lower horizontal morphisms are homotopy equivalences, hence
π∗-isomorphisms. So the upper horizontal morphism is also a π∗-isomorphism.

(iv) The section at infinity is a Com-cofibration of G-spaces by Proposition
1.2.31 for A = ∅; so the Thom space Th(ξ) is Com-cofibrant as a based G-space.
The adjoint functors thus form a Quillen pair by Theorem 1.2.22 (iii). Since the
right adjoint map∗(Th(ξ),−) preserves and detects all π∗-isomorphisms and the
adjunction unit is a π∗-isomorphism, the Quillen pair is a Quillen equivalence. �

1.3. The G-equivariant stable homotopy category

In Section 1.2 we showed that the G-equivariant stable homotopy category
Ho(SpG) is the homotopy category of a stable model structure, so it is naturally a
triangulated category, for example by [25, Sec. 7.1] or [58, Thm.A.12]. This section
discusses those aspects of our theory that are most conveniently phrased in terms
of the triangulated structure.

We record in Proposition 1.3.10 that for every compact subgroup H of a Lie
group G, the suspension spectrum of G/H represents the functor πH0 on Ho(SpG);
a direct consequence is the fact that for varying compact subgroups H , the sus-
pension spectra of the orbits G/H form a set of small weak generators for the
stable G-homotopy category, see Corollary 1.3.11. In other words, the triangulated
category Ho(SpG) is compactly generated. As we explain thereafter, this has var-
ious formal, but rather useful, consequences, such as Brown representability (see
Corollary 1.3.12), a t-structure (see Corollary 1.3.16), and Postnikov sections (see
Remark 1.3.17). In Section 2.2 we will return to this preferred t-structure in the
special case of discrete groups G; we will then show that its heart is equivalent to
the abelian category of G-Mackey functors. In particular, for discrete groups G,
every G-Mackey functor has an associated Eilenberg-MacLane spectrum.

In the following we write

(1.3.1) γG : SpG −→ Ho(SpG)

for the localization functor at the class of π∗-isomorphisms; so γG initial among
functors from SpG that send π∗-isomorphisms to isomorphisms.

Construction 1.3.2 (Triangulated structure on Ho(SpG)). The suspension
isomorphism (1.2.7) between πGk (X) and πGk+1(X ∧ S1) shows that the pointset
level suspension of orthogonal G-spectra preserves π∗-isomorphism, so it passes to
a functor

[1] = Ho(− ∧ S1) : Ho(SpG) −→ Ho(SpG)

by the universal property of the localization. In other words, the shift functor is
characterized by the relation

[1] ◦ γG = γG ◦ (− ∧ S1) : SpG −→ Ho(SpG) .
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By [48, III Lemma 3.8] or [60, Prop. 3.1.25 (ii)], the adjunction unit η : X −→
Ω(X∧S1) is a π∗-isomorphism of orthogonal G-spectra; so at the level of the stable
homotopy category, suspension becomes inverse to looping; in particular, the shift
functor [1] is an auto-equivalence of the category Ho(SpG).

The distinguished triangles in Ho(SpG) are defined from mapping cone se-
quences as follows. We let f : X −→ Y be a morphism of orthogonal G-spectra.
The reduced mapping cone Cf is defined by

Cf = (X ∧ [0, 1]) ∪f Y .

Here the unit interval [0, 1] is based by 0 ∈ [0, 1], so that X ∧ [0, 1] is the reduced
cone of X . The mapping cone comes with an embedding i : Y −→ Cf and a
projection p : Cf −→ X ∧ S1. As S1 is the one-point compactification of R, the
projection sends Y to the basepoint and is given on X ∧ [0, 1] by p(x, z) = x ∧ t(z)
where

(1.3.3) t : [0, 1] −→ S1 is t(z) =
2z − 1

z(1− z) .

What is relevant about the map t is not the precise formula, but that it passes to a
homeomorphism between the quotient space [0, 1]/{0, 1} and S1 = R∪ {∞}. Then
the image in Ho(SpG) of the sequence

(1.3.4) X
f−−→ Y

i−−→ Cf
p−−→ X ∧ S1

is a distinguished triangle. More generally, a triangle in Ho(SpG) is distinguished
if and only if it is isomorphic in Ho(SpG) to such a mapping cone triangle for some
morphism of orthogonal G-spectra f .

Remark 1.3.5 (Integer shifts in Ho(SpG)). The shift functor on Ho(SpG) is an
auto-equivalence, but not an automorphism of Ho(SpG), so we fix a convention of
what we mean by integer shifts. For k ≥ 0 we set

[k] = Ho(− ∧ Sk) : Ho(SpG) −→ Ho(SpG) .

For k < 0 we observe that the functor Ω−k : SpG −→ SpG also preserves π∗-
isomorphisms, because looping shifts equivariant homotopy groups by the loop
isomorphism (1.2.6). So for negative values of k we define

[k] = Ho(Ω−k) : Ho(SpG) −→ Ho(SpG) .

Since positive and negative shift are not inverse to each other on the nose, we
specify natural isomorphisms

(1.3.6) sk : X [k][1] ∼= X [k + 1]

as endofunctors on Ho(SpG), for all integers k. For k ≥ 0, we let sk be induced by
the canonical homeomorphism

Sk ∧ S1 ∼= Sk+1 , x ∧ y 7−→ (x, y) .

For k < 0, we let sk be induced by the natural morphism of orthogonal G-spectra

eval : (Ω−kX) ∧ S1 −→ Ω−(k+1)X , eval(f ∧ t)(z) = f(t ∧ z)
that evaluates the last coordinate, where f ∈ Ω−kX , t ∈ S1 and z ∈ S−(1+k). The
evaluation morphism is a π∗-isomorphism, see for example [60, Prop. 3.1.25 (ii)].
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It is now a formal procedure to extend the isomorphisms sk to a preferred
system of natural isomorphisms X [k][l] ∼= X [k + l]. We omit the proof of the
following proposition.

Proposition 1.3.7. Let G be a Lie group. There is a unique collection of
natural isomorphisms

tk,l : X [k][l]
∼=−−→ X [k + l] ,

for all integers k and l, of endofunctors of Ho(SpG), subject to the following con-
ditions:

(a) t1,−1 ⋆ [1] = [1] ⋆ t−1,1 : [1] ◦ [−1] ◦ [1] −→ [1];
(b) tk,0 = t0,k = Id[k] for every integer k;
(c) tk,1 = sk for every integer k; and
(d) for every triple of integers k, l,m, the following square commutes:

X [k][l][m]
t
X[k]
l,m //

tXk,l[m]

��

X [k][l+m]

tXk,l+m

��
X [k + l][m]

tXk+l,m

// X [k + l +m]

Now we turn to the topic of ‘compact generation’ for triangulated categories.
The small objects in the sense of the following definition are most commonly called
‘compact’ objects; since we already use the adjective ‘compact’ in a different sense,
we prefer to use ‘small’.

Definition 1.3.8. Let T be a triangulated category which has all set indexed
sums. An object C of T is small (sometimes called finite or compact ) if for every
family {Xi}i∈I of objects the canonical map

⊕

i∈I

T (C, Xi) −→ T (C,
⊕

i∈I

Xi)

is an isomorphism. A set S of objects of T is a set of weak generators if the following
condition holds: if X is an object such that the groups T (C[k], X) are trivial for
all k ∈ Z and all C ∈ S, then X is a zero object. The triangulated category T is
compactly generated if it has all set indexed sums and a set of small weak generators.

For every compact subgroup H of G we define a tautological homotopy class

(1.3.9) uH ∈ πH0 (Σ∞+G/H)

as the class represented by the distinguished coset eH in G/H ; indeed, eH is an
H-fixed point of G/H , so it gives rise to a based H-map

S0 −→ G/H+ = (Σ∞+ G/H)0

by sending the non-basepoint to eH . For orthogonal G-spectra X and Y , we will
denote the Hom abelian group Ho(SpG)(X,Y ) by [X,Y ]G.

Proposition 1.3.10. Let G be a Lie group and H a compact subgroup of G.
Then for every orthogonal G-spectrum X, the evaluation map

[Σ∞+G/H,X ]G ∼= πH0 (X) , [f ] 7−→ f∗(uH)

is an isomorphism. The suspension spectrum Σ∞+G/H is a small object in Ho(SpG).
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Proof. Source and target of the evaluation map take π∗-isomorphisms of or-
thogonalG-spectra to isomorphisms of groups, so it suffices to show the claim in the
special case when X is fibrant in the stable model structure, i.e., a G-Ω-spectrum.
Since H is compact, the orthogonal G-spectrum Σ∞+G/H is cofibrant; so for stably
fibrant X the localization functor γG : SpG −→ Ho(SpG) induces a bijection

SpG(Σ
∞
+G/H,X)/homotopy

∼=−−→ [Σ∞+G/H,X ]G

from the set of homotopy classes of morphisms in SpG to the set of morphisms in
the homotopy category Ho(SpG). The suspension spectrum Σ∞+G/H represents the
H-fixed points in level 0, so the left hand side bijects with the path components of
the space X(0)H . Since X is a G-Ω-spectrum, all the maps in the colimit system
for πH0 (X) are bijections, and hence the canonical map

π0(X(0)H) = [S0, X(0)]H −→ colimV ∈s(UH) [S
V , X(V )]H = πH0 (X)

is bijective. We omit the straightforward verification that the combined bijection
between [Σ∞+ G/H,X ]G and πH0 (X) coincides with evaluation at the class uH .

For every compact Lie group H , the functor πH∗ takes wedges of orthogonal
G-spectra to directs sums [48, III Thm. 3.5 (ii)]. So formation of wedges preserves
π∗-isomorphisms, and the wedge of any family {Xi}i∈I of orthogonal G-spectra is
a coproduct in Ho(SpG). We have a commutative square

⊕

i∈I [Σ
∞
+G/H, Xi]

G //

��

[Σ∞+ G/H,
∨

i∈I Xi]
G

��
⊕

i∈Iπ
H
0 (Xi) // πH0

(
∨

i∈I Xi

)

in which the vertical maps are evaluation at uH . The lower horizontal map is an
isomorphism, hence so is the upper horizontal map. This shows that Σ∞+G/H is
small as an object of the triangulated category Ho(SpG). �

Essentially by definition, an orthogonal G-spectrum is a zero object in Ho(SpG)
if and only if itsH-equivariant homotopy groups vanish for all compact subgroupsH
of G. So Proposition 1.3.10 directly implies:

Corollary 1.3.11. Let G be a Lie group. The triangulated stable homotopy
category Ho(SpG) has infinite sums and the suspension spectra Σ∞+G/H for all
compact subgroups H of G form a set of small weak generators. In particular, the
triangulated stable homotopy category Ho(SpG) is compactly generated.

A contravariant functor E from a triangulated category T to the category of
abelian groups is called cohomological if for every distinguished triangle (f, g, h) in
T the sequence of abelian groups

E(ΣA)
E(h) // E(C)

E(g) // E(B)
E(f) // E(A)

is exact. Dually, a covariant functor F from T to the category of abelian groups is
called homological if for every distinguished triangle (f, g, h) in T the sequence of
abelian groups

F (A)
F (f) // F (B)

F (g) // F (C)
F (h) // F (ΣA)
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is exact. The fact that the triangulated category Ho(SpG) is compactly generated
has various useful consequences that we summarize in the next corollary.

Corollary 1.3.12. Let G be a Lie group.

(i) Every cohomological functor E on Ho(SpG) that takes sums to products is
representable, i.e., there is an orthogonal G-spectrum Y and a natural iso-
morphism E ∼= [−, Y ]G.

(ii) Every homological functor F on Ho(SpG) that takes products to products is
representable, i.e., there is an orthogonal G-spectrum X and a natural iso-
morphism F ∼= [X,−]G.

(iii) An exact functor F : Ho(SpG) −→ S to another triangulated category has a
right adjoint if and only if it preserves sums.

(iv) An exact functor F : Ho(SpG) −→ S to another triangulated category has a
left adjoint if and only if it preserves products.

Proof. Part (i) is a direct consequence of being compactly generated, see for
example [53, Thm. 3.1] or [32, Thm.A]. A proof of part (ii) of this form of Brown
representability can be found in [54, Thm. 8.6.1] or [32, Thm.B]. Part (iii) is a
formal consequences of part (i): if F preserves sums, then for every object X of S
the functor

S(F (−), X) : Ho(SpG)
op −→ Ab

is cohomological and takes sums to products. Hence the functor is representable
by an orthogonal G-spectrum RX and an isomorphism

[A,RX ]G ∼= S(FA,X) ,

natural in A. Once this representing data is chosen, the assignment X 7→ RX
extends canonically to a functor R : S −→ Ho(SpG) that is right adjoint to F . In
much the same way, part (iv) is a formal consequence of part (ii). �

The preferred set of generators {Σ∞+G/H} of the stable G-homotopy category
has another special property, it is ‘positive’ in the following sense: for all compact
subgroups H and K of G, and all n < 0,

(1.3.13) [Σ∞+G/K[n], Σ∞+G/H ]G ∼= πKn (Σ∞+G/H) = 0 ,

because the underlying orthogonal K-spectrum of Σ∞+G/H is the suspension spec-
trum of a K-space. A set of positive compact generators in this sense automatically
gives rise to a non-degenerate t-structure, as we shall now recall. When G is dis-
crete, the heart of the t-structure is equivalent to the abelian category of G-Mackey
functors, see Theorem 2.2.9 below.

A ‘t-structure’ as introduced by Beilinson, Bernstein and Deligne in [5, Def. 1.3.1]
axiomatizes the situation in the derived category of an abelian category given by
cochain complexes whose cohomology vanishes in positive respectively negative di-
mensions.

Definition 1.3.14. A t-structure on a triangulated category T is a pair of
full subcategories (T≥0, T≤0) satisfying the following three conditions, where T≥n =
T≥0[n] and T≤n = T≤0[n]:

(1) For all X ∈ T≥0 and all Y ∈ T≤−1 we have T (X,Y ) = 0.
(2) T≥0 ⊂ T≥−1 and T≤0 ⊃ T≤−1.
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(3) For every object X of T there is a distinguished triangle

A −→ X −→ B −→ A[1]

such that A ∈ T≥0 and B ∈ T≤−1.
A t-structure is non-degenerate if

⋂

n∈Z T≤n = {0} and ⋂

n∈Z T≥n = {0}. The heart
of the t-structure is the full subcategory

H = T≥0 ∩ T≤0 ;

it is an abelian category by [5, Thm. 1.3.6].

The original definition of t-structures is formulated slightly differently in ‘co-
homological’ notation, motivated by derived categories of cochain complexes as
the main examples. We are mainly interested in spectra, where a homological (as
opposed to cohomological) grading is more common, and the definition above is
adapted to the homological setting.

Definition 1.3.15. Let G be a Lie group. An orthogonal G-spectrum X is
connective if the homotopy group πHn (X) is trivial for every compact subgroup H
of G and every n < 0. An orthogonalG-spectrumX is coconnective if the homotopy
group πHn (X) is trivial for every compact subgroup H of G and every n > 0.

Corollary 1.3.16. Let G be a Lie group. The classes of connective G-spectra
and coconnective G-spectra form a non-degenerate t-structure on Ho(SpG) whose
heart consists of those orthogonal G-spectra X such that πHn (X) = 0 for all compact
subgroups H of G and all n 6= 0.

Proof. We use the more general arguments of Beligiannis and Reiten [6,
Ch. III] who systematically investigate torsion pairs and t-structures in triangu-
lated categories that are generated by small objects. By Corollary 1.3.11 the set

P = {Σ∞+G/H}H∈Com
is a set of small weak generators for the triangulated category Ho(SpG). We let Y
be the class of G-spectra Y such that

[P [n], Y ]G = 0

for all P ∈ P and all n ≥ 0. The representability result of Proposition 1.3.10 shows
that these are precisely those G-spectra such that πHn (Y ) = 0 for all compact
subgroups H of G and all n ≥ 0. Hence Y[1] is the class of coconnective G-spectra.
We let X be the ‘left orthogonal’ to Y, i.e., the class of G-spectra X such that
[X,Y ]G = 0 for all Y ∈ Y. Since the objects of P are small in Ho(SpG) by
Proposition 1.3.10, Theorem III.2.3 of [6] shows that the pair (X ,Y) is a torsion
pair in the sense of [6, Def. I.2.1]. This simply means that the pair (X ,Y[1]) is a
t-structure in the sense of Definition 1.3.14, see [6, Prop. I.2.13].

It remains to show that X coincides with the class of connective G-spectra.
This needs the positivity property (1.3.13) of the set P of small generators, which
lets us apply [6, Prop. III.2.8], showing that X coincides with the class of those
G-spectra X such that [Σ∞+G/H,X [n]]G = 0 for all H ∈ Com and n ≥ 1. Since

the latter group is isomorphic to πH−n(X), this shows that X is precisely the class
of connective G-spectra. The t-structure is non-degenerate because spectra with
trivial Com-equivariant homotopy groups are zero objects in Ho(SpG). �
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Remark 1.3.17 (Postnikov sections). In every t-structure and for every integer
n, the inclusion T≤n −→ T has a left adjoint τ≤n : T −→ T≤n, by [5, Prop. 1.3.3].
For the standard t-structure on the Ho(SpG), given by the connective and cocon-
nective G-spectra, the truncation functor

τ≤n : Ho(SpG) −→ Ho(SpG)≤n ,

left adjoint to the inclusion, provides a ‘Postnikov section’: For every orthogonal
G-spectrum X and every compact subgroup H of G, the G-spectrum τ≤nX sat-
isfies πHk (τ≤nX) = 0 for k > n and the adjunction unit X −→ X≤n induces an
isomorphism on πHk for every k ≤ n.

1.4. Change of groups

This longish section is devoted to studying how the proper equivariant stable
homotopy theory varies with the ambient Lie group. More precisely, we investigate
different aspects of functoriality of the stable model structure on SpG and of the
triangulated homotopy category Ho(SpG) for continuous group homomorphisms
between Lie groups.

Theorem 1.4.1 records how the restriction functor α∗ : SpG −→ SpK along a
continuous homomorphism α : K −→ G interacts with the stable model structures:
on the one hand, α∗ preserves π∗-isomorphisms whenever the kernel of α has no
non-trivial compact subgroup, and then α∗ is a right Quillen functor for the stable
model structures. On the other hand, α∗ is a left Quillen functor for the stable
model structures whenever the image of α is closed and its kernel is compact.
Corollary 1.4.3 specializes this to the inclusion of a closed subgroup, in which case
the restriction functor and its left adjoint both preserve π∗-isomorphisms.

Theorem 1.4.4 explains why for almost connected Lie groups (i.e., those with
finitely many path components), our theory reduces to the classical case of compact
Lie groups: almost connected Lie groups have maximal compacts subgroups, and
restriction to a maximal compact subgroup is a Quillen equivalence between the
stable model categories of equivariant spectra.

In the remaining part of this section we switch our focus to functoriality
of the triangulated equivariant stable homotopy category. Despite the fact that
the restriction functor α∗ : SpG −→ SpK along a continuous homomorphism
α : K −→ G need not be a Quillen functor for our model structures in gen-
eral, we show in Theorem 1.4.17 that it always admits a total left derived functor
Lα∗ : Ho(SpG) −→ Ho(SpK); moreover, Lα∗ is an exact functor of triangulated
categories and has a right adjoint. Morally speaking, the functor Lα∗ is determined
by these properties and the fact that it ‘commutes with suspension spectra’, see
Theorem 1.4.17 for the precise statement. When the kernel of α has non-trivial
compact subgroups, Lα∗ will typically not preserve products, as Remark 1.4.19
illustrates. The derived functors Lα∗ enjoy a specific kind of lax functoriality:
pairs of composable continuous homomorphisms give rise to a preferred natural
transformation 〈α, β〉 : Lβ∗ ◦ Lα∗ =⇒ L(αβ)∗, see Construction 1.4.24; and these
transformations in turn satisfy a coherence condition, see Proposition 1.4.28.

Finally, we show that proper G-equivariant stable homotopy theory is ‘homo-
topy invariant’ in the Lie group G, in two specific ways. On the one hand, if
α : K −→ G is a continuous homomorphism and a weak equivalence of underlying
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topological spaces, then Lα∗ : Ho(SpG) −→ Ho(SpK) is an equivalence of triangu-
lated categories, see Theorem 1.4.31. On the other hand, a homotopy through con-
tinuous group homomorphisms gives rise to a specific natural isomorphism between
the left derived functors, see Theorem 1.4.34. Both of these homotopy invariance
statements are new phenomena, since they are trivially true for compact Lie groups.
Indeed, a multiplicative weak equivalence between compact Lie groups is already
an isomorphism; and two homotopic continuous homomorphisms between compact
Lie groups are already conjugate.

As we discussed in Proposition 1.1.6, a continuous homomorphism α : K −→
G between Lie groups gives rise to functors between the associated categories of
equivariant spaces:

KT

G⋉α−

((

mapK,α(G,−)

66 GT
α∗

oo

Here G×α− is left adjoint to α∗, and α∗ is left adjoint to mapK,α(G,−). Levelwise
application of these functors gives rise to analogous adjoint functor pairs between
categories of equivariant spectra

SpK

G⋉α−

))

mapK,α(G,−)

55
SpG

α∗
oo ,

see Construction 1.1.14. The following theorem records how these functors interact
with the stable model structures on SpK and SpG.

We call a continuous homomorphism α : K −→ G between Lie groups quasi-
injective if the restriction of α to every compact subgroup of K is injective. Equiv-
alently, the kernel of α has no non-trivial compact subgroups.

Theorem 1.4.1. Let α : K −→ G be a continuous homomorphism between Lie
groups.

(i) If α is quasi-injective, then the restriction functor α∗ : SpG −→ SpK preserves
π∗-isomorphisms and stable fibrations. In particular, the adjoint functor pair
(G⋉α −, α∗) is a Quillen pair with respect to the stable model structures.

(ii) If α has a closed image and a compact kernel, then the adjoint functor pair
(α∗,mapK,α(G,−)) is a Quillen pair with respect to the stable model struc-
tures.

Proof. (i) We let f : X −→ Y be a π∗-isomorphism or a stable fibration
of orthogonal G-spectra. The definitions of π∗-isomorphism and stable fibrations
only refer to compact subgroups, so to show that α∗(f) is a π∗-isomorphism or a
stable fibration of orthogonal K-spectra, we can restrict to all compact subgroups
L of K. Since L is compact, the restriction of α to L is injective, hence a closed
embedding, and hence an isomorphism of Lie groups onto its image H = α(L).
So α induces a natural isomorphism between πL∗ (α

∗(X)) and πH∗ (X), which shows
that πL∗ (α

∗(f)) is an isomorphism. Since L was an arbitrary compact subgroup of
K, this proves that α∗(f) is a π∗-isomorphism. The argument for stable fibrations
is similar, by using the isomorphism α : L ∼= H to translate the commutative
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square (1.2.16) for given L-representations V and W into an analogous square for
the H-representations (α−1)∗(V ) and (α−1)∗(W ).

(ii) In a first step we show that the restriction functor α∗ : SpG −→ SpK takes
all cofibrations of orthogonal G-spectra to cofibrations of orthogonal K-spectra.
Restriction along α only changes the group actions, but it does not change the
underlying orthogonal spectra. Hence the skeleta and latching objects of α∗(X) are
the same as for X , but with action restricted along the homomorphism α×O(m) :
K × O(m) −→ G × O(m). Since the image of α is closed in G, the image of
α × O(m) is closed in G × O(m). The kernel of α × O(m) is ker(α) × 1, which
is compact by hypothesis. So restriction along α × O(m) takes Com-cofibrations
of (G × O(m))-spaces to Com-cofibrations of (K × O(m))-spaces, by Proposition
1.1.6. So if i : A −→ B is a cofibration of orthogonal G-spectra, then νmi is
a Com-cofibration of (G × O(m))-spaces, and νm(α∗(i)) = (α × O(m))∗(νmi) is a
Com-cofibration of (K×O(m))-spaces. Moreover, the O(m)-action is unchanged, so
it still acts freely off the image of νm(α∗(i)). This shows that α∗(i) is a cofibration
of orthogonal K-spectra.

It remains to show that α∗ takes cofibrations of orthogonal G-spectra that
are also π∗-isomorphisms to π∗-isomorphisms of orthogonal K-spectra. Here we
treat two special cases first. If α is the inclusion of a closed subgroup Γ of G,
then α∗ = resGΓ preserves all π∗-isomorphisms by part (i). If α is surjective, then
we verify that α∗ takes the generating acyclic cofibrations of the stable model
structure on orthogonal G-spectra to acyclic cofibrations of orthogonal K-spectra.
The generating acyclic cofibrations JGlv of the level model structure (1.2.18) are G-
equivariant homotopy equivalences, so α∗ takes them to K-equivariant homotopy
equivalences, which are in particular π∗-isomorphisms. For the other generating
acyclic cofibrations in KG we recall from (1.2.19) the π∗-isomorphism

G⋉H λH,V,W : G⋉H (FV⊕WS
V ) −→ G⋉H FW ;

here H is a compact subgroup of G, and V and W are H-representations. Since
the kernel of α is compact, the group L = α−1(H) is then a compact subgroup of
K. An isomorphism of orthogonal K-spectra

K ⋉L F(α|L)∗(V )
∼= α∗(G⋉H FV )

is given levelwise by sending k ∧ x to α(k) ∧ x. We conclude that α∗ takes the π∗-
isomorphism G ⋉H λH,V,W to the π∗-isomorphism of orthogonal K-spectra K ⋉L
λL,α∗(V ),α∗(W ). The inflation functor α∗ commutes with formation of mapping

cylinders and levelwise smash product with spaces, so we conclude that α∗(KG) ⊂
KK . This completes the proof that α∗ preserves stable acyclic cofibrations if α is
surjective with compact kernel.

In the general case we factor α as the composite

K
β−−→ Γ

incl−−→ G ,

where Γ = α(K) is the image of α, and β is the same map as α, but with image
Γ. The restriction homomorphism factors as α∗ = β∗ ◦ resGΓ , and each of the two
functors is a left Quillen functor by the special cases treated above. �

Remark 1.4.2. Both hypotheses on the continuous homomorphism α imposed
in Theorem 1.4.1 (ii) are really necessary. For example, if α : Z −→ U(1) is the
continuous homomorphism that takes the generator to e2πix for an irrational real
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number x, then α∗(U(1)) is not cofibrant as a Z-space, and α∗(Σ∞+ U(1)) is not
cofibrant as an orthogonal Z-spectrum. So we cannot drop the hypothesis that the
image of α is closed.

If α : G −→ e is the unique homomorphism to the trivial group, then α∗(S) =
SG is the G-sphere spectrum. This G-sphere spectrum is cofibrant as an orthogonal
G-spectrum precisely when G is compact. So we cannot drop the hypothesis that
the kernel of α is compact.

For easier reference we spell out the important special case of Theorem 1.4.1
for the inclusion of a closed subgroup. The induction functor G ⋉Γ − preserves
π∗-isomorphisms by Corollary 1.2.10.

Corollary 1.4.3. Let Γ be a closed subgroup of a Lie group G. The restric-
tion functor resGΓ : SpG −→ SpΓ preserves π∗-isomorphisms, cofibrations and stable
fibrations. Hence the two adjoint functor pairs

SpΓ
G⋉Γ // SpG
resGΓ

oo and SpΓ
mapΓ(G,−)

// SpG
resGΓoo

are Quillen adjunctions with respect to the two stable model structures. Moreover,
the induction functor G⋉Γ : SpΓ −→ SpG preserves π∗-isomorphisms.

A celebrated theorem of Cartan, Iwasawa [29] and Malcev [45] says that every
connected Lie group G has a maximal compact subgroup, i.e., a compact subgroup
K such that every compact subgroup is subconjugate to K. Moreover, G is home-
omorphic as a topological space to K × Rn for some n ≥ 0 (but there is typically
no Lie group isomorphism between G and K × Rn). In particular, the inclusion
K −→ G is a homotopy equivalence of underlying spaces. A comprehensive expo-
sition with further references can be found in Borel’s Séminaire Bourbaki article
[7]. A maximal compact subgroup with these properties exists more generally when
the Lie group G is almost connected, i.e., when it has finitely many path compo-
nents, and even for locally compact topological groups whose component group is
compact, see [1, Thm.A.5].

Theorem 1.4.4 (Reduction to maximal compact subgroups). Let G be an al-
most connected Lie group, and K a maximal compact subgroup of G. Then the
restriction functor

resGK : SpG −→ SpK

is a left and right Quillen equivalence for the stable model structures.

Proof. Since every compact subgroup of G is subconjugate to K, the restric-
tion functor detects π∗-isomorphisms. Since restriction and induction preserve π∗-
isomorphisms in full generality, we may show that for every orthogonalK-spectrum
Y , the adjunction unit Y −→ G⋉K Y is a π∗-isomorphism of orthogonalK-spectra.

At this point we need additional input, namely a theorem of Abels [1, Thm.A.5]
that provides a subspace E of G with the following properties:

(i) The space E is invariant under conjugation by K.
(ii) Under the conjugation action, the space E is K-equivariantly homeomorphic

to a finite-dimensional linear K-representation.
(iii) The multiplication map E ×K −→ G, (e, k) 7→ ek is a homeomorphism.
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The multiplication homeomorphism E × K ∼= G is left K-equivariant for the di-
agonal K-action on the source, by conjugation on E and by left translation on K.
The multiplication homeomorphism is right K-equivariant for the trivial K-action
on E and the right translation action on K. So in particular, the morphism

E+ ∧ Y −→ G⋉K Y , (e, y) 7−→ [e, y]

is an isomorphism of orthogonalK-spectra, where K acts diagonally on the source,
by conjugation on E, and by the given action on Y . Since E is K-homeomorphic
to a finite-dimensional linear K-representation, it is K-equivariantly contractible.
So the adjunction unit is a K-equivariant homotopy equivalence of underlying or-
thogonal K-spectra. �

Example 1.4.5. By the very construction, the proper G-equivariant homo-
topy theory is assembled from the equivariant homotopy theories of the com-
pact subgroups. We now discuss a situation where this relationship is especially
tight, and where morphisms in Ho(SpG) can be calculated directly from morphisms
in Ho(SpH) for finite subgroups H .

Let G be a countable locally finite group, i.e., a discrete group that has an
exhaustive sequence of finite subgroups

H0 ⊆ H1 ⊆ . . . ⊆ Hn ⊆ . . . ,

i.e., so that G =
⋃

Hn. The various restriction functors

resGHn
: Ho(SpG) −→ Ho(SpHn

)

are then compatible. For all orthogonal G-spectra X and Y , the restriction maps
thus assemble into a group homomorphism

resG : [X,Y ]G −→ lim [X,Y ]Hn ,

where the inverse limit on the right hand side is formed along restriction maps. We
have simplified the notation by suppressing the restriction functors resGHn

on the
right hand side. The hypothesis that the sequence Hn exhausts G implies that for
every finite subgroup K of G the colimit of the sequence of sets

(G/H0)
K −→ (G/H1)

K −→ . . . −→ (G/Hn)
K −→ . . .

is a single point. Thus the mapping telescope, in the category of G-spaces, of the
sequence of G-spaces G/Hn is Com-equivalent to the one-point G-space. Since
the mapping telescope comes to us as a 1-dimensional G-CW-complex, it is a 1-
dimensional G-CW-model for EG.

For all cofibrant G-spectra X , the mapping telescope, in the category of or-
thogonal G-spectra, of the sequence

X ∧ (G/H0)+ −→ X ∧ (G/H1)+ −→ . . . −→ X ∧ (G/Hn)+ −→ . . .

is hence π∗-isomorphic to X . The mapping telescope models an abstract homotopy
colimit in the triangulated category Ho(SpG). So applying the functor [−, Y ]G

yields a short exact sequence of abelian groups

0 −→ lim1 [X ∧ (G/Hn)+ ∧ S1, Y ]G −→ [X,Y ]G

−→ lim [X ∧ (G/Hn)+, Y ]G −→ 0 .
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We rewrite X ∧ (G/Hn)+ as G⋉Hn (resGHn
X) and use the adjunction isomorphism

between restriction and induction to identify the group [X ∧ (G/Hn)+, Y ]G of mor-
phisms in Ho(SpG) with the group [X,Y ]Hn of morphisms in Ho(SpHn

). The maps
in the tower then become restriction maps, so we have shown:

Corollary 1.4.6. Let G be a discrete group and {Hn}n≥0 an ascending ex-
haustive sequence of finite subgroups of G. Then for all orthogonal G-spectra X
and Y there is a short exact sequence

0 −→ lim1 [X ∧ S1, Y ]Hn −→ [X,Y ]G −→ lim [X,Y ]Hn −→ 0 .

Here the inverse and derived limit are formed along restriction maps, and so is the
map from [X,Y ]G to the inverse limit.

Remark 1.4.7. The Fin-orbit category of a discrete group G is the full sub-
category of the category of G-sets with objects G/H for all finite subgroups H of
G. As we hope to make precise in future work, the underlying ∞-category of the
stable model category of orthogonal G-spectra is a limit, for G/H ranging through
the Fin-orbit category, of the ∞-categories of genuine H-spectra.

If G is an ascending union of finite subgroups Hn as in Example 1.4.5, the limit
diagram can be modified to show that the underlying ∞-category of orthogonal
G-spectra is an inverse limit of the tower of ∞-categories associated to orthogonal
Hn-spectra. The short exact sequence of Corollary 1.4.6 is a consequence of this
more refined relationship.

An interesting special case of this is the Prüfer group Cp∞ for a prime number
p, i.e., the group of p-power torsion elements in U(1), with the discrete topology.
Since Cp∞ is the union of its subgroups Cpn for n ≥ 0, the underlying ∞-category
of orthogonal Cp∞ -spectra is an inverse limit of the ∞-categories of genuine Cpn -
spectra. Hence the∞-category of genuine proper orthogonal Cp∞ -spectra is equiva-
lent to the∞-category of genuine Cp∞ -spectra in the sense of Nikolaus and Scholze
[55, Def. II.2.15], on which their notion of genuine p-cyclotomic spectra is based,
compare [55, Def. II.3.1].

Now we compare the equivariant stable homotopy categories for varying Lie
groups. We let α : K −→ G be a continuous homomorphism between Lie groups.
By Theorem 1.4.1 (i), the restriction functor α∗ : SpG −→ SpK preserves π∗-
isomorphisms if α happens to be quasi-injective, but not when the kernel of α has
a non-trivial compact subgroup. In that case there cannot be an induced functor
Ho(α∗) : Ho(SpG) −→ Ho(SpK) such that Ho(α∗) ◦ γG is equal to γK ◦ α∗, where
γG and γK are the localization functors of (1.3.1). However, the next best thing is
true: restriction along α has a total left derived functor, see Theorem 1.4.17 below.
For the convenience of the reader we briefly review this concept. The arguments
we use in the rest of this section have a substantial overlap with Chapter VII
on ‘Deformable functors and their approximations’ of the book [17] by Dwyer,
Hirschhorn, Kan and Smith; for the convenience of the reader, we give a largely
self-contained exposition of the relevant parts, adapted to our context.

We let (C, w) be a relative category, i.e., a category C equipped with a distin-
guished class w of morphisms that we call weak equivalences. An important special
case of relative categories are the ones underlying model categories. A functor
between relative categories is homotopical if it takes weak equivalences to weak
equivalences.
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Definition 1.4.8. The homotopy category of a relative category (C, w) is a
functor γC : C −→ Ho(C) that sends all weak equivalences to isomorphisms and
initial among such functors.

Explicitly, the universal property of the homotopy category γC : C −→ Ho(C)
is as follows. For every functor Φ : C −→ X that sends all weak equivalences to
isomorphisms, there is a unique functor Φ̄ such that Φ̄ ◦ γC = Φ. In the generality
of relative categories, a homotopy category need not always exist (with small hom
set, or in the same Grothendieck universe, that is). In the examples we care about,
the relative category is underlying a model category, and then already Quillen [57,
I Thm. 1’] constructed a homotopy category as the quotient of the category of
cofibrant-fibrant objects by an explicit homotopy relation on morphisms.

There are many interesting functors between relative categories that are not
homotopical, but still induce interesting functors between the homotopy categories.
Often, extra structure on the relative categories is used to define and study such
‘derived’ functors, for example a model category structure. We are particularly
interested in ‘left derived functors’.

In the following we will compose (or ‘paste’) functors and natural transforma-
tions, and we introduce notation for this. Let ν : F =⇒ F ′ : C −→ D be a natural
transformation between two functors, and let E : B −→ C and G : D −→ E be
functors. We write ν ⋆ E : F ◦ E =⇒ F ′ ◦ E and G ⋆ ν : G ◦ F =⇒ G ◦ F ′ for the
natural transformation with components

(ν ⋆ E)X = νE(X) : F (E(X)) −→ F ′(E(X))

and
(G ⋆ ν)Y = G(νY ) : G(F (Y )) −→ G(F ′(Y )) ,

respectively. If µ : G =⇒ G′ is another natural transformation between functors
from D to E , then the following interchange relation holds:

(1.4.9) (G′ ⋆ ν) ◦ (µ ⋆ F ) = (µ ⋆ F ′) ◦ (G ⋆ ν) ;

this relation is just a restatement of naturality.

Definition 1.4.10. Let F : C −→ D be a functor between relative categories. A
total left derived functor of F is a pair (L, τ) consisting of a functor L : Ho(C) −→
Ho(D) and a natural transformation τ : L ◦ γC =⇒ γD ◦ F with the following
universal property: for every pair (Φ, κ) consisting of a functor Φ : Ho(C) −→ Ho(D)
and a natural transformation κ : Φ ◦ γC =⇒ γD ◦ F , there is a unique natural
transformation κ̄ : Φ =⇒ L such that κ = τ ◦ (κ̄ ⋆ γC). A functor between relative
categories is left derivable if it admits a total left derived functor.

Example 1.4.11. Suppose that F : C −→ D is a homotopical functor between
relative categories. Then the composite γD ◦ F takes all weak equivalences to
isomorphisms. Hence the universal property of the homotopy category provides
a unique functor Ho(F ) : Ho(C) −→ Ho(D) such that Ho(F ) ◦ γC = γD ◦ F .
Then the pair (Ho(F ), Id) is a total left derived functor of F . If G : D −→ E is
another homotopical functor, then the composite GF : C −→ E is also homotopical.
Moreover,

Ho(G) ◦Ho(F ) ◦ γC = Ho(G) ◦ γD ◦ F = γE ◦G ◦ F = Ho(GF ) ◦ γC .
The universal property of the homotopy category thus shows that Ho(G)◦Ho(F ) =
Ho(GF ).
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Conversely, suppose that F : C −→ D is a functor between model categories
which admits a total left derived functor (L, τ), and such that τ is a natural iso-
morphism. We claim that then F must be homotopical. Indeed, for every weak
equivalence f in C, the morphism γC(f) is an isomorphism in Ho(C), and hence
L(γC(f)) is an isomorphism in Ho(D). Since τ : L ◦ γC =⇒ γD ◦ F is a natu-
ral isomorphism, the morphism γD(F (f)) is an isomorphism in Ho(D). In model
categories, the localization functor detects weak equivalences, so F (f) is a weak
equivalence in D.

We recall an important result of Quillen that implies that a functor between
model categories admits a total left derived functor if it takes weak equivalences
between cofibrant object to weak equivalences. Moreover, Maltsiniotis observed
that any such total left derived functor is automatically an absolute right Kan
extension, i.e., it remains a right Kan extension after postcomposition with any
functor:

Theorem 1.4.12 (Quillen [57], Maltsiniotis [46]). Let C be a model category
and F : C −→ X a functor that takes weak equivalences between cofibrant objects to
isomorphisms. Then F admits a right Kan extension (L, τ) along the localization
functor γC : C −→ Ho(C). Moreover:

(i) The morphism τX : L(γC(X)) −→ FX is an isomorphism for every cofibrant
object X of C.

(ii) Every right Kan extension of F along γC is an absolute right Kan extension.

The following proposition is a direct consequence of the absolute Kan extension
property.

Proposition 1.4.13. Let F : C −→ D and G : D −→ E be composable func-
tors between relative categories such that F is absolutely left derivable and G is
homotopical. Let (LF, τF ) be a total left derived functor of F . Then the pair
(Ho(G) ◦ LF,Ho(G) ⋆ τF ) is an absolute left derived functor of GF .

Proof. We let ψ : Ho(E) −→ Y be any functor. Since (LF, τF ) is an absolute
right Kan extension of γD ◦F along γC , the pair (ψ◦Ho(G)◦LF, (ψ◦Ho(G))⋆τF ) is
a right Kan extension of ψ ◦Ho(G)◦γD ◦F = ψ ◦γE ◦G◦F along γC . This precisely
means that (Ho(G) ◦ LF,Ho(G) ⋆ τF ) is an absolute total left derived functor of
GF . �

Our next goal is to show that restriction of equivariant spectra along a contin-
uous homomorphism between Lie groups has a total left derived functor. To this
end, the following class of equivariant spectra will be useful.

Definition 1.4.14. Let G be a Lie group. An orthogonal G-spectrum X is
quasi-cofibrant if for every compact subgroup H of G the underlying H-spectrum
of X is cofibrant.

Example 1.4.15. Restriction to a closed subgroup preserves cofibrancy, by
Corollary 1.4.3; so every cofibrant orthogonal G-spectrum is quasi-cofibrant. If the
Lie group G is itself compact, then every quasi-cofibrant G-spectrum is already
cofibrant, so in the compact case the two notions coincide.

If the Lie group G is not compact, then ‘quasi-cofibrant’ is a strictly more
general concept. Indeed, the G-equivariant sphere spectrum SG is cofibrant if and
only if G is compact; hence for every Lie group G, SG is quasi-cofibrant. More
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generally, we let Γ be a closed subgroup of G. For every compact subgroup H of G,
the H-action on the coset space G/Γ by translation is smooth; so Illman’s theorem
[27, Thm. 7.1] provides an H-CW-structure on G/Γ. In particular, G/Γ is cofibrant
as an H-space, and hence the suspension spectrum Σ∞+G/Γ is quasi-cofibrant.

The next proposition provides a characterization of quasi-cofibrant spectra in
terms of cofibrant spectra.

Proposition 1.4.16. Let G be a Lie group. An orthogonal G-spectrum X
is quasi-cofibrant if and only if for every Com-cofibrant G-space B the orthogonal
G-spectrum X ∧B+ is cofibrant.

Proof. For one implication we letX be an orthogonalG-spectrumX such that
X ∧B+ is cofibrant as an orthogonal G-spectrum for every Com-cofibrant G-space
B. For every compact subgroup H of G, the homogeneous G-space B = G/H
is Com-cofibrant, so in particular the G-spectrum X ∧ G/H+ is cofibrant. The
underlying H-spectrum of X ∧G/H+ is then cofibrant by Corollary 1.4.3. The two
H-equivariant morphisms

X
x 7→x∧eH−−−−−−→ X ∧G/H+

x∧gH 7→x−−−−−−→ X

witness that X is an H-equivariant retract of X∧G/H+, and so X is itself cofibrant
as an H-spectrum. Hence X is quasi-cofibrant.

For the other implication we let X be a quasi-cofibrant orthogonal G-spectrum,
and we let K denote the class of those morphisms i : A −→ B of G-spaces such
that X ∧ f+ : X ∧ A+ −→ X ∧ B+ is a cofibration of orthogonal G-spectra. We
claim that K contains all Com-cofibrations of G-spaces; for A = ∅ this proves that
X ∧B+ is cofibrant.

For every compact subgroup H of G, the underlying H-spectrum of X is cofi-
brant by assumption. So the G-spectrum

X ∧G/H+
∼= G⋉H resGH(X)

is G-cofibrant. Since the stable model structure on SpG is G-topological, the mor-
phism

X ∧ (G/H × ik)+ : X ∧ (G/H × ∂Dk)+ −→ X ∧ (G/H ×Dk)+

is a cofibration of G-spectra. This shows that the generating Com-cofibrations be-
long to the class K. Because cofibrations are closed under cobase change, coprod-
ucts, sequential colimits, and retracts, and because X∧(−)+ preserves colimits, the
class K is closed under cobase change, coproducts, sequential colimits and retracts.
So all Com-cofibrations belong to the class K. �

The following theorem shows that restriction of equivariant spectra along a
continuous homomorphism between Lie groups has a total left derived functor, and
it collects many important properties of the left derived functor. Among other
things, the derived functor ‘commutes with suspension spectra’. To make this
precise we observe that the suspension spectrum functor Σ∞+ : GT −→ SpG is fully
homotopical, i.e., it takes Com-weak equivalences to π∗-isomorphisms, for example
by [60, Prop. 3.1.44]. The space level restriction functor α∗ : GT −→ KT is also
fully homotopical for Com-equivalences, compare Proposition 1.1.6 (i). Hence the
functor

Σ∞+ ◦ α∗ = α∗ ◦ Σ∞+ : GT −→ SpK
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is homotopical. So there is a unique functor

Ho(Σ∞+ ◦ α∗) : HoCom(GT) −→ Ho(SpK)

such that

Ho(Σ∞+ ◦ α∗) ◦ γunG = γK ◦ Σ∞+ ◦ α∗ : GT −→ Ho(SpK) ,

where γunG : GT −→ HoCom(GT) is the localization functor.

Theorem 1.4.17. Let α : K −→ G be a continuous homomorphism between Lie
groups.

(i) The restriction functor α∗ : SpG −→ SpK takes quasi-cofibrant orthogonal G-
spectra to quasi-cofibrant orthogonal K-spectra, and it takes π∗-isomorphisms
between quasi-cofibrant orthogonal G-spectra to π∗-isomorphisms of orthogonal
K-spectra.

(ii) The restriction functor α∗ : SpG −→ SpK has a total left derived func-
tor (Lα∗, α!). For every quasi-cofibrant G-spectrum X, the morphism α! :
(Lα∗)(X) −→ γK(α∗(X)) is an isomorphism in Ho(SpK).

(iii) The derived functor Lα∗ preserves sums and has a right adjoint.
(iv) There is a unique natural transformation

σ : (Lα∗) ◦ [1] =⇒ [1] ◦ (Lα∗)
of functors Ho(SpG) −→ Ho(SpK) such that

([1] ⋆ α!) ◦ (σ ⋆ γG) = α! ⋆ (− ∧ S1) :(1.4.18)

(Lα∗) ◦ [1] ◦ γG −→ γK ◦ α∗ ◦ (− ∧ S1) .

Moreover, the transformation σ is a natural isomorphism and the pair (Lα∗, σ)
is an exact functor of triangulated categories.

(v) There is a unique natural transformation

ν : (Lα∗) ◦Ho(Σ∞+ ) =⇒ Ho(Σ∞+ ◦ α∗)
of functors HoCom(GT) −→ Ho(SpK) such that

ν ⋆ γunG = α! ⋆ Σ
∞
+ : (Lα∗) ◦Ho(Σ∞+ ) ◦ γunG −→ Ho(Σ∞+ ◦ α∗) ◦ γunG .

Moreover, ν is a natural isomorphism.
(vi) If α is quasi-injective, then the universal natural transformation α! : (Lα

∗) ◦
γG =⇒ γK ◦α∗ is an isomorphism, and Lα∗ preserves products and has a left
adjoint.

Proof. (i) For the first claim we let X be a quasi-cofibrant orthogonal G-
spectrum and L a compact subgroup of K. Then the L-spectrum resKL (α∗(X)) is
the same as (α|L)∗(X), where α|L : L −→ G is the restricted homomorphism. Since
L is compact, α|L has closed image and compact kernel, so (α|L)∗(X) is a cofibrant
L-spectrum by Theorem 1.4.1 (ii). Since L was any compact subgroup of K, this
proves that α∗(X) is quasi-cofibrant.

Now we let f : X −→ Y be a π∗-isomorphism between quasi-cofibrant orthog-
onal G-spectra. We let L be a compact subgroup of K. We factor the restriction
α|L : L −→ G as

L
β−−→ H

incl−−→ G ,

where H = α(L) is the image of α, and β is the same map as α|L, but with
target H . The group H is compact since L is; since X and Y are quasi-cofibrant,
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their underlying H-spectra are cofibrant. Since f is a π∗-isomorphism of quasi-
cofibrantG-spectra, resGH(f) is a π∗-isomorphism between cofibrantH-spectra. The
continuous epimorphism β : L −→ H satisfies the hypotheses of Theorem 1.4.1 (ii)
because L is compact; so β∗ : SpH −→ SpL is a left Quillen functor for the stable
model structures. In particular, β∗ takes π∗-isomorphisms between cofibrant H-
spectra to π∗-isomorphisms, by Ken Brown’s lemma [25, Lemma 1.1.12]. So the
morphism

resKL (α∗(f)) = β∗(resGH(f))

is a π∗-isomorphism of orthogonal L-spectra. Since L was an arbitrary compact
subgroup of K, this proves the last claim.

(ii) Part (i) shows that the restriction functor α∗ : SpG −→ SpK takes π∗-
isomorphisms between cofibrant orthogonal G-spectra to π∗-isomorphisms of or-
thogonal K-spectra. Given this, Quillen’s result [57, I.4, Prop. 1] provides the
left derived functor and shows that α! : (Lα

∗)(X) −→ α∗(X) is an isomorphism
whenever X is cofibrant, compare also Theorem 1.4.12.

If X is quasi-cofibrant, we choose a π∗-isomorphism f : Y −→ X from a
cofibrant orthogonal G-spectrum. Then γG(f) is an isomorphism in Ho(SpG), so
the upper horizontal morphism in the commutative square

(Lα∗)(Y )
(Lα∗)(γG(f)) //

αY
!

��

(Lα∗)(X)

αX
!

��
γK(α∗(Y ))

γK(α∗(f))
// γK(α∗(X))

is an isomorphism in Ho(SpK). The morphism αY! is an isomorphism because Y
is cofibrant. The morphism γK(α∗(f)) is an isomorphism because α∗ preserves
π∗-isomorphisms between quasi-cofibrant spectra, by part (i). So αX! is an isomor-
phism.

(iii) We exploit that coproducts in Ho(SpG) and Ho(SpK) are modeled by
wedges of equivariant spectra, because formation of wedges is fully homotopical.
We let {Xi}i∈I be a family of cofibrant orthogonal G-spectra; then the wedge

∨

Xi

is also cofibrant. So the vertical morphisms in the commutative square

∨

(Lα∗)(Xi)
κ //

∨
α

Xi
!

��

(Lα∗)(
∨

Xi)

α
∨

Xi
!

��
∨

γK(α∗(Xi)) ∼=
// γK(α∗(

∨

Xi))

are isomorphisms in Ho(SpK) by part (i). Since α∗ preserves colimits, the lower
morphism is an isomorphism, and hence so is the canonical morphism κ. This
proves that Lα∗ preserves sums. Corollary 1.3.12 (iii) then provides a right adjoint
for Lα∗.

(iv) The suspension functor is fully homotopical, so Proposition 1.4.13 shows
that the pair ([1] ◦ Lα∗, [1] ⋆ α!) is an absolute left derived functor of the functor

α∗(−) ∧ S1 = α∗(− ∧ S1) : SpG −→ SpK .

The universal property of ([1] ◦ Lα∗, [1] ⋆ α!) thus provides a unique natural trans-
formation σ : (Lα∗) ◦ [1] =⇒ [1] ◦ (Lα∗) that satisfies the relation specified in the
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statement of the theorem. The diagram

(Lα∗)(X [1])
σX //

αX∧S1

!

��

((Lα∗)(X))[1]

αX
! [1]

��
γK(α∗(X ∧ S1)) γK(α∗(X))[1]

commutes by construction of σ. If X is cofibrant, so is X ∧ S1, so both vertical
morphisms are isomorphisms in Ho(SpK), by part (ii). Hence σ is an isomorphism
for cofibrant G-spectra; in Ho(SpG), every object is isomorphic to a cofibrant spec-
trum, so σ is a natural isomorphism.

Every distinguished triangle in Ho(SpG) is isomorphic to the mapping cone
triangle (1.3.4) associated with a morphism f : X −→ Y between cofibrant G-
spectra. So to show that the pair (Lα∗, σ) preserves distinguished triangles, it
suffices to show exactness for these special ones. We contemplate the commutative
diagram:

(Lα∗)(X)

αX
!

��

(Lα∗)(f) // (Lα∗)(Y )
(Lα∗)(i) //

αY
!

��

(Lα∗)(Cf)
σX◦(Lα

∗)(p)//

αCf
!

��

(Lα∗)(X) ∧ S1

αX
! ∧S

1

��
γK(α∗(X))

γK(α∗(f))
// γK(α∗(Y ))

γK(α∗(i))
// γK(α∗(Cf))

γK(α∗(p))
// γK(α∗(X)) ∧ S1

Since X and Y are cofibrant, so are Cf and X ∧ S1; hence all vertical morphisms
are isomorphisms by part (ii). The lower triangle is distinguished because the
pointset level restriction functor α∗ commutes with formation of mapping cones
and suspension. So the upper triangle is distinguished.

(v) The existence and characterization of ν are just the universal property of
the pair (Ho(Σ∞+ ◦ α∗), Id) which is a total left derived functor of the homotopical
functor Σ∞+ ◦ α∗. The characterizing property means that when we specialize the
transformation ν to a G-space A, we have

νA = α
Σ∞

+ A

! : (Lα∗)(Σ∞+ A) −→ γK(α∗(Σ∞+ A)) .

If A is Com-cofibrant as a G-space, then Σ∞+ A is cofibrant as a G-spectrum. So in

that case, the morphism α
Σ∞

+ A

! is an isomorphism in Ho(SpK), by part (ii). Hence

ν is an isomorphism for Com-cofibrant G-spaces; in HoCom(GT), every object is
isomorphic to a Com-cofibrant G-space, so ν is a natural isomorphism.

(vi) If α is quasi-injective, then the restriction functor α∗ is fully homotopical
and a right Quillen functor by Theorem 1.4.1 (i). The universal natural transfor-
mation α! is an isomorphism because α∗ is fully homotopical. The functor Lα∗ has
a left adjoint because α∗ is a right Quillen functor; the left adjoint is a total left
derived functor of G⋉α − : SpK −→ SpG. �

Remark 1.4.19 (Derived inflation and products). As the previous theorem
shows, the derived functor Lα∗ : Ho(SpG) −→ Ho(SpK) of restriction along a
continuous homomorphism α : K −→ G always has a right adjoint, and it has a left
adjoint whenever α is quasi-injective. While the pointset level restriction functor
α∗ : SpG −→ SpK preserves products, its left derived functor Lα∗ does not preserve
products in general.
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The simplest example is inflation along the unique homomorphism p : C2 −→ e
from a group with two elements to a trivial group. In the non-equivariant stable
homotopy category the canonical map

⊕

k<0
HF2[k] −→

∏

k<0
HF2[k]

from the coproduct to the product of infinitely many desuspended copies of the
mod-2 Eilenberg-MacLane spectrum is an isomorphism. Since Lp∗ and equivariant
homotopy groups preserves coproducts, the canonical map

(1.4.20)
⊕

k<0
πC2
0 ((Lp∗)(HF2[k])) −→ πC2

0

(

(Lp∗)
(

⊕

k<0
HF2[k]

))

is an isomorphism of abelian groups. For every non-equivariant spectrum X , the
C2-spectrum Lp∗(X) has ‘constant geometric fixed points’ and the geometric fixed

point map Φ : πC2
0 (Lp∗(X)) −→ ΦC2

0 (Lp∗(X)) ∼= πe0(X) has a section, compare [60,
Ex. 4.5.10]; hence the isotropy separation sequence (see [60, (3.3.9)]) splits. So the
C2-equivariant homotopy groups decompose as

πC2
0 (Lp∗(X)) ∼= πC2

0 (Lp∗(X) ∧ (EC2)+)⊕ ΦC2
0 (LX)

∼= πe0(X ∧ (BC2)+)⊕ πe0(X) .

The second step uses the Adams isomorphism and the fact that Lp∗(X) has trivial
C2-action as a naive C2-spectrum. When X = HF2[k] for negative k, then the
second summand is trivial and hence

πC2
0 (Lp∗(HF2[k])) ∼= πe0(HF2[k] ∧ (BC2)+) ∼= H−k(BC2,F2) .

So the group (1.4.20) is a countably infinite sum of copies of F2. On the other hand,

πC2
0

(

∏

k<0
Lp∗(HF2[k])

)

∼=
∏

k<0
πC2
0 (Lp∗(HF2[k]))

∼=
∏

k<0
πe0 (HF2[k] ∧ (BC2)+) ∼=

∏

k<0
H−k(BC2, HF2) ,

again by the split isotropy separation sequence. This is an infinite product of copies
of F2, so the canonical map

Lp∗
(

∏

k<0
HF2[k]

)

−→
∏

k<0
Lp∗(HF2[k])

is not a π∗-isomorphism of C2-spectra.

Example 1.4.21. We give a rigorous formulation of the idea that ‘inner auto-
morphisms act as the identity’. For a Lie group G and g ∈ G, we let

c∗g : SpG −→ SpG

be restriction along the inner automorphism cg : G −→ G, cg(γ) = g−1γg. Since
the restriction functor c∗g is fully homotopical, the induced functor

Ho(c∗g) : Ho(SpG) −→ Ho(SpG)

is also a total left derived functor, with respect to the identity natural transfor-
mation. We exhibit a specific natural isomorphism between Ho(c∗g) = Lc∗g and the
identity functor. We let

lg : c∗g =⇒ IdSpG
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denote the natural isomorphism of functors whose value lXg : c∗g(X) −→ X at
an orthogonal G-spectrum X is left multiplication by g. This induces a natural
isomorphism of functors on Ho(SpG)

L(lg) : Ho(c∗g) =⇒ IdHo(SpG) .

Our next aim is to show that total left derived functors organize themselves into
a ‘lax functor’ (whenever they exist). Loosely speaking this means that while LG ◦
LF need not be isomorphic to L(GF ), there is a preferred natural transformation
〈G,F 〉 : LG ◦ LF =⇒ L(GF ), and these natural transformations satisfy certain
coherence conditions. This is surely well known among experts, but we were unable
to find a complete reference. There is something to show here because:

• Not all functors between relative categories are left derivable.
• If two composable functors between relative categories are left derivable,
the composite need not be left derivable.
• If F : C −→ D and G : D −→ E are left derivable functors such that GF is
also left derivable, then L(GF ) need not be isomorphic to the composite
LG ◦ LF .

Construction 1.4.22. For every relative category (C, w), we choose a homo-
topy category γC : C −→ Ho(C). We also choose a total left derived functor (LF, τF )
for every left derivable functor F : C −→ D between relative categories. As we shall
now explain, these choices determine all the remaining coherence data, without the
need to make any further choices.

We let F : C −→ D and G : D −→ E be left derivable functors between relative
categories. If the composite GF : C −→ E is also left derivable, then the universal
property of (L(GF ), τGF ) provides a unique natural transformation

〈G,F 〉 : LG ◦ LF =⇒ L(GF )

such that

(1.4.23) τGF ◦(〈G,F 〉⋆γC) = (τG⋆F )◦(LG⋆τF ) : LG◦LF ◦γC −→ γE ◦G◦F .

We apply the previous construction to restriction functors along continuous
group homomorphisms. In a nutshell, the ultimate outcome is that the assignment
α 7→ Lα∗ extends to a contravariant pseudo-functor from the category of Lie groups
and continuous homomorphisms to the 2-category of triangulated categories, exact
functors, and exact transformations.

Construction 1.4.24. We let α : K −→ G and β : J −→ K be two compos-
able continuous homomorphisms between Lie groups. We let (Lα∗, α!), (Lβ

∗, β!)
and (L(αβ)∗, (αβ)!) be total left derived functors of α∗, β∗ and (αβ)∗, respectively.
The universal property of (L(αβ)∗, (αβ)!) provides a unique natural transformation

〈α, β〉 : Lβ∗ ◦ Lα∗ =⇒ L(αβ)∗

such that

(β! ⋆ α
∗) ◦ (Lβ∗ ⋆ α!) = (αβ)! ◦ (〈α, β〉 ⋆ γG) :(1.4.25)

Lβ∗ ◦ Lα∗ ◦ γG =⇒ γJ ◦ β∗ ◦ α∗ = γJ ◦ (αβ)∗ .
The natural transformations so obtained satisfy a coherence condition: if γ :M −→
J is yet another continuous homomorphism, then the following square of natural
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transformations commutes:

Lγ∗ ◦ Lβ∗ ◦ Lα∗ Lγ∗⋆〈α,β〉 +3

〈β,γ〉⋆Lα∗

��

Lγ∗ ◦ L(αβ)∗

〈αβ,γ〉

��
L(βγ) ◦ Lα∗

〈α,βγ〉
+3 L(αβγ)∗

Indeed, this is an instance of the general coherence for total left derived functors
that we spell out in the following Proposition 1.4.28, applied to the left derivable
functors α∗ : SpG −→ SpK , β∗ : SpK −→ SpJ , and γ

∗ : SpJ −→ SpM .

Proposition 1.4.26. For all composable continuous homomorphisms α : K −→
G and β : J −→ K between Lie groups, the natural transformation 〈α, β〉 :
Lβ∗ ◦ Lα∗ =⇒ L(αβ)∗ is exact and a natural isomorphism.

Proof. Exactness of the transformation 〈α, β〉 means that the following dia-
gram of natural transformations commutes:

Lβ∗ ◦ Lα∗ ◦ [1] Lβ∗⋆σα

+3

〈α,β〉⋆[1]

��

Lβ∗ ◦ [1] ◦ Lα∗ σβ⋆Lα∗
+3 [1] ◦ Lβ∗ ◦ Lα∗

[1]⋆〈α,β〉

��
L(αβ)∗ ◦ [1]

σαβ

+3 [1] ◦ L(αβ)∗

Since suspension is fully homotopical, the pair ([1] ◦ L(αβ)∗, [1] ⋆ (αβ)!) is a total
left derived functor of (− ∧ S1) ◦ (αβ)∗, by Proposition 1.4.13. The universal
property allows us to check the commutativity of the diagram after precomposition
with the localization functor γG : SpG −→ Ho(SpG) and postcomposition with the
natural transformation [1]⋆(αβ)!. This is a straightforward, but somewhat lengthy,
calculation with the various defining properties. We start with the observation:

([1] ⋆ β! ⋆ α
∗) ◦ ([1] ⋆ Lβ∗ ⋆ α!) = [1] ⋆ ((β! ⋆ α

∗) ◦ (Lβ∗ ⋆ α!))(1.4.27)

(1.4.25) = [1] ⋆ ((αβ)! ◦ (〈α, β〉 ⋆ γG))
= ([1] ⋆ (αβ)!) ◦ ([1] ⋆ 〈α, β〉 ⋆ γG)
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The final relation is then obtained as follows:

([1] ⋆ (αβ)!) ◦
(

(σαβ ◦ (〈α, β〉 ⋆ [1])) ⋆ γG
)

= ([1] ⋆ (αβ)!) ◦ (σαβ ⋆ γG) ◦ (〈α, β〉 ⋆ [1] ⋆ γG)
(1.4.18) = ((αβ)! ⋆ (− ∧ S1)) ◦ (〈α, β〉 ⋆ γG ⋆ (− ∧ S1))

= ((αβ)! ◦ (〈α, β〉 ⋆ γG)) ⋆ (− ∧ S1)

(1.4.25) = ((β! ⋆ α
∗) ◦ (Lβ∗ ⋆ α!)) ⋆ (− ∧ S1)

= (β! ⋆ α
∗ ⋆ (− ∧ S1)) ◦ (Lβ∗ ⋆ α! ⋆ (− ∧ S1))

= (β! ⋆ (− ∧ S1) ⋆ α∗) ◦ (Lβ∗ ⋆ α! ⋆ (− ∧ S1))

(1.4.18) = ((([1] ⋆ β!) ◦ (σβ ⋆ γK)) ⋆ α∗) ◦ (Lβ∗ ⋆ (([1] ⋆ α!) ◦ (σα ⋆ γG)))
= ([1] ⋆ β! ⋆ α

∗) ◦ (σβ ⋆ γK ⋆ α∗) ◦ (Lβ∗ ⋆ [1] ⋆ α!) ◦ (Lβ∗ ⋆ σα ⋆ γG)
(1.4.9) = ([1] ⋆ β! ⋆ α

∗) ◦ ([1] ⋆ Lβ∗ ⋆ α!) ◦ (σβ ⋆ Lα∗ ⋆ γG) ◦ (Lβ∗ ⋆ σα ⋆ γG)
(1.4.27) = ([1] ⋆ (αβ)!) ◦ ([1] ⋆ 〈α, β〉 ⋆ γG) ◦ (σβ ⋆ Lα∗ ⋆ γG) ◦ (Lβ∗ ⋆ σα ⋆ γG)

= ([1] ⋆ (αβ)!) ◦
(

(([1] ⋆ 〈α, β〉) ◦ (σβ ⋆ Lα∗) ◦ (Lβ∗ ⋆ σα)) ⋆ γG
)

To prove that 〈α, β〉 is an isomorphism, we consider a quasi-cofibrant orthogonal
G-spectrum X and contemplate the following commutative diagram in Ho(SpL):

(Lβ∗)((Lα∗)(X))
(Lβ∗)(αX

! )

∼=
//

〈α,β〉X

��

(Lβ∗)(α∗(X)) (Lβ∗)(α∗(X))

∼= β
α∗(X)
!

��
L(αβ)∗(X)

∼=

(αβ)X!

// (αβ)∗(X) β∗(α∗(X))

The orthogonal K-spectrum α∗(X) is quasi-cofibrant by Theorem 1.4.17 (i). Since

X and α∗(X) are quasi-cofibrant, the morphisms αX! , (αβ)X! and β
α∗(X)
! are isomor-

phisms by Theorem 1.4.17 (ii). So the morphism 〈α, β〉X is also an isomorphism.
Every orthogonal G-spectrum is isomorphic in Ho(SpG) to a quasi-cofibrant spec-
trum, so this proves that 〈α, β〉 is a natural isomorphism. �

The following proposition records the coherence property that the natural
transformations 〈G,F 〉 enjoy; the condition is essentially saying that these trans-
formations make the assignment F 7→ LF into a lax functor from the ‘category’ of
relative categories and left derivable functors to the 2-category of categories. The
caveat is that the composite of left derivable functors need not be left derivable,
so we don’t really have a category of these. As we indicate in Remark 1.4.29 be-
low, this implies that all further coherence conditions between tuples of composable
derivable functors are automatically satisfied.

Proposition 1.4.28. Let F : C −→ D, G : D −→ E and H : E −→ F be
composable functors between relative categories such that F , G, H and GF , HG
and HGF are left derivable. Then

〈HG,F 〉 ◦ (〈H,G〉 ⋆ LF ) = 〈H,GF 〉 ◦ (LH ⋆ 〈G,F 〉)

as natural transformations LH ◦ LG ◦ LF =⇒ L(HGF ).
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Proof. The various defining relations and the interchange relation provide the
following equalities of natural transformations between functors C −→ Ho(F):

τHGF ◦ ((〈HG,F 〉◦(〈H,G〉 ⋆ LF )) ⋆ γC)
= τHGF ◦ (〈HG,F 〉 ⋆ γC) ◦ (〈H,G〉 ⋆ (LF ◦ γC))

(1.4.23) = (τHG ⋆ F ) ◦ (L(HG) ⋆ τF ) ◦ (〈H,G〉 ⋆ (LF ◦ γC))
(1.4.9) = (τHG ⋆ F ) ◦ (〈H,G〉 ⋆ (γD ◦ F )) ◦ ((LH ◦ LG) ⋆ τF )

= (τHG ⋆ F ) ◦ ((〈H,G〉 ⋆ γD) ⋆ F ) ◦ ((LH ◦ LG) ⋆ τF )
= ((τHG ◦ (〈H,G〉 ⋆ γD)) ⋆ F ) ◦ ((LH ◦ LG) ⋆ τF )

(1.4.23) = (((τH ⋆ G) ◦ (LH ⋆ τG)) ⋆ F ) ◦ ((LH ◦ LG) ⋆ τF )
= (τH ⋆ (GF )) ◦ (LH ⋆ τG ⋆ F ) ◦ ((LH ◦ LG) ⋆ τF )
= (τH ⋆ (GF )) ◦ (LH ⋆ ((τG ⋆ F ) ◦ (LG ⋆ τF )))

(1.4.23) = (τH ⋆ (GF )) ◦ (LH ⋆ (τGF ◦ (〈G,F 〉 ⋆ γC)))
= (τH ⋆ (GF )) ◦ (LH ⋆ τGF ) ◦ (LH ⋆ 〈G,F 〉 ⋆ γC)

(1.4.23) = τHGF ◦ (〈H,GF 〉 ⋆ γC) ◦ (LH ⋆ 〈G,F 〉 ⋆ γC)
= τHGF ◦ ((〈H,GF 〉 ◦ (LH ⋆ 〈G,F 〉)) ⋆ γC) .

The uniqueness clause in the universal property of the pair (L(HGF ), τHGF ) then
implies the desired relation. �

Remark 1.4.29. Proposition 1.4.28 implies that all coherence relations with
respect to iterated composition of derivable functors are automatically satisfied.
Given n composable, left derivable functors F1, . . . , Fn, for n ≥ 3, we define a
natural transformation

〈Fn, . . . , F1〉 : LFn ◦ · · · ◦ LF1 =⇒ L(Fn ◦ · · · ◦ F1)

inductively by setting

〈Fn, Fn−1, . . . , F1〉 = 〈FnFn−1, Fn−2, . . . , F1〉 ◦ (〈Fn, Fn−1〉 ⋆ (LFn−1 ◦ · · · ◦LF1)) ,

assuming that all iterated composites of adjacent functors are left derivable. Propo-
sition 1.4.28 implies that we could have instead ‘spliced’ at any other intermediate
spot in the composition; more generally, we could have ‘collected adjacent factors’
in any way we like, and get the same result. More precisely, if for i ≤ j we write

F[j,i] = Fj ◦ Fj−1 ◦ · · · ◦ Fi ,
and we set 〈Fk〉 = IdLFk

, then for all sequences of numbers 1 ≤ m1 < m2 < · · · <
mk < n, we have

〈Fn, . . . , F1〉 =

〈F[n,mk+1], . . . , F[m2,m1+1], F[m1,1]〉 ◦ (〈Fn, . . . , Fmk+1〉 ⋆ · · · ⋆ 〈Fm1 , . . . , F1〉) .
The next Theorem 1.4.31 is a homotopy invariance statement for proper equi-

variant stable homotopy theory; it says, roughly speaking, that this homotopy
theory only depends on the Lie group ‘up to multiplicative weak equivalence’. In
the context of compact Lie groups, this statement does not have much content: as
we recall in the next proposition, every multiplicative weak equivalence between
compact Lie groups is already an isomorphism.
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Proposition 1.4.30. Let α : K −→ H be a continuous homomorphism between
compact Lie groups. If α is a weak homotopy equivalence of underlying spaces, then
α is a diffeomorphism, and hence an isomorphism of Lie groups.

Proof. This result should be well-known, but we have not found a reference.
We owe this proof to George Raptis. Since α is a weak homotopy equivalence,
it induces an isomorphism π0(α) : π0(K) −→ π0(H) of component groups, and a
weak homotopy equivalence α◦ : K◦ −→ H◦ on the connected components of the
identity elements. So by restriction to identity components, it suffices to treat the
special case where K and H are path connected.

Since α is a weak homotopy equivalence, it induces an isomorphism on mod-2
homology. Since K and H are closed connected manifolds, their geometric dimen-
sion can be recovered as the largest dimension in which the mod-2 homology is
non-trivial. So K and H have the same dimension.

Since α induces an isomorphism on the top dimensional mod-2 homology groups,
it must thus be surjective. A continuous homomorphism between Lie groups is au-
tomatically smooth. Since K and H have the same dimension, the kernel of α is
finite, and so α is a covering space projection. Since α induces an isomorphism
of fundamental groups, this covering space projection must be a homeomorphism.
Hence α is an isomorphism of Lie groups. �

When we drop the compactness hypothesis, Proposition 1.4.30 ceases to hold.
For example, for every Lie group G, the projection G × R −→ G is a continuous
homomorphism and weak equivalence.

Theorem 1.4.31. Let α : K −→ G be a continuous homomorphism between
Lie groups that is also a weak equivalence of underlying spaces. Then the following
hold:

(i) The homomorphism α is quasi-injective.
(ii) For every compact subgroup H of G there is a compact subgroup L of K such

that H is conjugate to α(L).
(iii) The restriction functor Lα∗ : Ho(SpG) −→ Ho(SpK) is an equivalence of

triangulated categories.

Proof. We start with the special case when the groups K and G are almost
connected. We choose a maximal compact subgroup M of K and a maximal com-
pact subgroup N of G that contains the compact group α(M). In the commutative
diagram of continuous group homomorphisms

M
α|M //

��

N

��
K α

// G

the two vertical inclusions are then weak equivalence of underlying spaces, compare
[1, Thm.A.5]. Since α is also a weak equivalence, so is α|M : M −→ N . But M
and N are compact, so α|M : M −→ N is an isomorphism by Proposition 1.4.30.
In particular, α is injective on M ; since every compact subgroup of K is contained
in a maximal compact subgroup, α is quasi-injective. This proves claim (i) in the
special case. Moreover, if H is a compact subgroup of G, then there is an element
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g ∈ G such that gH ⊂ N . Then L = α−1(gH) ∩M is a compact subgroup of K
such that α(L) = gH. This proves claim (ii) in the special case.

Now we contemplate the square of triangulated categories and exact functors

Ho(SpM ) Ho(SpN )
L(α|∗M)oo

Ho(SpK)

resKM

OO

Ho(SpG)

resGN

OO

Lα∗
oo

The two vertical functors are equivalences by Theorem 1.4.4, and the upper functor
is an equivalence because α|M is an isomorphism. Since the square commutes up
to natural isomorphism, the functor Lα∗ is also an equivalence. This proves claim
(iii) in the special case.

Now we treat the general case, i.e., K and G are allowed to have infinitely
many components. For a compact subgroup L of K, we write

〈L〉 = L ·K◦

for the subgroup generated by L and the connected component K◦ of the identity.
Another way to say this is that 〈L〉 is the union of all path components of K
that have a non-empty intersection with L. By construction, the inclusion L −→
〈L〉 induces a surjection π0(L) −→ π0(〈L〉) on path components. In particular,
the component group of 〈L〉 is finite because L is compact. Similarly, the group
〈α(L)〉 = α(L) · G◦ is a closed almost connected subgroup of G. Then 〈L〉 is a
union of finitely many of the path components of K, and 〈α(L)〉 is the union of
the corresponding path components of G; the restriction ᾱ : 〈L〉 −→ 〈α(L)〉 of the
homomorphism α is thus again a weak equivalence of underlying spaces. Property
(i) for the restriction ᾱ : 〈L〉 −→ 〈α(L)〉 shows that α is injective on L. Since L
was an arbitrary compact subgroup of K, the homomorphism α is quasi-injective.
This proves claim (i) in the general case.

Now we let H be a compact subgroup of G, and we consider the almost con-
nected subgroup 〈H〉 = H · G◦ of G. Because π0(α) : π0(K) −→ π0(G) is an
isomorphism, α−1(〈H〉) = 〈α−1(H)〉 = α−1(H) ·K◦ is almost connected, and the
restriction ᾱ : α−1(〈H〉) −→ 〈H〉 of α is another weak equivalence of underly-
ing spaces. Property (ii) for the restriction ᾱ provides a compact subgroup L of
α−1(〈H〉) and an element g ∈ 〈H〉 ⊂ G such that α(L) = gH. This proves claim
(ii) in the general case.

It remains to show that the functor Lα∗ : Ho(SpG) −→ Ho(SpK) is an equiva-
lence. In a first step we show that it detects isomorphisms. Since Lα∗ is an exact
functor of triangulated categories, it suffices to show for every G-spectrum X such
that Lα∗(X) is a zero object in Ho(SpK), already X = 0. To see this we let H be
any compact subgroup of G. Part (ii) provides a compact subgroup L of K and
an element g ∈ G such that α(L) = gH . Since α is quasi-injective by part (i),
it restricts to an isomorphism α|L : L ∼= gH . Since Lα∗(X) is a zero object, we
conclude that

πH∗ (X)
c∗g−−→
∼=

π
gH
∗ (X)

L(α|L)∗−−−−−→
∼=

πL∗ (L(α|L)∗(resGgH(X))) ∼= πL∗ (Lα
∗(X)) = 0 .

Since H was an arbitrary compact subgroup of G, this proves that X is a zero
object in Ho(SpG). We have thus shown that Lα∗ detects isomorphisms.
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The homomorphism α is quasi-injective by part (i), so the derived functor Lα∗

has a left adjoint G ⋉Lα − : Ho(SpK) −→ Ho(SpG) by Theorem 1.4.17 (vi), which
is a total left derived functor of G⋉α − : SpK −→ SpG. We let Y denote the class
of orthogonal K-spectra Y such that the adjunction unit

ηY : Y −→ Lα∗(G⋉Lα Y )

is an isomorphism in Ho(SpK). The adjunction unit is a natural transformation be-
tween two exact functors that preserve arbitrary sums, so the class Y is a localizing
subcategory of Ho(SpK).

Now we consider any almost connected closed subgroup K̄ of K with (K̄)◦ =
K◦; in other words, K̄ is a finite union of path components of K. We show that
for every orthogonal K̄-spectrum Z, the induced spectrum K ⋉K̄ Z belongs to the
class Y. We let Ḡ = 〈α(K̄)〉 = α(K̄) · G◦ be the union of those path components
of G that correspond to K̄ under the isomorphism π0(α) : π0(K) −→ π0(G). Then
ᾱ = α|K̄ : K̄ −→ Ḡ is a continuous homomorphism and weak equivalence between
almost connected Lie groups. So property (iii) for the homomorphism ᾱ shows that
the adjunction unit

ηZ : Z −→ Lᾱ∗(Ḡ⋉Lᾱ Z)

is an isomorphism in Ho(SpK̄). Hence the left vertical morphism in the following
commutative square is an isomorphism:

(1.4.32)

K ⋉K̄ Z
ηK⋉K̄Z

//

∼=K⋉K̄ηZ

��

Lα∗(G⋉Lα (K ⋉K̄ Z))

∼= Lα∗(µ)

��
K ⋉K̄ (Lᾱ∗(Ḡ⋉Lᾱ Z))

∼=

Ho(λ)(Ḡ⋉L
ᾱZ)

// Lα∗(G⋉Ḡ (Ḡ⋉Lᾱ Z))

Here µ : G⋉Lα (K⋉K̄Z) −→ G⋉Ḡ(Ḡ⋉LᾱZ) is the mate (adjoint) of the isomorphism

Lᾱ∗ ◦ resGḠ
〈inclG

Ḡ
,ᾱ〉−−−−−−→

∼=
L(α|K̄)∗

〈α,inclK
K̄
〉←−−−−−−

∼=
resKK̄ ◦Lα∗ .

Hence µ and Lα∗(µ) are isomorphisms. The lower horizontal isomorphism needs
some explanation. On the pointset level, we can define a natural isomorphism of
orthogonal K-spectra

λ : K ⋉K̄ ᾱ∗(W )
∼=−−→ α∗(G⋉ḠW ) by λ(k ∧ w) = α(k) ∧ w ,

where W is any orthogonal Ḡ-spectrum. To see that λ is indeed an isomorphism,
we observe that the underlying non-equivariant spectrum of K ⋉K̄ α∗(W ) is a
wedge of copies of W indexed by K/K̄, that α∗(G ⋉Ḡ W ) is a wedge of copies of
W indexed by G/Ḡ, and that α induces a bijection of sets K/K̄ ∼= G/Ḡ because
π0(α) : π0(K) −→ π0(G) is a group isomorphism. The induction functors K ⋉K̄ −
and G ⋉Ḡ − are fully homotopical by Corollary 1.2.10; the restriction functors α∗

and ᾱ∗ are fully homotopical by Theorem 1.4.1 (i) because α is quasi-injective by
part (i). So λ is a natural isomorphism between homotopical functors, and hence
it descends to a natural isomorphism

Ho(λ) : (K ⋉K̄ −) ◦ Lᾱ∗ ∼= Lα∗ ◦ (G⋉Ḡ −)
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on the level of homotopy categories. Now we can wrap up: since the other three
morphisms in the commutative square (1.4.32) are isomorphisms, so is the adjunc-
tion unit ηK⋉K̄Z . In other words, all K-spectra that are induced from subgroups

of the form K̄ are in the class Y.
Now we let L be any compact subgroup of K. Then K̄ = 〈L〉 = L ·K◦ is an

almost connected closed subgroup of K of the kind considered in the previous para-
graph. Since the suspension spectrum Σ∞+K/L is isomorphic to K ⋉K̄ (Σ∞+ K̄/L),
it is contained in the class Y. So the class Y contains all the preferred compact gen-
erators of the triangulated category Ho(SpK). Since Y is a localizing subcategory
of Ho(SpK), it contains all orthogonal K-spectra. In other words, the adjunction
unit ηY : Y −→ Lα∗(G⋉Lα Y ) is an isomorphism in complete generality.

Since the adjunction unit of the adjoint pair (G⋉Lα−, Lα∗) is a natural isomor-
phism and the right adjoint functor Lα∗ detects isomorphisms, we finally conclude
that the adjunction is an adjoint equivalence of categories. This proves property
(iii) in general. �

Now we discuss another aspect of the homotopy invariance of proper equivariant
stable homotopy theory, namely homotopy invariance of derived restriction func-
tors: we will show that a homotopy through continuous homomorphisms provides
an isomorphism of derived restriction functors. In the realm of compact Lie groups,
the homotopy invariance is a direct consequence of the conjugation invariance of
Example 1.4.21: a celebrated theorem of Montgomery and Zippin [52, Thm. 1 and
Corollary] says that in a Lie group ‘nearby compact subgroups are conjugate’, and
this implies that two homotopic continuous homomorphisms from a compact Lie
group to a Lie group are already conjugate, compare [12, III, Lemma 38.1]. If we
drop the compactness hypothesis, this statement need not hold anymore: the iden-
tity of the additive Lie group R is homotopic, through continuous homomorphisms,
to the zero homomorphism. So the homotopy invariance of derived restriction func-
tors requires an additional argument.

Construction 1.4.33 (Homotopy invariance of derived restriction). We let
α, β : K −→ G be two continuous homomorphisms between Lie groups. We let

ω : K × [0, 1] −→ G

be a homotopy from α to β through continuous homomorphisms, i.e., such that
ω(−, t) : K −→ G is a homomorphism for every t ∈ [0, 1]. We define a functor

ω∗ : SpG −→ SpK by ω∗(X) = X ∧ [0, 1]+

equipped with K-action by

k · (x ∧ t) = (ω(k, t) · x) ∧ t .
By hypothesis we have ω(k, 0) = α(k) and ω(k, 1) = β(k), so the two assignments

a : α∗(X) −→ ω∗(X) , a(x) = x ∧ 0 and

b : β∗(X) −→ ω∗(X) , b(x) = x ∧ 1

define natural morphisms of orthogonal K-spectra.

Theorem 1.4.34. Let ω : K × [0, 1] −→ G be a homotopy of continuous homo-
morphisms from α = ω(−, 0) to β = ω(−, 1). Then for every orthogonal G-spectrum
X, the morphisms

a : α∗(X) −→ ω∗(X) and b : β∗(X) −→ ω∗(X)
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are π∗-isomorphisms of orthogonal K-spectra. Hence a and b induce natural iso-
morphisms of total left derived functors

Lα∗
La−−−→
∼=

Lω∗
Lb←−−−
∼=

Lβ∗ .

Proof. We show that a : α∗(X) −→ ω∗(X) is a π∗-isomorphism; the argument
for b is analogous. We let L be any compact subgroup of K. We let Γ = α(L) ·G◦
be the union of those path components of G that are in the image of π0(α|L) :
π0(L) −→ π0(G). Then α|L has image in Γ, by construction, and π0(Γ) is finite.
By continuity, each of the homomorphisms ω(−, t) : K −→ G also takes L to Γ.
We can thus restrict ω to a path

ω̄ = ω|L×[0,1] : L× [0, 1] −→ Γ

of continuous homomorphisms from α|L to β|L.
We let hom(L,Γ) denote the space of continuous homomorphisms with the

subspace topology of the compact-open topology (which coincides with the function
space topology in the categoryT). We let Γ◦ denote the identity path component of
the group Γ; then Γ◦ is also the identity path component of G. Since L is compact,
the image of the continuous map

Γ◦ −→ hom(L,Γ) , g 7−→ cg ◦ α|L
is the entire path component hom(L,Γ;α) of α|L, see [60, Prop.A.25]. So the map
factors over a continuous bijection

Γ◦/C ∼= hom(L,Γ;α) ,

where C = Γ◦ ∩ CΓ(α(L)) is the centralizer in Γ of α(L), intersected with Γ◦.
Moreover, this map is a homeomorphism, for example by [44, Thm.B.2]. The
projection Γ◦ −→ Γ◦/C is a locally trivial fiber bundle, see for example [8, I
Thm. 4.3]. So the path

ω|L : [0, 1] −→ hom(L,Γ;α)

admits a continuous lift
λ : [0, 1] −→ Γ◦

such that λ(0) = 1 and ω|L(t) = cλ(t) ◦ α|L. The map

ω∗(X) −→ (α|L)∗(X) ∧ [0, 1]+ , x ∧ t 7−→ λ(t) · x ∧ t
is then an L-equivariant isomorphism of orthogonal L-spectra. Moreover, under
this isomorphism, the restriction to L of the morphism a : α∗(X) −→ ω∗(X)
becomes the morphism −∧ 0 : (α|L)∗(X) −→ (α|L)∗(X)∧ [0, 1]+. This proves that
a is an L-equivariant homotopy equivalence. Since L was an arbitrary compact
subgroup of K, we have altogether shown that the morphism a is a π∗-isomorphism
of orthogonal K-spectra. �

Remark 1.4.35. The left derived functor Lα∗ : Ho(SpG) −→ Ho(SpK) as-
sociated to a continuous homomorphism between Lie groups is also compatible
with derived smash products, i.e., it can be given a preferred strong symmetric
monoidal structure. The essential ingredient for this is the fact that the pointset
level restriction functor α∗ preserves quasi-cofibrant spectra and π∗-isomorphisms
between quasi-cofibrant spectra, and that quasi-cofibrant spectra are quasi-flat, i.e.,
the smash product is fully homotopical on quasi-cofibrant spectra. We will not go
into more details about multiplicative aspects of Lα∗.





CHAPTER 2

Equivariant homotopy groups

2.1. G-equivariant homotopy groups

For a compact Lie group H , the H-equivariant homotopy group πH0 (X) is de-
fined as a colimit over all finite-dimensional H-subrepresentations V of a complete
H-universe, of the sets [SV , X(V )]H . In this section we propose a generalization of
these equivariant homotopy groups to arbitrary Lie groups, not necessarily compact,
as the morphisms from the G-sphere spectrum SG in the triangulated homotopy
category Ho(SpG), see Definition 2.1.1. In contrast to the classical case of com-
pact Lie groups, in our context the G-equivariant homotopy groups need not send
wedges to direct sums. Equivalently, the G-sphere spectrum need not be a small
object in the triangulated category Ho(SpG). The question of whether or not SG
is small turns out to be related to finiteness properties of G. As an example we
show in Proposition 2.1.4 that SG is small if the group admits a finite G-CW-model
for the universal G-space EG for proper actions, i.e., one with only finitely many
equivariant cells (or equivalently, with compact orbit space). Example 2.1.5 illus-
trates that for this particular purpose, the existence of a finite-dimensional model
for EG is not sufficient. A precise characterization of when SG is a small object of
Ho(SpG) appears in the work of Bárcenas and the first and fourth author, see [4,
Thm5.1 and Thm. 5.4].

We also discuss the natural structure that relates the G-equivariant stable ho-
motopy groups, specifically restriction homomorphisms associated with continuous
homomorphisms between Lie groups (see Construction 2.1.7) and transfer maps for
finite index inclusions (see Construction 2.1.12). Transfer maps are closely related
to the Wirthmüller isomorphism, which we formulate and prove for finite index
inclusions in Theorem 2.1.10. In the last part of this section we verify that the
standard relations between restriction homomorphisms and transfer maps general-
ize from the classical context of compact Lie groups to our more general situation.

We refer to Remark 1.3.5 for our convention about the shifts X [k] of an or-
thogonal G-spectrum, for k ∈ Z.

Definition 2.1.1. Let G be a Lie group, X an orthogonal G-spectrum and k ∈
Z. The k-th G-homotopy group is defined as

πGk (X) = [SG, X [−k]]G

the group of morphisms, in the stable homotopy category Ho(SpG), from the G-
sphere spectrum to the (−k)-fold shift of X .

If G is compact, then the new definition of πG∗ agrees with the old one, up to
a specific natural isomorphism. Indeed, for compact G, the representability result

61
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of Proposition 1.3.10 provides a natural isomorphism

[SG, X [0]] ∼= [Σ∞+G/G,X ]G ∼= πG0 (X) , [f ] 7−→ f∗(1) .

Here we identified Σ∞+ G/Gwith SG, so that the tautological class uG ∈ πG0 (Σ∞+G/G)
becomes the class 1 ∈ πG0 (SG) represented by the identity of S0 = (SG)(0). For
k > 0, we combine this with the iterated loop isomorphism (1.2.6) into a natural
isomorphism

[SG, X [−k]] = [SG,Ω
kX ]G ∼= πG0 (Ω

kX) ∼= πGk (X) .

For k < 0, we instead use the iterated suspension isomorphism (1.2.7) and obtain
a natural isomorphism

[SG, X [−k]] = [SG, X ∧ S−k]G ∼= πG0 (X ∧ S−k) ∼= πGk (X) .

If G is discrete and admits a finite G-CW-model for EG, then the definition for
compact groups generalizes, provided we replace ‘G-representations’ by ‘G-vector
bundles over EG’. Indeed, Theorem 3.1.34 (iv) below provides an isomorphism

πG0 (X) ∼= XG(EG)
µX
EG−−−→
∼=

XGJEGK ;

the right hand side is defined via fiberwise G-homotopy classes of G-maps Sξ −→
X(ξ), for G-vector bundles ξ over EG, see Construction 3.1.19 below.

Remark 2.1.2. Let G be a discrete group. In Example 2.2.8 below we introduce
the graded homotopy group G-Mackey functor π∗(X) of an orthogonal G-spectrum
X . This algebraic object records the values of the H-equivariant homotopy groups
for all finite subgroups H of G, and the natural structure between them. If the
group G itself is infinite, then the groups πG∗ (X) are not encoded in the G-Mackey
functor π∗(X).

In this situation, there is an Atiyah-Hirzebruch type spectral sequence con-
verging to πG∗ (X) whose E2-term is the Bredon cohomology of EG with coefficients
in the homotopy group Mackey functors of X . Indeed, the G-equivariant homo-
topy group πG−n(X) is canonically isomorphic to the group Xn

G(EG). The Atiyah-
Hirzebruch spectral sequence (3.2.15), for X = EG and for the proper cohomology
theory X∗G represented by X , thus takes the form

(2.1.3) Ep,q2 = Hp
G(EG, π−q(X)) =⇒ πG−p−q(X) .

If G has an n-dimensional model for EG, or – more generally – an n-dimensional
stable model for EG, then the Mackey functor cohomological dimension of G is at
most n, see for example [4, Thm. 1.2]. So in this case, the E2-term of the Atiyah-
Hirzebruch spectral sequence (2.1.3) vanishes for p > n, and the spectral sequence
collapses at En+1.

The 0-th Bredon cohomology group of EG is the inverse limit over the Fin-
orbit category OrFinG , so the edge homomorphism of the spectral sequence can be
viewed as a homomorphism

πGk (X) −→ H0
G(EG, πk(X)) ∼= limOrFin

G
πk(X) .

A more detailed analysis would reveal that this edge homomorphism is given by
the restriction maps

resGH : πGk (X) = [SG, X [−k]]G −→ [SH , X [−k]]H ∼= πHk (X)
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for all finite subgroups H of G. So a compatible system {xH}G/H∈OrFin
G

of ho-

motopy classes in πHk (X) is the restriction of some class in πGk (X) if any only if
the corresponding element of H0

G(EG, πk(X)) is a permanent cycle in the Atiyah-
Hirzebruch spectral sequence (2.1.3).

As a special case we consider a countable discrete group G that is locally fi-
nite, i.e., every finitely generated subgroup of G is finite. Such groups have a
1-dimensional model for EG. For example, if G is locally finite and countable, then
it is the union of an ascending sequence of finite subgroups, and we described such
a model in Example 1.4.5. A general locally finite group G is the filtered union of
its finite subgroups. Group homology commutes with filtered unions, so the group
homology and group cohomology of G with coefficients in any QG-module vanish
in positive dimensions. A theorem of Dunwoody [15, Thm. 1.1] then provides a
1-dimensional model for EG.

If G has a 1-dimensional EG, then the spectral sequence (2.1.3) collapses at
E2 and specializes to a short exact sequence

0 −→ lim1
OrFin

G
πn+1(X) −→ πGn (X) −→ limOrFin

G
πn(X) −→ 0 .

If G is locally finite and countable, then this short exact sequence is a special case
of Corollary 1.4.6.

Essentially by definition, theG-equivariant homotopy groups take distinguished
triangles to long exact sequences, and products to products. One should beware,
though, that infinite products of orthogonal G-spectra are not generally products in
the triangulated category Ho(SpG); they are if all factors areG-Ω-spectra. However,
in our more general context not all the ‘usual’ properties of equivariant homotopy
groups carry over from compact to general Lie groups. For example, the functor
πG∗ does not in general take infinite wedges to direct sums, because the G-sphere
spectrum SG need not be small in the triangulated category Ho(SpG).

Proposition 2.1.4. Let G be a Lie group that has a model for EG that admits
a finite G-CW-structure.

(i) Let X be an orthogonal G-spectrum such that the H-spectrum resGH(X) is a
small object in Ho(SpH) for every compact subgroup H of G. Then the G-
spectrum X is a small object in the triangulated category Ho(SpG).

(ii) The G-sphere spectrum SG is a small object in the triangulated category Ho(SpG),
and the functor πGk : Ho(SpG) −→ Ab preserves all sums.

Proof. (i) The restriction functor resGH : Ho(SpG) −→ Ho(SpH) preserves
coproducts, so its left adjoint G⋉H − preserves compact objects. So if resGH(X) is
small in Ho(SpH), then X ∧G/H+

∼= G⋉H resGH(X) is small in Ho(SpG). The class
of small objects in a triangulated category is closed under 2-out-of-3 in distinguished
triangles. So induction over the number of equivariant cells shows that X ∧ A+ is
small for every finite proper G-CW-complex A. Since EG has a finite proper G-
CW-model, X ∧ EG+ is small. But X is isomorphic in Ho(SpG) to X ∧ EG+, so
X itself is small.

(ii) The restriction functor resGH : Ho(SpG) −→ Ho(SpH) takes the G-sphere
spectrum to the H-sphere spectrum, which is small if H is compact. So the G-
sphere spectrum is small in Ho(SpG). �
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As we just saw, a finite model for EG implies that the G-sphere spectrum is
small in the triangulated homotopy category Ho(SpG). The example below illus-
trates that this is not true in general, and that even a finite-dimensional model
for EG does not imply smallness of SG. In fact, [4, Thm. 5.4] shows that for a
countable discrete group G, the G-sphere spectrum is small if and only if there ex-
ists a finite-dimensional stable model for EG, and there exists a finite-type stable
model for EG. Moreover, by [4, Thm. 5.1], a finite-type stable model for EG exists
if and only if there are only finitely many conjugacy classes of finite subgroups in
G, and every Weyl group WG(H) = NG(H)/H of a finite subgroup H of G is of
homological type FP∞.

Example 2.1.5 (The G-sphere spectrum need not be small). We let F be any
non-trivial finite group, and we define

G =
∏′

k≥1
F ,

an infinite weak product of copies of F , i.e., the subgroup of the product consisting
of tuples with almost all coordinates the neutral element. We will now show that
SG is not small in Ho(SpG). Example 1.4.5 exhibits a 1-dimensional G-CW-model
for EG; Proposition 2.1.4 shows that there cannot be a finite G-CW-model for EG.

We set Hn =
∏n
k=1 F . Then G is the ascending union of its finite subgroups

Hn, and we can apply Corollary 1.4.6. The inclusion Hn−1 −→ Hn has a retraction
r : Hn −→ Hn−1 by a group homomorphism. Now we let X be an orthogonal
spectrum, which we give the trivial G-action. The inflation homomorphism r∗ :

π
Hn−1

k (X) −→ πHn

k (X) is defined in (2.1.8) below; it is a section to the restriction

resHn

Hn−1
: πHn

k (X) −→ π
Hn−1

k (X). Since the restriction maps are surjective, the

lim1 terms in the short exact sequence of Corollary 1.4.6 vanish, and we conclude
that the map

πGk (X) −→ limπHn

k (X)

induced by restriction is an isomorphism.
In the commutative square

(2.1.6)

⊕

N π
G
0 (SG)

∼= //

��

⊕

N lim πHn
0 (SHn)

��
πG0 (

⊕

N SG) ∼=
// lim πHn

0 (
⊕

N SHn)

the two horizontal maps are thus isomorphisms. Since Hn is finite, the group
πHn
0 (SHn) is isomorphic to the Burnside ring A(Hn), and the map

resHn

Hn−1
: A(Hn) −→ A(Hn−1)

is a split epimorphism between finitely generated free abelian groups. Since the
group F is non-trivial, the kernel of this restriction map is non-trivial. The upper
right corner of square (2.1.6) is thus a countably infinite sum of a countably infinite
product of copies of Z, and the right vertical map is not surjective. So the left
vertical map is not surjective, and hence the G-sphere spectrum is not small for the
particular group under consideration.
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Construction 2.1.7 (Restriction homomorphisms). We let α : K −→ G be
a continuous homomorphism between Lie groups. As we shall now explain, such a
homomorphism induces a restriction homomorphism

(2.1.8) α∗ : πGk (X) −→ πKk ((Lα∗)(X)) ,

natural for morphisms of orthogonal G-spectra, where Lα∗ is the total left derived
functor of α∗ : SpG −→ SpK , compare Theorem 1.4.17. The construction exploits
the two isomorphisms

((Lα∗)(SG))
α

SG
!−−→ α∗(SG) = SK and (Lα∗)(X)[−k] ∼= (Lα∗)(X [−k])

in Ho(SpK); the first one is an isomorphism because SG is quasi-cofibrant, and the
second one is provided by part (iv) of Theorem 1.4.17. So we define the restriction
homomorphism as the composite

[SG, X [−k]]G Lα∗

−−−−→ [(Lα∗)(SG), (Lα
∗)(X [−k])]G ∼=−−→ [SK , (Lα

∗)(X)[−k]]G .

Now we consider two composable continuous homomorphisms α : K −→ G
and β : L −→ K. In (1.4.25) we exhibited a natural isomorphism 〈α, β〉 : (Lβ∗) ◦
(Lα∗) =⇒ L(αβ)∗ that relates the three derived functors.

Proposition 2.1.9. Let α : K −→ G and β : L −→ K be composable contin-
uous homomorphisms between Lie groups. Then for every orthogonal G-spectrum
X, the composite

πGk (X)
α∗

−−−→ πKk ((Lα)∗(X))
β∗

−−−→

πLk ((Lβ)
∗((Lα)∗(X)))

〈α,β〉X∗−−−−→ πLk (L(αβ)
∗(X))

coincides with the restriction homomorphism (αβ)∗.

Proof. All maps are natural forG-maps inX and compatible with the suspen-
sion isomorphisms. So by naturality it suffices to prove the claim for the universal
example, the identity of SG. After unraveling all definitions, the universal example
then comes down to the relation

βSK
! ◦ (Lβ)∗(αSG

! ) = (αβ)SG! ◦ 〈α, β〉SG : (Lβ∗)((Lα∗)(SG)) −→ SL ,

which is an instance of the defining property (1.4.25) of the transformation 〈α, β〉.
�

Now we discuss the Wirthmüller isomorphism for finite index inclusions of Lie
groups, and the transfer maps that it gives rise to. We consider a closed subgroup
Γ of G and we write resGΓ : SpG −→ SpΓ for the restriction functor. This restriction
functor is fully homotopical, i.e., it takes π∗-isomorphisms of orthogonal G-spectra
to π∗-isomorphisms of orthogonal Γ-spectra, simply because every compact sub-
group of Γ is also a compact subgroup of G. So we get an induced restriction
functor on the homotopy categories

resGΓ : Ho(SpG) −→ Ho(SpΓ)

from the universal property of localizations, for which we use the same name. This
functor satisfies resGΓ ◦γG = γΓ ◦ resGΓ , so it is in particular a total left derived
functor of restriction. The restriction functor resGΓ is both a left Quillen functor
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and a right Quillen functor for the two stable model structures, by Corollary 1.4.3.
We write

coindGΓ : Ho(SpΓ) −→ Ho(SpG)

for the right adjoint of the derived restriction functor, which is a total right derived
functor of the functor mapΓ(G,−) : SpΓ −→ SpG. Moreover, the left adjoint G⋉Γ−
is also fully homotopical, so it, too, passes to a functor on the homotopy categories

G⋉Γ : Ho(SpΓ) −→ Ho(SpG)

by the universal property of localizations, for which we also use the same name.
If we also assume that Γ has finite index in G, then the derived left and right

adjoint to the restriction functor are in fact isomorphic; this generalizes the classical
‘Wirthmüller isomorphism’ in equivariant homotopy theory of finite groups [78].
Indeed, in this situation the group G is the disjoint union of finitely many Γ-cosets.
If X is a based Γ-space, we can define a natural G-map

wX : G⋉Γ X −→ mapΓ(G,X)

by sending [g, x] to the Γ-equivariant map

G −→ X , g′ 7−→
{

g′gx for g′g ∈ Γ, and

∗ for g′g 6∈ Γ.

For an orthogonal Γ-spectrum Y these maps are defined levelwise, and they form
a morphism of orthogonal G-spectra

wY : G⋉Γ Y −→ mapΓ(G, Y ) .

Theorem 2.1.10. Let Γ be a closed subgroup of finite index of a Lie group G.
For every orthogonal Γ-spectrum Y the morphism wY : G ⋉Γ Y −→ mapΓ(G, Y )
is a π∗-isomorphism. Hence wY descends to a natural isomorphism between the
functors

G⋉Γ , coindGΓ : Ho(SpΓ) −→ Ho(SpG) .

Proof. We let H be any compact subgroup of G. By our hypothesis, G/Γ is
a finite set and for every g ∈ G the subgroup H ∩ gΓ has finite index in H . So for
every orthogonal (H ∩ gΓ)-spectrum X the morphism

wX : H ⋉H∩gΓ X −→ mapH∩
gΓ(H,X)

is a π∗-isomorphism of H-spectra by the classical Wirthmüller isomorphism for the
finite index pair (H,H ∩ gΓ), see [78] or [60, Thm. 3.2.15]. Moreover, there are
double coset decompositions

resGH(G⋉Γ X) ∼=
∨

[g]∈H\G/Γ

H ⋉H∩gΓ

(

c∗g
(

resΓHg∩Γ(X)
))

and

resGH(mapΓ(G,X)) ∼=
∏

[g]∈H\G/Γ

mapH∩
gΓ

(

H, c∗g
(

resΓHg∩Γ(X)
))

.

The morphism wX respects these decomposition. Since finite wedges are π∗-iso-
morphic to finite products, we are done. �
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An immediate consequence of Theorem 2.1.10 is the isomorphism between the
group πGk (G⋉Γ Y ) and the group πΓ

k (Y ), defined as the composite

πGk (G⋉Γ Y )
(ωY )∗−−−−→
∼=

πGk (coind
G
Γ (Y ))

adjunction−−−−−−−→
∼=

πΓ
k (Y ) .

This map is also the composite

(2.1.11) WirthGΓ : πGk (G⋉Γ Y )
resGΓ−−−→ πΓ

k (G⋉Γ Y )
(prGΓ )∗−−−−→ πΓ

k (Y ) .

In the special case where G (and hence Γ) are compact, this isomorphism spe-
cializes to the Wirthmüller isomorphism [78], see also [60, Thm. 3.2.15]. In our
more general context, we also refer to the isomorphism (2.1.11) as the Wirthmüller
isomorphism.

Construction 2.1.12 (Transfer). We continue to let Γ be a finite index sub-
group of a Lie group G. If X is an orthogonal G-spectrum, then we can define a
transfer homomorphism as the composite

(2.1.13) trGΓ : πΓ
k (X)

(WirthG
Γ )−1

−−−−−−−→
∼=

πGk (G⋉Γ resGΓ (X))
(actGΓ )∗−−−−−→ πGk (X) ,

where actGΓ : G ⋉Γ resGΓ (X) −→ X is the action morphism (the counit of the
adjunction).

Now we prove that the transfer maps satisfy the ‘usual properties’. We start
by studying how transfer maps interact with inflation, i.e., the restriction homo-
morphism along a continuous epimorphism α : K −→ G. We let Γ be any closed
subgroup of the Lie group G, and we let ∆ = α−1(Γ) be the inverse image, a closed
subgroup of K. On the pointset level, the relation

resK∆ ◦α∗ = (α|∆)∗ ◦ resGΓ
holds as functors from SpG to Sp∆. On the level of homotopy categories, this
relation becomes a natural isomorphism between derived functors. Indeed, the
isomorphisms

〈inclGΓ , α|∆〉 : L(α|∆)∗ ◦ resGΓ =⇒ L(inclGΓ ◦α|∆)∗

and
〈α, inclK∆〉 : resK∆ ◦Lα∗ =⇒ L(α ◦ inclK∆)∗

combine into a composite natural isomorphism

[α,Γ] : L(α|∆)∗ ◦ resGΓ
〈inclGΓ ,α|∆〉−−−−−−−→

∼=
L(inclGΓ ◦α|∆)∗

= L(α ◦ inclK∆)∗
〈α,inclK∆ 〉

−1

−−−−−−−→
∼=

resK∆ ◦Lα∗ .

Proposition 2.1.14. Let α : K −→ G be a continuous epimorphism between
Lie groups, let Γ be a closed subgroup of G of finite index, and set ∆ = α−1(Γ).
Then the following square commutes

πΓ
∗ (X)

trGΓ //

(α|∆)∗

��

πG∗ (X)

α∗

��
π∆
∗ (L(α|∆)∗(resGΓ (X)))

[α,Γ]∗

∼= // π∆
∗ ((Lα

∗)(X))
trK∆

// πK∗ ((Lα
∗)(X))
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for every orthogonal G-spectrum X.

Proof. We first consider a cofibrant orthogonal Γ-spectrum Y . An isomor-
phism of orthogonal K-spectra

u : K ⋉∆ (α|∆)∗(Y )
∼=−−→ α∗(G⋉Γ Y )

is defined levelwise by u[k, y] = [α(k), y], for k ∈ K and y ∈ Y (V ). Moreover, the
composite

K ⋉∆ (α|∆)∗(Y )
u−−→ α∗(G⋉Γ Y )

(α|∆)∗(prGΓ )−−−−−−−−→ (α|∆)∗(Y )

coincides with the morphism prK∆ : K ⋉∆ (α|∆)∗(Y ) −→ (α|∆)∗(Y ). Since Y
is cofibrant, we can calculate (Lα∗)(Y ) as α∗(Y ). Also, G ⋉Γ Y is cofibrant as
an orthogonal G-spectrum, and we can calculate (Lα∗)(G ⋉Γ Y ) as α∗(G ⋉Γ Y ).
Similarly, the underlying Γ-spectrum of G ⋉Γ Y is cofibrant, so we can calculate
(Lα|∗∆)(G⋉ΓY ) as (α|∆)∗(G⋉ΓY ). The following diagram commutes by naturality
and transitivity of restriction maps:

πG∗ (G⋉Γ Y )
resGΓ

//

α∗

��

WirthG
Γ

--
πΓ
∗ (G⋉Γ Y )

(prGΓ )∗

//

(α|∆)∗

��

πΓ
∗ (Y )

(α|∆)∗

��

πK∗ (α
∗(G⋉Γ Y ))

resK∆ // π∆
∗ ((α|∆)∗(G⋉Γ Y ))

((α|∆)∗(prGΓ ))∗

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

πK∗ (K ⋉∆ (α|∆)∗(Y ))

u∗ ∼=

OO

resK∆ //

WirthK
∆

11
π∆
∗ (K ⋉∆ (α|∆)∗(Y ))

(prK∆ )∗ //

u∗ ∼=

OO

π∆
∗ ((α|∆)∗(Y ))

In formulas:

(2.1.15) (α|∆)∗ ◦WirthGΓ = WirthK∆ ◦u−1∗ ◦ α∗ .
Now we let X be a cofibrant orthogonalG-spectrum. Then the following square

commutes:

K ⋉∆ (α|∆)∗(resGΓ (X))

u

��

K ⋉∆ resK∆(α∗(X))

actK∆
��

α∗(G⋉Γ X)
α∗(actGΓ )

// α∗(X)

The Wirthmüller maps are isomorphisms, so we can deduce

trK∆ ◦(α|∆)∗ = (actK∆)∗ ◦ (WirthK∆)−1 ◦ (α|∆)∗

(2.1.15) = (actK∆)∗ ◦ u−1∗ ◦ α∗ ◦ (WirthGΓ )
−1

= (α∗(actGΓ ))∗ ◦ α∗ ◦ (WirthGΓ )
−1

= α∗ ◦ (actGΓ )∗ ◦ (WirthGΓ )
−1 = α∗ ◦ trGΓ .

This proves the claim for cofibrant orthogonal G-spectra. In Ho(SpG), every object
is isomorphic to a cofibrant G-spectrum, so naturality concludes the argument. �
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Now we spell out how transfers interact with the conjugation homomorphism.
For this purpose we let Γ be any closed subgroup of a Lie group G and g ∈ G. We
let Γg = g−1Γg be the conjugate subgroup and denote by

cg : Γ −→ Γg , cg(γ) = g−1γg

the conjugation homomorphism. Restriction of group actions along cg is fully ho-
motopical; we abuse notation and write

c∗g = Ho(c∗g) : Ho(SpΓg) −→ Ho(SpΓ)

for the induced functor on homotopy categories. This induced functor is then also a
total left derived functor of c∗g, relative to the identity transformation. As a special
case of the restriction homomorphism (2.1.8), the restriction functor thus induces
an isomorphism

c∗g : πΓg

k (Y ) −→ πΓ
k (c
∗
g(Y ))

for every orthogonal Γg-spectrum Y . We call this the conjugation isomorphism.
Now we let X be an orthogonal G-spectrum. Then left multiplication by g is

an isomorphism

lg : c∗g(X) −→ X

of orthogonal G-spectra, which induces an isomorphism on πΓ
k (−). The composite

πΓg

k (X)
c∗g−−→ πΓ

k (c
∗
g(X))

(lg)∗−−−−→ πΓ
k (X)

is an ‘internal’ conjugation isomorphism which we denote by

(2.1.16) g⋆ : πΓg

k (X) −→ πΓ
k (X) .

Remark 2.1.17. The conjugation isomorphism has another interpretation as
follows. The map

lg : G/Γ −→ G/Γg : kΓ 7−→ kgΓg

is an isomorphism of G-spaces, and it induces an isomorphism of G-equivariant
suspension spectra

Σ∞+ lg : Σ∞+G/Γ −→ Σ∞+G/Γ
g .

For every orthogonal G-spectrum, the derived adjunctions provide natural isomor-
phisms

πΓg

0 (X) = [SΓg , resGΓg (X)]Γ
g ∼=−−→ [Σ∞+G/Γ

g, X ]G and

πΓ
0 (X) = [SΓ, res

G
Γ (X)]Γ

∼=−−→ [Σ∞+G/Γ, X ]G .

We omit the verification that under these isomorphisms, the conjugation map g⋆ :
πΓg

k (X) −→ πΓ
k (X) corresponds to precomposition with Σ∞+ lg.

Proposition 2.1.18. Let G be a Lie group and g ∈ G.
(i) Let ∆ ⊂ Γ be nested closed subgroups of G, such that ∆ has finite index in Γ.

Then

trΓ∆ ◦g⋆ = g⋆ ◦ trΓ
g

∆g : π∆g

∗ (X) −→ πΓ
∗ (X)

for every orthogonal G-spectrum X.
(ii) The conjugation map g⋆ : π

G
∗ (X) −→ πG∗ (X) is the identity.
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Proof. (i) In the special case α = cg : Γ −→ Γg, applied to the finite index
subgroup ∆g of Γg, Proposition 2.1.14 says that the following square commutes:

π∆g

∗ (X)
trΓ

g

∆g //

c∗g

��

πΓg

∗ (X)

c∗g

��
π∆
∗ (c
∗
g(res

G
∆g (X))) π∆

∗ (res
G
∆(c
∗
g(X)))

trΓ∆

// πΓ
∗ (c
∗
g(X))

Naturality of restriction and transfer for the morphism of orthogonal G-spectra
lg : c

∗
g(X) −→ X then yields the desired relation:

g⋆ ◦ trΓ
g

∆g = (lg)∗ ◦ c∗g ◦ trΓ
g

∆g = (lg)∗ ◦ trΓ∆ ◦c∗g = trΓ∆ ◦(lg)∗ ◦ c∗g = trΓ∆ ◦g⋆
For claim (ii) we exploit that the map g⋆ is natural for morphisms in Ho(SpG) and
commutes with the suspension isomorphism. So it suffices to prove the claim in
the universal example, the identity of SG. Since G acts trivially on SG, we have
c∗g(SG) = SG and lSGg = Id. So c∗g(Id) = Id. �

Now we prove transitivity with respect to a nested triple of finite index sub-
groups Γ ≤ ∆ ≤ G, and the double coset formula.

Proposition 2.1.19. Let Γ be a closed finite index subgroup of a Lie group G.

(i) Let ∆ ≤ G be another closed subgroup with Γ ≤ ∆. Then the transfer maps
are transitive, i.e.,

trG∆ ◦ tr∆Γ = trGΓ : πΓ
∗ (X) −→ πG∗ (X)

for every orthogonal G-spectrum X.
(ii) Let K be another closed subgroup of G. Then for every orthogonal G-spectrum

X the relation

resGK ◦ trGΓ =
∑

[g]∈K\G/Γ

trKK∩gΓ ◦g⋆ ◦ resΓKg∩Γ

holds as maps πΓ
∗ (X) −→ πK∗ (X). Here the sum is indexed over a set of

representatives of the finite set of K-Γ-double cosets in G.

Proof. We reduce both properties to the special case of finite groups. We set

N =
⋂

g∈G

Γg ,

the intersection of all G-conjugates of Γ. Then N is the largest normal subgroup
of G that is contained in Γ, and it is the kernel of the translation action of G on
G/Γ. Hence the quotient group H = G/N acts faithfully on the finite set G/Γ; in
particular, the group H is finite. We let

q : G −→ G/N = H

denote the quotient map, which is a continuous epimorphism. The morphism q
induces an isomorphism of finite G-sets G/Γ ∼= q∗(H/I), where I = q(Γ) = Γ/N ,
and hence an isomorphism of orthogonal G-spectra from G ⋉Γ SΓ to q∗(Σ∞+H/I).
The natural bijections

πΓ
0 (X) = [SΓ, res

G
Γ (X)]Γ ∼= [G⋉Γ SΓ, X ]G ∼= [q∗(Σ∞+H/I), X ]G
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witness that the functor πΓ
0 : Ho(SpG) −→ (sets) is represented by the orthog-

onal G-spectrum q∗(Σ∞+H/I); the universal element is the class q|∗Γ(uI) in the

group πΓ
0 (q
∗(Σ∞+H/I)), where uI ∈ πI0(Σ

∞
+H/I) is the tautological class (1.3.9).

The formulas of parts (i) and (ii) are relations between natural transformations
of functors on Ho(SpG) with source the representable functor πΓ

0 . By the Yoneda
lemma, it thus suffices to prove the two formulas applied to the universal example
(q∗(Σ∞+H/I), q|∗Γ(uI)).

(i) We set J = q(∆), another subgroup of the finite group H . For the universal
example we can then argue:

trG∆(tr
∆
Γ (q|∗Γ(uI))) = trG∆(q|∗∆(trJI (uI)))

= q∗(trHJ (trJI (uI))) = q∗(trHI (uI)) = trGΓ (q|∗Γ(uI)) .
The third equation is the transitivity property for transfers in the realm of finite
groups, see for example [60, Prop. 3.2.9]. The other three equalities are instances
of the fact that transfers and inflations commute, see Proposition 2.1.14.

(ii) We set J = q(K), another subgroup of the finite group H . For every g ∈ G
the following relation holds:

q|∗K(trJJ∩q(g)I(q(g)⋆(res
I
Jq(g)∩I(uI)))) = trKK∩gΓ(q|∗K∩gΓ(q(g)⋆(res

I
Jq(g)∩I(uI))))

(2.1.20)

= trKK∩gΓ(g⋆(q|∗Kg∩Γ(res
I
Jq(g)∩I(uI))))

= trKK∩gΓ(g⋆(res
Γ
Kg∩Γ(q|∗Γ(uI)))) .

The first equation is Proposition 2.1.14, i.e., the fact that transfers and inflations
commute. The second and third equations are transitivity of restriction maps. Now
we deduce the double coset formula for the universal example:

resGK(trGΓ (q|∗Γ(uI))) = resGK(q∗(trHI (uI))) = q|∗K(resHJ (trHI (uI)))

=
∑

[h]∈J\H/I

q|∗K(trJJ∩hI(h⋆(res
I
Jh∩I(uI))))

(2.1.20) =
∑

[g]∈K\G/Γ

trKK∩gΓ(g⋆(res
Γ
Kg∩Γ(q|∗Γ(uI)))) .

The first equation is Proposition 2.1.14, i.e., the fact that transfers and inflations
commute. The third equation is the classical double coset formula for the subgroups
J = q(K) and I = q(Γ) of the finite group H , see for example [60, Ex. 3.4.11]. The
fourth equation exploits that the epimorphism q induces a bijection from the set
K\G/Γ to the set J\H/I. �

2.2. Equivariant homotopy groups as Mackey functors

IfG is a finite group andX is an orthogonalG-spectrum, then theH-equivariant
homotopy groups πH0 (X), for all subgroups H of G, form a G-Mackey functor, see
for example [35, V.9] or [60, Sec. 3.4]; in this section we generalize this well-known
fact to arbitrary discrete groups. In Definition 2.2.2 we recall the notion of a G-
Mackey functor for discrete groups G, and in Example 2.2.8 we show that the
collection of equivariant homotopy groups of an orthogonal G-spectrum forms a
graded G-Mackey functor. Finally, in Theorem 2.2.9 we identify the heart of the
preferred t-structure on the equivariant stable homotopy category Ho(SpG) with
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the abelian category of G-Mackey functors. A consequence is that every G-Mackey
functor has an Eilenberg-MacLane spectrum, i.e., an orthogonal G-spectrum with
equivariant homotopy groups concentrated in dimension 0, where they realize the
given G-Mackey functor, compare Remark 2.2.11.

Construction 2.2.1 (G-Mackey category). For a discrete group G, the pre-
additive Mackey category AG has as objects all finite subgroups of G. A G-set is
finitely generated if it is generated by finitely many of its element, or – equivalently–
if it has finitely many orbits. For two finite subgroups H and K of G, a span is a
triple (S, α, β) consisting of a finitely generated G-set S and G-maps

G/H
α←−− S

β−−→ G/K .

An isomorphism of spans is an isomorphism of G-sets ψ : S −→ S′ such that
α′ ◦ ψ = α and β′ ◦ ψ = β. The isomorphism classes of spans form an abelian
monoid under disjoint union, and the morphism group AG(H,K) is defined as the
Grothendieck group of isomorphism classes of spans from H to K. Composition

◦ : AG(K,L)×AG(H,K) −→ AG(H,L)

is induced by pullback of spans over the intermediate G-set G/K.

The following definition is taken from [49, Sec. 3].

Definition 2.2.2. Let G be a discrete group. A G-Mackey functor is an
additive functor from the Mackey category AG to the category of abelian groups.
A morphism of G-Mackey functors is a natural transformation. We denote the
category of G-Mackey functors byMG.

As a category of additive functors,MG is an abelian category with enough pro-
jectives and injectives. Monomorphisms, epimorphisms and exactness are detected
objectwise.

As in the case of finite groups, G-Mackey functors also have a description via
transfer, restriction and conjugation maps as follows. Every G-set is the disjoint
union of transitive G-sets, so the group AG(H,K) is a free abelian group with
basis the classes of those spans (S, α, β) where G acts transitively on S. Up to
isomorphism, every such ‘transitive span’ is of the form

(2.2.3) G/H
gγH←[gL←−−−−−− G/L

gL 7→gK−−−−−→ G/K

for some pair (L, γ) consisting of a subgroup L of K and an element γ ∈ G such
that L ≤ γH . Two such pairs (L, γ) and (L′, γ′) define isomorphic spans if and
only if there is an element k ∈ K such that L′ = Lk and γ−1kγ′ ∈ H . A different
way to say the same thing is as an isomorphism

AG(H,K) ∼=
⊕

KγH∈K\G/H

A(K ∩ γH) ,

where on the right hand side A(−) is the Burnside ring functor for finite groups.
The bases of the morphism groups of AG lead to a more computational descrip-

tion of G-Mackey functors by ‘generators and relations’. To specify a G-Mackey
functor M , one has to give the following data:

• an abelian group M(H) for every finite subgroup H of G,
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• a restriction homomorphism resHK : M(H) −→ M(K) and a transfer ho-
momorphism trHK : M(K) −→ M(H) for every pair of nested finite sub-
groups K ≤ H of G, and
• conjugation homomorphisms γ⋆ : M(Hγ) −→M(H) for all γ ∈ G and all
finite subgroups H of G.

These data must satisfy certain conditions which we do not recall here in de-
tails, but refer to [49]. We only summarize them briefly: restrictions, transfers and
conjugations are transitive; conjugations commute with the restriction and trans-
fers; inner automorphisms act as the identity; and finally the double coset formula
holds. In the ‘generators-and-relations’ description of Mackey functors, the image
of a basic transitive span (2.2.3) under a G-Mackey functor M : AG −→ Ab is the
composite

M(H)
resHLγ−−−→ M(Lγ)

γ⋆−−−→ M(L)
trKL−−−→ M(K)

of the restriction map to Lγ , the conjugation by the element γ and the transfer
map to K.

Example 2.2.4. (i) The Burnside ring Mackey functor is the G-Mackey func-
tor A given by

A(H) = A(H) ,

the Burnside ring of the finite subgroup H of G. If G is finite, then A is represented
by the group G itself, hence A is then projective as a G-Mackey functor. If G is
infinite, however, A is neither representable nor projective.

(ii) Given an abelian group B, the constant G-Mackey functor B is given by
B(H) = B, and all restriction and conjugation maps are identity maps. The
transfer trHK : B(K) −→ B(H) is multiplication by the index [H : K].

There is a well-known point set level model of an Eilenberg-MacLane spec-
trumB[S] that we recall in Example 2.2.12; for discrete groups, B[S] is an Eilenberg-
MacLane spectrum for the constant G-Mackey functor B.

(iii) The representation ring G-Mackey functor R assigns to a finite subgroup
H of G the unitary representation ring R(H), i.e., the Grothendieck group of finite-
dimensional complex H-representations, with product induced by tensor product of
representations. The restriction maps are induced by restriction of representations.
The transfer maps are induced by induction of representations.

(iv) Given any generalized cohomology theory E (in the non-equivariant sense),
we can define a G-Mackey functor E by setting

E(H) = E0(BH) ,

the 0-th E-cohomology of a classifying space of the finite group H . Restriction and
conjugation maps come from the contravariant functoriality of classifying spaces in
group homomorphisms. The transfer map for a subgroup inclusion K ≤ H comes
from the stable transfer map associated with the finite covering

BK ≃ (EH)/K −→ (EH)/H = BH .

As we will discuss in Examples 3.3.10 and 3.3.13, the G-Mackey functor E is realized
by the 0th equivariant homotopy groups of a specific orthogonal G-spectrum, the
‘G-Borel theory’ associated with E.

Now we link the purely algebraic concept of a G-Mackey functor to the equi-
variant homotopy groups of orthogonal G-spectra.



74 2. EQUIVARIANT HOMOTOPY GROUPS

Construction 2.2.5. We define an additive functor

Φ : AG −→ Ho(SpG)
op

from the G-Mackey category to the opposite of the triangulated homotopy category
of orthogonal G-spectra. On objects we set Φ(H) = Σ∞+G/H .

We let L ≤ K be two nested finite subgroups of the discrete group G. The
preferred coset eL is an L-fixed point of G/L, so it defines an equivariant homotopy
class

uL ∈ πL0 (Σ
∞
+G/L) ,

compare (1.3.9). By Proposition 1.3.10 there is a unique morphism

tKL : Σ∞+G/K −→ Σ∞+G/L

in the stable homotopy category Ho(SpG), characterized by the property

(tKL )∗(uK) = trKL (uL)

in the group πK0 (Σ∞+ G/L). In other words, the morphism tKL represents the transfer

homomorphism trKL : πL0 (X) −→ πK0 (X) defined in (2.1.13). We emphasize that for
L 6= K, the transfer morphism does not arise from an unstable G-map. For finite
subgroups H and K of G we can now define

(2.2.6) Φ : AG(H,K) −→ [Σ∞+G/K,Σ
∞
+G/H ]G

as the homomorphism that sends the basis element (2.2.3) indexed by a pair (L, γ)
to the composite morphism

Σ∞+ G/K
tKL−−→ Σ∞+G/L

Σ∞
+ π−−−→ Σ∞+G/H .

Here π : G/L −→ G/H is the G-map defined by

π(gL) = gγH .

The various properties of the transfer homomorphisms translate into corresponding
properties of the representing morphisms: the normalization tKK = Id, transitivity

tKL ◦ tJK = tJL

for nested triples of finite subgroups L ≤ K ≤ J , and compatibility with conjugation

(Σ∞+ lγ) ◦ tKL = tK
γ

Lγ ◦ (Σ∞+ lγ) .

If H and L are both subgroups of K, we write ρKH : G/H −→ G/K for the quo-
tient map, which satisfies (Σ∞+ ρ

K
H)∗(uH) = resKH(uK). The double coset formula

Proposition 2.1.19 (ii) for the orthogonal K-spectrum Σ∞+G/L yields

(tKL ◦ Σ∞+ ρKH)∗(uH) = (tKL )∗((Σ
∞
+ ρ

K
H)∗(uH)) = (tKL )∗(res

K
H(uK))

= resKH((tKL )∗(uK)) = resKH(trKL (uL))

=
∑

KγL∈H\K/L

trHH∩γL(γ⋆(res
L
Hγ∩L(uL)))

=
∑

KγL∈H\K/L

(

(Σ∞+ ρ
L
Hγ∩L) ◦ (Σ∞+ lγ) ◦ tHH∩γL

)

∗
(uH) .(2.2.7)
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The last equality exploits the relations

trHH∩γL(γ⋆(res
L
Hγ∩L(uL))) = trHH∩γL(γ⋆((Σ

∞
+ ρ

L
Hγ∩L)∗(uHγ∩L)))

= trHH∩γL((Σ
∞
+ ρ

L
Hγ∩L)∗(γ⋆(uHγ∩L)))

= trHH∩γL((Σ
∞
+ ρ

L
Hγ∩L)∗((Σ

∞
+ lγ)∗(uH∩γL)))

= (Σ∞+ ρ
L
Hγ∩L)∗((Σ

∞
+ lγ)∗(tr

H
H∩γL(uH∩γL)))

= (Σ∞+ ρ
L
Hγ∩L)∗((Σ

∞
+ lγ)∗((t

H
H∩γL)∗(uH)))

=
(

(Σ∞+ ρ
L
Hγ∩L) ◦ (Σ∞+ lγ) ◦ tHH∩γL

)

∗
(uH) .

By the representability property of Proposition 1.3.10, the relation (2.2.7) implies
the relation

tKL ◦ ρKH =
∑

KγL∈H\K/L

(Σ∞+ ρ
L
Hγ∩L) ◦ (Σ∞+ lγ) ◦ tHH∩γL

as morphisms Σ∞+G/H −→ Σ∞+ G/L. Altogether, these properties imply functori-
ality of the homomorphisms Φ.

Example 2.2.8 (G-Mackey functor of an orthogonalG-spectrum). We can now
associate a G-Mackey functor π0(X) to every orthogonal G-spectrum X , namely
as the composite functor

AG
Φ−−→ Ho(SpG)

op [−,X]G−−−−−→ Ab ,
where Φ was introduced in Construction 2.2.5. We take the time to translate this
definition into the ‘explicit’ description of Mackey functors in terms of restriction,
conjugation and transfer homomorphisms. For every finite subgroup H of G, eval-
uation at the class uH ∈ πH0 (Σ∞+ G/H) is an isomorphism

π0(X)(H) = [Σ∞+G/H,X ]G ∼= πH0 (X) ,

see Proposition 1.3.10. Now we let K ≤ H be nested finite subgroups of G. Under
the above identification, the restriction map resHK : πH0 (X) −→ πK0 (X) becomes a
special case of the restriction homomorphism (2.1.8) for the inclusion K −→ H .
The transfer map trHK : πK0 (X) −→ πH0 (X) becomes the one defined in Construc-

tion 2.1.12; the conjugation homomorphism γ⋆ : πH
γ

0 (X) −→ πH0 (X) was defined
in (2.1.16). Since H and K are finite, the groups πH0 (X) and πK0 (X) have the ex-
plicit colimit descriptions (1.2.3), and in this picture, restriction, conjugation and
transfer are the ‘classical’ ones in the context of equivariant homotopy theory of
finite groups, see for example Constructions 3.1.5 and 3.2.7 of [60].

In Corollary 1.3.16 above we established a non-degenerate t-structure on the
G-equivariant stable homotopy category Ho(SpG), in which the classes of connec-
tive and coconnective objects are detected by equivariant homotopy groups at all
compact subgroups of G. The heart H of this t-structure consist of those orthog-
onal G-spectra X such that πHn (X) = 0 for all compact subgroups H of G and
all n 6= 0. In the special case of discrete groups, we will now identify the heart with
the abelian category of G-Mackey functors.

Part (i) of the following Theorem 2.2.9 says that for every finite subgroup
H ≤ G, the G-Mackey functor π0(Σ

∞
+ G/H) is a free G-Mackey functor represented

by the object H of AG. Part (ii) implies that every G-Mackey functor arises from
an orthogonal G-spectrum, see also Remark 2.2.11.
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Theorem 2.2.9. Let G be a discrete group.

(i) The maps (2.2.6) define a fully faithful functor Φ : AG −→ Ho(SpG)
op.

(ii) The functor

π0 : H −→ MG

is an equivalence of categories from the heart of the t-structure on Ho(SpG)
to the category of G-Mackey functors.

Proof. (i) The argument is essentially the same as for finite groups, so we
will be brief. The maps Φ : AG(H,K) −→ [Σ∞+G/K,Σ

∞
+G/H ]G are additive, by

definition, and they send the identity of H to the identity of Σ∞+G/H .
To see that Φ is fully faithful it suffices, by Proposition 1.3.10, to show that

the map

AG(H,K) −→ πK0 (Σ∞+G/H)

sending the basis element (2.2.3) to the class trKL (γ⋆(res
H
Lγ (uH))) is an isomorphism.

By [60, Thm. 3.3.15 (i)], the group πK0 (Σ∞+ G/H) is free abelian, with a basis given

by the classes trKL (σL(γH)), where L runs through conjugacy classes of subgroups
of K, and γH runs through WKL-orbits of the set (G/H)L, and σL(γH) is the
class in πL0 (Σ

∞
+G/H) represented by the L-map S0 −→ G/H+ = (Σ∞+G/H)(0)

sending 0 to γH . The fact that γH is an L-fixed point of G/H precisely means
that Lγ ≤ H , and in our present notation we have

σL(γH) = γ⋆(σ
Lγ

(eH)) = γ⋆(res
H
Lγ (uH)) .

So our claim follows from the fact that sending γH ∈ (G/H)L to the equivalence
class of the span (2.2.3) passes to a bijection between the WKL-orbits of (G/H)L

and the equivalence classes of transitive span in which the middle term is isomor-
phic to G/L. Altogether, this shows that the functor Φ takes the preferred basis
of AG(H,K) given by ‘transitive spans’ to a basis of πK0 (Σ∞+ G/H), so it is an
isomorphism.

(ii) We denote by End the ‘endomorphism category’ of the preferred small
generators, i.e., the full pre-additive subcategory of Ho(SpG) with objects Σ∞+G/H
for all finite subgroups H of G. By an End-module we mean an additive functor

Endop −→ Ab
from the opposite category of End. The tautological functor

(2.2.10) Ho(SpG) −→ mod- End

takes an object X to the restriction of the contravariant Hom-functor [−, X ]G to
the full subcategory End. By Proposition 1.3.11, the spectra Σ∞+G/H form a set
of small weak generators for the triangulated category Ho(SpG); moreover, the
group of maps from a generator to a positive shift of any other generator is trivial,
compare (1.3.13). So [6, Thm. III.3.4] applies and shows that the restriction of
the tautological functor (2.2.10) to the heart of the t-structure is an equivalence of
categories

H ∼=−−→ mod- End .

Part (i) shows that the functor Φ : AG −→ Endop is an isomorphism of pre-additive
categories, so it induces an isomorphism between the category of End-modules and
the category of G-Mackey functors. This equivalence turns the End-module [−, X ]G

into the G-Mackey functor π0(X). This completes the proof. �
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Remark 2.2.11 (Eilenberg-MacLane spectra for G-Mackey functors). For dis-
crete groups G, part (ii) of Theorem 2.2.9 in particular provides an Eilenberg-
MacLane spectrum for every G-Mackey functor M , i.e., an orthogonal G-spectrum
HM such that πk(HM) = 0 for all k 6= 0 and such that the G-Mackey functor
π0(HM) is isomorphic to M ; and these properties characterize HM up to pre-
ferred isomorphism in Ho(SpG). Indeed, a choice of inverse to the equivalence π0 of
Theorem 2.2.9 (ii), composed with the inclusion of the heart, provides an Eilenberg-
MacLane functor

H : MG −→ Ho(SpG)

to the stable G-homotopy category.

The previous remark constructs Eilenberg-MacLane spectra associated to G-
Mackey functors; the stable G-homotopy type is determined by the algebraic input
data up to preferred isomorphism, but the construction is an abstract version of
‘killing homotopy groups’ and does not yield an explicit pointset level model. In
the next example we recall a well-known pointset level construction that yields an
Eilenberg-MacLane spectrum for the constant G-Mackey functor, compare Exam-
ple 2.2.4 (ii).

Example 2.2.12 (Eilenberg-MacLane spectra for constant Mackey functors).
Let B be an abelian group. The orthogonal Eilenberg-MacLane spectrum B[S] is
defined at an inner product space V by

B[S](V ) = B[SV ] ,

the reduced B-linearization of the V -sphere. The underlying set of this space con-
sists of finite linear combinations of elements of SV with coefficients in B, modulo
the subgroup of B-multiples of the basepoint. The topology is as a quotient space
of ∐n≥0Bn × (SV )n.

The orthogonal group O(V ) acts through the action on SV and the structure
map σV,W : SV ∧B[S](W ) −→ B[S](V ⊕W ) is given by

SV ∧B[SW ] −→ B[SV⊕W ] , v ∧
(

∑

i
bi · wi

)

7−→
∑

i
bi · (v ∧ wi) .

The underlying non-equivariant space of B[SV ] is an Eilenberg-MacLane space of
type (B, n), where n = dim(V ). Hence the underlying non-equivariant homotopy
type of B[S] is that of an Eilenberg-MacLane spectrum for B. If G is any Lie
group, then B[S] becomes an orthogonal G-spectrum by letting G act trivially. We
warn the reader that for compact Lie groups of positive dimension, the equivariant
homotopy groups of B[S] are not generally concentrated in dimension zero; for

example, the group π
U(1)
1 (Z[S]) is isomorphic to Q by [60, Thm. 5.3.16]. Also, the

group πG0 (B[S]) may not be isomorphic to B; for example, the group π
SU(2)
0 (Z[S])

has rank 2 by [59, Ex. 4.16].
However, for discrete groups G, the equivariant behavior of B[S] is as expected,

and the orthogonal G-spectrum B[S] is an Eilenberg-MacLane spectrum of the
constant G-Mackey functor B. Indeed, B[S] is obtained from a Γ-space B[−] by
evaluation on spheres. For every finite subgroup K of G, we can view this Γ-space
as a Γ-K-space by letting K act trivially. For every finite K-set S, the map

PS : B[S] −→ B[1+]
S = BS

is then a homeomorphism, so in particular a K-homotopy equivalence, and B[−] is
a very special Γ-K-space in the sense of Shimakawa [69, Def. 1.3]. Since π0(B[1+])
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is a group (as opposed to a monoid only), Shimakawa’s Theorem B proves that
the adjoint structure maps σ̃V,W : B[SV ] −→ map(SW , B[SV⊕W ]) are K-weak
equivalences, see also [60, Thm.B.61]. Since K was an arbitrary finite subgroup of
G, this shows that B[S] is a G-Ω-spectrum, and an Eilenberg-MacLane spectrum
for B.

2.3. Rational proper stable homotopy theory

The purpose of this section is to give an algebraic model for the rational proper
G-equivariant stable homotopy category of a discrete group. We call an orthogonal
G-spectrum X rational if the equivariant homotopy groups πHk (X) are uniquely
divisible (i.e., Q-vector spaces) for all compact subgroups H of G. For discrete
groups G, Theorem 2.3.4 below shows that the full triangulated subcategory of
rational G-spectra inside Ho(SpG) is equivalent to the unbounded derived category
of rational G-Mackey functors. As in the case of finite groups, the abelian category
of rational G-Mackey functors can be simplified by ‘dividing out transfers’, see
Proposition 2.3.5. However – in contrast to the case of finite groups – this abelian
category is in general not semisimple, see Remark 2.3.7.

Remark 2.3.1. Let G be a Lie group and X a rational orthogonal G-spectrum.
For n ∈ Z we let n ·X ∈ [X,X ]G denote the n-fold sum of the identity morphism of
X . For every compact subgroup H of G, the morphism n ·X induces multiplication
by n on πH∗ (X), which is invertible since X is rational. This means that n ·X is an
isomorphism in Ho(SpG). Hence the endomorphism ring [X,X ]G of X in Ho(SpG)

is a Q-algebra. So all morphism groups in the full subcategory HoQ(SpG) of rational

spectra are uniquely divisible, i.e., HoQ(SpG) is a Q-linear category.

Proposition 2.3.2. Let H and K be finite subgroups of a discrete group G.
Then the equivariant homotopy group πKk (Σ∞+G/H) is torsion for every k > 0.

Proof. The underlying K-space of G/H is the disjoint union of its K-orbits
K(gH); this becomes a wedge decomposition after passing to unreduced suspen-
sion spectra. Since equivariant homotopy groups takes wedges to direct sums,
πKk (Σ∞+ G/H) is isomorphic to the direct sum, indexed by K-H-double coset, of the

groups πKk (Σ∞+K(gH)). The K-set K(gH) is isomorphic to K/(K ∩ gH), so the
Wirthmüller isomorphism [78], see also (2.1.11) or [60, Thm. 3.2.15], provides an
identification

πK∗ (Σ
∞
+K(gH)) ∼= πK∗ (Σ

∞
+K/(K ∩ gH)) ∼= πK∩

gH
∗ (SG) .

The claim thus follows because for every finite group L, the L-equivariant stable
stems are finite in positive degrees. To see this, we can exploit the fact that the
groups πLk (SG) can rationally be recovered as the product of the WLJ-fixed sub-
group of the geometric fixed point homotopy groups ΦJk (SG), see for example [60,
Cor. 3.4.28]; the latter groups are stable homotopy groups of spheres, which are
finite in positive degrees. �

Before establishing an algebraic model for the rational stable G-homotopy cat-
egory, we first recall the two rational model structures to be compared. We let A
be a pre-additive category, such as the Mackey category AG. We denote by A -mod
the category of additive functors from A to the category of Q-vector spaces. This is
an abelian category, and the rationalized represented functors Q ⊗A(a,−), for all
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objects a of A, form a set of finitely presented projective generators of A -mod. The
category of Z-graded chain complexes in the abelian category A -mod then admits
the projective model structure with the quasi-isomorphisms as weak equivalences.
The fibrations in the projective model structure are those chain morphisms that are
surjective in every chain complex degree and at every object of A. This projective
model structure for complexes of A-modules is a special case of [11, Thm. 5.1].

We also need the rational version of the stable model structure on orthogonal
G-spectra established in Theorem 1.2.22. We call a morphism f : X −→ Y of
orthogonal G-spectra a rational equivalence if the map

Q⊗ πHk (f) : Q⊗ πHk (X) −→ Q⊗ πHk (Y )

is an isomorphism for all integers k and all compact subgroups H of G.

Theorem 2.3.3 (Rational stable model structure). Let G be a Lie group.

(i) The rational equivalences and the cofibrations are part of a model structure on
the category of orthogonal G-spectra, the rational stable model structure.

(ii) The fibrant objects in the rational stable model structure are the rational G-
Ω-spectra.

(iii) The rational stable model structure is cofibrantly generated, proper and topo-
logical.

Theorem 2.3.3 is obtained by Bousfield localization of the stable model struc-
ture on orthogonal G-spectra, and one can use a similar proof as for the rational
stable model structure on sequential spectra in [63, Lemma 4.1]. We omit the
details.

Theorem 2.3.4. Let G be a discrete group. There is a chain of Quillen equiv-
alences between the category of orthogonal G-spectra with the rational stable model
structure and the category of chain complexes of rational G-Mackey functors. In
particular, this induces an equivalence of triangulated categories

HoQ(SpG)
∼=−−→ D

(

MQ
G

)

.

The equivalence can be chosen so that the homotopy G-Mackey functor on the left
hand side corresponds to the homology G-Mackey functor on the right hand side.

Proof. We prove this as a special case of the ‘generalized tilting theorem’ of
Brooke Shipley and the fifth author. Indeed, by Corollary 1.3.11 the unreduced
suspension spectra of the G-sets G/H are small weak generators of the stable G-
homotopy category Ho(SpG) as H varies through all finite subgroups of G. So
the rationalizations (Σ∞+ G/H)Q are small weak generators of the rational stable

G-homotopy category HoQ(SpG).
By Proposition 1.3.10 the evaluation map

[Σ∞+G/H,X ]G∗ −→ πH∗ (X) , [f ] 7−→ f∗(uH)

is an isomorphism, where uH ∈ πH0 (Σ∞+ G/H) is the tautological class. So the
graded morphism groups between the small generators are given by

[(Σ∞+G/K)Q[k], (Σ
∞
+G/H)Q] ∼= πKk ((Σ∞+ G/H)Q) ∼= Q⊗ πKk (Σ∞+G/H)

∼=
{

Q⊗AG(H,K) for k = 0, and

0 for k 6= 0.
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Here we have used Theorem 2.2.9, Proposition 2.3.2, and the fact that the equivari-
ant homotopy groups of unreduced suspension spectra vanish in negative dimen-
sions, see for example [60, Prop. 3.1.44]. The rational stable model structure on
orthogonalG-spectra is topological (hence simplicial), cofibrantly generated, proper
and stable; so we can apply the ‘generalized tilting theorem’ [64, Thm. 5.1.1]. This
theorem yields a chain of Quillen equivalences between orthogonal G-spectra in the
rational stable model structure and the category of chain complexes of Q ⊗ AG-
modules, i.e., additive functors from the rationalized G-Mackey category Q ⊗AG

to abelian groups. This functor category is equivalent to the category of additive
functors from AG to Q-vector spaces, and this proves the theorem. �

There is a further algebraic simplification of the category of rational G-Mackey
functors: Given a G-Mackey functor M and a finite subgroup H of G, we let
τ(M)(H) denote the quotient of M(H) by all transfers from proper subgroups of
H . The values τ(M)(H) no longer assemble into a G-Mackey functor, but they
inherit induced conjugation maps g⋆ : τ(M)(Hg) −→ τ(M)(H) since conjugations
and transfers of G-Mackey functors commute. We let ConjG denote the conjuga-
tion category of G, i.e., the category with objects the finite subgroups of G and
morphisms ConjG(H,K) = {g ∈ G | gH = K}/K, the set of elements of G which
conjugate H onto K, modulo conjugation by elements of K. Then τ(M) naturally
forms a covariant functor from ConjG to abelian groups.

It turns out that every rational G-Mackey functor M can be reconstructed
uniquely from the ConjG-functor τ(M):

Proposition 2.3.5. For every discrete group G, the functor τ : MQ
G −→

F(ConjG,Q) is an equivalence of abelian categories.

Proof. We explain how to deduce the claim from the finite group case, which
can be found in [22, App. A] or [60, Thm. 3.4.22]. When comparing to [22, App.
A], one must use that quotienting M(H) by all proper transfers can be identified
with inverting the idempotent called eH in [22, App. A].

Since τ commutes with colimits and MQ
G is a functor category, τ has a right

adjointR : F(ConjG,Q) −→MQ
G. The value of the right adjoint at a ConjG-functor

N is given by

R(N)(H) = NatConjG(τ(Q ⊗AG(H,−)), N) ,

where H is a finite subgroup of G and AG(H,−) denotes the represented G-Mackey
functor. We claim that, as a Q-vector space, R(N)(H) only depends on the un-
derlying ConjH -functor of N . For this we note that τ(Q ⊗AG(H,−))(K) can be
identified with the Q-linearization of the set of G-equivariant maps from G/K to
G/H . This set corresponds to the subset of elements g ∈ G for which the conjugate
Kg is a subgroup of H , modulo the right H-action. Stated differently, it is the dis-
joint union of the sets of all g such that gJ is equal to K, where J ranges through
all subgroups ofH , again modulo H . This yields an isomorphism of ConjG-modules

τ(Q ⊗AG(H,−)) ∼= (
⊕

J⊆H

Q[ConjG(J,−)])/H .

Thus, for every rational ConjG-functor N the morphism group NatConjG(τ(Q ⊗
AG(H,−)), N) is naturally isomorphic to (

⊕

J⊆H N(J))H . In particular, it only
depends on the underlying ConjH -functor of N , which proves the claim.
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By definition, the value τ(M)(H) also only depends on the underlying H-
Mackey functor of M . Both in G-Mackey functors and in ConjG-functors isomor-
phisms are tested levelwise, so we can reduce to the finite group case to see that
unit and counit of the adjunction are isomorphisms, compare [60, Thm. 3.4.22].
This finishes the proof. �

The category ConjG is a groupoid and equivalent to the disjoint union of Weyl
groups WGH = (NGH)/H , where H ranges through a system of representatives
of conjugacy classes of finite subgroups. Hence the category of ConjG-functors is
equivalent to the product of the Q[WGH ]-module categories. Since forming derived
categories commutes with products of abelian categories, we get:

Corollary 2.3.6. Let G be a discrete group. The rational stable G-homotopy
category is equivalent to the product of the derived categories of Q[WGH ]-modules,
where H ranges through a system of representatives of conjugacy classes of finite
subgroups of G.

The equivalence of the previous corollary is implemented by ‘geometric fixed
points’, see [60, Prop. 3.4.26] for the precise statement.

Remark 2.3.7. There is an important homological difference between rational
G-Mackey functors for finite groups versus infinite discrete groups. If G is finite, all
Weyl groups of subgroups are also finite and hence the abelian category of rational
G-Mackey functors is semisimple. So every object is projective and injective and
the derived category is equivalent, by taking homology, to the category of graded
rational Mackey functors over G.

This does not generalize to rational G-Mackey functors for infinite discrete
groups. Indeed, already the simplest case G = Z illustrates this. Since the trivial
subgroup is the only finite subgroup of Z, the category of Z-Mackey functors is
equivalent to the category of abelian groups with a Z-action; this category in turn
is equivalent to the category of modules over the Laurent series ring Z[t, t−1]. So

HoQ(SpZ) is equivalent to the derived category of the ring Q[t, t−1] which has global
dimension 1. For example, Q, with t acting as the identity, is not projective.

Example 2.3.8. As an example we consider the G-sphere spectrum SG. For
every finite subgroup H of G, the group πHk (SG) is the k-th H-equivariant stable
stem. So this group is trivial for negative k, finite for positive k, and isomorphic to
the Burnside ring of H for k = 0. Hence

Q⊗ πk(SG) ∼=
{

Q⊗ A for k = 0, and

0 for k 6= 0.

Since the rationalized homotopy group G-Mackey functors are concentrated in a
single degree, the equivalence of categories of Theorem 2.3.4 takes the G-sphere
spectrum to the G-Mackey functor Q⊗ A, considered as a complex in degree 0.

The equivalence of categories in particular induces isomorphisms of the graded
endomorphism rings of corresponding objects. The graded endomorphism ring of
a G-Mackey functor M in the derived category is its Ext algebra, i.e., the graded
abelian group Ext∗MG

(M,M) with multiplication by Yoneda product (splicing of
exact sequences). So we conclude that

Q⊗ [SG[k], SG]
G ∼= D(MG)(Q ⊗ A[k],Q⊗ A) ∼= Ext−kMG

(Q⊗ A,Q⊗ A) .
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For infinite groups G, the Burnside ring G-Mackey functor is typically neither
projective nor injective, and has non-trivial Ext groups in non-zero degrees. So for
infinite groups G, the G-sphere spectrum typically has non-trivial stable self-maps
of negative degrees.

Again, the simplest case G = Z already illustrates this phenomenon. As we
explained in the previous remark, the category of Z-Mackey functors is equivalent,
by evaluation at the trivial subgroup, to the category of Z[t, t−1]-modules, and
the Burnside ring Z-Mackey functor corresponds to Z with t acting as the iden-
tity. The Ext algebra of this Z[t, t−1]-module is an exterior algebra on a class in
Ext1Z[t,t−1](Z,Z). So the rationalized algebra is an exterior algebra over Q on one

generator of (cohomological) degree 1.
The exterior generator in Q ⊗ [SZ, SZ[1]]

Z is realized by the universal cover of
the circle, in the following sense. The real line R is a Z-space by translation:

Z× R −→ R , (n, x) 7−→ n+ x .

In fact, this action makes R into a universal space for the group Z (for proper
actions or, equivalently, for free actions). Since R is non-equivariantly contractible,
the unique map R −→ ∗ is a Com-weak equivalence, so we obtain a weak Z-map
from a point to S1 as the composite

∗ ≃←−− R −−→ S1 ,

where the right map is a universal cover. Adding disjoint basepoints to ∗ and R,
passing to suspension spectra and going into the stable homotopy category Ho(SpZ)
produces a non-trivial self map of SZ of degree −1.



CHAPTER 3

Proper equivariant cohomology theories

3.1. Excisive functors from G-spectra

In this section we discuss ‘excisive functors’, i.e., contravariant homotopy func-
tors defined on finite proper G-CW-complexes that satisfy excision for certain
pushouts, see Definition 3.1.1. Excisive functors are the components of proper
G-cohomology theories, to be studied in Section 3.2 below. In Construction 3.1.9
we recall the classical procedure to define an excisive functor from a sequential
G-spectrum. Remark 3.1.12 explains why the excisive functors represented by se-
quential G-spectra are precisely the ones represented by ‘G-orbit spectra’ in the
sense of Davis and the third author [13, Def. 4.1], i.e., by contravariant functors
from the Fin-orbit category of G to spectra.

In Definition 3.1.13 we explain that orthogonal G-spectra also define excisive
functors by taking morphism groups in the triangulated stable homotopy category
Ho(SpG) from unreduced suspension spectra. As we show in the proof of Propo-
sition 3.1.15, every such ‘represented’ cohomology theory is also represented by
a sequential G-spectrum, namely the underlying sequential G-spectrum of a π∗-
isomorphic orthogonal G-Ω-spectrum. While the represented functor [Σ∞+ (−), E]G

is easily seen to extend to a proper G-cohomology theory, it does not come with
explicit ‘cycles’ that represent cohomology classes. This makes it difficult to com-
pare the represented G-cohomology theory with other theories, such as equivariant
cohomotopy or equivariant K-theory. To remedy this, Construction 3.1.19 intro-
duces a more down-to-earth description, in the case of discrete groups, based on
parameterized equivariant homotopy theory, of the excisive functor represented by
an orthogonal G-spectrum E. The construction generalizes the equivariant coho-
motopy groups of the third author [38, Sec. 6], which is the special case E = SG
of the equivariant sphere spectrum; many of the arguments are inspired by that
special case. We then show in Theorem 3.1.34 that for discrete groups, the new
theory agrees with the represented theory.

Definition 3.1.1. Let G be a Lie group. A functor

H : (finite proper G-CW-complexes)op −→ Ab

is excisive if it satisfies the following conditions:

(i) (Homotopy invariance) Let f, f ′ : Y −→ X be continuous G-maps between fi-
nite proper G-CW-complexes that are equivariantly homotopic. Then H(f) =
H(f ′).

(ii) (Additivity) For all finite proper G-CW-complexes X and Y , the map

(i∗X , i
∗
Y ) : H(X ∐ Y ) −→ H(X)×H(Y )

83
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is bijective, where iX : X −→ X ∐Y and iY : Y −→ X ∐ Y are the summand
inclusions.

(iii) (Excision) Let (X,A) and (Y,B) be two finite proper G-CW-pairs, and let

(3.1.2)

A
i //

f

��

X

g

��
B

j
// Y

be a pushout square of G-spaces, where the horizontal maps are inclusions,
and f and g are cellular maps. Then for all (b, x) ∈ H(B) ×H(X) such that
f∗(b) = i∗(x) in H(A), there is an element y ∈ H(Y ) such that j∗(y) = b and
g∗(y) = x.

Now we develop some general features of excisive functors, in particular a 5-
term Mayer-Vietoris sequence, see Proposition 3.1.5. For a finite G-CW-pair (X,A)
we use the notation

H(X |A) = ker(i∗ : H(X) −→ H(A)) ,
where i : A −→ X is the inclusion.

Proposition 3.1.3. Let G be a Lie group and let f : A −→ Y be a cellular
G-map between finite proper G-CW-complexes. Then for every excisive functor H,
the canonical map A× S1 −→ Y ∪A×∞,f A× S1 induces an isomorphism

H(Y ∪A×∞ A× S1|Y )
∼=−−→ H(A× S1|A×∞) .

Proof. We start with the special case where f is the inclusion of a subcomplex.
Then both squares in the commutative diagram

A

��

(−,∞) // A× S1

��

proj // A

��
Y // Y ∪A×∞ A× S1

proj
// Y

are pushouts, where all vertical maps are inclusions. Excision for the left square is
the surjectivity of the map in question.

For injectivity we consider a class w ∈ H(Y ∪A×∞ A × S1|Y ) that restricts to
0 on A× S1. Excision for the right pushout square provides a class y ∈ H(Y ) such
that proj∗(y) = w. Since the projection restricts to the identity on Y , we obtain
the relation

y = proj∗(y)|Y = w|Y = 0 ,

and hence also w = proj∗(y) = 0.
Now we treat the general case where f : A −→ Y is an arbitrary cellular G-

map. We let Z = A × [0, 1] ∪A×1,f Y be the mapping cylinder of f . The map
(−, 0) : A −→ Z is the inclusion of a subcomplex, and the map q : Z −→ Y
that projects A × [0, 1] to A and is the identity on Y is an equivariant homotopy
equivalence. So the induced map

q ∪ (A× S1) : Z ∪A×∞ A× S1 −→ Y ∪A×∞ A× S1
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is also an equivariant homotopy equivalence, by the gluing lemma. The two induced
maps

H(Y ∪A×∞ A× S1|Y )
(q∪(A×S1))∗−−−−−−−−→ H(Z ∪A×∞ A× S1|Z)

(−,0)∗−−−−−→ H(A× S1|A×∞) .

are then isomorphisms by homotopy invariance and the previous paragraph, respec-
tively. So the composite is an isomorphism, which proves the claim. �

As we shall now explain, the excision property extends to a Mayer-Vietoris
sequence for a pushout square of G-spaces (3.1.2), where (X,A) and (Y,B) are
finite proper G-CW-pairs. We define a connecting homomorphism

(3.1.4) ∂ : H(A× S1|A×∞) −→ H(Y )

as the composite

H(A× S1|A×∞)
∼=−−→ H(Y ∪A×∞ A× S1|Y )

incl−−→ H(Y ∪A×∞ A× S1)

(j∪(A×t)∪g)∗−−−−−−−−−→ H(B ∪A×0,f A× [0, 1] ∪A×1 X)
(q∗)−1

−−−−→
∼=

H(Y ) .

The first isomorphism is the one provided by Proposition 3.1.3. The quotient map
t : [0, 1] −→ S1 was defined in (1.3.3). The map

q = j ∪ (g|A ◦ proj) ∪ g : B ∪A×0,f A× [0, 1] ∪A×1 X −→ Y

is an equivariant homotopy equivalence, so it induces an isomorphism in the homo-
topy functor H.

Proposition 3.1.5. Let G be a Lie group and H an excisive functor. Let
(X,A) and (Y,B) be two finite proper G-CW-pairs, and let (3.1.2) be a pushout
square of G-spaces, where f and g are cellular maps. Then the following sequence
is exact:

H(B × S1|B ×∞)×H(X × S1|X ×∞)
(f×S1)∗−(i×S1)∗−−−−−−−−−−−−→ H(A× S1|A×∞)

∂−−−−→ H(Y )
(j∗,g∗)−−−−→ H(B) ×H(X)

f∗−i∗−−−−→ H(A)
Proof. Exactness at H(B)×H(X) is the excision property for the functor H.

For exactness at H(Y ) we consider the pushout square:

(3.1.6)

B ∐X ι //

j+g

��

B ∪A×0,f A× [0, 1] ∪A×1 X

j∪(A×t)∪g

��
Y

incl
// Y ∪A×∞ A× S1

Excision for this square provides an exact sequence

H(Y ∪A×∞A×S1|Y )
(j∪(A×t)∪g)∗−−−−−−−−−→ H(B∪A×0,fA×[0, 1]∪A×1X)

ι∗−−→ H(B∐X) .

Proposition 3.1.3 identifies the group H(Y ∪A×∞ A × S1|Y ) with H(A × S1|A ×
∞); the equivariant homotopy equivalence q : B ∪A×0,f A × [0, 1] ∪A×1 X −→ Y
induces an isomorphism fromH(Y ) to H(B∪A×0,fA×[0, 1]∪A×1X); and additivity
identifies the group H(B ∐ X) with H(B) × H(X). These substitutions prove
exactness of the original sequence at H(Y ).
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To establish exactness at H(A×S1|A×∞), we employ exactness at the target
of the connecting homomorphism, but for the pushout square (3.1.6) instead of the
original square. The result is an exact sequence

H((B ∐X)× S1|(B ∐X)×∞)
∂−−→ H(Y ∪A×∞ A× S1)

(incl∗,(j∪(A×t)∪g)∗)−−−−−−−−−−−−−−→ H(Y )×H(B ∪A×0,f A× [0, 1] ∪A×1 X) .

The map incl∗ : H(Y ∪A×∞ A × S1) −→ H(Y ) is a split epimorphism, so passing
to kernels gives another exact sequence

H((B ∐X)× S1|(B ∐X)×∞)
∂−−→ H(Y ∪A×∞ A× S1|Y )

(j∪(A×t)∪g)∗−−−−−−−−−→ H(B ∪A×0,f A× [0, 1] ∪A×1 X) .

We use additivity to identify the first group with the product of H(B×S1|B×∞)
and H(X × S1|X × ∞); we use Proposition 3.1.3 to identify the middle group
with H(A × S1|A × ∞); and we use the equivariant homotopy equivalence q :
B ∪A×0,f A× [0, 1] ∪A×1 X −→ Y to identify the third group with H(Y ). Because
the following square commutes

H((B ∐X)× S1|(B ∐X)×∞)

((iB×S
1)∗,(iX×S

1)∗)

��

∂ // H(Y ∪A×∞ A× S1|Y )

∼=

��
H(B × S1|B ×∞)×H(X × S1|X ×∞)

(f×S1)∗−(i×S1)∗
// H(A× S1|A×∞)

these substitutions result in the desired exactness atH(A×S1|A×∞) of the original
sequence. �

The Mayer-Vietoris sequence yields a convenient criterion for checking that a
natural transformation between excisive functors is an isomorphism.

Proposition 3.1.7. Let G be a Lie group and let Ψ : H −→ H′ be a nat-
ural transformation between excisive functors. Suppose that for every compact
subgroup H of G and every non-equivariant finite CW-complex X, the homomor-
phism ΨG/H×X : H(G/H × X) −→ H′(G/H × X) is an isomorphism. Then
ΨY : H(Y ) −→ H′(Y ) is an isomorphism for every finite proper G-CW-complex Y .

Proof. We show by induction over the number of cells in an equivariant CW-
structure on Y that for every non-equivariant finite CW-complex L, the map ΨY×L :
H(Y × L) −→ H′(Y × L) is an isomorphism. Taking L to be a point proves the
claim.

If there are no equivariant cells, then Y and Y × L are empty, and hence
H(Y × L) = H′(Y × L) = 0. If Y is non-empty we choose a pushout square of
G-spaces:

G/H × Sn−1 i //

f

��

G/H ×Dn

g

��
B

j
// Y

Here H is a compact subgroup of G, and B is a G-subcomplex of Y with one
fewer cell. Taking product with L yields another pushout square. We also know by
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induction that Ψ is an isomorphism for B × L and B × L× S1, and by hypothesis
for G/H×Sn−1×L×S1, G/H×Sn−1×L, G/H×Dn×L×S1 and G/H×Dn×L.
So the natural exact sequence

H(B × L× S1|B × L×∞)×H(G/H ×Dn × L× S1|G/H ×Dn × L×∞)

−→ H(G/H × Sn−1 × L× S1|G/H × Sn−1 × L×∞) −→ H(Y × L)
−→ H(B × L)×H(G/H ×Dn × L) −→ H(G/H × Sn−1 × L)

provided by Proposition 3.1.5 and the five lemma show that the map ΨY×L :
H(Y × L) −→ H′(Y × L) is an isomorphism. �

Now we discuss three different ways to define an excisive functor on finite proper
G-CW-complexes from an orthogonal G-spectrum E.

(i) The functor EG〈X〉 is defined as the colimit, over n ≥ 0, of the sets [Sn ∧
X+, E(Rn)]G, compare (3.1.10).

(ii) The functor EG(X) = [Σ∞+X,E]G is represented by E in the triangulated
stable homotopy category Ho(SpG), compare (3.1.14).

(iii) The functor EGJXK is defined via parameterized homotopy classes indexed by
G-vector bundles over X , see Construction 3.1.19.

All three constructions can be extended to Z-graded proper cohomology theories
by replacing E by its shifts E[k], for k ∈ Z, as defined in Remark 1.3.5. The first
functor EG〈−〉 only depends on the underlying sequential G-spectrum of E, and
can also be defined via ‘G-orbit spectra’ in the sense of [13], see Remark 3.1.12.
The second construction EG(−) defines ‘genuine’ proper cohomology theories in
complete generality, for all Lie groups; we refer to Remark 3.2.10 below for an
explanation of the adjective ‘genuine’ in this context. The third functor EGJ−K
is excisive for all discrete groups G, but not generally for positive dimensional Lie
groups with infinitely many components. We explain in Remark 3.1.31 why the
restriction to discrete groups arises here. For discrete groups, EGJXK is naturally
isomorphic to the represented theory EG(X), see Theorem 3.1.34; this isomorphism
is the link to comparing the represented cohomology theories with other theories,
such as equivariant cohomotopy or equivariant K-theory.

Definition 3.1.8. Let G be a Lie group. A sequential G-spectrum E consists
of a sequence of based G-spaces En, for n ≥ 0, and based continuous G-maps
σn : S1 ∧ En −→ E1+n.

Every orthogonal G-spectrum X has an underlying sequential G-spectrum with
terms Xn = X(Rn) and structure maps σn = σR,Rn : S1 ∧Xn −→ X1+n.

Construction 3.1.9. Let G be a Lie group and let E be a sequential G-
spectrum. For every based G-space Y , we define the G-equivariant E-cohomology
group as

ẼG〈Y 〉 = colimn [S
n ∧ Y,En]G∗ ,

where [−,−]G∗ denotes the set of equivariant homotopy classes of based G-maps.
The colimit is taken over the poset of natural numbers, along the maps

[Sn ∧ Y,En]G∗
S1∧−−−−−→ [S1+n ∧ Y, S1 ∧ En]G∗

(σn)∗−−−→ [S1+n ∧ Y,E1+n]
G
∗ .

For n ≥ 2, the set [Sn ∧ Y,En]G∗ is an abelian group under the pinch sum. The
stabilization maps are group homomorphisms, so the colimit inherits an abelian
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group structure. The group ẼG〈−〉 is contravariantly functorial, by precomposition,
for continuous based G-maps in Y .

If X is a finite proper G-CW-complex (without a basepoint), we define the
(unreduced) G-equivariant E-cohomology group as

(3.1.10) EG〈X〉 = ẼG〈X+〉 .
Proposition 3.1.11. Let G be a Lie group and E a sequential G-spectrum.

Then the functor EG〈−〉 is excisive.

Proof. (i) Homotopy invariance is clear by the very definition, since each of
the functors [Sn ∧X+, En]

G sends G-homotopic maps in X to the same map.
(ii) The universal property of a disjoint union, applied to G-maps and G-

equivariant homotopies, shows that for fixed n, the map

(i∗X , i
∗
Y ) : [Sn ∧ (X ∐ Y )+, En]

G
∗ −→ [Sn ∧X+, En]

G
∗ × [Sn ∧ Y+, En]G∗

is bijective. Sequential colimits commute with finite products, so additivity follows
by passing to colimits over n.

(iii) For the excision property we consider two finite proper G-CW-pairs (X,A)
and (Y,B) and a pushout square of G-spaces (3.1.2). We consider two classes
b ∈ EG〈B〉 and x ∈ EG〈X〉 such that f∗(b) = i∗(x) in EG〈A〉. Then b and x
can be represented by continuous based G-maps b̄ : Sn ∧ B+ −→ En and x̄ :
Sn ∧ X+ −→ En, for some n ≥ 0. The hypothesis f∗(b) = i∗(x) means that,
possibly after increasing n, the two based G-maps b̄ ◦ (Sn ∧ f+), x̄ ◦ (Sn ∧ i+) :
Sn ∧ A+ −→ En are equivariantly homotopic. Since (X,A) is a G-CW-pair, the
inclusion Sn∧A+ −→ Sn∧X+ has the G-equivariant homotopy extension property
for continuous based G-maps. So we can modify x̄ into an equivariantly homotopic
based G-map x̃ : Sn ∧X+ −→ En such that b̄ ◦ (Sn ∧ f+) = x̃ ◦ (Sn ∧ i+). Then b̄
and x̃ glue to a continuous based G-map Sn ∧ Y+ −→ En; this G-map represents a
class y ∈ EG〈Y 〉 such that j∗(y) = b and g∗(y) = x. �

Remark 3.1.12 (Cohomology theories from spectra over the orbit category).

We let G be a discrete group. We denote by OrFinG the Fin-orbit category of G,
i.e., the full subcategory of the category of G-sets with objects G/H for all finite
subgroups H of G. Davis and the third author explain in [13, Def. 4.1] how to
construct a proper cohomology theory from a ‘G-orbit spectrum’, i.e., a functor

E :
(

OrFinG

)op −→ SpN

to the category of non-equivariant sequential spectra. We claim that the proper
cohomology theories represented by G-orbit spectra are precisely the ones repre-
sented by sequential G-spectra as in (3.1.10); we sketch this comparison without
giving complete details.

We recall the construction from [13]. For a G-space X , we denote by

Φ(X) :
(

OrFinG

)op −→ T

the fixed point functor, i.e.,

Φ(X)(G/H) = mapG(G/H,X) .

Evaluation at the preferred coset eH is a homeomorphism Φ(X)(G/H) ∼= XH to
the H-fixed point space. The E-cohomology groups are then defined as

EkG(X) = π−k(mapOrFin
G (Φ(X),E)) ,
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the (−k)-th homotopy group of the spectrum mapOrFin
G (Φ(X),E) of natural trans-

formations from Φ(X) to E. By [13, Lemma 4.4], this indeed defines a proper
G-cohomology theory on finite proper G-CW-complexes. Moreover, if E happens
to take values in sequential Ω-spectra, then the cohomology theory also takes arbi-
trary disjoint unions to products.

We shall now explain how sequential G-spectra give rise to G-orbit spectra in
such a way that the Davis-Lück cohomology theory recovers the cohomology theory
as in (3.1.10). As in the case of G-spaces, a sequential G-spectrum E gives rise to
a fixed point diagram of sequential spectra

Φ(E) :
(

OrFinG

)op −→ SpN

by setting

Φ(E)(G/H) = mapG(G/H,E) ∼= EH .

The fixed point functor Φ from G-spaces to spaces over the Fin-orbit category is
fully faithful, so it induces a bijection

[Sn ∧X+, En]
G
∗

Φ−−→
∼=

[Sn ∧Φ(X)+,Φ(En)]
OrFin

G
∗ = πn(mapOrFin

G (Φ(X),Φ(En))) .

Passing to colimits over n yields an isomorphism

EG〈X〉 ∼= Φ(E)0G(X) .

So every sequential G-spectrum gives rise to a G-orbit spectrum that represents the
same proper cohomology theory. The converse is also true. A G-orbit spectrum can
be viewed as a sequential spectrum internal to the category of based spaces over the
Fin-orbit category. Elmendorf’s theorem [19] can be adapted to a Quillen equiv-
alence between the Com-model structure on the category of based G-spaces and
the category of based spaces over the Fin-orbit category (with the objectwise, or

projective, model structure). So every spectrum of based OrFinG -spaces is levelwise
equivalent to Φ(E) for some sequential G-spectrum E.

The next definition is based on the triangulated stable homotopy category
Ho(SpG), so it makes essential use of our entire theory.

Definition 3.1.13. Let G be a Lie group and E an orthogonal G-spectrum.
For every G-space X , we define the represented G-equivariant E-cohomology group
as

(3.1.14) EG(X) = [Σ∞+X,E]G ,

the group of morphisms in Ho(SpG) from the unreduced suspension spectrum of X
to E.

The group EG(X) is contravariantly functorial for continuous G-maps in X .
For the one-point G-space X = ∗, the cohomology group already has another name:

EG(∗) = [SG, E]G ∼= πG0 (E) ,

the 0-th G-equivariant homotopy group of E.

Proposition 3.1.15. Let G be a Lie group and E an orthogonal G-spectrum.
Then the functor EG(−) is excisive.
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Proof. We start with the special case whereE is an orthogonalG-Ω-spectrum.
Since E is fibrant in the stable model structure on SpG, the derived adjunction
isomorphism stemming from the Quillen adjoint functor pair

Σ∞+ : GT // SpG : (−)(0)oo

provides a bijection

[X,E(0)]GT ∼= [Σ∞+X,E]G = EG(X) .

An orthogonal G-Ω-spectrum is in particular a naive Ω-spectrum, i.e., the adjoint
structure map

σ̃R,Rn : E(Rn) −→ ΩE(R1+n)

is a Com-equivalence for every n ≥ 0. For every finite proper G-CW-complex X ,
the based G-space Sn ∧X+ is Com-cofibrant, so the map

(σ̃R,Rn)∗ : [Sn ∧X+, E(Rn)]G∗ −→ [Sn ∧X+,ΩE(R1+n)]G∗

is bijective. Hence also the stabilization maps in the colimit system defining EG〈X〉
are bijective. So the canonical map

[X,E(0)]GT ∼= [X+, E(0)]G∗ −→ colimn≥0 [S
n ∧X+, E(Rn)]G∗ = EG〈X〉

is bijective. Altogether we have exhibited a bijection between EG(X) and EG〈X〉
that is natural for G-maps in X . The functor EG〈−〉 is excisive by Proposition
3.1.11. Since the homotopy invariance, additivity and excision properties do not
use the abelian group structure and only refer to the underlying set-valued functor,
we conclude that the functor EG(−) is also excisive.

In the general case the stable model structure of Theorem 1.2.22 provides a π∗-
isomorphism of orthogonal G-spectra q : E −→ F whose target F is an orthogonal
G-Ω-spectrum. Then γG(q) is an isomorphism in Ho(SpG), and hence induces a
natural isomorphism EG(−) ∼= FG(−). The latter functor is excisive by the previous
paragraph, hence so is the former. �

In order to compare the ‘genuine’ equivariant cohomology theories represented
by orthogonal G-spectra with other theories, such as equivariant cohomotopy [38,
Sec. 6] or equivariant K-theory [42, Sec. 3], we provide another description of the ex-
cisive functor represented by a G-spectrum E. This alternative description EGJXK
is in terms of parameterized equivariant homotopy theory over X , see Construc-
tion 3.1.19. The construction generalizes the equivariant cohomotopy groups of the
third author [38, Sec. 6], which is the special case E = SG of the equivariant sphere
spectrum; many of the arguments are inspired by that special case.

While the definition of the group EGJXK makes sense for all Lie groups, the
excision property established in Theorem 3.1.29 below does not hold in that general-
ity. Consequently, various results that depend on excision for the theory EGJ−K are
only formulated for discrete groups; we explain in Remark 3.1.31 why the restric-
tion to discrete groups arises. The new theory EGJXK calculates the represented
theory EG(X) for discrete groups and finite proper G-CW-complexes X , compare
Theorem 3.1.34 (iv).

Definition 3.1.16. Let G be a Lie group and X a G-space. A retractive
G-space over X is a triple (E, p, s), where E is a G-space, and

p : E −→ X and s : X −→ E



3.1. EXCISIVE FUNCTORS FROM G-SPECTRA 91

are continuous G-maps that satisfy p ◦ s = IdX . If (E′, p′, s′) is another retractive
G-space overX , then a morphism from (E, p, s) to (E′, p′, s′) is a continuous G-map
f : E −→ E′ such that p′◦f = p and s′ = f ◦s. A parameterized homotopy between
two such morphisms is a continuous G-map H : E × I −→ E′ such that H(−, t) is
a morphism of retractive G-spaces over X for every t ∈ [0, 1].

Construction 3.1.17. We let G be a Lie group, E an orthogonal G-spectrum
and ξ : B −→ X a euclidean G-vector bundle over a G-space X . We define a
G-space E(ξ) as follows. If ξ has constant rank n, then we denote by Fn(ξ) the
frame bundle of ξ, i.e., the principal O(n)-bundle whose fiber over x ∈ X is the
space of n-frames (orthonormal bases) of ξx. We now form the space

E(ξ) = Fn(ξ)×O(n) E(Rn)

endowed with the diagonal G-action from the action on ξ and on E(Rn). If the
bundle does not have constant rank, then we let X(n) be the subspace of those
x ∈ X such that dim(ξx) = n. The subspaces X(n) are open by local triviality, and
they are G-invariant. We define

E(ξ) =
∐

n≥0

E(ξ|X(n)
) .

The space E(ξ) comes with a projection to X which is a locally trivial fiber bundle,
with fiber E(Rn) over X(n). The (G × O(n))-fixed basepoint of E(Rn) gives a
preferred section

s : X −→ E(ξ) .

The projection and section are G-equivariant; so we can – and will – consider E(ξ)
as a retractive G-space over X .

An important special case of this construction is when E = SG is the sphere
spectrum. Here we write

Sξ = SG(ξ) = Fn(ξ)×O(n) S
n

for the locally trivial bundle with fiber Sn over X(n). In this situation, the section

s : X −→ Sξ is a Com-cofibration of G-spaces by Proposition 1.2.31. The quotient
space Th(ξ) = Sξ/s(X) is the Thom space of ξ as defined in (1.2.32) above.

The structure maps of the orthogonal G-spectrum E can be used to relate
the spaces defined from different vector bundles. Given another G-vector bundle η
over X of dimension m, a frame in ηx and a frame in ξx concatenate into a frame
in ηx ⊕ ξx = (η ⊕ ξ)x, and the resulting map

Fm(η)×X Fn(ξ) −→ Fm+n(η ⊕ ξ)

is (G×O(m)×O(n))-equivariant. Using the (O(m)×O(n))-equivariant structure
map σm,n : Sm ∧ E(Rn) −→ E(Rm+n) we obtain a continuous G-map

σE,η,ξ : Sη ∧X E(ξ) = (Fm(η)×O(m) S
m) ∧X (Fn(ξ)×O(n) En)

∼= (Fm(η)×X Fn(ξ))×O(m)×O(n) (S
m ∧ E(Rn))

(σm,n)∗−−−−−→ (Fm(η)×X Fn(ξ))×O(m)×O(n) E(Rm+n)

−→ Fm+n(η ⊕ ξ)×O(m+n) E(Rm+n) = E(η ⊕ ξ)
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of retractiveG-spaces overX . If the bundles do not have constant rank, we perform
these constructions separately over the components X(n). If E = SG is the sphere
spectrum, then these structure maps are isomorphisms

Sη ∧X Sξ ∼= Sη⊕ξ

of retractive G-spaces over X .

Definition 3.1.18. We call a morphism ψ : ξ −→ η of euclidean G-vector
bundles an isometric embedding if ψ is fiberwise a linear isometric embedding of
inner product spaces.

Construction 3.1.19. We let G be a Lie group, E an orthogonalG-spectrum,
and X a finite, proper G-CW-complex. We define an abelian group EGJXK as
follows. Elements of EGJXK are equivalence classes of pairs (ξ, u), where

(i) ξ is a euclidean G-vector bundle over X ,
(ii) u : Sξ −→ E(ξ) is a map of retractive G-spaces over X .

To explain the equivalence relation we let ψ : ξ −→ η be an isometric embedding
of euclidean G-vector bundles over X . We write γ for the orthogonal complement
of the image of ψ in η. Then γ is another G-vector bundle over X , and the map

(3.1.20) γ ⊕ ξ −→ η , (x, y) 7−→ x+ ψ(y)

is an isomorphism. If u : Sξ −→ E(ξ) is a map of retractive G-spaces over X , we
write ψ∗(u) for the map of retractive G-spaces

Sη ∼= Sγ ∧X Sξ
Sγ∧Xu−−−−−→ Sγ ∧X E(ξ)

σE,γ,ξ−−−−→ E(γ ⊕ ξ) ∼= E(η) .

We will refer to ψ∗(u) as the stabilization of u along ψ. The two isomorphisms
are induced by the bundle isomorphism (3.1.20). We call two pairs (ξ, u) and
(ξ′, v) equivalent if there is a G-vector bundle η over X and isometric embeddings
ψ : ξ −→ η and ψ′ : ξ′ −→ η such that the two maps of retractive G-spaces

ψ∗(u) , ψ
′
∗(v) : Sη −→ E(η)

are parameterized G-equivariantly homotopic. We omit the verification that this
relation is reflexive, symmetric and transitive, and hence an equivalence relation.

We suppose that ψ : ξ −→ η is an equivariant isometric isomorphism of eu-
clidean G-vector bundles over X . Then ψ is in particular an isometric embedding.
So for every map of retractive G-spaces u : Sξ −→ E(ξ) over X , the pair (ξ, u) is
equivalent to the pair

(η, ψ∗(u)) = (η,E(ψ) ◦ u ◦ Sψ−1

) .

Informally speaking, this says that conjugation by an isometric isomorphism does
not change the class in EGJXK.

The isomorphism classes of G-vector bundles over X form a set, hence so do
the equivalence classes. We write

[ξ, u] ∈ EGJXK

for the equivalence class of a pair (ξ, u). This finishes the definition of the set
EGJXK.

Proposition 3.1.21. Let G be a Lie group, X a finite proper G-CW-complex
and ξ a euclidean G-vector bundle over X.
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(i) Let a, b : ξ −→ ν be two equivariant isometric embeddings of euclidean G-
vector bundles over X. Then i1 ◦ a, i1 ◦ b : ξ −→ ν ⊕ ν are homotopic through
G-equivariant isometric embeddings, where i1 : ν −→ ν ⊕ ν is the embedding
as the first summand.

(ii) Let u, v : Sξ −→ E(ξ) be two maps of retractive G-spaces. Then [ξ, u] = [ξ, v]
in EGJXK if and only if there is an isometric embedding ψ : ξ −→ η of
euclidean G-vector bundles over X such that ψ∗(u), ψ∗(v) : S

η −→ E(η) are
parameterized G-homotopic.

Proof. (i) We let i1, i2 : ν −→ ν ⊕ ν be the embeddings as the first and
second summand, respectively. Then the images of the isometric embeddings i1 ◦
a , i2 ◦ b : ξ −→ ν ⊕ ν are orthogonal. So there is an equivariant homotopy
H : ξ × [0, 1] −→ ν ⊕ ν through isometric embeddings from i1 ◦ a to i2 ◦ b, for
example

H(x, t) = (
√

1− t2 · a(x), t · b(x)) .
For a = b this in particular shows that i1 ◦ b and i2 ◦ b are G-homotopic through
equivariant isometric embeddings. Altogether, i1 ◦ a and i1 ◦ b are G-homotopic
through isometric embeddings.

(ii) The ‘if’ part of the claim holds by definition of the equivalence relation that
defines EGJXK. Now we suppose that conversely, [ξ, u] = [ξ, v] in EGJXK. Then
there are two isometric embeddings a, b : ξ −→ ν of euclidean G-vector bundles over
X such that a∗(u) and b∗(v) are parameterized equivariantly homotopic. Part (i)
provides a homotopy between i1 ◦ a and i1 ◦ b through G-equivariant isometric em-
beddings. The homotopy induces a parameterized equivariant homotopy between
the two maps (i1 ◦a)∗(v) : Sν⊕ν −→ E(ν⊕ν) and (i1 ◦ b)∗(v). So we obtain a chain
of parameterized equivariant homotopies

(i1 ◦ a)∗(u) = (i1)∗(a∗(u)) ≃ (i1)∗(b∗(v)) = (i1 ◦ b)∗(v) ≃ (i1 ◦ a)∗(v) .
So the isometric G-embedding ψ = i1 ◦ a : ξ −→ ν ⊕ ν = η has the desired
property. �

Now we define an abelian group structure on the set EGJXK. We let ∇ : S1 −→
S1 ∨ S1 be a pinch map; for definiteness, we take the same map as in [38, 6.2],
namely

∇(x) =











ln(x) in the first copy of S1 if x ∈ (0,∞),

− ln(−x) in the second copy of S1 if x ∈ (−∞, 0), and
∞ if x ∈ {0,∞}.

By Proposition 3.1.21 we can represent any two given classes of EGJXK by pairs
(ξ, u) and (ξ, v), defined on the same G-vector bundle ξ over X . To add the classes
we stabilize the representative by the trivial line bundle R and then form the ‘pinch
sum’, i.e., the composite

∇(u, v) : SR⊕ξ ∼= S1 ∧X Sξ
∇∧XS

ξ

−−−−−→ (S1 ∨ S1) ∧X Sξ

∼= (S1 ∧X Sξ) ∨X (S1 ∧X Sξ)
(S1∧u)+X(S1∧v)−−−−−−−−−−−−→

∼= S1 ∧X E(ξ)
σE,R,ξ−−−−→ E(R⊕ ξ) .
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This way of adding representatives is compatible with parameterized homotopy and
stabilization along isometric embeddings, so we get a well-defined map

+ : EGJXK× EGJXK −→ EGJXK , [ξ, u] + [ξ, v] = [ξ ⊕ R,∇(u, v)] .
The pinch map is coassociative and counital up to homotopy, and has an inverse
up to homotopy; this implies that the binary operation thus defined is associative
and unital, with the class of the trivial map (with values the respective basepoints)
as unit, and that inverses exist. After stabilizing one additional time by R, the
Eckmann-Hilton argument shows that the binary operation is commutative. So we
have indeed defined an abelian group structure on the set EGJXK.

The groups EGJXK are clearly covariantly functorial for morphisms of orthog-
onal G-spectra in E. A contravariant functoriality in the G-space X arises from
pullback of vector bundles. We let f : Y −→ X be a continuous G-map between
two finite proper G-CW-complexes. We let ξ be a euclidean G-vector bundle over
X and u : Sξ −→ E(ξ) a map of retractive G-spaces over X . Then f∗(ξ) is a
euclidean G-vector bundle over Y , and

f∗(u) : Sf
∗ξ = f∗(Sξ) −→ f∗(E(ξ)) = E(f∗ξ)

a map of retractiveG-spaces over Y . The pullback construction respects parameter-
ized homotopies and is compatible with stabilization along isometric embeddings.
So we can define

f∗ = EGJfK : EGJXK −→ EGJY K by f∗[ξ, u] = [f∗(ξ), f∗(u)] .

Example 3.1.22. We consider X = G/H , the homogeneous G-space for a
compact subgroup H of the Lie group G. Every orthogonal H-representation V
gives rise to a euclidean G-vector bundle

ξV : G×H V −→ G/H , [g, v] 7−→ gH .

Moreover, every euclidean G-vector bundle over G/H is isomorphic to a bundle of
this form.

We have Fn(ξV ) = G×H L(Rn, V ), where n = dim(V ). So

E(ξV ) = G×H E(V )

for every orthogonal G-spectrum E. In particular, SξV = G×H SV . Every map of
retractive G-spaces over G/H

SξV = G×H SV −→ G×H E(V ) = E(ξV )

is of the form G ×H f for a unique based H-map f : SV −→ E(V ), and this
correspondence passes to a bijection of homotopy classes. If we let V exhaust the
finite-dimensional subrepresentations of a complete H-universe, these bijections
assemble into an isomorphism

πH0 (E) = colimV [SV , E(V )]G∗
∼=−−→ EGJG/HK

[f : SV −→ E(V )] 7−→ [G×H V,G×H f ] .

Example 3.1.23 (Compact Lie groups). We let H be a compact Lie group, X
a finite H-CW-complex, and E an orthogonal H-spectrum. We define an isomor-
phism

ω : colimV ∈s(UH) [S
V ∧X+, E(V )]H∗ −→ EHJXK by [f ] 7−→ [X × V, f ♯] .
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Here UH is a complete H-universe, and s(UH) is the poset, under inclusion, of
finite-dimensional H-subrepresentations of UH . Moreover, for a continuous based
H-map f : SV ∧ X+ −→ E(V ), we write X × V for the trivial H-vector bundle
over X with fiber V ; a map of retractive H-spaces over X

(3.1.24) f ♯ : SX×V = X × SV −→ X × E(V ) = E(X × V )

is defined by f ♯(x, v) = (x, f(v ∧ x)). Since H is compact Lie, every euclidean
H-vector bundle over the compact H-space X embeds into a trivial bundle of the
form X × V , for some H-representation V , for example by [65, Prop. 2.4]; we can
suppose that V is a subrepresentation of the complete H-universe UH . Moreover,
every map of retractive H-spaces X × SV −→ X × E(V ) is of the form f ♯ for a
unique based H-map f : SV ∧X+ −→ E(V ). So the map ω is surjective.

For injectivity we exploit that ω is a group homomorphism for the group struc-
ture on the source arising from the identification with πH0 (map(X,E)). We suppose
that ω[f ] = [X×V, f ♯] = 0. There is then an isometric embedding ψ : X×V −→ η of
euclidean H-vector bundles over X such that ψ∗(f

♯) is parameterized equivariantly
null-homotopic. We let γ be the orthogonal complement of the image of X × V in
η. We can embed γ into the trivial H-vector bundle X×W associated with another
H-representationW , and we can then embed V ⊕W into the complete H-universe
UH in a way that extends the inclusion V −→ UH . So we can altogether assume
that ψ = incl : X × V −→ X × V̄ for V ⊂ V̄ in the poset s(UH). After stabilizing
f : SV ∧ X+ −→ E(V ) along the inclusion of V into V̄ , we can assume without
loss of generality that the map f ♯ is parameterized H-null-homotopic. Maps of
retractive H-spaces SX×V −→ E(X × V ) biject with continuous based H-maps
SV ∧ X+ −→ E(V ), so we conclude that the map f is based H-null-homotopic.
Thus f represents the zero element in the source of ω, and we have shown that the
map ω is also injective.

Example 3.1.25. We let Γ be a closed subgroup of a Lie group G, and we let
Y be a finite proper Γ-CW-complex. We let E be an orthogonal G-spectrum. We
define an induction homomorphism

(3.1.26) ind : EΓJY K −→ EGJG×Γ Y K

as follows. We let (ξ, u) represent a class in EΓJY K. Then G ×Γ ξ is a G-vector
bundle over G×Γ Y , with frame bundle

Fn(G×Γ ξ) = G×Γ Fn(ξ) ,
where n = dim(ξ). Hence

E(G×Γ ξ) = Fn(G×Γ ξ)×O(n) E(Rn)

= G×Γ Fn(ξ)×O(n) E(Rn) = G×Γ E(ξ)

as retractive G-spaces over G×Γ Y . Moreover,

G×Γ u : SG×Γξ = G×Γ S
ξ −→ G×Γ E(ξ) = E(G×Γ ξ)

is a map of retractive G-spaces. We can thus define the induction homomorphism
by

ind[ξ, u] = [G×Γ ξ,G×Γ u] .

Every euclidean G-vector bundle η over G ×Γ Y is isomorphic to a bundle of the
form G×Γ ξ: we can take ξ as the restriction of η along the Γ-equivariant map

Y −→ G×Γ Y , y 7−→ [1, y] .
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Similarly, every G-map v : G ×Γ S
ξ −→ G ×Γ E(ξ) is of the form G ×Γ u for a

unique Γ-map u : Sξ −→ E(ξ). Hence the induction homomorphism (3.1.26) is an
isomorphism.

Remark 3.1.27 (Vector bundles versus representations). Now is a good time
to explain why we build the theory EGJXK using G-vector bundles, as opposed to

just G-representations. One could contemplate a variation ÊGJXK where elements
are represented by classes (V, v), where V is a G-representation and v : SV ∧
X+ −→ E(V ) is a based G-map. Two pairs (U, u) and (V, v) represent the same

class in ÊGJXK if and only if there is a G-representation W and G-equivariant
linear isometric embeddings ψ : U −→ W and ψ′ : V −→ W such that the two
stabilizations ψ∗(u), ψ

′
∗(v) : SW ∧ X+ −→ E(W ) are based G-homotopic. This

construction provides a homotopy functor from the category of based G-spaces to
abelian groups. A G-representation V gives rise to the trivial G-vector bundle
X × V over any G-space X , and a based G-map v : SV ∧X+ −→ E(V ) gives rise
to a map of retractive G-spaces v♯ : SX×V −→ E(X × V ), compare (3.1.24). This
assignment is compatible with the equivalence relations, and provides a natural

group homomorphism ÊGJXK −→ EGJXK. Example 3.1.23 can be rephrased as
saying that for compact Lie groups, this homomorphism is an isomorphism.

However, the construction ÊGJ−K based onG-representations (as opposed toG-
vector bundles) does not in general have induction isomorphisms. Our represented
equivariant cohomology theories support induction isomorphisms, so this shows
that the functor ÊGJ−K is not in general represented by an orthogonal G-spectrum.
The case E = SG of stable cohomotopy, already considered in [38, Rk. 6.17], can
serve to illustrate the lack of induction isomorphisms. We let G be any discrete
group with the following two properties:

(a) Every finite-dimensional G-representation is trivial, and
(b) the group G has a non-trivial finite subgroup H .

As explained in [38, Rk. 6.17], for every finite G-CW-complex X , the cohomotopy

group ŜGJXK based on G-representations (as opposed to G-vector bundles over X)
is isomorphic to the non-equivariant cohomotopy group π0

e(X/G) of the G-orbit
space. In particular,

ŜGJG/HK ∼= π0
e(∗) ∼= Z .

On the other other hand, ŜHJ∗K = π0
H(∗) is isomorphic to the Burnside ring of the

finite group H , which has rank bigger than one since H is non-trivial.
An explicit example of a group satisfying (a) and (b) is Thompson’s group

T , see for example [10] and the references given therein. The group T is infinite,
finitely presented, and simple (i.e., the only normal subgroups are {e} and T ).
As explained in [38, Sec. 2.5], an infinite, finitely generated simple group does
not have non-trivial finite-dimensional representations over any field; in particular,
every finite-dimensional R-linear representation of Thompson’s group T is trivial.
On the other hand, T has plenty of finite subgroups.

The following proposition is a slight refinement of [42, Lemma 3.7].

Proposition 3.1.28. Let G be a discrete group. Let h : A −→ Y be a contin-
uous G-map between finite proper G-CW-complexes. Let ζ be a euclidean G-vector
bundle over Y and ψ : h∗(ζ) −→ κ an isometric embedding of euclidean G-vector
bundles over A. Then there is an isometric embedding ϕ : ζ −→ ω of euclidean
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G-vector bundles over Y and an isometric embedding λ : κ −→ h∗(ω) of euclidean
G-vector bundles over A such that the composite

h∗(ζ)
ψ−−→ κ

λ−−→ h∗(ω)

coincides with h∗(ϕ).

Proof. We let γ be the orthogonal complement of the image of h∗(ζ) under ψ;
this is a euclidean G-vector subbundle of κ. By [42, Lemma 3.7], there is a G-vector
bundle ν over Y and an isometric embedding j : γ −→ h∗(ν) of G-vector bundles
over A. We let ϕ : ζ −→ ν ⊕ ζ = ω be the embedding of the second summand. We
let λ : κ = γ ⊕ ψ(h∗(ζ)) −→ h∗(ν)⊕ h∗(ζ) = h∗(ω) be the internal direct sum of j
and the inverse of the isomorphism ψ : h∗(ζ) ∼= ψ(h∗(ζ)). �

Now we can prove the main result about the functor EGJ−K.

Theorem 3.1.29. Let G be a discrete group. For every orthogonal G-spectrum
E, the functor EGJ−K is excisive.

Proof. Homotopy invariance of the functor EGJ−K can be proved in the same
way as [38, Lemma 6.6], which is the special case E = SG. For excision we consider
two finite proper G-CW-pairs (X,A) and (Y,B) and a pushout square of G-spaces:

(3.1.30)

A
i //

f

��

X

g

��
B

j
// Y

We consider (b, x) ∈ EGJBK × EGJXK such that f∗(b) = i∗(x) in EGJAK.
Case 1: We suppose that there is a G-vector bundle ζ over Y such that the

given classes can be represented as b = [ζ|B , u] and x = [g∗(ζ), v]. We observe that
f∗(ζ|B) = g∗(ζ)|A as G-vector bundles over A. We assume moreover that the maps

f∗(u) , v|A : Sg
∗(ζ)|A −→ E(g∗(ζ)|A)

are parameterized G-homotopic. We let

D = s(X) ∪ Sg∗(ζ)|A

be the G-subspace of Sg
∗(ζ) given by the union of the image of the section at infinity

s : X −→ Sg
∗(ζ) and the part sitting over A. Proposition 1.2.31 implies that the

inclusion D −→ Sg
∗(ζ) is a Com-cofibration of G-spaces. The bundle projection

p : E(g∗(ζ)) −→ X is locally trivial in the equivariant sense, and hence a Com-
fibration of G-spaces. So the inclusion

Sg
∗(ζ) × 0 ∪D×0 D × [0, 1] −→ Sg

∗(ζ) × [0, 1]

has the left lifting property with respect to the bundle projection p : E(g∗(ζ)) −→
X . We can thus replace v by a map of retractive G-spaces v̄ : Sg

∗(ζ) −→ E(g∗(ζ))
over X that is equivariantly parameterized homotopic to v, and such that

f∗(u) = v̄|A .

The two maps

Sζ|B
u−−→ E(ζ|B) incl−−→ E(ζ) and Sg

∗(ζ) v̄−−→ E(g∗(ζ))
E(ḡ)−−−→ E(ζ)
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are then compatible over Sf
∗(ζ|B) = Sg

∗(ζ)|A , where ḡ : g∗(ζ) −→ ζ is the bundle
morphism covering g : X −→ Y . So these maps glue to a map of retractiveG-spaces
over Y

w = (incl ◦u) ∪ (E(ḡ) ◦ v̄) : Sζ = Sζ|B ∪Sg∗(ζ)|A Sg
∗(ζ) −→ E(ζ) .

The pair (ζ, w) then represents a class in EGJY K that satisfies j∗[ζ, w] = [ζ|B , u] = b
and g∗[ζ, w] = [g∗(ζ), v̄] = [g∗(ζ), v] = x.

Case 2: We suppose that there is a G-vector bundle ζ over Y such that the
given classes can be represented as b = [ζ|B , u] and x = [g∗(ζ), v]. In contrast to
the previous Case 1, we make no further assumptions on the maps u and v. The
hypothesis yields the relation

[f∗(ζ|B), f∗(u)] = f∗(b) = i∗(x) = [g∗(ζ)|A, v|A] = [f∗(ζ|B), v|A]
in EGJAK. So Proposition 3.1.21 provides an isometric embedding ψ : f∗(ζ|B) −→ κ
of euclidean G-vector bundles over A such that the maps ψ∗(f

∗(u)) and ψ∗(v|A)
are parameterized G-homotopic. Proposition 3.1.28 for h = gi = jf provides an
isometric embedding ϕ : ζ −→ ω of G-vector bundles over Y and an isometric
embedding λ : κ −→ f∗(ω|B) of G-vector bundles over A such that the composite

f∗(ζ|B) ψ−−→ κ
λ−−→ f∗(ω|B)

coincides with f∗(ϕ|B). So the maps

f∗((ϕ|B)∗(u)) = (f∗(ϕ|B))∗(f∗(u)) = λ∗(ψ∗(f
∗(u))) and

((g∗(ϕ))∗(v))|A = (f∗(ϕ|B))∗(v|A) = λ∗(ψ∗(v|A))
are parameterized G-homotopic. We have

b = [ζ|B , u] = [ω|B, (ϕ|B)∗(u)] and x = [g∗(ζ), v] = [g∗(ω), (g∗(ϕ))∗(v)] ,

and the new representatives (ω|B , (ϕ|B)∗(u)) and (g∗(ω), (g∗(ϕ))∗(v)) satisfy the
hypotheses of Case 1, so we are done.

Case 3: Now we treat the general case. We consider two pairs (ξ, u) and
(η, v) that represent classes in EGJBK and EGJXK, respectively, and such that
f∗[ξ, u] = i∗[η, v] in EGJAK. By [42, Lemma 3.7] there are G-vector bundles ω, ω′

over Y such that ξ is a direct summand in ω|B, and η is a direct summand in g∗(ω′).
We set ζ = ω ⊕ ω′. Then there are isometric embeddings

a : ξ −→ ζ|B and b : η −→ g∗(ζ)

of G-vector bundles over B and X , respectively. Hence

b = [ξ, u] = [ζ|B , a∗(u)] and x = [η, v] = [g∗(ζ), b∗(v)] .

The new representatives satisfy the hypotheses of Case 2, so we are done. This
completes the proof of excision for the functor EGJ−K.

It remains to prove additivity. Excision for a pushout square (3.1.30) with
A = ∅ and Y = B ∐X shows that the map

(i∗B, i
∗
X) : EGJB ∐XK −→ EGJBK × EGJXK

is surjective. For injectivity we let (ξ, u) represent a class in EGJB ∐XK such that
i∗BJξ, uK = i∗XJξ, uK = 0. Then after stabilizing along some isometric embedding, if
necessary, we can assume that the restriction of u to B is parameterized G-null-
homotopic, and the restriction of u to X is parameterized G-null-homotopic. The
total space of the sphere bundle Sξ over B ∐ X is the disjoint union of the total
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spaces of Sξ|B and Sξ|X , so the two null-homotopies combine into a parameterized
G-null-homotopy of u. �

Remark 3.1.31 (Hilbert bundles versus vector bundles). We would like to
clarify where the restriction to discrete groups in Theorem 3.1.29, and hence in all
subsequent results regarding the functor EGJ−K, comes from. While the definition
of EGJXK in Construction 3.1.19 makes sense for all Lie groups G, the proof of
excision needs a crucial fact, proved in [42, Lemma 3.7]: when G is discrete and
ϕ : X −→ Y is a continuous G-map between finite proper G-CW-complexes, then
every G-vector bundle over X is a summand of ϕ∗(ξ) for some G-vector bundle ξ
over Y . As explained in Section 5 of [42], this fact does not generalize from discrete
groups to Lie groups. For compact Lie groups, excision still holds, as a consequence
of Example 3.1.23.

In the larger generality, Phillips [56] has defined equivariant K-theory for proper
actions by using suitable Hilbert G-bundles instead of finite-dimensional G-vector
bundles. One can speculate whether Phillips’ approach can be adapted to general-
ize our results about the functor EGJ−K from discrete groups to non-compact Lie
groups, but we will not go down that avenue in this monograph.

Proposition 3.1.32. Let G be a discrete group and X a finite proper G-CW-
complex.

(i) For every π∗-isomorphism f : E −→ F of orthogonal G-spectra, the induced
homomorphism f∗ : EGJXK −→ FGJXK is an isomorphism.

(ii) For all orthogonal G-spectra E and F , the maps

(E ∨ F )GJXK
κ∗−−−→ (E × F )GJXK

(pE∗ ,p
F
∗ )−−−−−→ EGJXK× FGJXK

are isomorphisms, where κ : E ∨ F −→ E × F is the canonical map and
pE : E × F −→ E and pF : E × F −→ F are the projections.

Proof. (i) We start with the special case when G is finite, in which case we
denote it by H instead. The horizontal maps in the commutative square

colimV ∈s(UH) [S
V ∧X+, E(V )]H∗ ∼=

ω //

f∗

��

EHJXK

f∗

��
colimV ∈s(UH ) [S

V ∧X+, F (V )]H∗ ω

∼= // FHJXK

are isomorphisms by Example 3.1.23. Adjointness identifies [SV ∧X+, E(V )]H∗ with
[SV ,map(X,E(V ))]H∗ . So the upper left group is isomorphic to

colimV ∈s(UG)[S
V ,map(X,E(V ))]H∗ = πH0 (map(X,E)) ,

and hence invariant under π∗-isomorphisms in E, by [60, Prop. 3.1.40]. This proves
the proposition for finite groups.

Now we let G be any discrete group, and we suppose that X = G/H ×K for
a finite subgroup H of G and a finite non-equivariant CW-complex K. Since f is
a π∗-isomorphism of orthogonal G-spectra, the underlying morphism of orthogonal
H-spectra is a π∗-isomorphism. The induction isomorphisms (3.1.26) participate
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in a commutative diagram:

EHJKK

f∗

��

∼=

ind // EGJG/H ×KK

f∗

��
FHJKK

ind

∼= // FGJG/H ×KK

The left vertical map is an isomorphism by the previous paragraph, hence so is the
right vertical map. This proves the special case X = G/H ×K. Since EGJ−K and
FGJ−K are excisive by Theorem 3.1.29, the general case is now taken care of by
Proposition 3.1.7.

(ii) The morphism κ : E ∨ F −→ E × F is a π∗-isomorphism, for example by
[60, Cor. 3.1.37 (iii)]; so the first map κ∗ is an isomorphism by part (i).

The morphisms of orthogonal G-spectra iE = (IdE , ∗) : E −→ E × F and
iF = (∗, IdF ) : F −→ E × F induce a homomorphism

EGJXK× FGJXK −→ (E × F )GJXK , (x, y) 7−→ iE∗ (x) + iF∗ (y) .

This homomorphism splits the homomorphism (pE∗ , p
F
∗ ), which is thus surjective.

Now we consider a pair (ξ, u) that represents a class in the kernel of (pE∗ , p
F
∗ ) :

(E×F )GJXK −→ EGJXK×FGJXK. Then after stabilizing the representative along
an isometric embedding, if necessary, we can assume that the composites

Sξ
u−−→ (E × F )(ξ) pE(ξ)−−−→ E(ξ) and Sξ

u−−→ (E × F )(ξ) pF (ξ)−−−→ F (ξ)

are parameterized equivariantly null-homotopic. The canonical map (E×F )(ξ) −→
E(ξ)×X F (ξ) is an isomorphism, where the target is the fiber product over X ; so
the map u itself is parameterized equivariantly null-homotopic. Hence [ξ, u] = 0,
and the homomorphism (pE∗ , p

F
∗ ) is also injective. �

We have completed the construction of the excisive functor EGJ−K. Now we
compare it to the functor that is represented by E in the stable G-homotopy cate-
gory Ho(SpG).

Construction 3.1.33. We consider a morphism of orthogonal G-spectra f :
Σ∞+X −→ E. Such a morphism represents a class γG(f) in EG(X) = [Σ∞+X,E]G,
where γG : SpG −→ Ho(SpG) is the localization functor. The value of f at the zero
vector space is a map of based G-spaces f(0) : X+ = (Σ∞+X)(0) −→ E(0), and we

let f ♭ be the map of retractive G-spaces over X

f ♭ : S0 = S0 ×X −→ E(0)×X = E(0)

that sends (0, x) to (f(0)(x), x). The pair (0, f ♭) then represents a class in the
group EGJXK.

By Proposition 3.1.32 (i), the functor

(−)GJXK : SpG −→ (sets) , E 7−→ EGJXK

takes π∗-isomorphisms of orthogonal G-spectra to bijections. So the functor factors
uniquely through the localization γG : SpG −→ Ho(SpG). We abuse notation
and also write EGJXK for the resulting functor defined on the homotopy category
Ho(SpG).
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Theorem 3.1.34. Let G be a discrete group and X a finite proper G-CW-
complex.

(i) There is a unique natural transformation

µEX : EG(X) −→ EGJXK

of covariant functors in E from Ho(SpG) to abelian groups with the following
property: for every morphism of orthogonal G-spectra f : Σ∞+X −→ E, the
relation

µEX(γG(f)) = [0, f ♭]

holds in EGJXK.
(ii) For every orthogonal G-spectrum E, the maps µEX are natural in continuous

G-maps ϕ : Y −→ X between finite proper G-CW-complexes.
(iii) Let Γ be a subgroup of G, and let Y be a finite proper Γ-CW-complex. Then

the composite

EG(G×Γ Y )
adjunction−−−−−−−→ EΓ(Y )

µE
Y−−−→ EΓJY K

ind−−−−−→
(3.1.26)

EGJG×Γ Y K

coincides with µEG×ΓY
.

(iv) For every orthogonal G-spectrum E, the map µEX is an isomorphism of abelian
groups.

Proof. (i) We can apply Construction 3.1.33 to the identity of the orthogonal
G-spectrum Σ∞+X ; it yields a class

[0, Id♭] ∈ (Σ∞+X)GJXK .

Since Σ∞+X represents the functor (−)G(X) on Ho(SpG), the Yoneda lemma pro-

vides a unique natural transformation µX : (−)G(X) = [Σ∞+X,−]G −→ (−)GJXK
such that

µ
Σ∞

+ X

X (IdΣ∞
+ X) = [0, Id♭] .

This transformation then satisfies the relation stated in part (i), by naturality:

µEX(γG(f)) = (γG(f))∗(µ
E
X(IdΣ∞

+ X)) = (γG(f))∗[0, Id
♭] = [0, f ♭] .

The natural transformation µX : (−)G(X) −→ (−)GJXK is a priori only set-valued,
and we must prove that it is additive. The two functors (−)G(X) = [Σ∞+X,−]G and
(−)GJXK are reduced, i.e., they send the trivial orthogonalG-spectrum to the trivial
abelian group. Proposition 3.1.32 (ii) says that the target functor is also additive in
E. As shown in [60, Prop. 2.2.12], every set-valued natural transformation between
reduced additive functors is automatically additive, so this proves that µEX is a
homomorphism of abelian groups.

(ii) We must prove the commutativity of the following square:

[Σ∞+X,E]G
µE
X //

ϕ∗

��

EGJXK

ϕ∗

��
[Σ∞+ Y,E]G

µE
Y

// EGJY K
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We let E vary in Ho(SpG). Then the Yoneda lemma reduces the claim to the
universal example, the identity of E = Σ∞+X . The universal case is straightforward:

ϕ∗(µ
Σ∞

+ X

X (IdΣ∞
+ X)) = ϕ∗[0, Id♭] = [0, ϕ∗(Id♭)] = [0, (Σ∞+ ϕ)

♭]

= µEY (γG(Σ
∞
+ ϕ)) = µEY (ϕ

∗(IdΣ∞
+ X)) .

(iii) If we let E vary in Ho(SpG), the Yoneda lemma reduces the claim to the
universal example, the identity of E = Σ∞+ (G×ΓY ). We consider the Γ-equivariant
map [1,−] : Y −→ G ×Γ Y , the unit of the adjunction between restriction and
extension of scalars. Then

ind(µ
Σ∞

+ (G×ΓY )

Y (adj(IdΣ∞
+ (G×ΓY )))) = ind(µ

Σ∞
+ (G×ΓY )

Y (γΓ(Σ
∞
+ [1,−])))

= ind[0, (Σ∞+ [1,−])♭]
= [0, Id♭Σ∞

+ (G×ΓY )]

= µ
Σ∞

+ (G×ΓY )

G×ΓY
(IdΣ∞

+ (G×ΓY )) .

The third equation exploits that extending the zero Γ-vector bundle from Y to
G ×Γ Y yields the zero G-vector bundle, and that the two maps of retractive G-
spaces over G×Γ Y

G×Γ (Σ∞+ [1,−])♭ , Id♭Σ∞
+ (G×ΓY ) : S0 × (G×Γ Y ) −→ (G×Γ Y )+ × (G×Γ Y )

are equal. This proves the universal case, and hence the claim.
(iv) Source and target of the transformation µEX send π∗-isomorphisms in E

to isomorphisms of abelian groups, by Proposition 3.1.32 and by construction, re-
spectively. So by appeal to the stable model structure of Theorem 1.2.22 we can
assume without loss of generality that E is a G-Ω-spectrum.

We start with the special case of a finite group, which we denote by H (instead
of G). We let X be a finite H-CW-complex, and E an orthogonal H-spectrum. We
define a homomorphism

ν : colimW∈s(UH ) [S
W ∧X+, E(W )]H∗ −→ [Σ∞+X,E]H = EH(X) .

The construction uses the shift shW X of an orthogonal H-spectrum X by an H-
representation W , defined by

(shW X)(V ) = X(V ⊕W )

with structure maps σshW X
U,V = σXU,V⊕W . Here the H-action on X(V ⊕W ) is di-

agonal, from the H-actions on X and on W . A natural morphism of orthogonal
H-spectra

λWX : X ∧ SW −→ shW X

is defined at V as the composite

X(V ) ∧ SW twist−−−→ SW ∧X(V )
σX
W,V−−−→ X(W ⊕ V )

X(τW,V )−−−−−−→ X(V ⊕W ) .

The morphism λWX and its adjoint λ̃WX : X −→ ΩW shW X are π∗-isomorphisms
by [60, Prop. 3.1.25]. The transformation ν now takes the class represented by a
continuous based H-map x : SW ∧X+ −→ E(W ) to the composite morphism

Σ∞+X
γH (x̃)−−−−−→ ΩW shW E

γH(λ̃W
E )−1

−−−−−−−→
∼=

E
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in Ho(SpH). Here x̃ : Σ∞+X −→ ΩW shW E is the morphism of orthogonal H-
spectra adjoint to x.

We must argue that ν is well-defined. If we vary the map x : SW∧X+ −→ E(W )
by a based equivariant homotopy, then x̃ changes by a homotopy of morphisms of
orthogonal H-spectra, and its image γH(x̃) in Ho(SpH) remains unchanged. Now
we stabilize x : SW ∧X+ −→ E(W ) along an inclusion ι : W −→ W̄ in the poset

s(UH) to a new representative ι∗(x) : SW̄ ∧X+ −→ E(W̄ ), the composite

SW̄ ∧X+ = SW̄−W ∧ SW ∧X+
SW̄−W∧x−−−−−−→ SW̄−W ∧ E(W )
σW̄−W,W−−−−−−→ E((W̄ −W )⊕W ) = E(W̄ ) .

We let Ψ : ΩW shW E −→ ΩW̄ shW̄ E be the morphism of orthogonal H-spectra
defined at an inner product space V as

Ψ(V ) : map∗(S
W , E(V ⊕W )) −→ map∗(S

W̄ , E(V ⊕ W̄ )) , f 7−→ ι∗(f) .

Then the various morphisms of orthogonal H-spectra participate in a commutative
diagram:

Σ∞+X
x̃ //

ι̃∗(x) ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
ΩW shW E

Ψ
��

E
λ̃W
Eoo

λ̃W̄
Evv♥♥♥

♥♥
♥♥
♥♥
♥♥
♥♥
♥

ΩW̄ shW̄ E

Hence we conclude that

γH(λ̃WE )−1 ◦ γH(x̃) = γH(λ̃W̄E )−1 ◦ γH(Ψ) ◦ γH(x̃)

= γH(λ̃W̄E )−1 ◦ γH(ι̃∗(x)) .

So the homomorphism ν is well-defined.
Now we contemplate three composable maps:

[X+, E(0)]H∗ −→ colimV ∈s(UH)[S
V ∧X+, E(V )]H∗

ν−−→ EH(X)
µE
X−−−→ EHJXK .

The first map is the canonical map to the colimit, and it is an isomorphism because
E is an H-Ω-spectrum. The composite map from [X+, E(0)]H to EH(X) is the
derived adjunction for the Quillen adjoint functor pair

Σ∞+ : HT // SpH : (−)(0)oo ;

it is thus bijective. So the map ν is also an isomorphism. The composite µEX ◦ ν :
colimV [S

V ∧X+, E(V )]H∗ −→ EHJXK is the homomorphism ω discussed in Example
3.1.23, which is thus an isomorphism. Since ν and ω are isomorphisms, so is the
map µEX . This completes the proof of part (iv) for finite groups.

Now we let G be any discrete group, H a finite subgroup of G, and we consider
X = G/H×K, for a non-equivariant finite CW-complex K. By part (iii), the map
µEG/H×K factors as the composite

EG(G/H ×K)
adjunction−−−−−−−→ EH(K)

µE
K−−−→ EHJKK

ind−−→ EGJG/H ×KK .

All three maps are isomorphisms, by the derived adjunction (see Corollary 1.4.3),
the special case of the previous paragraph, and by Example 3.1.25, respectively. So
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µEG/H×K is an isomorphism. Since EG(−) and EGJ−K are both excisive functors,

Proposition 3.1.7 then finishes the argument. �

3.2. Proper cohomology theories from G-spectra

In this section we discuss how orthogonal G-spectra give rise to ‘proper equi-
variant cohomology theories’ for G-spaces, where G is any Lie group. For our
purposes, a proper G-cohomology theory is a Z-indexed family of excisive functors,
linked by suspension isomorphisms, compare Definition 3.2.1. Our main example
is the proper G-cohomology theory represented by an orthogonal G-spectrum E,
defined by taking morphism groups in the triangulated stable homotopy category
Ho(SpG) into the shifts of E, see Construction 3.2.3. One of the main points
of this book is that the equivariant cohomology theories represented by orthog-
onal G-spectra have additional structure not generally present in the equivariant
cohomology theories arising from sequential G-spectra or G-orbit spectra. This ad-
ditional structure manifests itself in different forms, such as a ‘KOG(EG)-grading’
or transfer maps that extend the homotopy group coefficient system to a G-Mackey
functor, compare Remark 3.2.10.

For discrete groups, we also discuss how two prominent equivariant cohomology
theories are represented by orthogonal G-spectra: equivariant stable cohomotopy
in the sense of the third author [38] is represented by the G-sphere spectrum, see
Example 3.2.9; and Bredon cohomology with coefficients in a G-Mackey functor is
represented by an Eilenberg-MacLane spectrum, see Example 3.2.16.

Definition 3.2.1. Let G be a Lie group. A proper G-cohomology theory con-
sists of a collection of excisive functors

Hk : (finite proper G-CW-complexes)op −→ Ab
and a collection of natural isomorphisms

σ : Hk−1(X)
∼=−−→ Hk(X × S1|X ×∞) ,

for k ∈ Z.

Some previously studied properG-cohomology theories are Bredon cohomology,
Borel cohomology, equivariant stable cohomotopy [38], and equivariant K-theory
[42, 56]. One of the main motivations for the present work was to provide a gen-
eral method for constructing proper G-cohomology theories from G-spectra, see
Theorem 3.2.7 below. As reality check, we will show that for discrete groups G,
Bredon cohomology, Borel cohomology, equivariant stable cohomotopy, and equi-
variant K-theory are indeed represented by orthogonal G-spectra, see Example
3.2.16, Example 3.3.10, Example 3.2.9, and Theorem 3.4.22, respectively.

We let (Hk, σ)k∈Z be a proper G-cohomology theory, and we consider a pushout
square of G-spaces

A
i //

f

��

X

g

��
B

j
// Y
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where (X,A) and (Y,B) are finite proper G-CW-pairs, and f and g are cellular
maps. Then the 5-term Mayer-Vietoris sequence established in Proposition 3.1.5
extends to a long exact sequence as follows. We define a connecting homomorphism

δk−1 : Hk−1(A) −→ Hk(Y )

as the composite

Hk−1(A) σ−−→
∼=
Hk(A× S1|A×∞)

∂−−→ Hk(Y ) ,

where the homomorphism ∂ was defined in (3.1.4). Then we can splice the various
exact sequences for the functor Hk into an exact sequence

· · · −→ Hk−1(A) δk−1

−−−−→ Hk(Y )
(j∗,g∗)−−−−→(3.2.2)

Hk(B)×Hk(X)
f∗−i∗−−−−→ Hk(A) δk−−−→ Hk+1(Y ) −→ · · · .

In Section 3.1 we used orthogonal G-spectra E to define three excisive functors
EG〈−〉, EG(−) and EGJ−K. The functor EG〈−〉 is less relevant for us, among other
things because it does not in general extend to a ‘genuine’ cohomology theory. We
now upgrade the two constructions EG(−) and EGJ−K to proper G-cohomology
theories by using the shifts of E.

Construction 3.2.3 (Proper cohomology theories from orthogonalG-spectra).
We let G be a Lie group and E an orthogonal G-spectrum. If k is any integer, we
recall from Remark 1.3.5 that the k-fold shift E[k] is defined as

E[k] =

{

E ∧ Sk for k ≥ 0, and

Ω−kE for k < 0.

We define functors EkG(−) and EkGJ−K by

EkG(X) = E[k]G(X) = [Σ∞+X,E[k]]G and EkGJXK = E[k]GJXK .

The functor EkG(−) is excisive by Proposition 3.1.15. If G is discrete, then the
functor EkGJ−K is excisive by Theorem 3.1.29.

Now we link these excisive functors by suspension isomorphisms. We define a
suspension homomorphism

(3.2.4) σ : EkG(X) −→ Ek+1
G (X × S1|X ×∞)

as the composite

[Σ∞+X,E[k]]G
[1]−−−→ [Σ∞X+ ∧ S1, E[k][1]]G

[Σ∞q,sk]−−−−−−→ [Σ∞+ (X × S1), E[k + 1]]G ,

where q : (X × S1)+ −→ X+ ∧ S1 is the projection, and the isomorphism sk :
E[k][1] ∼= E[k + 1] was defined in (1.3.6).

We define a suspension homomorphism

(3.2.5) ΣE : EGJXK −→ (E ∧ S1)GJX × S1|X ×∞K

as follows. We let (ξ, u) represent a class in EGJXK. We pull back the vector bundle
ξ along the projection X×S1 −→ X to obtain a vector bundle ξ×S1 over X×S1.
We define

Σ(u) : Sξ×S
1

= Sξ × S1 −→ (E(ξ) ∧X S1)× S1 = (E ∧ S1)(ξ × S1)
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by Σ(u)(z, x) = (u(z) ∧ x, x). We can then define the suspension homomorphism
(3.2.5) by

ΣE [ξ, u] = [ξ × S1,Σ(u)] .

By construction, the map Σ(u) is trivial over X×∞, so the image of ΣE indeed lies
in the kernel of the restriction map i∗ : (E ∧S1)GJX ×S1K −→ (E ∧S1)GJX ×∞K.
The suspension homomorphisms

(3.2.6) σ : EkGJXK
∼=−−→ Ek+1

G JX × S1|X ×∞K

for the theory E∗GJ−K are then defined as the composite

EkGJXK = E[k]GJXK
ΣE[k]

−−−→
∼=

(E[k][1])GJX × S1|X ×∞K

(sk)∗−−−−→ E[k + 1]GJX × S1|X ×∞K = Ek+1
G JX × S1|X ×∞K .

Theorem 3.2.7. Let G be a Lie group and E an orthogonal G-spectrum.

(i) The functors EkG(−) and the suspension homomorphisms (3.2.4) form a proper
G-cohomology theory.

(ii) If G is discrete, then the functors EkGJ−K and the suspension homomorphisms
(3.2.6) form a proper G-cohomology theory.

(iii) If G is discrete, then the natural transformations µE[k] : EkG(−) −→ EkGJ−K
form a natural isomorphism of proper G-cohomology theories.

Proof. (i) The functors EkG(−) are excisive by Proposition 3.1.15. It remains
to show that the suspension homomorphism (3.2.4) is an isomorphism. This is
a direct consequence of the fact that the shift functor in a triangulated category
is fully faithful, and that precomposition with the projection q : (X × S1)+ −→
X+∧S1 is an isomorphism from the group [Σ∞X+∧S1, E[1]]G to the kernel of the
split epimorphism

i∗ : [Σ∞+ (X × S1), E[1]]G −→ [Σ∞+X,E[1]]G .

(ii) We show first that the transformations µEX commute with the suspension
homomorphisms. This amounts to checking that the following square commutes
for all orthogonal G-spectra E and all finite proper G-CW-complexes X :

(3.2.8)

EG(X)
µE
X //

σ

��

EGJXK

ΣE

��
(E ∧ S1)G(X × S1|X ×∞)

µE∧S1

X×S1

// (E ∧ S1)GJX × S1|X ×∞K

We start with a class of the form γG(f), for some morphism of orthogonalG-spectra
f : Σ∞+X −→ E. Then

ΣE(µEX(γG(f))) = ΣE [0, f ♭] = [0,Σ(f ♭)] = [0, ((f ∧ S1) ◦ Σ∞q)♭]
= µE∧S

1

X×S1(γG((f ∧ S1) ◦ Σ∞q)) = µE∧S
1

X×S1(σ(γG(f))) .

The third equation exploits that pulling back the zero vector bundle yields the zero
vector bundle, and that the functions Σ(f ♭) and ((f ∧S1) ◦Σ∞q)♭ are equal on the
nose.
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Now we let E vary in Ho(SpG); the Yoneda lemma reduces the commutativity
of the square (3.2.8) to the universal example, the identity of E = Σ∞+X . This
universal class is of the form considered in the previous paragraph, so we are done.

The suspension homomorphism (3.2.4) for the theory E∗G(−) is an isomorphism

by part (i), and the maps µEX and µE∧S
1

X×S1 are isomorphisms by Theorem 3.1.34

(iv). So the commutative square (3.2.8) shows that the suspension homomorphism
(3.2.6) for the theory E∗GJ−K is an isomorphism. The functors EkGJ−K are excisive
by Theorem 3.1.29, so this shows part (ii).

We have now shown that the transformations µ
E[k]
X commute with the suspen-

sion homomorphisms, so they form a morphism of proper G-cohomology theories.
Since µE[k] is a natural isomorphism, this proves claim (iii). �

Example 3.2.9 (Equivariant stable cohomotopy). LetG be a discrete group. In
[38, Sec. 6], the third author introduced an equivariant cohomology theory π∗G(X)
on finite proper G-CW-complexes X , called equivariant stable cohomotopy. By
the main result of [41], this particular equivariant version of stable cohomotopy
satisfies a completion theorem, generalizing Carlsson’s theorem (previously known
as the Segal conjecture) for finite groups.

The definition of the group πkG(X) is precisely the special case of EkGJXK for
E = SG the G-sphere spectrum:

πkG(X) = SkGJXK .

In fact, Section 6 of [38] is a blueprint for much of what we do here, and the
definitions and proofs involving E∗GJXK were inspired by [38].

Anyhow, for E = SG, Theorem 3.2.7 (iii) shows that equivariant stable coho-
motopy is represented in Ho(SpG) by the G-sphere spectrum, i.e., the map

µ
SG[k]
X : SkG(X) = [Σ∞+X, SG[k]]

G −→ πkG(X)

is an isomorphism for every finite proper G-CW-complex X and every integer k.

Remark 3.2.10 (Genuine versus naive cohomology theories). As we argued
in the proof of Proposition 3.1.15, every proper equivariant cohomology theory
arising from an orthogonal G-spectrum as in Definition 3.1.13 is also represented
by a sequential G-spectrum as in (3.1.10). Hence these cohomology theories are
also proper equivariant cohomology theories in the sense of Davis and the third
author [13, Def. 4.1], compare Remark 3.1.12.

As we already indicated a number of times, the equivariant cohomology the-
ories represented by orthogonal G-spectra are a lot richer than those arising from
sequential G-spectra or G-orbit spectra. When G is compact, then these special
cohomology theories are known under the names genuine or RO(G)-graded coho-
mology theories. In our more general context, one could informally refer to the
extra structure as a ‘KOG(EG)-grading’, where KOG(EG) is the Grothendieck
group of isomorphism classes of real G-equivariant vector bundles over EG. If G
happens to be compact, then EG can be taken to be a point, so an equivariant
vector bundle is just a representation, and then the group KOG(EG) is isomorphic
to the real representation ring RO(G).

The KOG(EG)-grading can be encoded as follows. Given a G-vector bundle
ξ over EG, we continue to denote by Th(ξ) = Sξ/s∞(EG) its Thom space. We
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define the ξ-th G-equivariant E-cohomology group as

EξG(X) = [Σ∞+X,E ∧ Th(ξ)]G .

If ξ is the trivial vector bundle of rank k, its Thom space is EG+ ∧ Sk, which is
Com-equivalent to Sk; so in that case we recover the group EkG(X). If η is another
such G-vector bundle, a suspension homomorphism

ση : EξG(X) −→ Eξ⊕ηG (X+ ∧Th(η))

is essentially defined by derived smash product with the G-space Th(η). Since
smashing with the Thom space Th(η) is invertible (compare Proposition 1.2.33 (iv)),
this suspension homomorphism is an isomorphism. So up to a non-canonical iso-

morphism, the group EξG(X+ ∧ Th(η)) only depends on the class [ξ] − [η] in the
Grothendieck group KOG(EG).

As a concrete example, let us consider the infinite dihedral groupD∞ = Z⋉Z/2.
In Example 1.1.4 we exhibited a D∞-CW-structure on the real line R that is a
model for ED∞. There are 2 equivariant 0-cells whose isotropy groups the two-
element subgroups H1 generated by (0, 1 + 2Z) and H2 generated by (1, 1 + 2Z),
respectively; and there is one free equivariant 1-cell. The resulting Mayer-Vietoris
sequence shows that the restriction homomorphisms combine into a monomorphism
of rings

(resD∞

H1
, resD∞

H2
) : KOD∞(ED∞) −→ RO(H1)×RO(H2)

whose image consists of pairs of virtual representations with the same virtual dimen-
sion. The rings RO(H1) and RO(H2) are isomorphic to Z[σ]/(σ2−1), where σ is the
class of the sign representation. We let σ1, σ2 denote the classes in KOD∞(ED∞)
that restrict to (σ, 1) and to (1, σ), respectively. Then the elements 1, σ1 and σ2
form an additive basis of KOD∞(ED∞), and the multiplicative structure is deter-
mined by σ2

1 = σ2
2 = 1 and σ1σ2 = σ2σ1 = σ1 + σ2 − 1. In this special case, the

three generators 1, σ1 and σ2 are actually all represented by 1-dimensional repre-
sentations of the group D∞. For a general infinite discrete group G, not all classes
in KOG(EG) will be virtual G-representations.

Another piece of structure consists of transfers. Every proper cohomology
theory gives rise to a coefficient system by restriction to orbits. If the cohomology
theory arises from a sequential G-spectrum E, the coefficient system is simply the
composite

(

OrFinG

)op Φ(E)−−−−→ SpN
π0−−−→ Ab ,

where Φ(E)(G/H) = EH is the spectrum of H-fixed points. Every coefficient
system arises in this way from a G-orbit spectrum, by postcomposition with a
suitable pointset Eilenberg-MacLane functor H : Ab −→ SpN, and then assembling
the resulting G-orbit spectrum into a sequential G-spectrum as indicated in Remark
3.1.12.

If the cohomology theory arises from a genuine stable G-homotopy type E
(i.e., an object in Ho(SpG)), then the coefficient system is given by the equivariant
homotopy groups πH0 (E) for finite subgroups H of G; the transfers discussed in
Construction 2.1.12 then extend the coefficient system to a G-Mackey functor,
see Example 2.2.8. Moreover, every Mackey functor arises in this way from an
orthogonal G-spectrum, by Theorem 2.2.9. In [37, Sec. 5], the presence of transfers
is exploited to construct rational splittings of proper cohomology theories.



3.2. PROPER COHOMOLOGY THEORIES FROM G-SPECTRA 109

We found it convenient to formulate our results in terms of absolute equivariant
cohomology theories. As we shall now explain, every proper G-cohomology theory
can be extended in a specific way to a relative theory defined on finite proper
G-CW-pairs.

Definition 3.2.11. (Relative cohomology groups) We let G be a Lie group
and {Hk, σ}k∈Z a proper G-cohomology theory. For every finite proper G-CW pair
(X,A) we define the relative H-cohomology groups by

Hk(X,A) = ker(i∗2 : Hk(X ∪A X) −→ Hk(X)) ,

where i2 : X −→ X ∪A X is the embedding of the second copy of X .

The relative groups are contravariantly functorial for continuous G-maps of
pairs. We define a natural homomorphism r : Hk(X,A) −→ Hk(X) as the com-
posite

Hk(X,A) incl−−→ Hk(X ∪A X)
i∗1−−→ Hk(X) ,

where i1 : X −→ X ∪A X is the embedding of the first copy of X . The Mayer-
Vietoris sequence (3.2.2) for the pushout square

A
i //

i

��

X

i2
��

X
i1

// X ∪A X

has the form

· · · −→ Hk−1(A) δk−1

−−−−→ Hk(X ∪A X)
(i∗1 ,i

∗
2)−−−−→

Hk(X)×Hk(X)
(x,x′) 7→i∗(x)−i∗(x′)−−−−−−−−−−−−−→ Hk(A) δk−−−→ · · · .

So the connecting homomorphism δk−1 : Hk−1(A) −→ Hk(X ∪A X) lands in the
subgroup Hk(X,A), and the exact sequence splits off a long exact sequence
(3.2.12)

· · · −→ Hk−1(A) δk−1

−−−−→ Hk(X,A) r−−→ Hk(X)
i∗−−→ Hk(A) −→ · · · .

Remark 3.2.13. For every orthogonal G-spectrum E, the functor EG(−) =
[−, E]G ◦ Σ∞+ is excisive by Proposition 3.1.15. For every finite proper G-CW-pair
(X,A), the relative group EG(X,A) is defined as in Definition 3.2.11. This relative
group can in fact be described more directly as a morphism group in Ho(SpG):
we let q : X ∪A X −→ X/A denote the map that sends the second copy of X to
the basepoint and that is the projection X −→ X/A on the first copy. Since the
inclusion of the second summand has a retraction, the cofiber sequence

X+
i2−−→ (X ∪A X)+

q−−→ X/A

induces a short exact sequence

0 −→ [Σ∞X/A,E]G
q∗−−−→ EG(X ∪A X)

i∗2−−→ EG(X) −→ 0

and hence an isomorphism

[Σ∞X/A,E]G ∼= EG(X,A) .
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With a little more work one can show that under this identification, the long exact
sequence (3.2.12)

. . . −→ Ek−1G (A)
δk−1

−−−−→ EkG(X,A) −→ EkG(X) −→ EkG(A) −→ . . .

is the effect of applying [−, E[k]]G to the distinguished triangle in Ho(SpG)

Σ∞+ A
Σ∞ incl−−−−−→ Σ∞+X

Σ∞ proj−−−−−→ Σ∞X/A
(Σ∞p)◦(Σ∞q)−1

−−−−−−−−−−−→ (Σ∞+ A) ∧ S1

and its rotations. Here q : CA ∪A X −→ X/A is the projection from the mapping
cone of the inclusion, and p : CA ∪A X −→ A+ ∧ S1 was defined in Construction
1.3.2.

For discrete groups G, the functor EGJ−K defined in Construction 3.1.19 via
parameterized equivariant homotopy theory is excisive by Theorem 3.1.29. The
relative groups EGJX,AK defined as in Definition 3.2.11 can also be described more
directly by relative parameterized homotopy classes, in much the same way as for
E = SG in [38, Sec. 6.2]; we won’t dwell on this any further.

A formal consequence of the properties of an equivariant cohomology theory is
an Atiyah-Hirzebruch type spectral sequence that starts from Bredon cohomology.
This spectral sequence is a useful calculational tool and a systematic generalization
of various previous statements, so we take the time to spell out the details. The
following discussion is a special case of the Atiyah-Hirzebruch spectral sequence of
[13, Thm. 4.7], for the Fin-orbit category of a discrete group.

Construction 3.2.14 (Atiyah-Hirzebruch spectral sequence). We let G be
a discrete group, and we let (Hk, σ)k∈Z be a proper G-cohomology theory. We
consider a proper G-CW-complex X with equivariant skeleton filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . . .
If the cohomology theory is only defined on finite proper G-CW-complexes as in
our original Definition 3.2.1, then we must insist that X has only finitely many
cells. However, the following arguments apply without this size restriction if Hk
is defined on all G-CW-complexes (i.e., possibly infinite), satisfies conditions (i),
(ii) and (iii) of Definition 3.1.1 in this larger category, and additionally, Hk takes
coproducts (possibly infinite) to products.

From the cohomology theory and the CW-structure we define an exact couple
in the standard way by setting

Dp,q
1 = Hp+q(Xp) and Ep,q1 = Hp+q(Xp, Xp−1) ,

see for example [50, Sec. 2.2, p. 37ff]. These groups are linked by the homomor-
phisms

Hp+q(incl) = i : Dp,q
1 = Hp+q(Xp) −→ Hp+q(Xp−1) = Dp−1,q+1

1

δ = j : Dp,q
1 = Hp+q(Xp) −→ Hp+q+1(Xp+1, Xp) = Ep+1,q

1

r = k : Ep,q1 = Hp+q(Xp, Xp−1) −→ Hp+q(Xp) = Dp,q
1 .

Now we identify the E1-term with the Bredon cohomology complex, and hence the
E2-term with Bredon cohomology. Bredon cohomology is defined for G-coefficient
systems, i.e., functors

M :
(

OrFinG

)op −→ Ab .
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Here OrFinG is the G-orbit category with finite stabilizers: the objects are the G-sets
G/H for all finite subgroups H of G, and morphisms are G-maps. The G-CW-
structure gives rise to a cellular cochain complex C∗(X,M) as follows. For every
finite subgroupK of X , the fixed point space XK is a non-equivariant CW-complex
with respect to the skeleton filtration

(X0)K ⊂ (X1)K ⊂ . . . ⊂ (Xn)K ⊂ . . . .

So XK has a cellular chain complex C∗(X
K) with n-th chain group

Cn(X
K) = Hn

(

(Xn)K , (Xn−1)K ,Z
)

,

the relative integral homology of the pair ((Xn)K , (Xn−1)K). Since XK is the
space of G-maps from G/K to X , every morphism f : G/K −→ G/H in the orbit

category OrFinG induces a cellular map f∗ : XH −→ XK , and hence a morphism of
cellular chain complexes

f∗ : C∗(X
H) −→ C∗(X

K) .

These maps make the complexes {C∗(XK)}K∈Fin into a contravariant functor

from OrFinG to the category of chain complexes. Equivalently, we can consider
C∗(X

•) = {C∗(XK)}K∈Fin as a chain complex of coefficient systems. Thus we can
define a cochain complex of abelian groups by mapping into the given coefficient
system, i.e., we set

Cn(X,M) = HomG-coeff(Cn(X
•),M) ,

the group of natural transformations of coefficient systems. The cellular differential
Cn+1(X

•) −→ Cn(X
•) induces a differential Cn(X,M) −→ Cn+1(X,M). The

Bredon cohomology of X with coefficients in M is then given by

Hn
G(X,M) = Hn(C∗(X,M)) .

The G-spacesG/H for finite subgroups of G are finite properG-CW-complexes.

So the proper G-cohomology theory gives rise to a G-coefficient system Hk, namely
the composite

(

OrFinG

)op incl−−→ (finite proper G-CW-complexes)op
Hk

−−−→ Ab .
We describe an isomorphism of abelian groups

Cp(X,Hq) = HomG-coeff(Cp(X
•),Hq) ∼= Hp+q(Xp, Xp−1) = Ep,q1 .

We choose a presentation of how Xp is obtained by attaching equivariant p-cells,
in the form of a pushout of G-spaces:

∐

I G/Hi × ∂Dp //

��

Xp−1

��
∐

I G/Hi ×Dp // Xp

These data induce an isomorphism
⊕

i∈I

Hp((G/Hi)
K×Dp, (G/Hi)

K×∂Dp,Z) ∼= Hp((X
p)K , (Xp−1)K ,Z) = Cp(X

K) .

Moreover,

Hp((G/Hi)
K ×Dp, (G/Hi)

K × ∂Dp,Z) ∼= Z[OrFinG (G/K,G/Hi)]
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is the coefficient system represented by the coset G/Hi, so

Cp(X
•) ∼=

⊕

i∈I

Z[OrFinG (−, G/Hi)] .

This isomorphism induces an isomorphism of Bredon cochain groups

Cp(X,Hq) = HomG-coeff(Cp(X
•),Hq) ∼=

∏

i∈I

Hq(G/Hi)

∼=
∏

i∈I

Hp+q(G/H ×Dp, G/H × ∂Dp) ∼= Hp+q(Xp, Xp−1) = Ep,q1 .

The same argument as for the classical Atiyah-Hirzebruch spectral sequence iden-
tifies the Bredon cohomology differential

d : Cp(X,Hq) −→ Cp+1(X,Hq)
with the d1-differential

d1 = j ◦ k : Ep,q1 −→ Ep+1,q
1 .

The Ep,q2 -term of the exact couple is thus the p-th Bredon cohomology group of X
with coefficients in Hq. So the exact couple gives rise to a conditionally convergent
half plane spectral sequence

(3.2.15) Ep,q2 = Hp
G(X,Hq) =⇒ Hp+q(X) .

The dr-differential has bidegree (r, 1− r).
In the case where X = G/H is a single orbit for a finite subgroup H of G, the

E2-term of the spectral sequence (3.2.15) is concentrated in bidegrees (0, q). So the
spectral sequence collapses at E2 and recovers the isomorphism between Hq(G/H)
and H0

G(G/H,Hq).

Example 3.2.16 (Eilenberg-MacLane spectra represent Bredon cohomology).
As before we let G be a discrete group. Every G-Mackey functor M has an associ-
ated Eilenberg-MacLane G-spectrum HM , compare Remark 2.2.11. Since the ho-
motopy group Mackey functors of HM are concentrated in degree zero, the E2-term
of the Atiyah-Hirzebruch spectral sequence (3.2.15) for the proper G-cohomology
represented by HM is concentrated in bidegrees (p, 0). So the spectral sequence
collapses at E2 and yields an isomorphism

H∗G(X,M) ∼= (HM)∗G(X) .

In this sense, Bredon cohomology is represented by an Eilenberg-MacLane spec-
trum.

The reader should beware, however, that Bredon cohomology is defined for G-
coefficients systems, whereas the construction of an Eilenberg-MacLane spectrum
requires a full-fledged G-Mackey functor. Not every G-coefficient system can be
extended to a G-Mackey functor, and if an extension exists, it need not be unique.
Different extensions of aG-coefficient system to a G-Mackey functor give orthogonal
G-spectra that are non-isomorphic in Ho(SpG). As we just argued, the Z-graded
cohomology theory on G-CW-complexes only depends on the underlying coefficient
system, and so it does not ‘see’ the extension to a G-Mackey functor. The extension
is visible, however, if we extend the grading for the cohomology theory. Indeed,
the cohomology theory represented by an orthogonal G-spectrum can be indexed
on equivariant vector bundles over EG, see Remark 3.2.10. Different extensions to
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a Mackey functor will typically lead to non-isomorphic ‘KOG(EG)-graded’ coho-
mology theories.

3.3. Global versus proper stable homotopy types

In this section we explain how global stable homotopy types give rise to proper
G-homotopy types, and we identify some extra structure that is present in this
case. Several specific examples of such global equivariant theories feature through-
out this monograph, for example equivariant stable cohomotopy (Example 3.2.9,
arising from the global sphere spectrum), Borel cohomology (Example 3.3.13), and
equivariant K-theory (Section 3.4, arising from the periodic global K-theory spec-
trum KU).

In [60] the fifth author developed a framework for global stable homotopy the-
ory, i.e., equivariant stable homotopy theory where all compact Lie groups act
simultaneously and in a compatible way. The technical realization of this slogan is
via a certain global model structure on the category of orthogonal spectra in which
the weak equivalences are the ‘global equivalences’ of [60, Def. 4.1.3], see also Def-
inition 3.3.1 below. A direct consequence of the definition is a ‘forgetful functor’
from the global stable homotopy category to Ho(SpG) for every Lie group G, see
Theorem 3.3.3. This forgetful functor is an exact functor of triangulated categories
that admits a left adjoint and a right adjoint. In a sense made precise by Theorem
3.3.5, the forgetful functors for different Lie groups are compatible with derived
restriction along a continuous homomorphism introduced in Section 1.4. One spe-
cific benefit of coming from a global stable homotopy type is that the associated
equivariant cohomology theories satisfy an induction isomorphism, see Proposition
3.3.8. At the end of this section, we introduce the Borel G-spectrum associated
with a non-equivariant spectrum (see Example 3.3.10), and we show that the Borel
spectra in fact underlie a global homotopy type (see Example 3.3.13).

For every Lie group G we can consider the functor

(−)G : Sp −→ SpG , X 7−→ XG

from orthogonal spectra to orthogonal G-spectra given by endowing an orthogonal
spectrum with the trivial G-action.

Definition 3.3.1. A morphism f : X −→ Y of orthogonal spectra is a global
equivalence if the map

πHk (fH) : πHk (XH) −→ πHk (YH)

is an isomorphism for every compact Lie group H and every integer k.

We denote by GH = Hogl(Sp) the category obtained by formally inverting the
global equivalences of orthogonal spectra, and we refer to this as the global stable
homotopy category. We write

γgl : Sp −→ Hogl(Sp) = GH
for the localization functor. By [60, Thm. 4.3.18], the global equivalences are part
of a stable model structure. The global stable homotopy category is a compactly
generated triangulated category, and a specific set of compact generators is given by
the suspension spectra of the ‘global classifying spaces’ of all compact Lie groups,
see [60, Thm. 4.4.3].
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By the very definition, the functor (−)G takes global equivalences of orthogonal
spectra to π∗-isomorphisms of orthogonal G-spectra. So we obtain a ‘forgetful’
functor on the homotopy categories

(3.3.2) UG = Ho((−)G) : GH −→ Ho(SpG)

from the universal property of localizations. In other words, UG is the unique
functor that satisfies

UG ◦ γgl = γG ◦ (−)G .

Moreover, UG is canonically an exact functor of triangulated categories: the pointset
level equality

XG ∧ S1 = (X ∧ S1)G

of functors Sp −→ SpG descends to an equality

UG ◦ [1] = Ho((−)G) ◦Ho(− ∧ S1) = Ho((−)G ◦ (− ∧ S1))

= Ho((− ∧ S1) ◦ (−)G) = Ho(− ∧ S1) ◦Ho((−)G) = [1] ◦ UG .

Since distinguished triangles are defined in exactly the same way in GH and Ho(SpG),
the functor UG preserves them.

The functor X 7→ XG is fully faithful on the pointset level, but its derived
functor UG is typically not fully faithful. A hint is the fact that the equivariant
homotopy groups of a global homotopy type, restricted to G and its subgroups,
have more structure than is available for a general G-homotopy type, and satisfy
certain relations that do not hold for general orthogonal G-spectra.

Theorem 3.3.3. For every Lie group G the forgetful functor

UG : GH −→ Ho(SpG)

preserves all set-indexed sums and products, and it has a left adjoint and a right
adjoint.

Proof. Sums in GH and Ho(SpG) are represented in both cases by the pointset
level wedge. On the pointset level, the forgetful functor preserves wedges, so the
derived forgetful functor preserves sums. The existence of the right adjoint is an
abstract consequence of the fact that GH is compactly generated and that functor U
preserves sums, compare [60, Cor. 4.4.5 (iv)].

The forgetful functor also preserves infinite products, but the argument here is
slightly more subtle because products in GH are not generally represented by the
pointset level product, and because equivariant homotopy groups do not in general
commute with infinite pointset level products. We let {Xi}i∈I be a set of orthogonal
spectra. By replacing each factor by a globally equivalent spectrum, if necessary,
we can assume without loss of generality that each Xi is a global Ω-spectrum in the
sense of [60, Def. 4.3.8]. Since global Ω-spectra are the fibrant objects in a model
structure underlying GH, the pointset level product

∏

i∈I Xi then represents the
product in GH.

Even though Xi is a global Ω-spectrum, the underlying orthogonal G-spectrum
(Xi)G need not be a G-Ω-spectrum. However, as spelled out in the proof of [60,
Prop. 4.3.22 (ii)], the natural map

πHk

(

∏

i∈I
Xi

)

−→
∏

i∈I
πHk (Xi)
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is an isomorphism for all compact Lie groups H and all integers k. This implies
that in this situation, the pointset level product is also a product in Ho(SpG). So
the derived forgetful functor preserves products.

The existence of the left adjoint is then again an abstract consequence of the
fact that GH is compactly generated and that the functor U preserves products,
compare [60, Cor. 4.4.5 (v)]. �

We let α : K −→ G be a continuous homomorphism between Lie groups. In
Theorem 1.4.17 we discussed various properties of the total left derived functor

Lα∗ : Ho(SpG) −→ Ho(SpK)

of the restriction functor α∗ : SpG −→ SpK , with α! : Lα
∗ ◦ γG =⇒ γK ◦ α∗ the

universal natural transformation. For example, the functor Lα is exact and has a
right adjoint. For another homomorphism β : J −→ K, we constructed a specific
exact natural isomorphism

〈α, β〉 : (Lβ∗) ◦ (Lα∗) =⇒ L(αβ)∗

in (1.4.25). The data of the functors Lα∗ and the transformations 〈α, β〉 form a
pseudo-functor from the category of Lie groups and continuous homomorphisms to
the 2-category of triangulated categories, exact functors, and exact transformations.

Now we discuss how the derived restriction functors interact with the passage
from global to proper homotopy theory. If X is any orthogonal spectrum, then on
the pointset level, we have α∗(XG) = XK , because K acts trivially on both sides.
However, XG will typically not be cofibrant as an orthogonal G-spectrum, so the
relationship between the derived functors is more subtle: the universal property of
the derived functor UK provides a unique natural transformation

(3.3.4) α♯ : Lα∗ ◦ UG =⇒ UK

of functors GH −→ Ho(SpK) that satisfies the relation

α♯ ⋆ γgl = α! ⋆ (−)G

as transformations from the functor Lα∗ ◦UG ◦γgl = Lα∗ ◦γG ◦ (−)G to the functor
UK ◦ γgl = γK ◦ α∗ ◦ (−)G.

We recall that a continuous homomorphism between Lie groups is quasi-injective
if the restriction to every compact subgroup of the source is injective.

Theorem 3.3.5. Let α : K −→ G be a continuous homomorphism between Lie
groups.

(i) If α is quasi-injective, then the natural transformation α♯ : Lα∗ ◦ UG =⇒ UK
is an isomorphism.

(ii) If β : J −→ K is another continuous homomorphism, then

(αβ)♯ ◦ (〈α, β〉 ⋆ UG) = β♯ ◦ (Lβ∗ ⋆ α♯)

as natural transformations Lβ∗ ◦ Lα∗ ◦ UG =⇒ UJ .
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Proof. (i) We letX be any orthogonal spectrum. We choose a π∗-isomorphism
of orthogonal G-spectra ψ : Y −→ XG whose source is cofibrant. We obtain a com-
mutative diagram in Ho(SpK):

(Lα∗)(Y ) ∼=

(Lα∗)(γG(ψ)) //

∼=α!

��

(Lα∗)(XG)
α♯

//

α! ))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

XK

α∗(Y )
∼=

γK(α∗(ψ))
// α∗(XG)

The left vertical morphism α! is an isomorphism by Theorem 1.4.17 (ii). Since α is
quasi-injective, the functor α∗ is homotopical by Theorem 1.4.1 (i), so the lower hor-
izontal morphism is an isomorphism as well. This shows that α♯ : (Lα∗)(XG) −→
XK is an isomorphism in Ho(SpK).

Part (ii) is Proposition 1.4.28, applied to the left derivable functors (−)G :
Sp −→ SpG, α

∗ : SpG −→ SpK and β∗ : SpK −→ SpJ . �

As we just explained, every global homotopy type gives rise to a G-homotopy
type for every Lie group G. The ‘global’ nature is also reflected in the G-equivariant
cohomology theories represented by the G-spectra. The following proposition says
that for every orthogonal spectrum E, the collection of equivariant cohomology
theories E∗G for varying G form an ‘equivariant cohomology theory’ in the sense of
[38, 5.2].

Construction 3.3.6 (Restriction maps for global homotopy types). If all the
equivariant cohomology theories E∗G arise from a global homotopy type (i.e., from a
single orthogonal spectrum), then there is extra structure in the form of restriction
homomorphisms

α∗ : E∗G(X) −→ E∗K(α∗(X))

associated with every continuous homomorphism α : K −→ G between Lie groups.
Here X is any Com-cofibrant G-space, so that Σ∞+X is a cofibrant orthogonal G-
spectrum; hence the morphism

α! : (Lα∗)(Σ∞+X) −→ α∗(Σ∞+X) = Σ∞+ α
∗(X)

is an isomorphism in Ho(SpK), compare Theorem 1.4.17 (ii). We then define α∗ as
the composite

E0
G(X) = [Σ∞+X,EG]

G Lα∗

−−−→ [(Lα)∗(Σ∞+X), (Lα∗)(EG)]
K

[α−1
! ,α♯]−−−−−→ [Σ∞+ α

∗(X), EK ]K = E0
K(α∗(X)) .

The natural transformation α♯ : Lα∗ ◦ UG =⇒ UK was defined in (3.3.4).

We let α : K −→ G be a continuous homomorphism between Lie groups. As
before, for a K-space X we denote the induced G-space by

G×α X = (G×X)/(g · α(k), x) ∼ (g, k · x) .
The functor G×α − is left adjoint to restriction along α, and the map

ηX : X −→ α∗(G×α X) , x 7−→ [1, x]

is the unit of the adjunction.
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Now we let E be an orthogonal spectrum. If X is a Com-cofibrant K-space,
then G ×α X is a Com-cofibrant G-space, by Proposition 1.1.6 (ii). We define the
induction map

(3.3.7) indα : E∗G(G×α X) −→ E∗K(X)

as the composite

E∗G(G×α X)
α∗

−−→ E∗K(α∗(G×α X))
η∗X−−−→ E∗K(X) .

Proposition 3.3.8. Let E be an orthogonal spectrum and α : K −→ G a con-
tinuous homomorphism between Lie groups. Let X be a proper K-CW-complex on
which the kernel of α acts freely. Then the induction map (3.3.7) is an isomorphism.

Proof. The functor G×α − preserves equivariant homotopies and commutes
with wedges and mapping cones. So the functor E∗G(G×α −) from the category of
K-spaces to graded abelian groups is a proper cohomology theory. The induction
maps form a transformation of cohomology theories, so it suffices to check the claim
on orbits of the form X = K/L, for all compact subgroups L of K, on which the
kernel of α acts freely. The freeness condition precisely means that the restriction

ᾱ = α|L : L −→ G

of α to L is injective. The G-map

ψ : G×ᾱ (L/L) −→ G×α (K/L) , [g, eL] 7−→ [g, eL]

is a homeomorphism, and it makes the following square commute:

L/L
incl //

ηL/L

��

K/L

ηK/L

��
G×ᾱ (L/L)

ψ
// G×α (K/L)

So the following diagram of equivariant cohomology groups commutes as well:

E∗G(G×α (K/L))

indα

��

ψ∗

∼=
//

ᾱ∗

��

E∗G(G×ᾱ L/L)

ᾱ∗

��
adj

∼=

��

E∗L(ᾱ
∗(G×α (K/L)))

ψ∗

∼=
//

η∗K/L

��

E∗L(ᾱ
∗(G×ᾱ L/L))
η∗L/L

��
E∗K(K/L)

resKL //

adj

∼=

44
E∗L(K/L)

incl∗ // E∗L(L/L)

Commutativity of the left part uses the relation resKL ◦α∗ = ᾱ∗ and the naturality
of restriction from K to L. The lower horizontal composite and the right vertical
composite are adjunction bijections. This proves that the induction map is an
isomorphism for X = K/L. �

The following corollary is the special case of Proposition 3.3.8 for the unique
homomorphism K −→ e. Part (ii) also uses that whenever K has no non-trivial
compact subgroups, then K acts freely on the universal proper K-space EK.
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Corollary 3.3.9. Let E be an orthogonal spectrum and K a Lie group.

(i) For every free K-CW-complex X, the induction map (3.3.7)

ind : E∗e (X/K) −→ E∗K(X)

for the unique homomorphism K −→ e is an isomorphism.
(ii) If K has no non-trivial compact subgroups, then the induction map (3.3.7)

ind : E∗e (BK) −→ E∗K(EK) ∼= πK−∗(E)

for the unique homomorphism K −→ e is an isomorphism.

Example 3.3.10 (Borel cohomology). We let F be a non-equivariant general-
ized cohomology theory. For a G-space A, the associated Borel cohomology theory
is given

F ∗(EG ×G A) ,
the F -cohomology of the Borel construction. This Borel cohomology theory is
realized by an orthogonal G-spectrum. For this purpose we represent the given
cohomology theory by an orthogonal Ω-spectrum X (in the non-equivariant sense).
We claim that then the orthogonal G-spectrum

bX = map(EG,X) ,

obtained by taking the space of unbased maps from EG levelwise (see Construction
1.1.14), represents Borel cohomology.

Proposition 3.3.11. Let G be a Lie group and X an orthogonal Ω-spectrum.

(i) The orthogonal G-spectrum map(EG,X) is a G-Ω-spectrum.
(ii) For every Com-cofibrant G-space A, there is an isomorphism

map(EG,X)kG(A)
∼= Xk(EG×G A)

that is natural for G-maps in A. In particular,

πG−k(map(EG,X)) ∼= Xk(BG) .

Proof. (i) We let H be any compact subgroup of G, and let V and W be two
H-representations. Then the adjoint structure map

σ̃XV,W : X(W ) −→ map∗(S
V , X(V ⊕W ))

is H-equivariant and a weak equivalence on underlying non-equivariant spaces. The
underlying H-space of EG is a free cofibrant H-space, so applying mapH(EG,−)
to σ̃XV,W returns a weak equivalence

mapH(EG, σ̃XV,W ) : (map(EG,X)(W ))H = mapH(EG,X(W ))

−→ mapH(EG,map∗(S
V , X(V ⊕W ))) .

The target of this map is homeomorphic to

mapH∗ (S
V ,map(EG,X(V ⊕W ))) = mapH∗ (S

V ,map(EG,X)(V ⊕W ))

in such a way that mapH(EG, σ̃XV,W ) becomes the H-fixed points of the adjoint

structure map of map(EG,X). So map(EG,X) is a G-Ω-spectrum.
(ii) Because A is Com-cofibrant, its unreduced suspension spectrum Σ∞+ A is

cofibrant in the stable model structure of orthogonal G-spectra. On the other
hand, the spectrum map(EG,X) is a G-Ω-spectrum by part (i), hence it is fibrant
in the stable model structure of orthogonal G-spectra. So morphisms from Σ∞+ A
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to map(EG,X) in Ho(SpG) can be calculated as homotopy classes of morphisms
of orthogonal G-spectra. Combining this with various adjunction bijections yields
the desired isomorphism for k = 0:

map(EG,X)0G(A) = [Σ∞+ A,map(EG,X)]G(3.3.12)

∼= SpG(Σ
∞
+ A,map(EG,X))/ ∼

∼= π0(mapG(A,map(EG,X)(0)))

∼= π0(map(EG×G A,X(0))) ∼= X0(EG×G A) .
Here the symbol ‘∼’ stands for the homotopy relation. For k > 0 we exploit that the
shifted spectrum shkX is again an Ω-spectrum. Proposition 3.1.25 of [60] provides
a π∗-isomorphism

λkmap(EG,X) : map(EG,X) ∧ Sk −→ shk(map(EG,X)) = map(EG, shkX)

which induces a natural isomorphism

map(EG,X)kG(A) = [Σ∞+ A,map(EG,X) ∧ Sk]G
∼= [Σ∞+ A,map(EG, shkX)]G

= map(EG, shkX)0G(A)

(3.3.12)
∼= (shkX)0G(EG×G A) = Xk

G(EG×G A) .
Similarly, the looped spectrum ΩkX is another Ω-spectrum. So we get natural
isomorphisms

map(EG,X)−kG (A) = [Σ∞+ A,Ω
kmap(EG,X)]G

∼= [Σ∞+ A,map(EG,ΩkX)]G

= map(EG,ΩkX)0G(A)

(3.3.12)
∼= (ΩkX)0G(EG×G A) = X−kG (EG×G A) .

The last claim is the special case where A = EG, in which case the Com-equivalence
EG −→ ∗ induces an isomorphism

map(EG,X)kG(EG) = [Σ∞+ EG,map(EG,X)[k]]G

∼= [Σ∞+ SG,map(EG,X)[k]]G = πG−k(map(EG,X)) .

On the other hand, the projection EG×EG −→ EG is a G-equivariant homotopy
equivalence, so the induced map on orbits

EG×G EG −→ EG/G = BG

is a homotopy equivalence. �

Example 3.3.13 (Borel cohomology is global). In Proposition 3.3.11 we showed
that the Borel cohomology theory associated with a (non-equivariant) cohomology
theory is represented by an orthogonal G-spectrum. We will now argue that the
Borel cohomology theories are in fact ‘global’, i.e., can be represented by an orthog-
onal G-spectrum with trivial G-action. The global version of the Borel construction
actually models the right adjoint to the forgetful functor U : GH −→ Ho(Sp) from
the global to the non-equivariant stable homotopy category, see [60, Prop. 4.5.22].
The following construction is taken from [60, Con. 4.5.21].
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We start with an orthogonal spectrum X (in the non-equivariant sense) that
represents a (non-equivariant) cohomology theory X∗(−). We define a new orthog-
onal spectrum bX as follows. For an inner product space V , we write L(V,R∞) for
the contractible space of linear isometric embeddings of V into R∞. We set

(bX)(V ) = map(L(V,R∞), X(V )) ,

the space of all continuous maps from L(V,R∞) to X(V ). The orthogonal group
O(V ) acts on this mapping space by conjugation, through its actions on L(V,R∞)
and on X(V ). We define structure maps σV,W : SV ∧ (bX)(W ) −→ (bX)(V ⊕W )
as the composite

SV ∧map(L(W,R∞), X(W ))
assembly−−−−−→ map(L(W,R∞), SV ∧X(W ))

map(resW ,σX
V,W )

−−−−−−−−−−−→ map(L(V ⊕W,R∞), X(V ⊕W ))

where resW : L(V ⊕W,R∞) −→ L(W,R∞) is the map that restricts an isometric
embedding from V ⊕W to W .

The endofunctor b on the category of orthogonal spectra comes with a natural
transformation

iX : X −→ bX

whose value at an inner product space V sends a point x ∈ X(V ) to the constant
map L(V,R∞) −→ X(V ) with value x. With the help of the morphism iX we
can now compare the spectrum bX to the G-spectrum map(EG,X) defined in
Example 3.3.10 via the two natural morphisms of orthogonal G-spectra

(3.3.14) map(EG,X)
map(EG,iX )−−−−−−−−→ map(EG, bX)

const←−−−− bX .

Both maps are morphism of orthogonalG-spectra, where bX is endowed with trivial
G-action.

Proposition 3.3.15. For every orthogonal Ω-spectrum X the two morphisms
(3.3.14) are π∗-isomorphisms of orthogonal G-spectra. So the orthogonal spectrum
bX, endowed with trivial G-action, represents the Borel G-cohomology theory asso-
ciated with X.

Proof. Since the space L(V,R∞) is contractible, the morphism iX : X −→ bX
is a non-equivariant level equivalence. So applying map(EG,−) takes it to a level
equivalence of orthogonal G-spectra. Since level equivalences are in particular π∗-
isomorphisms, this takes care of the morphism map(EG, iX).

For the second morphism we consider a compact subgroupH of G and a faithful
H-representation V . Then the H-space L(V,R∞) is cofibrant, non-equivariantly
contractible and has a free H-action, i.e., it is a model for EH , see for example
[60, Prop. 1.1.26]. The underlying H-space of EG is also a model for EH , so the
projection

proj : EG× L(V,R∞) −→ L(V,R∞)

is an H-equivariant homotopy equivalence. The induced map

mapH(proj, X(V )) : (bX(V ))H = mapH(L(V,R∞), X(V ))

−→ mapH(EG× L(V,R∞), X(V ))
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is thus a homotopy equivalence. The target of this map is isomorphic to the space
mapH(EG, bX)(V ), and under this isomorphism the map mapH(proj, X(V )) be-
comes the ‘constant’ map. So the second morphism is a level equivalence of orthog-
onal H-spectra when restricted to faithful H-representations. Since faithful rep-
resentations are cofinal in all H-representations, the second morphism induces an
isomorphism of H-homotopy groups. Since H is any compact subgroups of G, this
shows that the second morphism is a π∗-isomorphism of orthogonal G-spectra. �

3.4. Equivariant K-theory

In this final section we show that for discrete groups, the equivariant K-theory
defined from G-vector bundles is representable by the global equivariant K-theory
spectrum KU. Before going into more details, we give a brief overview of the
main players. In [42, Thm. 3.2], the third author and Oliver show that the classical
way to construct equivariant K-theory still works for discrete groups G and finite
proper G-CW-complexes X : the group KG(X), defined as the Grothendieck group
of G-vector bundles over X , is excisive in X . Moreover, the functor KG(X) is Bott
periodic, and can thus be extended to a Z-graded theory. Also, the theory K∗G(X)
supports Thom isomorphisms for hermitian G-vector bundles [42, Thm. 3.14], and
it satisfies a version of the Atiyah-Segal completion theorem, see [42, Thm. 4.4].

In [30, Def. 3.6], Joachim introduced a model KU for periodic global K-theory
that is based on spaces of homomorphisms of Z/2-graded C∗-algebras, see also
[60, Sec. 6.4]. This is a commutative orthogonal ring spectrum, and the underlying
orthogonal G-spectrum KUG represents equivariant K-theory for all compact Lie
groups, see [30, Thm. 4.4] or [60, Cor. 6.4.13]. For a general Lie group G, the un-
derlying G-spectrum KUG represents a proper G-cohomology theory by Theorem
3.2.7.

The purpose of this final section is to establish a natural isomorphism between
the two proper G-cohomology theories K∗G and KU∗G for discrete groups G, stated
in Theorem 3.4.22. Since the two theories are defined very differently, the main
issue is to construct a natural transformation of cohomology theories in one di-
rection, and most of our work goes into this. Our strategy is to first compare
the excisive functors KG(X) and KUG(X), see Theorem 3.4.16. This comparison
passes through the theory kuGJXK, represented by the connective global K-theory
spectrum ku in the sense of the fifth author [60, Con. 6.3.9], a variation of Segal’s
configuration space model for K-homology [68]. We use kuGJXK as a convenient
target of an explicit map 〈−〉 : VectG(X) −→ kuGJXK that turns a G-vector bun-
dle into an equivariant homotopy class, see (3.4.4). The fact that the map 〈−〉
is additive and multiplicative is not entirely obvious, and this verification involves
some work, see Propositions 3.4.8 and 3.4.15. The connective and periodic global
K-theory spectra are related by a homomorphism j : ku −→ KU of commutative
orthogonal ring spectra, defined in [60, Con. 6.4.13]. The induced transformation
of excisive functors j∗ : kuGJXK −→ KUGJXK is then additive and multiplicative.
Because the isomorphism KG(X) ∼= KUGJXK is suitably multiplicative, it matches
the two incarnations of Bott periodicity, and can thus be extended to the Z-graded
periodic theories in a relatively formal (but somewhat tedious) way, see the final
Theorem 3.4.22.

The main results in this section require the group G to be discrete (as opposed
to allowing general Lie groups). The restriction arises from the vector bundle side
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of the story: Example 5.2 of [42] shows that the theory made from isomorphism
classes of G-vector bundles is not in general excisive in the context of non-discrete
Lie groups. We think of the represented theoryKU∗G(X) as the ‘correct’ equivariant
K-theory in general; indeed, it restricts to equivariant K-theory for compact Lie
groups by [30, Thm. 4.4] or [60, Cor. 6.4.23], and the point of this book is precisely
that proper G-cohomology theories represented by orthogonal G-spectra always
have the desired formal properties, for all Lie groups. Phillips [56] has defined
equivariant K-theory for second countable locally compact topological groups G,
defined on proper locally compact G-spaces. His construction is based on Hilbert
G-bundles instead of finite-dimensional G-vector bundles. It seems plausible that
in the common realm of Lie groups, our represented theory KU∗G(X) ought to be
isomorphic to Phillips’ theory, but we have not attempted to define an isomorphism.

Construction 3.4.1 (Connective global K-theory). We recall the definition of
the orthogonal spectrum ku from [60, Sec. 6.3]. For a real inner product space V ,
we let VC = C⊗R V denote the complexification which inherits a unique hermitian
inner product (−,−) characterized by

(1⊗ v, 1⊗ w) = 〈v, w〉
for all v, w ∈ V . The symmetric algebra Sym(VC) of the complexification inher-
its a preferred hermitian inner product in such a way that the canonical algebra
isomorphism

Sym(VC)⊗C Sym(WC) ∼= Sym((V ⊕W )C)

becomes an isometry, compare [60, Prop. 6.3.8]. The V -th space of the orthogonal
spectrum ku is the value on SV of the Γ-space of finite-dimensional, pairwise or-
thogonal subspaces of Sym(VC). More explicitly, we define the V -th space of the
orthogonal spectrum ku as the quotient space

ku(V ) =
(

∐

m≥0

Gr〈m〉(Sym(VC))× (SV )m
)/

∼V

where SV is the one-point compactification of V and Gr〈m〉(Sym(VC)) is the space
of m-tuples of pairwise orthogonal subspaces in Sym(VC). Here, the equivalence
relation ∼V makes the following identifications

(i) The tuple (E1, . . . , Em; v1, . . . , vm), where (E1, . . . , Em) is an m-tuple of
pairwise orthogonal subspaces of Sym(VC) and v1, . . . , vm ∈ SV , is iden-
tified with (Eσ(1), . . . , Eσ(m); vσ(1), . . . , vσ(m)) for any σ in the symmetric
group Σm. This implies that we can represent equivalence classes as for-
mal sums

∑m
k=1 vkEk.

(ii) If vi = vj for some i 6= j, then

m
∑

k=1

vkEk = vi(Ei ⊕ Ej) +
m
∑

k=1
k 6=i,j

vkEk .

(iii) If Ei = 0 is the trivial subspace or vi = ∞ is the basepoint of SV at
infinity, then

m
∑

k=1

vkEk =
m
∑

k=1
k 6=i

vkEk .
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Hence, the topology of ku(V ) is such that, informally speaking, the labels Ei and Ej
add up inside Sym(VC) whenever the two points vi and vj collide, and the label Ei
disappears when vi reaches the basepoint at infinity. The action of the orthogonal
groupO(V ) on SV and Sym(VC) induces a based continuous O(V )-action on ku(V ).
We define, for all inner product spaces V and W , an O(V ) × O(W )-equivariant
multiplication map

µV,W : ku(V ) ∧ ku(W ) −→ ku(V ⊕W )
(

∑

viEi

)

∧
(

∑

wjFj

)

7−→
∑

(vi ∧ wj) · (Ei ⊗ Fj)

where the canonical isometry Sym(VC) ⊗ Sym(WC) ∼= Sym((V ⊕W )C) is used to
interpret Ei ⊗ Fj as a subspace of Sym((V ⊕W )C). Finally, we define the O(V )-
equivariant unit map

νV : SV −→ ku(V ) , v 7→ vC ,

where C refers to the ‘constants’ in the symmetric algebra Sym(VC), i.e., the sub-
space spanned by the multiplicative unit 1. The maps {µV,W } together with the
maps {νV } turn ku = {ku(V )} into a commutative orthogonal ring spectrum.

For a Lie group G, the connective G-equivariant K-theory spectrum kuG is
the orthogonal spectrum ku equipped with trivial G-action. It is relevant for our
purposes that kuG arises from a global stable homotopy type, i.e., it is obtained
by the forgetful functor of Section 3.3, applied to ku.

Construction 3.4.2. For this construction, G is any Lie group. We write
VectG(X) for the abelian monoid of isomorphism classes of hermitian G-vector
bundles over a G-space X . We introduce a natural homomorphism of abelian
monoids

(3.4.3) 〈−〉 : VectG(X) −→ kuGJXK

for any finite properG-CW-complexX . The construction is a parameterized version
of the construction in [60, Thm. 6.3.31], and proceeds as follows. For a hermitian
G-vector bundle ξ over X , we let uξ denote the underlying euclidean vector bundle.
We denote by (uξ)C the complexification of the latter. Then the maps

jx : ξx −→ (uξx)C , v 7−→ 1/
√
2 · (1⊗ v − i⊗ (iv))

are C-linear isometric embeddings of each fiber that vary continuously with x ∈ X .
Altogether, these define an isometric embedding of hermitian G-vector bundles

j : ξ −→ (uξ)C .

By design, the fiber of the retractive G-space ku(uξ) over x ∈ X is ku(uξx). So we
can define a map of retractive G-spaces over X

{ξ} : Suξ −→ ku(uξ) by {ξ}(x, v) = [jx(ξx); v].

In more detail: we view jx(ξx) as sitting in the linear summand in the symmetric
algebra Sym((uξx)C), and [jx(ξx); v] as the configuration in ku(uξx) consisting of
the single vector v labeled by the vector space jx(ξx). The point [jx(ξx); v] ∈ ku(uξ)
varies continuously with (x, v) ∈ Suξ, and altogether this defines the G-equivariant
map {ξ}. If ψ : ξ −→ η is an isomorphism of hermitian G-vector bundles over X ,
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then the maps {ξ} and {η} are conjugate by ψ, and so they represent the same

class in ku0
GJXK. So we obtain a well-defined map

(3.4.4) 〈−〉 : VectG(X) −→ kuGJXK by 〈ξ〉 = [uξ, {ξ}] .
For every continuous G-map f : Y −→ X we have f∗(uξ) = u(f∗ξ) as euclidean
G-vector bundles over Y . Moreover, the two maps

f∗{ξ} : Sf
∗(uξ) −→ ku(f∗(uξ)) and {f∗ξ} : Su(f

∗ξ) −→ ku(u(f∗ξ))

are equal. So

〈f∗[ξ]〉 = [u(f∗ξ), {f∗ξ}] = [f∗(uξ), f∗{ξ}] = f∗[uξ, {ξ}] = f∗〈ξ〉 ,
i.e., for varying G-spaces X , the maps 〈−〉 constitute a natural transformation.

The following proposition provides additional freedom in the passage (3.4.4)
from G-vector bundles to ku-cohomology classes: it lets us replace the embedding

ξ
j−−→ (uξ)C

linear summand−−−−−−−−−−→ Sym((uξ)C)

used in the definition of 〈ξ〉 by any other equivariant isometric embedding of ξ into
the complexified symmetric algebra of any other euclidean vector bundle.

Proposition 3.4.5. Let G be a Lie group, X a G-space and ξ a hermitian
G-vector bundle over X. Let µ be a euclidean G-vector bundle over X and

J : ξ −→ Sym(µC)

a G-equivariant C-linear isometric embedding. We define a map of retractive G-
spaces

λ(J) : Sµ −→ ku(µ) by λ(J)(x, v) = [Jx(ξx), v] .

Then 〈ξ〉 coincides with the class of (µ, λ(J)).

Proof. The two composites around the (non-commutative!) square

ξ
J //

i◦jξ

��

Sym(µC)

Sym(i2)

��
Sym((uξ)C)

Sym(i1)
// Sym((uξ)C ⊕ µC)

are G-equivariant isometric embeddings whose images are orthogonal inside the
hermitian vector bundle Sym((uξ)C ⊕ µC). Here i : (uξ)C −→ Sym((uξ)C) is the
embedding of the linear summand. The diagram thus commutes up to equivariant
homotopy of linear embeddings, fiberwise given by the formula

H(t, v) = t · (Sym(i1) ◦ i ◦ jξ)(v) +
√

1− t2 · (Sym(i2) ◦ J)(v) .
Such a homotopy induces an equivariant homotopy of maps of retractive G-spaces
over X between λ(Sym(i1) ◦ i ◦ jξ) and λ(Sym(i2) ◦ J). Hence

〈ξ〉 = [uξ, {ξ}] = [uξ, λ(i ◦ jξ)] = [uξ ⊕ µ, λ(i1 ◦ i ◦ jξ)]
= [uξ ⊕ µ, λ(i2 ◦ J)] = [µ, λ(J)] . �
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Our next aim is to establish additivity of the map 〈−〉 : VectG(X) −→ kuGJXK
defined in (3.4.3). This relation is slightly subtle because the sum in kuGJXK is
defined by addition via a fiberwise pinch map, which a priori has no connection to
Whitney sum of vector bundles. The concept of ‘ample bundle’ we are about to
introduce will serve as a tool in the proof of the additivity relation.

Definition 3.4.6. Let G be a Lie group and X a proper G-space. A hermit-
ian G-vector bundle ζ over X is ample if the following property holds: for every
point x ∈ X the infinite-dimensional unitary G-representation Sym(ζx) is a com-
plete complex Gx-universe, where Gx is the stabilizer group of x. In other words,
every finite-dimensional unitary Gx-representation admits a Gx-equivariant linear
isometric embedding into Sym(ζx).

Proposition 3.4.7. Let G be a Lie group and X a finite proper G-CW-complex.

(i) Let ζ be an ample hermitian G-vector bundle over X. Let ξ be a hermitian
G-vector bundle over X, of finite or countably infinite dimension. Then there
is a G-equivariant linear isometric embedding of ξ into Sym(ζ) over X.

(ii) If G is discrete, then X has an ample G-vector bundle.

Proof. (i) We prove a more general relative version of the claim: given a
G-subcomplex A of X , every G-equivariant linear isometric embedding of ξ|A into
Sym(ζ)|A over A can be extended to a G-equivariant linear isometric embedding of
ξ into Sym(ζ) over X . The case A = ∅ then proves the proposition.

Induction over the number of relative G-cells reduces the claim to the case
where X is obtained from A by attaching a single G-cell with compact isotropy
group H . Hence we may assume that X = G/H ×Dn and A = G/H × Sn−1, for
some n ≥ 0. Since H is a compact Lie group, every hermitian G-vector bundle ζ
overG/H×Dn is of the form ζ = (G×HW )×Dn, for some unitaryH-representation
W , projecting away from W , compare [42, Lemma 1.1 (a)] or [65, Prop. 1.3]. Since
ζ is an ample bundle, W must be an ample H-representation, i.e., the symmetric
algebra Sym(W ) is a complete complex H-universe. Similarly, we may assume that
ξ = (G ×H V ) ×Dn where V is a unitary H-representation of finite or countably
infinite dimension.

Every linear isometric embedding of the bundle ξ|Sn−1 = (G×H V )×Sn−1 into
the bundle Sym(ζ|Sn−1) = (G×H Sym(W ))× Sn−1 is of the form

(G ×H V )× Sn−1 −→ (G×H Sym(W )) × Sn−1

([g, v], x) 7−→ ([g, ψ(x)(v)], x)

for some continuous map ψ : Sn−1 −→ LH(V, Sym(W )) into the space of H-
equivariant C-linear isometric embeddings from V into Sym(W ). Because Sym(W )
is a complete complexH-universe, the space LH(V, Sym(W )) is weakly contractible:
when V is finite-dimensional, this is the complex analog of [60, Prop. 1.1.21]; Propo-
sition A.10 of [61] (or rather its complex analog) reduces the infinite-dimensional
case to the finite-dimensional case. Because LH(V, Sym(W )) is weakly contractible,
ψ admits a continuous extension to a map Dn −→ LH(V, Sym(W )), which yields
the desired linear isometric embedding ξ −→ Sym(ζ) by the same formula as for ψ.

(ii) We let X be a finite proper G-CW-complex. Since X has only finitely
many G-cells, there are only finitely many conjugacy classes of finite subgroups of
G that occur as isotropy groups of points of X . In particular, the isotropy groups
of X have bounded order. Since G is discrete, Corollary 2.7 of [42] thus provides a
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hermitian G-vector bundle ζ over X such that for every point x ∈ X , the fiber ζx is
a multiple of the regular representation of the isotropy group Gx. In particular, the
Gx-action on ζx is faithful, and hence Sym(ζx) is a complete complex Gx-universe,
compare [60, Rk. 6.3.22]. So the bundle ζ is ample. �

Proposition 3.4.8. Let G be a discrete group and X a finite proper G-CW-
complex. Then the map 〈−〉 : VectG(X) −→ kuGJXK defined in (3.4.4) is additive.

Proof. The sum in the group kuGJXK is defined by addition via a fiberwise
pinch map. We will relate the pinch sum to a different binary operation, the ‘bundle
sum’, by an Eckmann-Hilton argument.

Proposition 3.4.7 (ii) provides an ample hermitian G-vector bundle ζ over X .
We let µ = uζ denote the underlying euclidean vector bundle. Because ζ embeds
into (uζ)C = µC, the hermitian G-vector bundle µC is also ample. By adding a
trivial complex line bundle to ζ, if necessary, we can moreover assume that there
exists a G-equivariant linear isometric embedding j : X × R −→ µ = uζ of the
trivial R-line bundle overX . The embedding j parameterizes a trivial 1-dimensional
summand in µ, and hence a pinch map p : Sµ −→ Sµ ∨X Sµ. The ‘pinch sum’ on
the set [Sµ,kuG(µ)]

G
X of parameterized homotopy classes is given by

(3.4.9) [f ] ∨ [g] = [(f + g) ◦ p] ,
where f+g : Sµ∨XSµ −→ kuG(µ) is given by f and g on the respective summands.

Because µC is ample, Proposition 3.4.7 (i) provides a G-equivariant linear iso-
metric embedding

θ : Sym(µC)⊕ Sym(µC) −→ Sym(µC)

of bundles over X . The embedding θ in turn yields a map of retractive G-spaces
over X

⊕ : kuG(µ)×X kuG(µ) −→ kuG(µ)

defined fiberwise by

[E1, . . . , Ek; v1, . . . , vk]⊕ [F1, . . . , Fl;w1, . . . , wl]

= [θ(E1 ⊕ 0), . . . , θ(Ek ⊕ 0), θ(0⊕ F1), . . . , θ(0⊕ Fl); v1, . . . , vk, w1, . . . , wl]

=

k
∑

i=1

viθ(Ei ⊕ 0) +

l
∑

j=1

wjθ(0⊕ Fj) .

The ‘bundle sum’ on the set [Sµ,kuG(µ)]
G
X is given by

(3.4.10) [f ]⊕ [g] = [⊕ ◦ (f, g)] ,
where (f, g) : Sµ −→ kuG(µ) ×X kuG(µ) has components f and g, respectively.
The pinch sum (3.4.9) and the bundle sum (3.4.10) share the same neutral element,
and they satisfy the interchange relation

([f ]⊕ [g]) ∨ ([h]⊕ [k]) = ([f ] ∨ [h])⊕ ([g] ∨ [k]) .

The Eckmann-Hilton argument then applies: taking [g] and [h] as the common neu-
tral element shows that the pinch sum and the bundle sum on the set [Sµ,kuG(µ)]

G
X

coincide.
Now we prove additivity. We let ξ and η be two hermitian G-vector bundles

over X . Proposition 3.4.7 (i) provides G-equivariant linear isometric embeddings

ϕ : ξ −→ Sym(µC) and ψ : η −→ Sym(µC)
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of hermitian G-vector bundles over X . The map

θ ◦ (ϕ⊕ ψ) : ξ ⊕ η −→ Sym(µC)

is another equivariant isometric embedding. Proposition 3.4.5 turns these bundle
embeddings into maps of retractive G-spaces over X

λ(ϕ) , λ(ψ) , λ(θ ◦ (ϕ⊕ ψ)) : Sµ −→ kuG(µ) .

Moreover, the relation

λ(θ ◦ (ϕ⊕ ψ)) = ⊕ ◦ (λ(ϕ), λ(ψ))

holds by design. Proposition 3.4.5 then yields

〈ξ〉+ 〈η〉 = [λ(ϕ)] ∨ [λ(ψ)] = [λ(ϕ)] ⊕ [λ(ψ)]

= [⊕ ◦ (λ(ϕ), λ(ψ))] = [λ(θ ◦ (ϕ⊕ ψ))] = 〈ξ ⊕ η〉 . �

We have now constructed a well-defined monoid homomorphism

〈−〉 : VectG(X) −→ kuGJXK .

We write KG(X) for the group completion (Grothendieck group) of the abelian
monoid VectG(X). The universal property of the Grothendieck group extends 〈−〉
to a unique group homomorphism

(3.4.11) κX : KG(X) −→ kuGJXK .

Since the maps 〈−〉 are natural for G-maps in X , so are the extensions κX .

Equivariant K-groups admit products induced from tensor product of vector
bundles. The cohomology groups represented by ku admit products arising from
the ring spectrum structure. Our next aim is to show that the homomorphisms
(3.4.11) are suitably multiplicative. We start by formally introducing the relevant
pairings in the represented ku-cohomology, in somewhat larger generality.

Construction 3.4.12. We let E be an orthogonal ring spectrum and M a left
E-module spectrum. Given a Lie group G, a finite proper G-CW-complex X and
a finite CW-complex Y , we now construct natural pairings

(3.4.13) ∪ : EGJXK×MJY K −→ MGJX × Y K ;

here MJY K is the non-equivariant special case of the Construction 3.1.19, i.e., for
G a trivial group. We write

αm,n : E(Rm) ∧M(Rn) −→ M(Rm+n)

for the (O(m)×O(n))-equivariant component of the action morphism α : E∧M −→
M . We let η and ξ be vector bundles over X and Y , of dimension m and n,
respectively. We write η× ξ for the exterior product bundle over X×Y , and −△−
for the external smash product of retractive spaces, with fibers

(η × ξ)(x,y) = ηx ∧ ξy .
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Then the multiplication maps give rise to a map of retractive spaces over X × Y

EG(η)△M(ξ) =
(

Fn(η)×O(m) E(Rm)
)

△
(

Fn(ξ)×O(n) M(Rn)
)

∼=

��
(

Fm(η) ×Fn(ξ)
)

×O(m)×O(n)

(

E(Rm) ∧M(Rn)
)

ψ×αm,n

��
Fm+n(η × ξ)×O(m+n) M(Rm+n) = EG(η × ξ)

that we denote by αη,ξ. The map ψ : Fm(η)×Fn(ξ) −→ Fm+n(η× ξ) takes direct
products of frames, i.e., it is given by

ψ((x1, . . . , xm), (y1, . . . , yn)) = ((x1, 0), . . . , (xm, 0), (0, y1), . . . , (0, yn)) .

Now we let (η, u) represent a class in EGJXK, and we let (ξ, v) represent a class in
MJY K. Then the composite

u ∪ v : Sη×ξ ∼= Sη△Sξ u△v−−−→ EG(η)△M(ξ)
αη,ξ−−−→ MG(η × ξ)

is an equivariant map of retractive G-spaces overX×Y , where G acts trivially on Y
and on ξ. The construction passes to equivalence classes under fiberwise homotopy
and stabilization, so we can define the pairing (3.4.13) by

[η, u] ∪ [ξ, v] = [η × ξ, u ∪ v] .
The following naturality properties of the cup product construction are straight-

forward from the definitions, and we omit the formal proofs.

Proposition 3.4.14. Let E be an orthogonal ring spectrum and G a Lie group.
The pairing (3.4.13) is natural for morphisms in the global homotopy category of E-
module spectra in the variable M , for continuous G-maps in X, and for continuous
maps in Y .

The cases we mostly care about are the orthogonal ring spectra ku and KU,
each acting on itself by multiplication. We can now state and prove the multiplica-
tivity property of the homomorphisms (3.4.11). In the next proposition, the upper
horizontal pair is induced by exterior tensor product of vector bundles.

Proposition 3.4.15. For every discrete group G, every proper finite G-CW-
complex X and every finite CW-complex Y , the diagram

KG(X)×K(Y )
⊗ //

κX×κY

��

KG(X × Y )

κX×Y

��
kuGJXK× kuJY K

∪
// kuGJX × Y K

commutes.

Proof. Since both pairings are biadditive, it suffices to check the commuta-
tivity for classes represented by actual vector bundles (as opposed to virtual vector
bundles). We let η be a hermitian G-vector bundle over X , and ξ a hermitian
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vector bundle over Y . The class 〈η〉 ∪ 〈ξ〉 is represented by the map of retractive
G-spaces over X × Y

Su(η)×u(ξ) ∼= Suη△Suξ {η}△{ξ}−−−−−−→ ku(uη)△ku(uξ)
µη,ξ−−−→ ku((uη)× (uξ)) .

The multiplication in ku ultimately stems from the tensor product of hermitian
vector spaces. Unraveling the definition of µη,ξ shows that the above composite

coincides with the map of retractiveG-spaces λ(J) : S(uη)×(uξ) −→ ku((uη)×(uξ)),
associated with the isometric embedding

J : u(η⊗ ξ) −→ Sym(((uη)× (uξ))C) , J(x,y)(v⊗w) = (jηx(v), 0) · (0, jξy(w)) .
So the image of J belongs to Sym2(u(η) × u(ξ)), the quadratic summand in the
complexified symmetric algebra of u(η) × u(ξ). We emphasize that J is not the
isometric embedding used in the definition of the class 〈η⊗ξ〉: the defining isometric
embedding takes values in the linear summand of the symmetric algebra of the
exterior tensor product u(η ⊗ ξ). However, Proposition 3.4.5 shows that the map
λ(J) also represents the class 〈η ⊗ ξ〉. So we conclude that

〈η〉 ∪ 〈ξ〉 = 〈λ(J)〉 = 〈η ⊗ ξ〉 . �

Now we consider the periodic global K-theory spectrum KU introduced by
Joachim in [30] and later studied in [60, Sec. 6.4]. The definition of KU is based
on spaces of homomorphisms of Z/2-graded C∗-algebras, and can be found in [30,
Sec. 4] and [60, Con. 6.4.9]. For our purposes, we can (and will) use KU as a black
box; the main properties we use is that KU is a commutative orthogonal ring
spectrum, that it receives a ring spectrum homomorphism j : ku −→ KU (see [60,
Con. 6.4.13]), that the homomorphism j sends the Bott class in πe2(ku) to a unit in
the graded ring πe∗(KU) (see [60, Thm. 6.4.29]) and thatKU represents equivariant
K-theory for compact Lie groups (see [30, Thm. 4.4] or [60, Cor. 6.4.23]).

Now we let G be a discrete group. The functor (−)G from Section 3.3 yields
a G-equivariant commutative orthogonal ring spectrum KUG. The morphism of
commutative orthogonal ring spectra j : ku −→ KU defined in [60, Con. 6.4.13]
induces a morphism of commutative orthogonalG-ring spectra jG : kuG −→ KUG.
For X a finite proper G-CW-complex, we write cX : KG(X) −→ KUGJXK for the
composite

KG(X)
κX−−→ kuGJXK

(jG)∗−−−→ KUGJXK .

Source and target of this natural transformation are excisive functors in X by [42,
Lemma 3.8] and by Theorem 3.1.29, respectively.

Theorem 3.4.16. For every discrete group G and every finite proper G-CW-
complex X, the homomorphism

cX : KG(X) −→ KUGJXK

is an isomorphism.

Proof. In the special case when the group G is finite, the map cX factors as
the composite

KG(X)
∼=−−→ KUG(X)

µ
KUG
X−−−−−→ KUGJXK ,

where the first map is the isomorphism established in [60, Cor. 6.4.23], and the
second map is the isomorphism constructed in Theorem 3.1.34. This proves the
claim for finite groups.
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Now we let G be any discrete group, and we consider the special case X =
G/H ×K for a finite subgroup H of G and a finite non-equivariant CW-complex
K. Lemma 3.4 of [42] and our Example 3.1.25 show that vertical induction maps
in the commutative square

KH(K)

∼= ind

��

cK // KUHJKK

∼=ind

��
KG(G/H ×K) cG/H×K

// KUGJG/H ×KK

are isomorphisms. Hence cG/H×K is an isomorphism, and Proposition 3.1.7 con-
cludes the proof. �

The rest of this section is devoted to extending the natural isomorphism cX :
KG(X) −→ KUGJXK to an isomorphism of Z-graded proper G-cohomology theo-
ries, using different incarnations of Bott periodicity for source and target of cX .

Construction 3.4.17. In [42, Sec. 3], the third author and Oliver use Bott pe-
riodicity to extend the excisive functor KG(X) to a Z-graded proper G-cohomology
theory. We quickly recall the relevant definitions. We let L and C denote the tau-
tological line bundle and the trivial line bundle, respectively, over the complex
projective line CP 1. Their formal difference is a reduced K-theory class

[L]− [C] ∈ K(CP 1|∞) = Ker(K(CP 1) −→ K({∞})) .
We identify S2 = C ∪ {∞} with CP 1 by sending λ ∈ C to the point [λ : 1]. The
Bott class b ∈ K(S2|∞) is the image of [L] − [C] under the induced isomorphism
K(CP 1|∞) ∼= K(S2|∞). The reduced K-group K(S2|∞) is infinite cyclic, and the
Bott class b is a generator.

Now we let G be a discrete group and X a finite proper G-CW-complex. Ex-
terior tensor product of vector bundles induces the exterior product map

− ⊗ b : KG(X) −→ KG(X × S2) ;

because b is a reduced K-theory class, this map takes values in the relative group
KG(X × S2|X ×∞). Equivariant K-theory is Bott periodic in the sense that this
refined exterior product map

−⊗ b : KG(X)
∼=−−→ KG(X × S2|X ×∞)

is an isomorphism for every finite proper G-CW-complex X , see [42, Thm. 3.12].
For an integer m, the third author and Oliver define

Km
G (X) =

{

KG(X) for m even, and

KG(X × S1|X ×∞) for m odd.

The suspension isomorphism

σ : Km
G (X)

∼=−−→ Km+1
G (X × S1|X ×∞)

is the identity when m is odd. When m is even, the suspension isomorphism is the
composite

KG(X)
−⊗b−−−→
∼=

KG(X × S2|X ×∞)
(X×q)∗−−−−−→
∼=

KG(X × S1 × S1|X × (S1 ∨ S1)) ,
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where q : S1 × S1 −→ S1 ∧ S1 ∼= S2 is the composite of the projection and the
canonical homeomorphism.

Construction 3.4.18. The Bott class b ∈ K(S2) is a generator of the reduced
K-group K(S2|∞), which is infinite cyclic. The homomorphisms κS2 : K(S2) −→
kuJS2K and κ∗ : K(∗) −→ kuJ∗K are isomorphisms by [60, Thm. 6.3.31 (iii)]. So
the class κS2(b) is a generator of the infinite cyclic group

kuJS2|∞K ∼= πe2(ku) .

The composite cS2 = j∗ ◦ κS2 : K(S2|∞) −→ KUJS2|∞K is an isomorphism by
Theorem 3.4.16, so the class

β = cS2(b) = j∗(κS2(b)) ∈ KUJS2|∞K

is a generator. We represent β by a morphism β̂ : Σ∞S2 −→ KU in the global
stable homotopy category GH, i.e., such that 1∧S2 ∈ πe2(Σ∞S2) maps to the class
corresponding to β under the isomorphism

KUJS2|∞K ∼= πe2(KU) .

We define β̄ : KU∧S2 −→ KU as the free extension to a morphism of KU-module
spectra, i.e., the composite in GH

KU ∧ S2 KU∧β̂−−−−→ KU ∧KU
µKU

−−−→ KU .

By [60, Thm. 6.4.29], the homomorphism of orthogonal ring spectra j : ku −→ KU

sends each of the additive generators of πe2(ku) to a unit of degree 2 in the graded

ring πe∗(KU). In particular, the class u = β̂∗(1 ∧ S2) in πe2(KU) corresponding to
β ∈ KUJS2|∞K is a graded unit.

For every compact Lie group G, the effect of β̄ on G-equivariant homotopy
groups is multiplication by the class p∗(u) ∈ πG2 (KU), where p∗ : πe∗(KU) −→
πG∗ (KU) is inflation along the unique group homomorphism p : G −→ e. Since p∗

is a ring homomorphism, p∗(u) is unit in the graded ring πG∗ (KU). So β̄ induces an
isomorphism of G-equivariant stable homotopy groups. Since G was any compact
Lie group, the morphism β̄ : KU ∧ S2 −→ KU is a global equivalence. We apply
the ‘forgetful’ functor UG : GH −→ Ho(SpG) discussed in (3.3.2) to obtain an
isomorphism

β̃ = UG(β̄) : KUG ∧ S2 ∼=−−→ KUG

in the homotopy category of orthogonal G-spectra.

In the following proposition, we write again q : S1 × S1 −→ S1 ∧ S1 ∼= S2 for
the composite of the projection and the canonical homeomorphism.

Proposition 3.4.19. Let G be a discrete group and X a finite proper G-CW-
complex. The following square commutes:

KUGJXK

Σ(KU∧S1)G◦ΣKUG

��

−∪β // KUGJX × S2|X ×∞K

(X×q)∗

��
(KU ∧ S2)GJX × S1 × S1|X × (S1 ∨ S1)K

β̃∗

// KUGJX × S1 × S1|X × (S1 ∨ S1)K
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Proof. We let 1 ∈ KUJ∗K denote the class represented by the trivial 0-
dimensional vector bundle over a point, and the map of based spaces

η : S0 −→ KU(0) ,

the unit of the ring spectrum structure of KU. We write ι2 ∈ (KU ∧ S2)JS2|∞K
for the unique class satisfying

q∗(ι2) = ΣKU∧S1

(ΣKU(1)) ∈ (KU ∧ S2)JS1 × S1|S1 ∨ S1K ,

where ΣKU is the suspension homomorphism (3.2.5). Then for every class x ∈
KUGJXK, the relation

Σ(KU∧S1)G(ΣKUG(x)) = x ∪ (ΣKU∧S1

(ΣKU(1)))

= x ∪ q∗(ι2) = (X × q)∗(x ∪ ι2)

holds in (KU ∧ S2)GJX × S1 × S1|X × (S1 ∨ S1)K. The relation

β = β̃∗(ι2)

holds in KUJS2|∞K, by construction of the morphism β̃ : KU ∧ S2 −→ KU. The
naturality properties of the cup product pairing, recorded in Proposition 3.4.14,
thus provide the relations

β̃∗(Σ
KUG∧S

1

(ΣKUG(x))) = β̃∗((X × q)∗(x ∪ ι2)) = (X × q)∗(β̃∗(x ∪ ι2))
= (X × q)∗(x ∪ β̃∗(ι2)) = (X × q)∗(x ∪ β) .

The third equality exploits that β̃ is underlying a morphism in the global homotopy
category of left KU-module spectra. �

Now we define the periodicity isomorphisms of the properG-cohomology theory
KU∗GJ−K, essentially as the effect of the π∗-isomorphism β̃ : KUG[2] = KUG ∧
S2 −→ KUG. We recall that Proposition 1.3.7 specifies a natural isomorphism

t2,m : KUG[2][m]
∼=−−→ KUG[2 +m]

in Ho(SpG), for every integer m. We define a natural isomorphism

(3.4.20) B[m] = (β̃[m] ◦ t−12,m)∗ : KU2+m
G JXK

∼=−−→ KUm
G JXK ,

the effect of the composite isomorphism

KUG[2 +m]
t−1
2,m−−−→
∼=

KUG[2][m]
β̃[m]−−−→
∼=

KUG[m] .

Proposition 3.4.21. Let G be a discrete group and X a finite proper G-CW-
complex. Then the square

KU2+m
G JXK

B[m]
//

σ

��

KUm
G JXK

σ

��
KU2+m+1

G JX × S1|X ×∞K
B[m+1]

// KUm+1
G JX × S1|X ×∞K

commutes for every m ∈ Z.
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Proof. The associativity and naturality property of the natural isomorphisms
tk,l stated in Proposition 1.3.7 imply that the following two squares commute:

KUG[2 +m][1]
t−1
2,m[1]

//

t2+m,1

��

KUG[2][m][1]
β̃[m][1] //

tm,1

��

KUG[m][1]

tm,1

��
KUG[2 +m+ 1]

t−1
2,m+1

// KUG[2][m+ 1]
β̃[m+1]

// KUG[m+ 1]

The suspension isomorphisms σ : EkGJXK −→ Ek+1
G JX × S1|X × ∞K defined in

(3.2.6) are natural in the variable E for morphisms in Ho(SpG). The two facts
together provide the desired commutativity. �

Now we can put all the ingredients together and prove the main result of this
section, identifying vector bundle K-theory with the proper G-cohomology theory
represented by the orthogonalG-spectrum underlying the global K-theory spectrum
KU. We let G be a discrete group. Theorems 3.1.34 and 3.4.16 together provide a
natural isomorphism

dX = (µKUG

X )−1 ◦ cX : KG(X) −→ KUG(X)

of excisive functors on finite proper G-CW-complexes.

Theorem 3.4.22. Let G be a discrete group. The natural isomorphism of ex-
cisive functors

dX : KG(X)
∼=−−→ KUG(X)

extends to an isomorphism K∗G
∼= KU∗G of proper G-cohomology theories on finite

proper G-CW-complexes from the equivariant K-theory in these sense of [42] to the
G-cohomology theory represented by the orthogonal G-spectrum KUG.

Proof. We define natural isomorphisms

ψX2k : KG(X)
∼=−−→ KU2k

G JXK

and

ψX2k−1 : KG(X × S1|X ×∞)
∼=−−→ KU2k−1

G JXK ,

for all integers k, compatible with the suspension isomorphisms. We start by setting
ψX0 = cX : KG(X) −→ KUGJXK. For k < 0, we define ψ2k inductively as the
composite ψ2k = B[2k] ◦ ψ2+2k, where B[m] : KU2+m

G JXK −→ KUm
G JXK is the

natural isomorphism (3.4.20). For k > 0, we define ψ2k inductively as the composite
ψ2k = (B[2k−2])−1 ◦ ψ2k−2. In odd dimensions, we define ψ2k−1 as the composite

KG(X × S1|X ×∞)
ψX×S1

2k−−−−→ KU2k
G JX × S1|X ×∞K

σ−1

−−−−→ KU2k−1
G JXK .

With these definitions, the relation

ψm = B[m] ◦ ψ2+m

holds for all integers m, by definition in even dimension, and by Proposition 3.4.21
in odd dimensions.
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Now we show that the isomorphisms ψm are compatible with suspension iso-
morphisms. We first observe that the following diagram commutes:

KG(X)

κX

��

−⊗b //

cX

��

KG(X × S2)

κX×S2

��
cX×S2

��

kuGJXK

(jG)∗

��

−∪κS2(b)
// kuGJX × S2K

(jG)∗

��
KUGJXK

−∪β
// KUGJX × S2K

Indeed, the upper square commutes by Proposition 3.4.15, and the lower square
commutes because j : ku −→ KU is a morphism of ultra-commutative ring spectra,
and the class β was defined as cS2(b) = j∗(κS2(b)). Now we contemplate the
following diagram of isomorphisms:

KG(X)

−⊗b

��

ψX
0 =cX

  

σ

!!
KG(X × S2|X ×∞)

(X×q)∗
//

cX×S2

��

KG(X × S1 × S1|X × (S1 ∨ S1))

cX×S1×S1

��

ψX
1

��

KUGJX × S2|X ×∞K
(X×q)∗

//

(−∪β)−1

��

KUGJX × S1 × S1|X × (S1 ∨ S1)K

(KU ∧ S2)GJX × S1 × S1|X × (S1 ∨ S1)K

β̃∗
∼=

OO

KUGJXK
ΣKUG

// (KU ∧ S1)GJX × S1|X ×∞K

Σ(KU∧S1)G
∼=

OO

As we argued above, the left vertical composite coincides with the map ψX0 = cX .
The middle square commutes by naturality of cX ; and the lower part of the diagram
commutes by Proposition 3.4.19. This proves the relation σ ◦ ψ0 = ψ1 ◦ σ, i.e., the
degree 0 instance of compatibility with the suspension isomorphisms.

For compatibility in other even dimensions we consider the following diagram:

KG(X)
−⊗b

//

ψX
2+2k

��

σ

))

ψX
2k

��

KG(X × S2|X ×∞)
(X×q)∗

// KG(X × S1 × S1|X × (S1 ∨ S1))

ψX×S1

2+2k+1
��

ψX×S1

2k+1

��

KU2+2k
G JXK

σ //

B[2k]

��

KU2+2k+1
G JX × S1|X ×∞K

B[2k+1]

��
KU2k

G JXK σ
// KU2k+1

G JX × S1|X ×∞K
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The lower square commutes by Proposition 3.4.21. So the outer diagram commutes
if and only if the upper part commutes. In other words: compatibility with the
suspension isomorphisms holds in dimension 2k if and only if it holds in dimension
2 + 2k. We already showed compatibility in dimension 0, so we conclude that
compatibility with the suspension isomorphisms holds in all even dimensions. In
odd dimensions, compatibility with the suspension isomorphisms was built into the
definition of suspension isomorphism in K∗G and the maps ψ2k−1. This completes
the construction of the isomorphism from the vector bundle K-theory K∗G to the
theory KU∗GJ−K.

Theorem 3.2.7 provides another isomorphism of proper G-cohomology theories
from the represented theory KU∗G(−) to the theory KU∗GJ−K, given by µKUG

X :
KG(X) −→ KUGJXK in dimension 0. This concludes the proof. �

We leave it to the interested reader to verify that the isomorphisms of Theorem
3.4.22 are compatible with restriction to finite index subgroups, with the induction
isomorphisms (3.1.26), and with graded products.
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Society (EMS), Zürich, 2008. xii+567 pp.
[77] A Valette, Introduction to the Baum-Connes conjecture. From notes taken by Indira Chat-

terji. With an appendix by Guido Mislin. Lectures in Mathematics ETH Zürich. Birkhäuser
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of orthogonal spectra, 27
Borel cohomology, 118–121
Bredon cohomology, 110–113
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for the equivariant stable homotopy

category, 36
Burnside ring, 73

coconnective orthogonal G-spectrum, 37
cofibration

of orthogonal G-spectra, 19
cohomological functor, 35
Com-cofibration, 6

Com-equivalence, 6
Com-fibration, 6
Com-model structure, 7

based version, 10
connective global K-theory, 122
connective orthogonal G-spectrum, 37

Eilenberg-MacLane spectrum, 77–78, 112
equivariant homotopy groups, 15, 34, 61–65

equivariant K-theory, 121–135
equivariant stable cohomotopy, 107
equivariant vector bundle, see G-vector

bundle
excisive functor, 83–87

Fin-orbit category, 43, 88, 110

G-equivalence, 6
G-CW-complex, 6

finite, 6
finite-dimensional, 6
proper, 6

G-equivariant stable homotopy category,
32–38, 47, 49, 52, 55, 61, 63, 66, 89,
115–116

rational, 79–82
G-Mackey category, 72

G-Mackey functor, 72, 76, 108

constant, 73, 77
of an orthogonal G-spectrum, 62, 75
rational, 80–81

G-Ω-spectrum, 20, 22
rational, 79

G-orbit spectrum, 88
G-space, 5

proper, 6
retractive, 90

G-universe, 12
complete, 14

G-vector bundle, 29, 91, 107, 123–129
genuine cohomology theory, 107

global equivalence, 113
global K-theory

connective, 122
periodic, 129

global spectrum, 12, 113
global stable homotopy category, 113–115

h-cofibration

of orthogonal G-spectra, 16, 22
homological functor, 35
homotopy category

of a relative category, 44

induction functor, 9, 41
induction isomorphism, 95, 96, 101
infinite dihedral group, 8, 108

inner product space, 11

KOG(EG)-grading, 107

latching map
of an orthogonal spectrum, 19

latching space
of an orthogonal spectrum, 19

left derived functor, 44–45, 51
of restriction, 47–55, 59, 65, 115–116

level equivalence
of orthogonal G-spectra, 18

level fibration
of orthogonal G-spectra, 18

locally finite group, 42, 63

loop isomorphism, 15
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mapping space, 5

maximal compact subgroup, 41
monoid axiom

for equivariant smash product, 29

orthogonal G-spectrum, 11

free, 13
rational, 78–80

p-cyclotomic spectrum, 43

periodic global K-theory, 129
π∗-isomorphism, 15, 99

Postnikov sections
for orthogonal G-spectra, 38

proper G-cohomology theory, 104
EGJ−K, 92–107

relative, 109
represented, 89–90, 100–107

Prüfer group, 43

pushout product property
for equivariant smash product, 28

quasi-cofibrant

orthogonal G-spectrum, 45
quasi-flat

orthogonal G-spectrum, 27
quasi-injective, 39

Quillen adjunction, 9

rational equivalence
of orthogonal G-spectra, 79

relative category, 43

relative cohomology group, 109
representation ring, 73, 107

restriction functor, 9, 41, 47
restriction homomorphism

in a G-Mackey functor, 73
retractive G-space, 90

sequential G-spectrum, 87

shift
of an orthogonal G-spectrum, 33

skeleton
of an orthogonal spectrum, 18

smash product

of orthogonal spectra, 27
space

compactly generated, 4
stable fibration

of orthogonal G-spectra, 20, 21
stable homotopy category

equivariant, see G-equivariant stable
homotopy category

stable model structure

for orthogonal G-spectra, 22–26
rational, 79

structure map
of an orthogonal G-spectrum, 12

suspension isomorphism

for EGJ−K, 105
for equivariant homotopy groups, 15
for represented G-cohomology, 105

suspension spectrum, 12, 34, 89

t-structure
on a triangulated category, 36
on the equivariant stable homotopy

category, 37, 76
Thom space, 30, 107
transfer, 67–71

in a G-Mackey functor, 73

universal proper G-space, 8, 28, 62, 63

Wirthmüller isomorphism, 65–67
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