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Dipartimento di Economia, Università di Chieti-Pescara “G. d’Annunzio”

Viale Pindaro, 42, I-65127 Pescara, Italy

E-mail: s.carpi@unich.it

Yasuyuki Kawahigashi
†

Department of Mathematical Sciences

The University of Tokyo, Komaba, Tokyo, 153-8914, Japan

and

Kavli IPMU (WPI), the University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan

E-mail: yasuyuki@ms.u-tokyo.ac.jp

Roberto Longo∗

Dipartimento di Matematica, Università di Roma “Tor Vergata”
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Abstract

We consider unitary simple vertex operator algebras whose vertex oper-
ators satisfy certain energy bounds and a strong form of locality and call
them strongly local. We present a general procedure which associates to ev-
ery strongly local vertex operator algebra V a conformal net AV acting on the
Hilbert space completion of V and prove that the isomorphism class of AV does
not depend on the choice of the scalar product on V . We show that the class
of strongly local vertex operator algebras is closed under taking tensor prod-
ucts and unitary subalgebras and that, for every strongly local vertex operator
algebra V , the map W 7→ AW gives a one-to-one correspondence between the
unitary subalgebras W of V and the covariant subnets of AV . Many known ex-
amples of vertex operator algebras such as the unitary Virasoro vertex operator
algebras, the unitary affine Lie algebras vertex operator algebras, the known
c = 1 unitary vertex operator algebras, the moonshine vertex operator algebra,
together with their coset and orbifold subalgebras, turn out to be strongly lo-
cal. We give various applications of our results. In particular we show that the
even shorter Moonshine vertex operator algebra is strongly local and that the
automorphism group of the corresponding conformal net is the Baby Monster
group. We prove that a construction of Fredenhagen and Jörß gives back the
strongly local vertex operator algebra V from the conformal net AV and give
conditions on a conformal net A implying that A = AV for some strongly local
vertex operator algebra V .
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Möbius group 74

3



1 Introduction

We have two major mathematical formulations of chiral conformal field theory. A chi-
ral conformal field theory is described with a conformal net in one and with a vertex
operator algebra in the other. The former is based on operator algebras and a part of
algebraic quantum field theory, and the latter is based on algebraic axiomatization of
vertex operators on the circle S1. The two formulations are expected to be equivalent
at least under some natural extra assumptions, but the exact relations of the two have
been poorly understood yet. In this paper, we present a construction of a conformal
net from a vertex operator algebra satisfying some nice analytic properties. More-
over, we show that the vertex operator algebra can be recovered from the associated
conformal net.

Algebraic quantum field theory is a general theory to study quantum field theory
based on operator algebras and has a history of more than 50 years, see [50]. The basic
idea is that we assign an operator algebra generated by observables to each spacetime
region. In this way, we have a family of operator algebras called a net of operator
algebras. Such a net is subject to a set of mathematical axioms such as locality (Haag-
Kastler axioms). We study nets of operator algebras satisfying the axioms, and their
mathematical studies consist of constructing examples, classifying them and studying
their various properties. We need to fix a spacetime and its symmetry group for
a quantum field theory, and the 4-dimensional Minkowski space with the Poincaré
symmetry has been studied by many authors. In a chiral conformal field theory,
space and time are mixed into the one-dimensional circle S1 and the symmetry group
is its orientation preserving diffeomorphism group.

A quantum field Φ on S1 is a certain operator-valued distribution assumed to
satisfy the chiral analogue of Wightman axioms [95], see also [25], [43] and [59, Chapter
1].

For an interval I ⊂ S1, take a test function supported in I. Then the pairing
〈Φ, f〉 = Φ(f) produces a (possibly unbounded) operator (smeared field) which cor-
responds to an observable on I (if the operator is self-adjoint). We consider a von
Neumann algebra A(I) generated by such operators for a fixed I. More generally we
can consider this construction for a family Φi, i ∈ I of (Bose) quantum fields, where
I is an index set, not necessarily finite.

Based on this idea, we axiomatize a family {A(I)} as follows and call it a (local)
conformal net .

Let I be the family of open, connected, non-empty and non-dense subsets (inter-
vals) of S1. A (local) Möbius covariant net A of von Neumann algebras on S1 is a
map

I ∋ I 7→ A(I) ⊂ B(H)

from I to the set of von Neumann algebras on a fixed Hilbert space H satisfying the
following properties.

• Isotony. If I1 ⊂ I2 belong to I, then we have A(I1) ⊂ A(I2).
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• Locality. If I1, I2 ∈ I and I1 ∩ I2 = ∅, then we have [A(I1),A(I2)] = {0}, where
brackets denote the commutator.

• Möbius covariance There exists a strongly continuous unitary representation U
of the group Möb ≃ PSL(2,R) of Möbius transformations of S1 on H such that
we have U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Möb, I ∈ I.

• Positivity of the energy. The generator of the one-parameter rotation subgroup
of U (conformal Hamiltonian) is positive.

• Existence of the vacuum. There exists a unit U -invariant vector Ω ∈ H called
the vacuum vector , and Ω is cyclic for the von Neumann algebra

∨
I∈I A(I),

where the lattice symbol
∨

denotes the von Neumann algebra generated.

These axioms imply the Haag duality, A(I)′ = A(I ′), I ∈ I, where I ′ is the
interior of S1 \ I.

We say that a Möbius covariant net A is irreducible if
∨

I∈IA(I) = B(H). The net
A is irreducible if and only if Ω is the unique U -invariant vector up to scalar multiple,
and if and only if the local von Neumann algebras A(I) are factors. In this case they
are automatically type III1 factors (except for the trivial case A(I) = C).

Let Diff+(S1) be the group of orientation-preserving diffeomorphisms of S1. By a
conformal net A, we mean a Möbius covariant net with the following property called
conformal covariance (or diffeomorphism covariance).

There exists a strongly continuous projective unitary representation U of Diff+(S1)
on H extending the unitary representation of Möb such that for all I ∈ I we have

U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Diff+(S1),

U(γ)AU(γ)∗ = A, A ∈ A(I), γ ∈ Diff(I ′),

where Diff(I) denotes the group of orientation preserving diffeomorphisms γ of S1

such that γ(z) = z for all z ∈ I ′.
It should be pointed out that it is not known whether or not the map I ∋ I 7→

A(I) defined from a family {Φi}i∈I of chiral conformal covariant quantum fields
on S1 will satisfy in general the axioms of conformal nets described above. The
main difficulty is given by locality. The problem is due to the fact that the smeared
fields are typically unbounded operators and the von Neumann algebras generated
by two unbounded operators commuting on a common invariant domain need not to
commute as shown by a well known example by Nelson [86]. This difficulty is part of
the more general problem of the mathematical equivalence of Wightman and Haag-
Kastler axioms for quantum field theory a problem which has been studied rather
extensively in the literature but which has not yet been completely solved, see e.g.
[8, 5, 6, 7, 32, 33, 37, 38, 45]. As it will become clear in this paper we deal with some
special but mathematically very interesting aspect of this general problem.

A vertex operator is an algebraic formalization of a quantum field on S1, see
[39, 59]. A certainly family of vertex operators is called a vertex operator algebra.
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This first appeared in the study of Monstrous Moonshine, where one constructs a
special vertex operator algebra called the Moonshine vertex operator algebra whose
automorphism group is the Monster group, see [40]. Extensive studies have been made
on vertex operator algebras in the last 30 years.

Since a conformal net and a vertex operator algebra (with a unitary structure)
both give mathematical axiomatization of a (unitary) chiral conformal field theory,
one expects that these two objects are in a bijective correspondence, at least under
some nice conditions, but no such correspondence has been known so far. Actually,
the axioms of vertex operator algebras are deeply related to Wightman axioms for
quantum fields, see [59, Chapter 1]. Hence, the problem of the correspondence between
vertex operator algebras and conformal nets can bee seen as a variant of the problem
of the correspondence between Wightman field theories and algebraic quantum field
theories discussed above.

We would like to stress here an important difference between the Wightman ap-
proach and the vertex operator algebra approach to conformal field theory. In the
Wightman approach the emphasis is on a family of fields {Φi}i∈I which generate the
theory. For this point of view it is natural to start from this family in order do define
an associated conformal net, see e.g. [14]. Many models of conformal nets are more
or less directly defined in this way from a suitable family of generating fields. On the
other hand, in the vertex operator algebra approach one considers, in a certain sense,
all possible fields (the vertex operators) compatible to a given theory and correspond-
ing to the Borchers class of the generating family {Φi}i∈I , cf. [50, II.5.5]. In this sense
the vertex operator algebras approach is closer in spirit to the algebraic approach, see
[50, III.1] and in this paper we will take this fact quite seriously. Another important
similarity between the vertex operator approach and the conformal nets approach is
the emphasis on representation theory. The latter will play only a marginal role in
this paper but we believe that our work gives a solid basis for further investigations
in this direction and we plan to come back to the representation theory aspects in the
future.

In this paper we present for the first time a correspondence between unitary vertex
operator algebras and conformal nets. The basic idea is the following. We start
with a simple unitary vertex operator algebra V and we assume that the vertex
operators satisfy certain (polynomial) energy bounds. This assumption guarantees a
nice analytic behaviour of the vertex operators. It is rather standard in axiomatic
quantum field theory and does not appear to be restrictive but it is presently not
known if it guarantees the existence of an associated conformal net. Then, on the
Hilbert space completion HV of V we can consider the smeared vertex operators
Y (a, f), f ∈ C∞(S1), a ∈ V corresponding to the vertex operators Y (a, z) of V .
We then define a family of von Neumann algebras {AV (I)}I∈I as described at the
beginning of this introduction by using all the vertex operators. We say that V is
strongly local if the map I ∋ I 7→ AV (I) satisfies locality. In this case we prove AV is
an irreducible conformal net. The idea of using all the vertex operators instead of a
suitable chosen generating family of well behaved generators has the great advantage
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to make the construction more intrinsic and functorial. In particular every unitary
subalgebra W ⊂ V of a strongly local vertex operator algebra turns out to be strongly
local and the map W 7→ AW gives rise to a one-to-one correspondence between the
unitary vertex subalgebras W of V and the covariant subnets of AV . Moreover, we
prove that the automorphism group of AV coincides with the unitary automorphism
group of V and that, if the latter is finite, it coincides with the full automorphism
group of V .

Although the strong locality condition appears a priori to be rather restrictive
and difficult to prove we show, inspired by the work of Driessler, Summers and Wich-
mann [33] that if a generating family F of quasi-primary (i.e. Möbius covariant)
Hermitian vertex operators, generates a conformal net AF then V is strongly local
and AV = AF . This result heavily relies on the deep connection between the Tomita-
Takesaki modular theory of von Neumann algebras and the space-time symmetries of
quantum field theories first discovered by Bisognano and Wichmann [2]. As a con-
sequence, standard arguments (see e.g. [14]) shows that if V is generated by fields
of conformal dimension one and by Virasoro fields then it is strongly local. This
gives many examples of strongly local vertex operator algebras, e.g. the affine vertex
operator algebras and their subalgebras, orbifold vertex operator algebras and coset
vertex operator algebras. Moreover, the Moonshine vertex operator algebra V ♮ turns
out to be strongly local and the automorphism group of the net AV ♮ is the monster,
a result previously proved in [66]. As a consequence we can construct an irreducible
conformal net AV B♮

(0)
associated with the the even shorter Moonshine vertex operator

algebra V B♮
(0) constructed by Höhn. Moreover, we show that the automorphism group

of AV B♮
(0)

is the Baby Monster group. As far as we can see there is no known example

of simple unitary vertex operator algebra which can be shown to be not strongly local
and we conjecture that such an example does not exist.

We also show that one can reconstruct the strongly local vertex operator algebra
V from the corresponding conformal net AV by using the work of Fredenhagen and
Jörß [38]. Actually we consider a variant of the construction in [38] which is directly
obtained from the Tomita-Takesaki modular theory of von Neumann algebras. We
also find a set of natural conditions on a irreducible conformal net A, including energy
bounds for the Fredenhagen-Jörß fields, which are equivalent to the requirement that
A coincides with the net AV associated with a simple unitary strongly local vertex
operator algebra V . The existence of irreducible conformal nets not satisfying these
condition appears to be an open problem.

In order to keep this paper reasonably self-contained, the first four sections are
devoted to various preliminaries on operator algebras, conformal nets and vertex op-
erator algebras. In Sect. 5 we define and study the notion of unitary vertex operator
algebra. The definition has previously appeared more or less explicitly in the lit-
erature e.g. [81] where unitary vertex operator algebras appear as vertex operator
algebras having a real form with a positive definite invariant bilinear form, see also
[40, Sect.12.5]. Here we prefer an alternative definition which is easily seen to be
equivalent and we replace the real forms by the corresponding antilinear automor-
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phisms (PCT operators). The same definition, with a slightly different language,
has also been recently used by Dong and Lin [28]. In this paper we give a further
equivalent definition of unitarity based on the requirement of locality for the adjoint
(with respect to the scalar product) vertex operators. Our proof of the equivalence of
the two definitions gives a vertex algebra version of the PCT theorem in Wightman
quantum field theory [95]. Moreover, we study the question of the uniqueness of the
unitary structure, i.e. of the invariant scalar product, in relation to the properties of
the automorphism group of the underlying vertex operator algebra. We show that the
scalar product is unique if and only if the automorphism group is compact, that in
this case the automorphism group coincides with the unitary automorphism group and
that it must also be totally disconnected. This happens in the special but important
examples in which the automorphism group is finite as in the case of the Moonshine
vertex operator algebra.

2 Preliminaries on von Neumann algebras

In this section we introduce some of the basic concepts of the theory of von Neumann
algebras and related facts on Hilbert space operators which will be frequently used
in the following. Most of the topics discussed in this subsection can be found in any
standard introductory book on operator algebras in Hilbert spaces, see e.g. [3, 9, 63,
64]. We refer the reader to these books for more details and for the proofs of the
results described in this section.

2.1 Von Neumann algebras

Let H be a (complex) Hilbert space with scalar product (·|·), let B(H) denote the
algebra of bounded linear operators H → H and denote by 1H ∈ B(H) the identity
operator. Moreover, we denote by U(H) the group of unitary operators on H.

Recall that B(H) equipped with the usual operator norm is a Banach space (in fact
it is a Banach algebra). For every A ∈ B(H) we denote by A∗ ∈ B(H) its (Hilbert
space) adjoint so that (b|Aa) = (A∗b|a) for all a, b ∈ H. The map A 7→ A∗ is an
antilinear involution B(H) → B(H) satisfying (AB)∗ = B∗A∗ for all A,B ∈ B(H).

For a given subset S ∈ B(H) we denote by S∗ the subset of B(H) defined by

S
∗ ≡ {A ∈ B(H) : A∗ ∈ S}. (1)

We say that S is self-adjoint if S = S∗.
Given S ⊂ B(H) we denote by S′ the commutant of S, namely the subset of B(H)

defined by
S
′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ S}, (2)

where, for any A,B ∈ B(H), [A,B] denotes the commutator AB − BA. The com-
mutant S′′ of S′ is called the bicommutant of S. We denote by S′′′ the commutant
of S′′ and so on. It turns out that S′′′ = S′ for every subset S ⊂ B(H). Moreover,
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if S ⊂ B(H) is self-adjoint then S′ is a self-adjoint subalgebra of B(H) which is also
unital, i.e. 1H ∈ S

′.
A self-adjoint subalgebra M ⊂ B(H) is called a von Neumann algebra if M =

M′′. Accordingly, (S ∪ S∗)′ is a von Neumann algebra for all subsets S ⊂ B(H) and
W ∗(S) ≡ (S ∪ S∗)′′ is the smallest von Neumann algebra containing S.

A von Neumann algebra M is said to be a factor if M′ ∩M = C1H, i.e. M has a
trivial center. B(H) is a factor for any Hilbert space H. Its isomorphism class as an
abstract complex ∗-algebra only depends on the Hilbertian dimension of H. A von
Neumann algebra M isomorphic to some B(H) (here H is not necessarily the same
Hilbert space on which M acts) is called a type I factor. If H has dimension n ∈ Z>0

then M is called a type In factor while if H is infinite-dimensional then M is called a
type I∞ factor.

There exist factors which are not of type I. They are divided in two families: the
type II factors (type II1 or type II∞) and type III factors (type IIIλ, λ ∈ [0, 1],
cf. [23]).

If M and N are von Neumann algebras and N ⊂ M then N is called a von
Neumann subalgebra of M. If M is a factor then a von Neumann subalgebra
N ⊂ M which is also a factor is called a subfactor. The theory of subfactors is a
central topic in the theory of operator algebras and in its applications to quantum
field theory. Subfactor theory was initiated in the seminal work [56] where V. Jones
introduced and studied an index [M : N ] for type II1 factors. Subfactor theory and
the notion of Jones index was later generalized to type III subfactors and also to
more general inclusions of von Neumann algebras, see [36, 68, 74, 78, 87].

A central result in the theory of von Neumann algebras is von Neumann bicom-
mutant theorem which states that a self-adjoint unital subalgebra M ⊂ B(H) is a von
Neumann algebra if and only if it is closed with respect to strong operator topology
of B(H). In fact the statement remains true if one replace the strong topology on
B(H) with one of the following: the weak topology, the σ-weak topology (also called
ultra-weak topology) and the σ-strong topology (also called ultra-strong topology).
In particular, every von Neumann algebra is also a (concrete) C*-algebra, namely it
is a norm closed self-adjoint subalgebra of B(H). Moreover, if H is separable, as it
will typically be the case in this paper, a self-adjoint unital subalgebra M ⊂ B(H) is
a von Neumann algebra if and only if for any A ∈ B(H), the existence of a sequence
An ∈ M, n ∈ Z>0, such that Ana → Aa for all a ∈ H, implies that A ∈ M. Note
also that von Neumann bicommutant theorem implies that, for any subset S ⊂ B(H),
W ∗(S) coincides with the strong closure of the unital self-adjoint subalgebra of B(H)
generated by S. If, for every α ∈ I , with I any index set, Mα ⊂ B(H) is a von
Neumann algebra then

⋂
α∈I Mα is a von Neumann algebra. Moreover,

∨

α∈I

Mα ≡ W ∗(
⋃

α∈I

Mα) =

(⋂

α∈I

M
′
α

)′

(3)

is the von Neumann algebra generated by the von Neumann algebras Mα, α ∈ I .
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If M is a von Neumann algebra on the Hilbert space H and e ∈ M′ is an (or-
thogonal) projection commuting with M then the closed subspace eH is M-invariant
and

Me ≡ M↾eH = {A↾eH : A ∈ M} (4)

is a von Neumann algebra on eH, the von Neumann algebra induced by e.
Now let H1 and H2 be two Hilbert spaces and let H1⊗H2 be their algebraic tensor

product. Then, H1 ⊗H2 has a natural scalar product and we denote by H1⊗H2 the
corresponding Hilbert space completion, the Hilbert space tensor product. If M1

(resp. M2) is a von Neumann algebra on H1 (resp. H2) then the algebraic tensor
product M1 ⊗M2 is a ∗-subalgebra of B(H1⊗H2) and the von Neumann tensor
product M1⊗M2 is defined by

M1⊗M2 ≡ (M1⊗M2)
′′ .

It can be shown that
(M1⊗M2)

′
= M

′
1⊗M

′
2.

Moreover,
B(H1)⊗B(H2) = B(H1⊗H2).

2.2 Unbounded operators affiliated with von Neumann alge-
bras

By a linear operator (or simply an operator) on a Hilbert space H we always mean a
linear map A : D → H, where the domain D is a linear subspace of H. If the domain
D(A) ≡ D of A is dense in H we say that A is densely defined. Recall that A is
said to be closed if its graph is a closed subset of H×H with respect to the product
topology and that A is said to be closable if the closure of its graph is the graph of
an operator A called the closure of A.

The adjoint A∗ of a densely defined operator A on H is always a closed operator
on H. A densely defined operator A on H is closable if and only if its adjoint A∗ is
densely defined. If this is the case then A = A∗∗. A bounded densely defined operator
A on H is always closable and it belongs to B(H) if and only if it is closed. If the
graph of A is a subset of the graph of B then B is said to be an extension of A and
as usual we will write A ⊂ B. Let A be closed operator with domain D(A), let D0

be a linear subspace of D(A) and let A0 be the restriction of A to D0. Then, A0

is closable and it closure obviously satisfies A0 ⊂ A. One says that D0 is a core
for A if A0 = A. If A is a closed densely defined operator then A∗A is self-adjoint
(in particular densely defined and closed) with non-negative spectrum. The absolute
value of |A| of A is defined through the spectral theorem by |A| ≡ (A∗A)1/2. Then
there is a unique C ∈ B(H) such that Ker(C) = Ker(A) and C|A| = A. C is a
partial isometry, i.e. C∗C and CC∗ are (orthogonal) projections. The decomposition
A = C|A| is called the polar decomposition of A. A is injective with dense range if
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and only if C is a unitary operator. Similar definitions, with analogous results, can
be given for antilinear operators on H.

An operator A on H with domain D(A) is said to commute with a bounded
operator B ∈ B(H) (and viceversa) if AB ⊂ BA, namely if BD(A) ⊂ D(A) and
ABa = BAa for all a ∈ D(A). If A is densely defined and closable and if A commutes
with B ∈ B(H) then A∗ commutes with B∗. The following fact is very useful: if the
densely defined operator A is closed and D0 is a core for A then A commute with
B ∈ B(H) if and only if BD0 ⊂ D(A) and ABa = BAa for all a ∈ D0.

A closed densely defined operator A on H is said to be affiliated with a von
Neumann algebra M ⊂ B(H) if A commutes with all operators in M

′. It turns out
that a closed densely defined operator A is affiliated with M if and only if there is a
sequence An ∈ M, n ∈ Z>0 such that Ana → Aa and A∗

nb → A∗b for all a ∈ D(A)
and all b ∈ D(A∗).

For any closed densely defined operator A on H the set

{B ∈ B(H) : AB ⊂ BA, AB∗ ⊂ B∗A} (5)

is a von Neumann algebra and

W ∗(A) ≡ {B ∈ B(H) : AB ⊂ BA, AB∗ ⊂ B∗A}′ (6)

is the smallest von Neumann algebra to which A is affiliated called the von Neumann
algebra generated by A.

If A is a self-adjoint operator on a separable Hilbert space then, as a consequence
of the spectral theorem,

W ∗(A) = {f(A) : f ∈ Bb(R)} (7)

where Bb(R) is the set of bounded Borel functions on R.
More generally, if A is densely defined and closed with polar decomposition A =

C|A|, then W ∗(A) = W ∗(C)∨W ∗(|A|) and hence B ∈ B(H) commutes with A if and
only if it commutes with C and with the spectral projections of |A|.

If I is an index set and {Aα : α ∈ I } is a family of closed densely defined
operators on H then we put

W ∗ ({Aα : α ∈ I }) ≡
∨

α∈I

W ∗(Aα), (8)

and we say that W ∗ ({Aα : α ∈ I }) is the von Neumann algebra generated by {Aα :
α ∈ I }.

If D ⊂ H is a linear subspace and Aα, α ∈ I are operators on H then D is
called a common invariant domain for the operators Aα, α ∈ I , if D ⊂ D(Aα) and
AαD ⊂ D for all α ∈ I .

The following proposition is well known and will be frequently used in this paper.
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Proposition 2.1. Let A, B be closed densely defined operators on a Hilbert space
H and let D be a common invariant domain for A and B. Assume that W ∗(A) ⊂
W ∗(B)′. Then ABa = BAa for all a ∈ D.

Proof. Let Bn ∈ W ∗(B), n ∈ Z>0 be a sequence such that Bna → Ba for all a ∈ D(B).
Since Bn commutes with A for all n ∈ Z>0 then, for any a ∈ D, Bna is in the domain
of A, Aa is in the domain of B and ABna = BnAa → BAa. Since A is closed it
follows that ABa = BAa.

The converse is known to be false thanks to examples due to Nelson [86, Sect.10],
see also [90, Sect.VIII.5]. We summarize this fact in the following proposition.

Proposition 2.2. Let H be a separable infinite-dimensional Hilbert space. Then there
exists two self-adjoint operators A and B on H and a common invariant core D for
A and B such that ABc = BAc for all c ∈ D but W ∗(A) is not a subset of W ∗(B)′.

2.3 Tomita-Takesaki modular theory

Let H be a Hilbert space and let M ⊂ B(H) a von Neumann algebra. A vector Ω is
said to be cyclic for M if the linear subspace MΩ is dense in H. A vector Ω is said
to be separating for M if, for every A ∈ M, AΩ = 0 implies that A = 0. It can be
shown that a vector Ω ∈ H is cyclic for M if and only if it is separating for M′ and
symmetrically that Ω ∈ H is separating for M if and only if it is cyclic for M′.

Let M ⊂ B(H) be a von Neumann algebra and let Ω ∈ H be cyclic and separating
for M. Then the map AΩ 7→ A∗Ω is well defined and injective and give rise to an
antilinear operator S0 on H with domain MΩ and range MΩ. Hence S0 is densely
defined and has dense range. Moreover, S2

0 = 1MΩ. If in the definition of S0 we
replace M with M′ we obtain another antilinear operator F0 on H with domain M′Ω
and range M′Ω. It is easy to see that F0 ⊂ S∗

0 and, symmetrically that S0 ⊂ F ∗
0 .

Accordingly, S0 and F0 are closable and we denote by S and F respectively their
closures and by D(S) and D(F ) the domain of S and the domain of F respectively.
It turns out that S and F are injective with dense range. Moreover, F = S∗. Now,
let ∆ = S∗S and let J∆1/2 be the polar decomposition of S. S is called the Tomita
operator, ∆ is called the modular operator and J the modular conjugation.

Since S is injective with dense range then the self-adjoint operator ∆1/2 is injective
and J is antiunitary i.e. it is antilinear and satisfies J∗J = JJ∗ = 1H. Moreover,
S2 = 1D(S). It follows that J∆1/2J = ∆−1/2, that J2 = 1H and hence that J = J∗.
Note also that since SΩ = FΩ = Ω, then Ω ∈ D(∆) and ∆Ω = Ω. Thus, JΩ = Ω.
Since ∆ is self-adjoint with non-negative spectrum and injective then log∆ is densely
defined and self-adjoint. Accordingly the map R ∋ t 7→ ∆it = eit log∆ defines a strongly
continuous one-parameter group of unitary operators on H leaving Ω invariant. Note
that J∆itJ = ∆it.

Now let g : H → H be a unitary operator and assume that gMg−1 = M and
gΩ = Ω. Then, for every A ∈ M, AΩ is in the domain of gSg−1 and gSg−1AΩ = SAΩ.

12



It follows that gSg−1 = S and hence that g∆g−1 = ∆ and gJg−1 = J . More
generally, if M1 ⊂ B(H1) and M2 ⊂ B(H2) are two von Neumann algebras on
the Hilbert spaces H1, H2 with cyclic and separating vectors Ω1 ∈ H1, Ω2 ∈ H2

respectively and if φ : H1 → H2 is a unitary operator satisfying φM1φ
−1 = M2 and

φΩ1 = Ω2 then φS1φ
−1 = S2, where S1 = J1∆

1/2
1 (resp. S2 = J2∆

1/2
2 ) is the Tomita

operator associated with the pair (M1,Ω1) (resp. (M2,Ω2)). Accordingly we also have
φ∆1φ

−1 = ∆2 and φJ1φ
−1 = J2.

The following theorem is the central result of the Tomita-Takesaki theory.

Theorem 2.3. (Tomita-Takesaki theorem) LetM ⊂ B(H) be a von Neumann algebra,
let Ω ∈ H be cyclic and separating for M and let S = J∆1/2 be the polar decomposition
of the Tomita operator S associated with M and Ω. Then,

JMJ = M
′, and ∆it

M∆−it = M,

for all t ∈ R.

As a consequence for every t ∈ R the map M ∋ A 7→ ∆itA∆−it defines an (∗-)
automorphism of M depending only on t and on the state (i.e. normalized positive
linear functional) ω defined by ω(A) = 1

‖Ω‖2
(Ω|AΩ). This automorphism is denoted

by σω
t , t ∈ R and the corresponding one-parameter automorphism group R ∋ t 7→ σω

t

is called the modular group of M associated with the state ω.

3 Preliminaries on conformal nets

We gave the definition of Möbius covariant net and of conformal net in the in-
troduction. In this section we discuss some of the main properties of conformal
nets that will be used in the next sections for more details and proofs see e.g.
[10, 18, 38, 44, 49, 65, 75], see also the lecture notes in preparation [77] and the
PhD thesis [101]. Note that in the literature, in some cases, Möbius covariant nets
are called conformal nets and conformal nets are called diffeomorphism covariant nets.

3.1 Diff+(S1) and its subgroup Möb

In this subsection we recall some notions about the “spacetime” symmetry group of
conformal nets.

Let S1 ≡ {z ∈ C : |z| = 1} be the unite circle. Moreover, let S1
+ ≡ {z ∈ S1 :

ℑz > 0} be the (open) upper semicircle and let S1
− ≡ {z ∈ S1 : ℑz < 0} be the lower

semicircle. Note that S1
+, S

1
− ∈ I and S1

− = (S1
+)

′.
The group Diff+(S1) is an infinite dimensional Lie group modeled on the real

topological vector space Vect(S1) of smooth real vectors fields on S1 with the usual
C∞ Fréchet topology [83, Sect.6]. Its Lie algebra coincides with Vect(S1) with the
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bracket given by the negative of the usual brackets of vector fields. Hence if g(z), f(z),
z = eiϑ, are functions in C∞(S1,R) then

[g(eiϑ)
d

dϑ
, f(eiϑ)

d

dϑ
] =

(
(
d

dϑ
g(eiϑ))f(eiϑ)− (

d

dϑ
f(eiϑ))g(eiϑ)

)
d

dϑ
. (9)

Diff+(S1) is connected but not simply connected, see [83, Sect.10] and [51, Example

4.2.6] and we will denote by D̃iff+(S1) its universal covering group. The corresponding

covering map will be denoted by D̃iff+(S1) ∋ γ → γ̇ ∈ Diff+(S1).
For every f ∈ C∞(S1,R) we denote by R ∋ t 7→ Exp(tf d

dϑ
) the one-parameter

subgroup of Diff+(S1) generated by the vector field f d
dϑ

and we denote by R ∋ t 7→
Ẽxp(tf d

dϑ
) the corresponding one-parameter group in D̃iff+(S1).

Remark 3.1. By a result of Epstein, Herman and Thurston [34, 53, 96] Diff+(S1) is a
simple group (algebraically). It follows that Diff+(S1) is generated by exponentials i.e.
by the subset {Exp(f d

dϑ
) : f ∈ C∞(S1,R)}. In fact, by the same reason, Diff+(S1) is

generated by exponentials with non-dense support i.e. by the subset
⋃

I∈I{Exp(f d
dϑ
) :

f ∈ C∞
c (I,R)}, cf. [83, Remark 1.7]

Recall from the introduction that, for every I ∈ I, Diff(I) denotes the subgroup
of Diff+(S1) whose elements act as the identity on I ′. Note that accordingly Diff(I)
does not coincide with the group of diffeomorphisms of the open interval I, as the
notation might suggest, but it only corresponds to proper subgroup of the latter. If
f ∈ C∞

c (I,R), I ∈ I, namely f ∈ C∞(S1,R) and suppf ⊂ I, then Exp(f d
dϑ
) ∈ Diff(I).

Note that by Remark 3.1 Diff+(S1) is generated by
⋃

I∈IDiff(I).
For any I ∈ I let Diffc(I) be the dense subgroup of Diff(I) whose elements are the

orientation preserving diffeomorphisms with support in I i.e.

Diffc(I) ≡
⋃

I1∈I, I1⊂I

Diff(I1). (10)

By [34, 35], see also [80], Diffc(I) is a simple group and hence it is generated by

{Exp(f d

dϑ
) : f ∈ C∞

c (I,R)}.

Now, let VectC(S
1) be the complexification of Vect(S1) and let ln ∈ VectC(S

1) be
defined by ln = −ieinϑ d

dϑ
. Then

[ln, lm] = (n−m)ln+m (11)

for all n,m ∈ Z, i.e. the the complex valued vector fields ln, n ∈ Z, span a complex
Lie subalgebra Witt ⊂ VectC(S

1), the (complex) Witt algebra. As it is well known
Witt admits a nontrivial central extension Vir defined by the relations

[ln, lm] = (n−m)ln+m + δn+m,0
n3 − n

12
k (12)

[ln, k] = 0,
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called the Virasoro algebra, see [62, Lecture 1].
For any f ∈ C∞(S1) ≡ C∞(S1,C) let

f̂n ≡ 1

2π

∫ π

−π

f(eiϑ)e−inϑdϑ n ∈ Z (13)

be its Fourier coefficients. Then the Fourier series
∑

n∈Z

f̂nln

is convergent in VectC(S
1) to the vector field f d

dϑ
. Thus Witt is dense in VectC(S

1).
The vector fields ln, n = −1, 0, 1 generated a Lie subalgebra of Witt isomorphic

to sl(2,C). Moreover, the real vector fields il0,
i
2
(l1 + l−1) and 1

2
(l1 − l−1) generate

a Lie subalgebra of Vect(S1) isomorphic to sl(2,R) ≃ PSU(1, 1) which correspond to
the three-dimensional Lie subgroup Möb ⊂ Diff+(S1) of Möbius transformations
of S1. It turns out that Möb is isomorphic to PSL(2,R) ≃ PSU(1, 1). Moreover, the

inverse image of Möb in D̃iff+(S1) under the covering map : D̃iff+(S1) → Diff+(S1) is

the universal covering group M̃öb of Möb.
A generic element of Möb is given by a map

z 7→ αz + β

βz + α
, (14)

where α, β are complex numbers satisfying |α|2 − |β|2 = 1.
The one-parameter subgroup of rotations r(t) ∈ Möb is given by r(t)(z) ≡ eitz,

z ∈ S1 so that r(t) = Exp(itl0) Le δ(t) be the one-parameter subgroup of Möb defined
by

δ(t)(z) =
z cosh t/2− sinh t/2

−z sinh t/2 + cosh t/2
, (15)

(“dilations”) corresponding to the vector field sin ϑ d
dϑ

so that

δ(t) = Exp

(
t
l1 − l−1

2

)
. (16)

We have δ(t)S1
+ = S1

+ for all t ∈ R. Moreover, if γ ∈ Möb and γS1
+ = S1

+ then
γ = δ(α) for some α ∈ R. As a consequence, if I ∈ I and γ1, γ2 ∈ Möb satisfy
γiS

1
+ = I, i = 1, 2 then γ−1

2 γ1δ(t)γ
−1
1 γ2 = δ(t) for all t ∈ R. For every I ∈ I there

exists γ ∈ Möb such that γS1
+ = I. Then, the one-parameter group γδ(t)γ−1 does

not depend on the choice of γ satisfying γS1
+ = I and it will be denoted by δI(t) . In

particular δS1
+
(t) = δ(t), t ∈ R. Note also that γδI(t)γ

−1 = δγI(t) for all γ ∈ Möb and

all t ∈ R. Moreover, Möb is generated by {δI(t) : I ∈ I, t ∈ R}.
We will also consider the orientation reversing diffeomorphism j : S1 → S1 defined

by j(z) ≡ z, z ∈ S1. Given any I ∈ I we put jI ≡ γ ◦ j ◦ γ−1 where γ ∈ Möb is
such that γS1

+ = I (again jI only depends on I and not on the particular choice of
γ). Clearly, jS1

+
= j and jII = I ′ for all I ∈ I.
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3.2 Positive-energy projective unitary representations of Diff+(S1)

and of D̃iff+(S1) and positive-energy representations of Vir

By a strongly continuous projective unitary representation U of a topological group
G on a Hilbert space we shall always mean a strongly continuous homomorphism of
G into the quotient U(H)/T of the unitary group of H by the circle subgroup T.

Note that although for γ ∈ G , U(γ) is defined only up to a phase as an operator
on H, expressions like U(γ)TV (γ)∗ for any T ∈ B(H) or U(γ) ∈ L for a (complex)
linear subspace L ⊂ B(H) are unambiguous for all γ ∈ G and are frequently used in
this paper.

If G = D̃iff+(S1) then, by [1], the restriction of a strongly continuous projective

unitary representation U to the subgroup M̃öb ⊂ D̃iff+(S1) always lifts to a unique

strongly continuous unitary representation Ũ of M̃öb. We then say that U extends Ũ ,
and that U is a positive-energy representation if Ũ is a positive-energy represen-
tation of M̃öb, namely if the self-adjoint generator L0 (the “conformal Hamiltonian”),

of the strongly continuous one parameter group eitL0 ≡ Ũ(Ẽxp(itl0)), has non-negative
spectrum σ(L0) ⊂ [0,+∞), namely, it is a positive operator.

By a positive-energy unitary representation π of the Virasoro algebra Vir we shall
always mean a Lie algebra representation ofVir, on a complex vector space V endowed
with a (positive definite) scalar product (·|·), such that the representing operators
Ln ≡ π(ln) ∈ End(V ), n ∈ Z andK ≡ π(k) ∈ End(V ) satisfy the following conditions:

(i) Unitarity: (a|Lnb) = (L−na|b) for all n ∈ Z an all a, b ∈ V ;

(ii) Positivity of the energy: L0 is diagonalizable on V with non-negative eigenvalues
i.e. we have the algebraic direct sum

V =
⊕

α∈R≥0

Vα

where Vα ≡ Ker(L0 − α1V ) for all α ∈ R≥0;

(iii) Central charge: K = c1V for some c ∈ C.

By a well known result of Friedan, Qiu and Shenker [41, 42], see also [62], unitarity
implies that the possible values of the central charge c are restricted to c ≥ 1 or
c = cm ≡ 1− 6

(m+2)(m+3)
, m ∈ Z≥0. In the case c = 0 the representation is trivial, i.e.

Ln = 0 for all n ∈ Z. An irreducible unitary positive-energy representation of Vir

is completely determined by the central charge c and the lowest eigenvalue h of L0.

Then h satisfies h ≥ 0 if c ≥ 1 and h = hp,q(m) ≡ ((m+3)p−(m+2)q)2−1
4(m+2)(m+3)

, p = 1, ..., m+ 1,

q = 1, ..., p, if c = cm, m ∈ Z≥0 (discrete series representations) and all such pairs
(c, h) are realized for an irreducible positive-energy representation, [46, 62]. For every
allowed pair (c, h) the corresponding irreducible module is denoted L(c, h). Note that
(c, 0) is an allowed pair for every allowed value c of the central charge.
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We now discuss the correspondence between unitary positive-energy represen-
tations of the Virasoro algebra Vir and the strongly-continuous projective unitary

positive-energy representations of D̃iff+(S1). An important tool here is given by the
following estimates due to Goodman and Wallach [48, Prop.2.1], see also [98, Sect.6].
Similar estimates are also given in [14].

Proposition 3.2. Let π be a positive-energy unitary representation of the Virasoro
algebra Vir with central charge c ∈ R≥0 on a complex inner product space V . Let
Ln ≡ π(ln) and let ‖a‖ ≡ (a|a)1/2, for all a ∈ V . Then,

‖Lna‖ ≤
√
c/2(|n|+ 1)

3
2‖(L0 + 1V )a‖, (17)

for all n ∈ Z and all a ∈ V .

Remark 3.3. Starting from Prop. 3.2 it is easy to prove the following estimates

‖(L0 + 1V )
kLna‖ ≤

√
c/2(|n|+ 1)k+

3
2‖(L0 + 1V )

k+1a‖, (18)

for all k ∈ Z≥0, n ∈ Z and all a ∈ V .

Now let π be a positive-energy unitary representation of the Virasoro algebra on
a complex inner product space V and let H be the Hilbert space completion of V .
The operators Ln, n ∈ Z can be considered as densely defined operators with domain
V . As a consequence of Prop. 3.2 and of the unitarity of π one can define operators
L0(f), f ∈ C∞(S1) on H with domain V , by

L0(f)a =
∑

n∈Z

f̂nLna, (19)

for all a ∈ V , where

f̂n =

∫ π

−π

f(eiϑ)e−inϑdϑ

2π
(20)

is the n-th Fourier coefficient of the smooth function f . It follows from the unitarity
of π that, L0(f) ⊂ L0(f)∗, and hence that L0(f) is closable for every f ∈ C∞(S1)
and we will denote by L(f) the corresponding closure. Let H∞ the intersection of the
domains of the self-adjoint operators (L0 + 1H)

k, k ∈ Z≥0. Then, H∞ is a common
core for the operators L(f), f ∈ C∞(S1) and

‖L(f)a‖ ≤
√
c/2‖f‖ 3

2
‖(L0 + 1H)a‖ (21)

for all f ∈ C∞(S1) and all a ∈ H
∞, where, for every s ≥ 0

‖f‖s ≡
∑

n∈Z

(|n|+ 1)s|f̂n|. (22)

It follows H∞ is a common invariant core for the operators L(f), f ∈ C∞(S1), see [98,
Sect.6] and [48]. Moreover, the map Vect(S1) → End(H∞) defined by f d

dϑ
7→ iL(f),
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defines a projective representation, again denoted by π, of Vect(S1) by skew-symmetric
operators, namely −π(f d

dϑ
) ⊂ π(f d

dϑ
)∗ and

[
π(f1

d

dϑ
), π(f2

d

dϑ
)

]
= π

(
[f1

d

dϑ
, f2

d

dϑ
]

)
+ iB(f1

d

dϑ
, f2

d

dϑ
)1H, (23)

on H∞, with real valued two-cocycle B(·, ·) given by

B(f1
d

dϑ
, f2

d

dϑ
) ≡ c

12

∫ π

−π

(
d2

dϑ2
f1(e

iϑ) + f1(e
iϑ)

)
d

dϑ
f2(e

iϑ)
dϑ

2π
. (24)

Now, as a consequence of Prop. 3.2 and Remark 3.3 together with the fact that
[L0, L(f)] = iL(f ′), where f ′(eiϑ) ≡ d

dϑ
f(eiϑ), it can be shown that one can apply

[98, Thm. 5.2.1], see also [98, Sect.6], so that the the projective representation π of
Vect(S1) integrates to a unique strongly-continuous projective unitary representation

Uπ of D̃iff+(S1). More precisely, for every f ∈ C∞(S1,R) the operator π(f d
dϑ
) =

iL(f) is skew-adjoint and Uπ is the unique strongly-continuous projective unitary

representation of D̃iff+(S1) on H satisfying

Uπ

(
Ẽxp(f

d

dϑ
)

)
AUπ

(
Ẽxp(f

d

dϑ
)

)∗

= eπ(f
d
dϑ

)Ae−π(f d
dϑ

), (25)

for all f ∈ C∞(S1,R) and all A ∈ B(H). Moreover, Uπ(γ)H
∞ = H∞ for all γ ∈

D̃iff+(S1). For any I ∈ I le f1 ∈ C∞
c (I) and f2 ∈ C∞

c (I ′), then f1
d
dϑ
, f2

d
dϑ

generates
a two-dimensional abelian Lie subalgebra of Vect(S1). Since B(f1

d
dϑ
, f2

d
dϑ
) = 0, the

cocycle B(·, ·) vanishes on this Lie subalgebra and hence π give rise to an ordinary
(i.e. non-projective) Lie algebra representation to the latter which, by (the proof
in [98, page 497] of) [98, Thm. 5.2.1], integrates to a strongly continuous unitary
representation of the abelian Lie group R2. Hence,

[
eπ(f1

d
dϑ

), eπ(f2
d
dϑ

)
]
= 0, (26)

see [14] for a proof of this fact based on [32], see also [45, Sect.19.4].
In fact Uπ factors through a strongly-continuous projective unitary representation

of Diff+(S1), which we will again denote Uπ, if and only if ei2πL0 is a multiple of the
identity operator 1H. In the latter case, as a consequence of Eq. (26), recalling that
the the simple group Diffc(I) is generated by exponentials and it is dense in Diff(I),
we see that the representation Uπ of Diff+(S1) satisfies

Uπ(Diff(I)) ⊂ Uπ(Diff(I ′))′ (27)

for all I ∈ I, see also [72, Sect.V.2].
With some abuse of language we simply say that the representation π of Vir

integrates to a strongly-continuous projective unitary positive-energy of D̃iff+(S1).
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Conversely, let U be a strongly-continuous projective unitary positive-energy rep-

resentation of D̃iff+(S1) on a Hilbert space H and assume that the algebraic direct
sum

H
fin ≡

⊕

α∈R≥0

Ker(L0 − α1H) (28)

is dense in H. Then, using the arguments in [72, Chapter 1], se also [18, Appendix
A], one can prove that there is a unique positive-energy unitary representation π of
the Virasoro algebra on H

fin such that U = Uπ, see also [85] for related results. We
collect the results discussed above in the following theorem.

Theorem 3.4. Every positive-energy projective unitary representation π of the Vi-
rasoro algebra on a complex inner product space V integrates to a unique strongly-

continuous projective unitary positive-energy representation Uπ of D̃iff+(S1) on the
Hilbert space completion H of V . Moreover, every strongly-continuous projective uni-

tary positive-energy representation of D̃iff+(S1) on a Hilbert space H containing Hfin

as a dense subspace arises in this way. The map π 7→ Uπ becomes one-to-one after
restricting to representations π on inner product spaces V whose Hilbert space com-
pletion H satisfies Hfin = V . These are exactly those inner product spaces such that
Vα ≡ Ker(L0 − α1V ) ⊂ V is complete (i.e. a Hilbert space) for all α ∈ R≥0. Uπ is ir-
reducible if and only if π is irreducible i.e. if and only if the corresponding Vir-module
is L(c, 0) for some c ≥ 1 or c = 1− 6

(m+2)(m+3)
, m =∈ Z≥0.

3.3 Möbius covariant nets and conformal nets on S1

We now discuss some properties of Möbius covariant and conformal nets on S1 together
with some related notions and definitions.

Here below we describe some of the consequences of the axioms of Möbis covariant
and conformal nets on S1 and give some comments on these referring the reader to
the literature [10, 38, 44, 49] for more details and the proofs. Here A is a Möbius
covariant net on S1 acting on its vacuum Hilbert space H.

(1) Reeh-Schlieder property. The vacuum vector Ω is cyclic and separating for every
A(I), I ∈ I.

(2) Bisognano-Wichmann Property. Let I ∈ I and let ∆I , JI be the modular
operator and the modular conjugation of (A(I),Ω). Then we have

U(δI(−2πt)) = ∆it
I , (29)

JIA(I1)JI = A(jII1), (30)

JIU(γ)JI = U(jI ◦ γ ◦ jI), (31)

for all t ∈ R, all I1 ∈ I and all γ ∈ Möb. Hence the unitary representation
U : Möb → B(H) extends to an (anti-) unitary representation of Möb⋊ Z2

U(jI) = JI (32)
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and acting covariantly on A.

(3) Haag duality. A(I ′) = A(I)′, for all I ∈ I.

(4) Outer regularity.

A(I0) =
⋂

I∈I,I⊃Ī0

A(I), I0 ∈ I. (33)

(5) Additivity. If I =
⋃

α Iα, where I, Iα ∈ I, then A(I) =
∨

αA(Iα).

(6) Uniqueness of the vacuum. A is irreducible if and only if Ker(L0) = CΩ

(7) Factoriality. A is irreducible if and only if either A(I) is a type III1 factor for
all I ∈ I or A(I) = C for all I ∈ I.

Note that Haag duality follows directly from the Bisognano-Wichmann property
since

A(I)′ = JIA(I)JI = A(jII) = A(I ′).

Note also that if Ker(L0) = CΩ then, for every I ∈ I, CΩ coincides with the subspace
of H of U(δI(t))-invariant vectors, see [49, Corollary B.2]. Hence, by the Bisognano-
Wichmann property, the modular group of the von Neumann algebra A(I) with re-
spect to Ω is ergodic i.e. the centralizer

{A ∈ A(I) : ∆it
I A∆

−it
I = A ∀t ∈ R} (34)

is trivial (i.e. equal to C1H). It then follows from [23] that either A(I) is type III1
factor or A(I) = C, see e.g. the proof of [73, Thm.3], see also [77].

Since Möb is generated by {δI(t) : I ∈ I, t ∈ R}, it follows from the the Bisognano-
Wichmann property that, for a given Möbius covariant net A on S1 the representation
U of Möb is completely determined by the vacuum vector Ω. In fact, if A is a
conformal net, then, by [101, Thm. 6.1.9] (see also [20]), the strongly-continuous
projective unitary representation U of Diff+(S1) making A covariant is completely
determined by its restriction to Möb and hence by the vacuum vector Ω (uniqueness
of diffeomorphism symmetry). We will give an alternative proof of this result in
this paper, see Thm. 6.10. See also [102] for related uniqueness results.

For a given Möbius covariant net A on S1 and any subset E ⊂ S1 with non-empty
interior we define a von Neumann algebra A(E) by

A(E) ≡
∨

I⊂E,I∈I

A(I). (35)

Accordingly, A is irreducible if and only if A(S1) = B(H).
Given two Möbius covariant nets A1 and A2 on S1, acting on the vacuum Hilbert

spaces H1, H2, vacuum vectors ω1, Ω2 and representations U1, U2 of Möb, one can
consider the tensor product net A1 ⊗ A2 acting on H1⊗H2 with local algebras
given by

(A1 ⊗A2) (I) ≡ A1(I)⊗A2(I), I ∈ I, (36)
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vacuum vector
Ω ≡ Ω1 ⊗ Ω2 (37)

and representation of the Möbius group given by

U(γ) ≡ U1(γ)⊗ U2(γ), γ ∈ Möb. (38)

It is easy to see that , A1 ⊗ A2 is a Möbius covariant net on S1. In fact, if both A1

and A2 are conformal nets also A1 ⊗ A2 is a conformal net. One can define also the
infinite tensor product (with respect to the vacuum vectors) of an infinite sequence
of Möbius covariant nets. However it is not necessarily true that if the nets in the
sequence are all conformal nets then their infinite tensor product is also conformal
but it will be in general only Möbius covariant, [20, Sect.6].

We say that the Möbius covariant nets A1 and A2 are unitarily equivalent or
isomorphic if there is a unitary operator φ : H1 → H2 such that φΩ1 = Ω2 and
φA1(I)φ

−1 = A2(I) for all I ∈ I. In this case we say that φ is an isomorphism of
Möbius covariant nets. Since the Möbius symmetry is completely determined by
the vacuum vectors it follows that

φU1(γ)φ
−1 = U2(γ) (39)

for all γ ∈ Möb. Actually, if A1 and A2 are conformal nets then the uniqueness of
diffeomorphism symmetry implies that

φU1(γ)φ
−1 = U2(γ) (40)

for all γ ∈ Diff+(S1).
An automorphism of a Möbius covariant net A is an isomorphism g of A onto

itself. Accordingly the automorphism group Aut(A) of a Möbius covariant net A
on S1 is given by

Aut(A) ≡ {g ∈ U(H) : gA(I)g−1 = A(I), gΩ = Ω for all I ∈ I}. (41)

By the above discussion every g ∈ Aut(A) commutes with the representation U of
Möb (resp. Diff+(S1) if A is a conformal net). Aut(A) with the topology induced by
the strong topology of B(H) is a topological group.

A Möbius covariant net A on S1 satisfies the split property if, given I1, I2 ∈ I

such that Ī1 ⊂ I2, there is a type I factor M such that

A(I1) ⊂ M ⊂ A(I2). (42)

A Möbius covariant net A on S1 satisfies strong additivity if, given two intervals
I1, I2 ∈ I obtained by removing a point from an interval I ∈ I then

A(I1) ∨A(I2) = A(I). (43)

By [24, Thm. 3.2] if a Möbius covariant net A on S1 satisfies the trace class
condition, i.e. if Tr(qL0) < +∞ for all q ∈ (0, 1) then A also satisfies the split
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property. One can construct many examples Möbius covariant nets without the split
property by infinite tensor product construction, see [20, Sect.6]. These infinite tensor
product nets does not admit diffeomorphism symmetry, see [20, Thm. 6.2]. Actually,
we don’t know examples of irreducible conformal nets without the split property.

By [31, Thm. 3.1], the automorphism group Aut(A) of a Möbius covariant net A
on S1 with the split property is compact and metrizable.

Let A be an irreducible Möbius covariant net on S1 with the split property and let
I1, I2, I3, I4 ∈ I be four intervals, in anti-clockwise order, obtained by removing four
points from S1. Let E ≡ I1 ∪ I3. Then I2 ∪ I4 is the interior E ′ of S1 \ E.

Then,
A(E) ⊂ A(E ′)′ (44)

is inclusion of type III1 factors (a subfactor). If either A is strongly additive or if A is
a conformal net then the Jones index [A(E ′)′ : A(E)] does not depend on the choice
of the intervals I1, I2, I3, I4 ∈ I, [67, Prop.5]. This index is called the µ-index of A
and it is denoted by µA.

An irreducible Möbius covariant net A is called completely rational [67] if it
satisfies the split property and strong additivity and if the µ-index µA is finite. If A
is an irreducible conformal net with the split property and finite µ-index then it is
strongly additive and thus completely rational, see [79, Thm. 5.3].

We will give various examples of irreducible conformal nets on S1 starting from
vertex operator algebra models in Sect. 8. In this section we consider the minimal
examples namely the Virasoro nets, see also [18, 65, 72, 101].

Let c ≥ 0 or c = cm ≡ 1− 6
(m+2)(m+3)

, m =∈ Z≥0 and let L(c, 0) be the correspond-

ing irreducible unitary module L(c, 0) with lowest eigenvalue of L0 equal to 0. Let H
be the Hilbert space completion of L(c, 0). Then the positive-energy unitary repre-
sentation of the Virasoro algebra on L(c, 0) integrates to a unique strongly continuous
projective unitary positive-energy representation U of Diff+(S1) which together with
the map

I ∈ I 7→ AVir,c(I) ⊂ B(H) (45)

defined by
AVir,c(I) ≡ {U(γ) : γ ∈ Diff(I), I ∈ I}′′, (46)

defines an irreducible conformal net AVir,c on S1. Note that locality follows from Eq.
(27). The uniqueness of diffeomorphism symmetry implies that two Virasoro nets are
unitary equivalent if and only if they have the same central charge. For every allowed
value of c the Virasoro net AVir,c satisfies the trace class condition and hence the split
property. For c ≤ 1 AVir,c satisfies strong additivity [65, 104], while for c > 1 it does
not [14, Sect.4]. AVir,c is completely rational for all c < 1 while it has infinite µ-index
for all c ≥ 1.

3.4 Covariant subnets

A Möbius covariant subnet of a Möbius covariant net A on S1 is a map I 7→ B(I)
from I in to the set of von Neumann algebras acting on HA satisfying the following
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properties:
B(I) ⊂ A(I) for all I ∈ I; (47)

B(I1) ⊂ B(I2) if I1 ⊂ I1, I1, I2 ∈ I. (48)

U(γ)B(I)U(γ)∗ = B(γI) for all I ∈ I, and all γ ∈ Möb; (49)

We shall use the notation B ⊂ A. If B(I) = C1H for one, and hence for all, I ∈ I

we say that B is the trivial subnet.
Let E ⊂ S1 be any subset of the circle with non-empty interior and let

B(E) ≡
∨

I⊂E,I∈I

B(I) (50)

so that B(E) ⊂ A(E). Then we define HB ⊂ H to be the closure of B(S1)Ω.
Then HB = H if and only if B(I) = A(I) for all I ∈ I. Hence, typically Ω is
not cyclic for B(S1) so that B is not a Möbius covariant net on S1 in the precise
sense of the definition. However one gets a Möbius covariant net by restricting the
algebras B(I), I ∈ I, and the representation U to the common invariant subspace
HB. More precisely, let eB be the orthogonal projection of H onto HB. Then eB ∈
B(S1)′ ∩ U(Möb)′. Then the map I ∋ I 7→ B(I)eB together with the representation
Möb ∋ γ 7→ U(γ)↾HB

defines a Möbius covariant net BeB on S1 acting on HB. Note
that the map b ∈ B(I) 7→ b↾HB

∈ B(I)eB is an isomorphism for every I ∈ I, because
of the Reeh-Schlieder property, so that, in particular, if A is irreducible and B is
nontrivial then B(I) is a type III1 factor on H for all I ∈ I. As usual, wen no
confusion can arise, we will use the symbol B also to denote the Möbius covariant
net BeB on HB specifying, if necessary, when B acts on H = HA or on HB. If A is
irreducible then B is irreducible on HB.

If A is an irreducible conformal net and B is a Möbius covariant subnet of A then,
by [101, Thm. 6.2.29], B is also diffeomorphism covariant, i.e.

U(γ)B(I)U(γ)∗ (51)

for all γ ∈ Diff+(S1). Moreover, as a consequence of [101, Thm. 6.2.31], there is a

strongly-continuous projective positive-energy representation UB of D̃iff+(S1) on H

such that U(γ̇)UB(γ)
∗ ∈ B(S1)′ for all γ ∈ D̃iff+(S1). It follows that the subnet B

gives rise to an irreducible conformal net on HB. Accordingly in this case we will
simply say that B is a covariant subnet of A.

Example 3.5. Every irreducible conformal net A we can define a covariant subnet
B ⊂ A by

B(I) ≡ {U(γ) : γ ∈ Diff(I), I ∈ I}′′. (52)

It is clear that the corresponding irreducible conformal net B on HB is unitarily
equivalent to the Virasoro net AVir,c, where c is the central charge of the representation
U . Accordingly, B is called the Virasoro subnet of A and the inclusion B ⊂ A is
often denoted by AVir,c ⊂ A. We say that c is the central charge of A.
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Example 3.6. Let A be a Möbius covariant net and G be a compact subgroup of
Aut(A). The fixed point subnet A

G ⊂ A is the Möbius covariant subnet of A
defined by

A
G(I) ≡ A(I)G = {A ∈ A(I) : gAg−1 = A for all g ∈ G} I ∈ I. (53)

If G is finite then AG is called an orbifold subnet.

Example 3.7. Let A be a Möbius covariant net on S1 and let B ⊂ A be a Möbius
covariant subnet. The corresponding coset subnet Bc ⊂ A is the Möbius covariant
subnet of A defined by

B
c(I) ≡ B(S1)′ ∩A(I), I ∈ I, (54)

see [69, 75, 103]. If A is an irreducible conformal net and B is a covariant subnet
then, by the results in [69], we have Bc(I) = B(I)′ ∩A(I), for all I ∈ I, see also [101,
Corollary 6.3.6].

If A is an irreducible Möbius covariant net and B ⊂ A is a Möbius covariant
subnet then the Jones index [A(I) : B(I)] of the subfactor B(I) ⊂ A(I) does not
depend on the choice of I ∈ I. The index [A : B] of the subnet B ⊂ A is then defined
by [A : B] ≡ [A(I) : B(I)], I ∈ I. Assuming that [A : B] < +∞ then, by [75, Thm
24], A is completely rational if and only if B is completely rational. Moreover, the set
of subnets C ⊂ A such that B ⊂ C (intermediate subnets) is finite as a consequence
of [75, Thm 3].

4 Preliminaries on vertex algebras

4.1 Vertex algebras

In this paper, unless otherwise stated, vector spaces and vertex algebras are assumed
to be over the field C of complex numbers. We shall use the formulation of the book
[59] with the emphasis on locality. For other standard references on the subject see
[39, 40, 70, 82]. We will mainly consider local (i.e. not super-local) vertex algebras.
Thus, differently from [59], we will use the term vertex algebra only for the local case.

Let V be a vector space. A formal series a(z) =
∑

n∈Z a(n)z
−n−1 with coefficients

a(n) ∈ End(V ) is called a field, if for every b ∈ V we have a(n)b = 0 for n sufficiently
large. A vertex algebra is a (complex) vector space V together with a given vector
Ω ∈ V called the vacuum vector, an operator T ∈ End(V ) called the infinitesimal
translation operator, and a linear map from V to the space of fields on V (the
state-field correspondence)

a 7→ Y (a, z) =
∑

n∈Z

a(n)z
−n−1 (55)

satisfying:
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(i) Translation covariance: [T, Y (a, z)] = d
dz
Y (a, z).

(ii) Vacuum: TΩ = 0, Y (Ω, z) = 1V , a(−1)Ω = a.
(iii) Locality: For all a, b ∈ V , (z − w)N [Y (a, z), Y (b, w)] = 0 for a sufficiently

large non-negative integer N .
The fields Y (a, z), a ∈ V , are called vertex operators.

Remark 4.1. Translation covariance is equivalent to

[T, a(n)] = −na(n−1), a ∈ V, n ∈ Z. (56)

If a is a given vector in V it follows from the field property that there is a smallest
non-negative integer N such that a(n)Ω = 0 for all n ≥ N . It follows that 0 =
Ta(N)Ω = [T, a(N)]Ω = −Na(N−1)Ω and hence N = 0. As a consequence, in the
definition of vertex algebras, the condition a(−1)Ω = a can be replaced by the stronger
one Y (a, z)Ω|z=0 = a.

Remark 4.2. In every vertex algebra one always have

[T, Y (a, z)] = Y (Ta, z), (57)

see [59, Corollary 4.4 c].

With the above definition of vertex algebras, the so-called Borcherds identity
(or Jacobi identity), i.e. the equality

∞∑

j=0

(
m
j

)(
a(n+j)b

)
(m+k−j)

c =

∞∑

j=0

(−1)j
(
n
j

)
a(m+n−j)b(k+j)c

−
∞∑

j=0

(−1)j+n

(
n
j

)
b(n+k−j)a(m+j)c, a, b, c ∈ V, m, n, k ∈ Z, (58)

is not an axiom, but a consequence, see [59, Sect. 4.8].
For future use we recall here the following useful identity known as Borcherds

commutator formula which follows directly from Eq. (58) after setting n = 0 (see also
[59, Eq. (4.6.3)]).

[a(m), b(k)] =
∞∑

j=0

(
m
j

)(
a(j)b

)
(m+k−j)

, m, k ∈ Z. (59)

We shall call a linear subspace W ⊂ V a vertex subalgebra, if Ω ∈ W and
a(n)b ∈ W for all a, b ∈ W,n ∈ Z. Since Ta = −a(−2)Ω, a vertex subalgebra is always
T -invariant and thus W inherits the structure of a vertex algebra. The intersection
of a family of vertex subalgebras is again a vertex subalgebra. Accoringly for every
subset F ⊂ V there is a smallest vertex subalgebra W (F ) containing F , the vertex
subalgebra generated by F . If W (F ) = V we say that V is generated by F .
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We shall call a subspace J ⊂ V an ideal if it is T -invariant and a(n)b ∈ J for
a ∈ V , b ∈ J , n ∈ Z. If J is an ideal then we also have b(n)a ∈ J for a ∈ V ,
b ∈ J , n ∈ Z, see [59, Eq. (4.3.1)]. Conversely if a subspace J ⊂ V satisfies
a(n)b ∈ J and b(n)a ∈ J for a ∈ V , b ∈ J , n ∈ Z then it is T-invariant and hence
an ideal. A vertex algebra V is simple if every ideal J ⊂ V is either {0} or V .

A homomorphism, resp. antilinear homomorphism, from a vertex algebra
V to a vertex algebra W is a linear, resp. antilinear, map φ : V → W such that
φ(a(n)b) = φ(a)(n)φ(b) for all a, b ∈ V and n ∈ Z. Sometimes we shall simply write φa
instead of φ(a).

Accordingly, one defines the notions of automorphisms and antilinear auto-
morphisms. Note that if g is an automorphism or an antilinear automorphism, then

g(Ω) = g(Ω)(−1)Ω = g(Ω(−1)g
−1(Ω)) = g(g−1Ω) = Ω. (60)

Moreover,
g(Ta) = g(a(−2)Ω) = g(a)(−2)Ω = Tg(a), (61)

for all a ∈ V , i.e. g commutes with T .
Let M be a vector space, and suppose that for each a ∈ V there is a field on M

Y M(a, z) =
∑

n∈Z

aM(n)z
−n−1, aM(n) ∈ End(M) (62)

that the map a 7→ Y M(a, z) is linear. We shall say that M (with this action) is a
module over the vertex algebra V , if Y M(Ω, z) = 1M and the Borcherds identity
holds on M i.e.

∞∑

j=0

(
m
j

)(
a(n+j)b

)M
(m+k−j)

c =

∞∑

j=0

(−1)j
(
n
j

)
aM(m+n−j)b

M
(k+j)c

−
∞∑

j=0

(−1)j+n

(
n
j

)
bM(n+k−j)a

M
(m+j)c, a, b ∈ V, c ∈ M m,n, k ∈ Z. (63)

Accordingly, one defines the notions of module-homomorphism, submodules and
irreducibility.

Every vertex algebra V becomes itself a V -module by setting Y V (a, z) = Y (a, z).
This module is called the adjoint module. If the adjoint module is irreducible then
V is clearly a simple vertex algebra but the converse is not true in general since the
submodules of the adjoint module V need not to be T -invariant.

4.2 Conformal vertex algebras

Let V be a vector space and let L(z) =
∑

n∈Z Lnz
−n−2 be a field on V . If the

endomorphisms {Ln : n ∈ Z} satisfy Virasoro algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ−n,m1V (64)
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with central charge c ∈ C, then L(z) is called a Virasoro field.
If V is a vertex algebra we shall call ν ∈ V a Virasoro vector if the corresponding

vertex operator Y (ν, z) =
∑

n∈Z Lnz
−n−2, Ln = ν(n+1), is a Virasoro field.

As in [59] we shall call a Virasoro vector ν ∈ V a conformal vector if L−1 = T
and L0 is diagonalizable on V . The corresponding vertex operator Y (ν, z) is called
an energy-momentum field and L0 a conformal Hamiltonian for the vertex
algebra V . A vertex algebra V together with a fixed conformal vector ν ∈ V is called
a conformal vertex algebra, see [59, Sect.4.10]. If c is the central charge of the
representation of the Virasoro algebra given by the operators Ln = ν(n+1), n ∈ Z we
say that V has central charge c.

Remark 4.3. Every submodule of the adjoint module of a conformal vertex algebra
V is T -invariant and hence it is an ideal of V . Accordingly V is simple if and only if
its adjoint module is irreducible.

Let V be a conformal vertex algebra and let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the

corresponding energy-momentum field. Set Vα = Ker(L0 − α1V ), α ∈ C. The fact
that L0 is diagonalizable means that V is the (algebraic) direct sum of the subspaces
Vα i.e.

V =
⊕

α∈C

Vα (65)

is graded by L0.
A non-zero element a ∈ Vα is called a homogeneous element of conformal

weight (or dimension) da = α. For such an element we shall set

an ≡ a(n+da−1), n ∈ Z− da. (66)

With this convention,

Y (a, z) =
∑

n∈Z−da

anz
−n−da . (67)

We have the following commutation relations ([59, Sect.4.9 and Sect.4.10])

[L0, an] = −nan (68)

[L−1, an] = (−n− da + 1)an−1 (69)

[L1, an] = −(n− da + 1)an+1 + (L1a)n+1 (70)

for all homogeneous a ∈ V , n ∈ Z.
Note that it follows from Eq. (68) that

eαL0ane
−αL0 = e−nαan, α ∈ C. (71)

A homogeneous vector a in a conformal vertex algebra V and the corresponding
field Y (a, z) are called quasi-primary if L1a = 0 and primary if Lna = 0 for every
integer n > 0. Since LnΩ = ν(n+1)Ω = 0 for every integer n ≥ −1, the vacuum vector
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Ω is a primary vector in V0. Moreover, it follows by the Virasoro algebra relations
that the conformal vector ν is a quasi-primary vector in V2 which cannnot be primary
if c 6= 0.

We have the following commutation relations:

[Lm, an] = ((da − 1)m− n) am+n, (72)

for all primary (resp. quasi-primary) a ∈ V , for all n ∈ Z and all m ∈ Z (resp.
m ∈ {−1, 0, 1}), see e.g. [59, Cor.4.10].

We shall say that a conformal vertex algebra V and the corresponding conformal
vector are of CFT type if Vα = {0} for α /∈ Z≥0 and V0 = CΩ. If V is of CFT type,
or more generally if Vα = {0} for α /∈ Z we can define the operators an, n ∈ Z, for all
a ∈ V , by linearity. In this way Eq. (68) still holds for any a ∈ V . Moreover, we have

Y (zL0a, z) =
∑

n∈Z

anz
−n (73)

for all a ∈ Z, cf. [39, Eq. (5.3.13)]. It is obvious that if a ∈ V is homogeneous then
an = 0 for all n ∈ Z implies a = 0 and it is not hard to see that this is true also for
arbitrary a ∈ V .

In general a vertex algebra V can have more then one conformal vector and hence
more then one structure of conformal vertex algebra even after fixing the grading.
When V has a conformal vector ν of CFT type the conformal vectors of V giving the
same grading as ν are described by the following proposition.

Proposition 4.4. Let V be a vertex algebra and let ν ∈ V be a conformal vector of
CFT type with corresponding energy-momentum field Y (ν, z) =

∑
n∈Z Lnz

−n−2. Then
a vector ν̃ ∈ V such that ν̃(1) = L0 is a conformal vector if and only if

ν̃ = ν + Ta (74)

where a ∈ V is such that L0a = a and a(0) = 0. In this case we have a = 1
2
L1ν̃.

Proof. Let Vn = Ker(L0 − n1V ), n ∈ Z≥0. Since by assumption ν is of CFT type we
have

V =
⊕

n∈Z≥0

Vn, V0 = CΩ.

If ν̃ is a conformal vector satisfying ν̃(1) = L0 then ν̃ ∈ V2.
From Borcherds identity (58) with m = −1, n = 1 and k = 0 we get:

∞∑

j=0

(
−1
j

)(
ν(1+j)ν̃

)
(−1−j)

Ω =
∞∑

j=0

(−1)j
(
1
j

)
ν(−j)ν̃(j)Ω

−
∞∑

j=0

(−1)j+1

(
1
j

)
ν̃(1−j)ν(j−1)Ω = ν̃(1)ν = 2ν.

28



Since ν̃ ∈ V2 we have ν(1+j)ν̃ = 0 for j > 2 and since ν(3)ν̃ ∈ V0 = CΩ we have
(ν(3)ν̃)(−3) = 0. It follows that 2ν = (ν(1)ν̃)(−1)Ω − (ν(2)ν̃)(−2)Ω = ν(1)ν̃ − Tν(2)ν̃ =
2ν̃ − TL1ν̃.

Now with a = 1
2
L1ν̃ we have L0a = a and ν̃ = ν + Ta. Hence a(0) = (Ta)(1) =

ν̃(1) − ν(1) = 0.
Conversely let us assume that a ∈ V1 and a(0) = 0. Let ν̃ = ν + Ta and let

Y (ν̃, z) =
∑

n∈Z L̃nz
−n−2 be the corresponding vertex operator. Then we have L̃−1 =

L−1 = T and L̃0 = L0. Moreover, ν̃ ∈ V2. Now L̃nν̃ ∈ V2−n and hence, using the
fact that ν is of CFT type we find L̃nν̃ = 0 for n > 2 and L̃2ν̃ = c̃Ω. Thus ν̃ is
a conformal vector by [59, Thm.4.10 (b)]. Finally recalling that V0 = CΩ and that
L1ν = 0 we find L1ν̃ = L1Ta = [L1, L−1]a = 2a, because L1a ∈ V0 = CΩ and hence
L−1L1a = 0.

4.3 Vertex operator algebras and invariant bilinear forms

A vertex operator algebra (VOA) is a conformal vertex algebra such that the
corresponding energy-momentum field Y (ν, z) =

∑
n∈Z z

−n−1Ln and homogeneous
subspaces Ker(L0 − α1V ) satisfy the following additional conditions:

(i) V =
⊕

n∈Z Vn, i.e. Ker(L0 − α1V ) = {0} for α /∈ Z.
(ii) Vn = {0} for n sufficiently small.
(iii) dim(Vn) < ∞.

Remark 4.5. If V0 = CΩ, then condition (ii) is in fact equivalent to the stronger
condition Vn = {0} for all n < 0. Indeed, by [92, Prop. 1], for n < 0 we have that
Vn = L1−n

1 V1 ⊂ L−n
1 V0 and hence if V0 = CΩ, then Vn = {0}. Hence in this case V is

of CFT type.

To introduce the notion of invariant bilinear forms, first we shall talk about the
restricted dual V ′ of V . As a graded vector space it is defined as

V ′ =
⊕

n∈Z

V ∗
n (75)

i.e. it is the direct sum of the duals V ∗
n of the finite-dimensional vector spaces Vn,

n ∈ Z. The point is that V ′ can be naturally endowed with a V -module structure.
Denote by 〈·,·〉 the pairing between V ′ and V . For each a ∈ V , the condition

〈Y ′(a, z)b′, c〉 = 〈b′, Y (ezL1(−z−2)L0a, z−1)c〉 c ∈ V, b′ ∈ V ′ (76)

determines a field Y ′(a, z) on V ′ and one has that the map a 7→ Y ′(a, z) makes V ′ a V -
module, see [39, Sect.5.2]. The module V ′ is called the contragradient module and
the fields Y ′(a, z) adjoint vertex operators. Note however that the endomorphisms
a′(n) ∈ End(V ) in the formal series Y (a′(n), z) =

∑
n∈Z a

′
(n)z

−n−1 are not the adjoint of
the endomorphisms a(n) in the usual sense. Note also that we have

〈L′
na

′, c〉 = 〈a′, L−nb〉 a′ ∈ V ′, b ∈ V, n ∈ Z, (77)
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where L′
n = ν ′

(n+1). It follows that V ′ is a Z-graded V module in the sense that
L′
0a

′ = na′ for a′ ∈ V ′
n ≡ V ∗

n .
It should be clear from the definition that the V -module structure on V ′ depends

on the conformal vector ν (more precisely on L1) and not only on the vertex algebra
structure of V .

An invariant bilinear form on V is a bilinear form (·, ·) on V satisfying

(Y (a, z)b, c) = (b, Y (ezL1(−z−2)L0a, z−1)c) a, b, c ∈ V. (78)

As the module structure on V ′, whether a bilinear form is invariant on V depends on
the choice of the conformal vector giving to the vertex algebra V the structure of a
VOA. By straightforward calculation one finds that a bilinear form (·,·) on a vertex
operator algebra V is invariant if and only if

(anb, c) = (−1)da
∑

l∈Z≥0

1

l!
(b, (Ll

1a)−nc) (79)

for all b, c ∈ V and all homogeneous a ∈ V . In particular, in case of invariance, it
follows that

(Lna, b) = (a, L−nb) a, b ∈ V, n ∈ Z (80)

and hence, by considering n = 0, that (Vk, Vl) = 0 whenever k 6= l. Thus the linear
functional (a, ·) is in the restricted dual for every a ∈ V and one can see that the map
a 7→ (a, ·) is a module homomorphisms from V to V ′. Conversely, if φ : V → V ′ is a
module homomorphism, then the bilinear form defined by the formula

(a, b) ≡ 〈φ(a), b〉 (81)

is invariant. Since the homogeneous subspaces Vn (n ∈ Z) are finite-dimensional,
every V -module homomorphism from V to V ′, being grading preserving, is injective
if and only if it is surjective. In particular, there exists a non-degenerate invariant
bilinear form on V if and only if V ′ is isomorphic to V as a V -module. In the following
proposition we list some useful facts concerning invariant bilinear forms for later use.

Proposition 4.6. Let V be a VOA. Then:

(i) Every invariant bilinear form on V is symmetric.

(ii) The map (·,·) 7→ (Ω, ·)↾V0
gives a linear isomorphism from the space of invariant

bilinear forms onto (V0/L1V1)
∗.

(iii) If V is a simple VOA then every non-zero invariant bilinear form on V is
non-degenerate. Moreover, if V has a non-zero invariant bilinear form (·, ·)
then every invariant bilinear form on V is of the form α(·, ·) for some complex
number α.

(iv) If V has a non-degenerate invariant bilinear form and V0 = CΩ then V is a
simple VOA.
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Proof. For (i) and (ii) see [71, Prop. 2.6] and [71, Thm.3.1], respectively.
(iii). Let (·, ·) a non-zero invariant bilinear form on V . As a consequence of Eq.

(79), the subspace
N ≡ {a ∈ V : (a, b) = 0 ∀b ∈ V }

is an ideal of V , which by assumption is not equal to V . Hence if V is simple, then
N = {0}, i.e. (·,·) is non-degenerate. Now let {·, ·} be another invariant bilinear
form on V . If it is zero there is nothing to prove and hence we can assume that it
is non-degenerate. Then there exists a V -module isomorphism φ : V 7→ V such that
{a, b} = (φ(a), b) for all a, b ∈ V . Since φ commutes with every an, a ∈ V , n ∈ Z,
V is a simple VOA and hence an irreducible V -module, φ must be a multiple of the
identity by Schur’s lemma because every VOA has countable dimension, see e.g. [22,
Lemma 2.1.3]. Hence there is a complex number α such that {a, b} = α(a, b) and the
claim follows.

(iv) If J is an ideal of V , then L0J ⊂ J and hence J =
⊕

n∈Z(Vn ∩ J ). If
Ω ∈ J then of course J = V . On the other hand, if Ω /∈ J and V0 = CΩ we have
that V0 ∩ J = {0} and so Ω ∈ J ◦ ≡ {a ∈ V : (a, b) = 0 ∀b ∈ J }. However, J ◦ is
clearly an ideal, and hence it coincides with V . Thus J = {0} by the non-degeneracy
of (·, ·).

Note that by (ii), if V0 = CΩ, then a non-zero invariant bilinear form exists if and
only if L1V1 = {0}. In this case, again by (iii), there is exactly one invariant bilinear
form (·, ·) which is normalized i.e. such that (Ω,Ω) = 1. Similarly, if we assume
that V is simple, then we see from (iii) that there is at most one normalized invariant
bilinear form on V .

Remark 4.7. One can define invariant bilinear forms with similar properties for con-
formal vertex algebras such that L0 has only integer eigenvalues but without assuming
that the corresponding eigenspaces Vn, n ∈ Z have finite dimension, see [92].

Proposition 4.8. Let V be a vertex algebra with a conformal vector ν and assume
that the corresponding conformal vertex algebra is a VOA such that V0 = CΩ and
having a non-degenerate invariant bilinear form. Moreover, let ν̃ ∈ V be another
conformal vector such that ν̃(1) = ν(1) and assume that there is still a non-degenerate
invariant bilinear form on V for the corresponding VOA structure. Then ν̃ = ν.

Proof. Let (·,·) be the unique normalized invariant bilinear form on V with respect
to the conformal vector ν and let ν̃ be another conformal vector with the properties
in the proposition. By Remark 4.5 ν is a conformal vector of CFT type and hence,
by Prop. 4.4, ν̃ = ν + T 1

2
L1ν̃, where L1 = ν(2). Hence L̃1 ≡ ν̃(2) = L1 − (L1ν̃)(1)

Let us assume that L1ν̃ 6= 0. Since (·, ·) is non-degenerate, there is b ∈ V1 such that
(L1ν̃(1), b) 6= 0. Thus

(Ω, L̃1b) = (Ω, (L1 − (L1ν̃)(1))b) = (L1ν̃, b) 6= 0. (82)

Hence L̃1V1 6= {0} and by Prop. 4.6 (ii) there is no non-zero invariant bilinear form
on V corresponding to ν̃.
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Remark 4.9. It follows from the results in [92] that Prop. 4.8 still holds true if V
with the conformal vector ν is a conformal vertex algebra of CFT type, namely the
assumption that the L0 eigenspaces Vn, n ∈ Z have finite dimension is not really
needed.

Remark 4.10. Prop. 4.8 can be considered as a VOA analogue of the uniqueness
results for diffeomorphism symmetry proved in [20] and [101]. At the end of Sect. 6
it will be shown that the uniqueness results in [20, 101] can be proved starting from
Prop. 4.8.

Corollary 4.11. Let V be a VOA with energy-momentum field Y (ν, z) =
∑

n∈Z Lnz
−n−2.

Assume that V0 = CΩ and that V has a non-degenerate invariant bilinear form (·,·).
Then for a vertex algebra automorphism or antilinear automorphism g of V , the fol-
lowing are equivalent.

(i) g is grading preserving i.e. g(Vn) = Vn for all n ∈ Z.

(ii) g preserves (·,·) i.e. either (g(a), g(b)) = (a, b) for all a, b ∈ V if g is linear, or
(g(a), g(b)) = (a, b) for all a, b ∈ V if g is antilinear.

(iii) g(ν) = ν.

Proof. (i) ⇒ (iii). If g is grading preserving, then g(ν) is a conformal vector such that
g(ν)(1) = ν(1) and (g(·), g(·)) (or (g(·), g(·)), in the antilinear case) is a non-degenerate
invariant bilinear form for the corresponding VOA structure. Hence by Prop. 4.8
g(ν) = ν.

(iii) ⇒ (ii). If g(ν) = ν then (g(·), g(·)) (or (g(·), g(·)), in the antilinear case) is
an invariant bilinear form on V and hence by Prop. 4.6 it must coincide with (·,·)
because g(Ω) = Ω and (Ω,Ω) 6= 0 by non-degeneracy.

(ii) ⇒ (i). Every vertex algebra automorphism or antilinear automorphism g
commutes with T = L−1. If g preserves (·,·) then also its inverse does so, and as g−1

also commutes with T = L−1, we have

(a, L1g(b)) = (Ta, g(b)) = (Tg−1(a), b) = (g−1(a), L1b) = (a, g(L1b)) (83)

for all a, b ∈ V . Thus by the non-degeneracy of (·,·) it follows that L1g(b) = g(L1b);
i.e. that g commutes with L1. But then it also commutes with L0 = 1

2
[L1, L−1] and

hence it is grading preserving.

In the following we shall say that a vertex algebra automorphism, resp. antilinear
automorphism, g of a vertex operator algebra V with conformal vector ν is a VOA
automorphism, resp. VOA antilinear automorphism, if g(ν) = ν and we shall
denote by Aut(V ) the group of VOA automorphisms of V .

The group Aut(V ) has a natural topology making it into a metrizable topological
group. First note that the group

∏
n∈Z GL(Vn) of grading preserving vector space

automorphisms of V is the direct product of the finite-dimensional Lie groups GL(Vn),
n ∈ Z. Hence

∏
n∈Z GL(Vn) with the product topology is a metrizable topological
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group. Now, Aut(V ) is a subgroup of
∏

n∈ZGL(Vn) and hence it becomes a topological
group when endowed with the relative topology.

A sequence gn ∈
∏

n∈ZGL(Vn) converges to g ∈
∏

n∈ZGL(Vn) if and only if for all
a ∈ V and all b′ ∈ V ′ the sequence of complex numbers 〈b′, gna〉 converges to 〈b′, ga〉.
Now let gn be a sequence in Aut(V ) converging to an element g of

∏
n∈Z GL(Vn).

Then for all a, b ∈ V , c′ ∈ V ′ and m ∈ Z we have 〈c′, g(a(m)b)〉 = limn→∞〈c′, gn(a(m)b)〉
= limn→∞〈c′, gn(a)(m)gn(b)〉 = 〈c′, g(a)(m)g(b)〉. It follows that g(a(m)b) = g(a)(m)g(b)
and g ∈ Aut(V ). Thus Aut(V ) is a closed subgroup of

∏
n∈Z GL(Vn).

5 Unitary vertex operator algebras

In this section we define and study the notion of unitary VOA. For closely related
material cf. [28].

5.1 Definition of unitarity

Now let V be a VOA with conformal vector ν, and let (·|·) be a scalar product on V ,
namely a positive-definite sesquilinear form (linear in the second variable). We say
that the scalar product is normalized if (Ω|Ω) = 1 and we say that (·|·) is invariant
if there is a VOA antilinear automorphism θ of V such that (θ · |·) is an invariant
bilinear form on V . In this case we will say that θ is a PCT operator associated
with (·|·).

Now let ν be the conformal vector of V and let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the

corresponding energy-momentum field. Moreover, let (·|·) be a normalized invariant
scalar product on V with an associated PCT operator θ. Since θ(ν) = ν, θ commutes
with all Ln, n ∈ Z. It follows from Eq. (79) that, for all a, b, c ∈ V and n ∈ Z, we
have

(anb|c) = (θ(θ−1a)nθ
−1b|c) = (b|(θ−1eL1(−1)L0a)−nc). (84)

In particular if a is quasi-primary we have

(anb|c) = (−1)da(b|(θ−1a)−nc), (85)

for all b, c ∈ V and n ∈ Z. In particular

(Lna|b) = (a|L−nb), (86)

for all a, b ∈ V and n ∈ Z, i.e. the corresponding representations of the Virasoro
algebra and of its Möbius subalgebra C{L−1, L0, L1} (isomorphic to sl2(C)) are unitary
and hence completely reducible. In particular we have Vn = 0 for n < 0.

Proposition 5.1. Let (·|·) be a normalized invariant scalar product on the vertex
operator algebra V . Then there exists a unique PCT operator θ associated with (·|·).
Moreover, θ is an involution i.e. θ2 = 1V and it is is antiunitary i.e. (θa|θb) = (b|a)
for all a, b ∈ V .
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Proof. Assume that θ̃ is another PCT operator associated with (·|·). Then it follows
from Eq. (84) that (θ−1eL1(−1)L0a)n = (θ̃−1eL1(−1)L0a)n for all a ∈ V and all
n ∈ Z. Hence (see Subsect. 4.2) θ−1eL1(−1)L0a = θ̃−1eL1(−1)L0a for all a ∈ V . Since
eL1(−1)L0 is surjective, it follows that θ = θ̃. Now, from Eq. (84) it also follows that
a = (eL1(−1)L0)2θ−2a for all a ∈ V . It follows from Eq. (71) that (−1)L0eL1(−1)L0 =
e−L1 and hence (eL1(−1)L0)2 = 1. Thus θ2 = 1. Finally, given a, b ∈ V , the symmetry
of the invariant bilinear form (θ · |·) implies that (θa|θb) = (θ2b|a) = (b|a) and hence
θ is antiunitary.

Note that if (·|·) is an invariant normalized scalar product on the VOA V and θ is
the corresponding PCT operator then the invariant bilinear form (θ · |·) is obviously
normalized and non-degenerate. Hence as a V -module V is equivalent to the contra-
gradient module V ′. Note also that as a consequence of Prop. 5.1, θ is determined
by (·|·). Conversely, if V is simple, we have (·|·) = (θ·, ·) where (·, ·) is the unique
normalized invariant bilinear form on V and hence (·|·) is determined by θ.

Definition 5.2. A unitary vertex operator algebra is a pair (V, (·|·)) where V is
a vertex operator algebra and (·|·) is a normalized invariant scalar product on V .

We have the following:

Proposition 5.3. Let (V, (·|·)) be a unitary V OA. Then V is simple if and only if
V0 = CΩ. In particular every simple unitary VOA is of CFT type.

Proof. Let a ∈ V0. Then

(L−1a|L−1a) = (a|L1L−1a) = 2(a|L0a) = 0.

Hence L−1a = 0 and by [59, Remark 4.4b], Y (a, z) = a(−1). Thus, by locality a(−1)

commutes with every bn, n ∈ Z, b ∈ V . Accordingly if V is simple a(−1) is a multiple
of the identity by Schur’s lemma because every VOA has countable dimension, see
e.g. [22, Lemma 2.1.3]. Thus a ∈ CΩ. Conversely if V0 = CΩ then V is simple by
Prop. 4.6 (iv).

Remark 5.4. Let (V, (·|·)) be a unitary VOA unitary with PCT operator θ. Then
the real subspace

VR = {a ∈ V : θa = a} (87)

contains the conformal vector ν and the vacuum vector Ω and inherits from V the
structure of a real vertex operator algebra. Moreover, V = VR+iVR and VR∩iVR = {0},
i.e. V is the complexification of VR. Such a real subspace is called a real form [81]. The
restriction of (·|·) to VR is positive definite real valued invariant R-bilinear form on VR

and hence (·|·) is a positive definite invariant Hermitian form on V in the sense of [81,
Sect.1.2]. Conversely let Ṽ be vertex operator algebra over R with a positive definite
normalized real valued invariant R-bilinear form (·, ·) (see [84] for an interesting class
of examples) and let V be the complexification of Ṽ . Then, (·, ·) extends uniquely to
an invariant scalar product (·|·) on the complex vertex operator algebra. Moreover,
Ṽ coincide with the corresponding real form VR defined in Eq. (87).
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Remark 5.5. It is straightforward to show that if V1 and V2 are unitary vertex
operator algebras then then also V1 ⊗ V2 is unitary.

We conclude this section with some examples of unitary VOAs.

Example 5.6. The vertex algebra L(c, 0) associated with the unitary representation
of the Virasoro algebra with central charge c and lowest conformal energy 0 is a simple
unitary VOA. We call it the unitary Virasoro VOA with central charge c. The possible
value of c are restricted by unitarity, see Subsect. 3.2.

Example 5.7. Let g be a simple complex Lie algebra and let Vgk be the conformal
vertex algebra associated with the unitary representation of the affine Lie algebra ĝ

corresponding to g, having level k and lowest conformal energy 0. Then Vgk is the
simple unitary VOA corresponding to the level k chiral current algebra CFT model
associated g.

Example 5.8. Let VH be the Heisenberg vertex operator algebra associated with the
unitary representation of the (rank one) Heisenberg Lie algebra with lowest conformal
energy 0. Then VH is a simple unitary VOA corresponding to the U(1) chiral current
algebra CFT model (free boson).

Example 5.9. Let L be an even positive definite lattice. Then the corresponding
lattice VOA VL is unitary, cf. [84, Prop.2.7] and [28, Thm.4.12].

Example 5.10. Let V ♮ be the moonshine VOA constructed by Frenkel, Lepowsky
and Meurman [40], see also [84]. Then V ♮ is a simple unitary VOA. Aut(V ) is the
Monster group M, the largest among the 26 sporadic finite simple groups, cf. [40].

5.2 An equivalent approach to unitarity

The definition of unitarity given in the previous section appears to be very natural
from the point of view of vertex operator algebras theory. In this subsection we will
show that it is natural also from the point of view of quantum field theory (QFT).
To simplify the exposition we shall consider in detail only the case of vertex operator
algebras V with V0 = CΩ.

From the QFT point of view, in agreement with Wightman axioms [95] the basic
requirements for unitarity should reflect the following properties:
(1) The spacetime symmetries act unitarily.
(2) The adjoints of local fields are local.

To give a precise formulation of these requirements we need some preliminaries. Let
V be a vertex operator algebra with energy-momentum field Y (ν, z) =

∑
n∈Z Lnz

−n−2

and let (·|·) be a normalized scalar product on V . We say that the pair (V, (·|·)) has
unitary Möbius symmetry if for all a, b ∈ V

(Lna|b) = (a|L−nb), n = −1, 0, 1. (88)
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Now let A ∈ End(V ). We say that A have an adjoint on V (with respect to (·|·)) if
there exists A+ ∈ End(V ) such that

(a|Ab) = (A+a|b), (89)

for all a, b ∈ V . Clearly if A+ exists then it is unique and we say that A+ is the
adjoint of A on V . If HV denotes the Hilbert space completion of (V, (·|·)) then each
A ∈ End(V ) may be considered as a densely defined operator on HV . Then A+ exists
if and only if the domain of Hilbert space adjoint A∗ of A contains V and in this case
we have A+ ⊂ A∗, i.e. A+ = A∗↾V .

It is easy to see that the set of elements in EndV having an adjoint on V is
a subalgebra of EndV containing the identity 1V and closed under the operation
A 7→ A+. In fact if A,B ∈ EndV admit an adjoint on V then, for all α, β ∈ C,
(αA+ βB)+ = αA+ + βB+, (AB)+ = B+A+ and A++ ≡ (A+)+ = A.

Lemma 5.11. Let (V, (·|·)) have unitary Möbius symmetry. Then, for any a ∈ V
and n ∈ Z, the adjoint a+n of an on V exists. Moreover, for any b ∈ V there exists an
N ∈ Z≥0 such that if n ≥ N then a+−nb = 0

Proof. From unitary Möbius symmetry it follows that the finite-dimensional subspaces
Vn = Ker(L0−n1V ) of V are pairwise orthogonal. Since an(Vk) ⊂ Vk−n, we may view
an↾Vk

as an operator between two finite-dimensional scalar product spaces, and so it
has a well-defined adjoint (an↾Vk

)∗ ∈ Hom(Vk−n, Vk). It is easy to check that

a+n ≡
⊕

k∈Z
(an↾Vk

)∗ (90)

is indeed the adjoint of an on V (and so it exists). From its actual form we also see
that a+−n(Vk) ⊂ Vk−n which shows that indeed for any b ∈ V there exists an N ∈ Z

such that if n ≥ N then a+−nb = 0.

Now let (V, (·|·)) have unitary Möbius symmetry. From the previous lemma it
follows that for every a ∈ V the formal series

Y (a, z)+ ≡
∑

n∈Z

a+(n)z
n+1 =

∑

n∈Z

a+(−n−2)z
−n−1 (91)

is well defined and gives a field on V i.e., for every b ∈ V , a+(−n−2)b = 0 if n is
sufficiently large.

For a ∈ V we say that the vertex operator Y (a, z) has a local adjoint if for every
b ∈ V the fields Y (a, z)+, Y (b, z) are mutually local i.e.

(z − w)N
[
Y (a, z)+, Y (b, w)

]
= 0, (92)

for sufficiently large N ∈ Z≥0 and we denote by V (·|·) the subset of V whose elements
are the vectors a ∈ V such that Y (a, z) has a local adjoint.
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Remark 5.12. The adjoint vertex operator Y (a, z)+ should not be confused with the
adjoint vertex operator Y ′(a, z) in the definition of the contragradient module V ′ in
Subsect. 4.3.

Lemma 5.13. For a, b ∈ V , Y (a, z)+ and Y (b, z) are mutually local if and only if
Y (a, z) and Y (b, z)+ are mutually local.

Proof. Let N ∈ Z≥0. Then

(z − w)N
[
Y (a, z)+, Y (b, w)

]
= 0 ⇔

N∑

j=0

∑

(m,n)∈Z2

[
a+(m), b(n)

](N
j

)
(−1)jwjzN−jzm+1w−n−1 = 0 ⇔

∀m,n ∈ Z,

N∑

j=0

[
a+(m+j−N), b(n+j)

](
N
j

)
(−1)j = 0 ⇔

∀m,n ∈ Z,

(
N∑

j=0

[
a+(m+j−N), b(n+j)

](
N
j

)
(−1)j

)+

= 0 ⇔

∀m,n ∈ Z,
N∑

j=0

[
a(m+j−N), b

+
(n+j)

](N
j

)
(−1)j = 0 ⇔

∀m,n ∈ Z,

N∑

j=0

[
a(m+j), b

+
(n+j−N)

](
N
j

)
(−1)j = 0 ⇔

(z − w)N
[
Y (b, z)+, Y (a, w)

]
= 0.

Proposition 5.14. V (·|·) is a vertex subalgebra of V .

Proof. It is clear that V (·|·) is a subspace of V containing Ω. Now let a, b ∈ V (·|·),
c ∈ V and n ∈ Z. By Lemma 5.13 Y (a, z), Y (b, z) and Y (c, z)+ are pairwise mutually
local fields on V . Hence by [59, Prop. 4.4.] and Dong’s Lemma [59, Lemma 3.2.]
Y (a(n)b, z) and Y (c, z)+ are mutually local. Since c ∈ V was arbitrary Lemma 5.13
then shows that Y (a(n)b, z) has a local adjoint, i.e. a(n)b ∈ V (·|·).

Lemma 5.15. Let a ∈ V (·|·) be a quasi-primary vector. Then there is a quasi-primary
vector a ∈ V (·|·) with da = da and such that z−2daY (a, z)+ = Y (a, z), equivalently
a+n = a−n for all n ∈ Z.

Proof. The field z−2daY (a, z)+ coincides with
∑

n∈Z a
+
−nz

−n−da . Since

[L−1, a
+
−n] = −[L+

−1, a−n]
+ = −[L1, a−n]

+

= −((da − 1 + n)a−n+1)
+ = −(da − 1 + n)a+−n+1, (93)
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it is translation covariant and hence, cf. [59, Remark 1.3.] z−2daY (a, z)+Ω = ezL−1a+daΩ.
By assumption Y (a, z)+ is mutually local with all fields Y (b, z), b ∈ V . Hence
z−2daY (a, z)+ is also mutually local with all fields Y (b, z), b ∈ V . From the uniqueness
theorem [59, Thm.4.4.] it then follows that z−2daY (a, z)+ = Y (a, z) where a = a+daΩ.

Since Y (a, z)+ = z2daY (a, z) we have a ∈ V (·|·). Moreover, L0a
+
da
Ω = −[L0, ada ]

+Ω =
daa

+
da
Ω and L1a

+
da
Ω = −[L−1, ada ]

+Ω = (−2da + 1)a+da−1Ω = 0 and hence a is quasi-
primary of dimension da.

The following theorem is a vertex algebra formulation of the PCT theorem [95].

Theorem 5.16. Let V be a vertex operator algebra with a normalized scalar product
(·|·). Assume that that V0 = CΩ. Then the following are equivalent

(i) (V, (·|·)) is a unitary VOA.

(ii) (V, (·|·)) has unitary Möbius symmetry and V (·|·) = V , i.e. every vertex operator
has a local adjoint.

Proof. Let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the energy-momentum field of V . That (i) ⇒

(ii) is rather trivial. Indeed, suppose that (V, (·|·)) is a unitary VOA and let θ be
the corresponding PCT operator. From Eq. (86) it follows that the pair has unitary
Möbius symmetry. If a ∈ V is a homogeneous vector, then by Eq. (84) and the
properties of θ we have a+−n = (−1)da

∑
l∈Z≥0

1
l!
(Ll

1θa)n for all n ∈ Z. Hence

Y (a, z)+ = (−1)da
∑

l∈Z≥0

1

l!
Y (Ll

1θa, z)z
2da−l (94)

is mutually local with all fields Y (b, z), b ∈ V and since the homogeneous vector a
was arbitrary it follows that V (·|·) = V .

Let us now prove (ii) ⇒ (i). Assume that (V, (·|·)) has unitary Möbius symmetry
and that V (·|·) = V . We first show that V is simple.

Since V0 = CΩ, by Remark 4.5, V is of CFT type. Let J ⊂ V be a non-zero
ideal. Since L0J ⊂ J we have

J =
⊕

n≥m

J ∩ Vn

for some m ∈ Z≥0 such that J ∩ Vm 6= {0}. Let a be a non-zero vector in J ∩ Vm.
Then a is quasi-primary of dimension m and by Lemma 5.15 there exists a ∈ Vm such
that am = a+−m. Then ama = ama−mΩ is a non-zero vector in J ∩ V0. Accordingly
Ω ∈ J and J = V . Hence V is simple.

Now let a ∈ V1. Since V0 = CΩ and L1a ∈ V0 we have L−1L1a = 0 and from unitary
Möbius symmetry it follows that (L1a|L1a) = 0 and hence L1a = 0. Accordingly
L1V1 = {0} and by Prop. 4.6 it follows that there is a unique normalized invariant
bilinear form (·, ·) on V which is non-degenerate being V simple.
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The finite-dimensional subspaces Vn, n ∈ Z≥0, satisfy (Vn|Vm) = 0 and (Vn, Vm) =
0 for n 6= m. Thus there exists a unique θ : V → V antilinear, grading preserving
map such that (·,·) = (θ · |·).

By Corollary 4.11 and Prop. 5.1 all we have to show is that the above introduced
conjugate linear map θ is actually a vertex algebra antilinear automorphism.

First of all from the non-degeneracy of (·, ·) it follows that θ is injective and since
θVn ⊂ Vn and Vn is finite-dimensional for all n ∈ Z≥0 then θ is invertible. Note also
that by unitary Möbius symmetry it follows that θ commutes with Ln, n = −1, 0, 1.

Now let a ∈ V = V (·|·) be a quasi-primary vector. By Lemma 5.15 there exists a
quasi-primary vector a ∈ Vda such that a+n = a−n, n ∈ Z. We have

(θanb|c) = (anb, c) = (−1)da(b, a−nc) = (−1)da(θb|a−nc) = (−1)da(anθb|c),

for all b, c ∈ V , showing that θan = (−1)daanθ. Since V0 = CΩ and (Ω|Ω) = (Ω,Ω) =
1, we have that θΩ = Ω. Therefore, θa = θa−daΩ = (−1)daa−daθΩ = (−1)daa. Hence,
for every quasi-primary vector a we have θa(n)θ

−1 = (θa)(n) for all n ∈ Z. Since θ
commutes with L−1 and since by unitary Möbius symmetry the vectors of the form
Lk
−1a with k ∈ Z≥0 and a quasi-primary span V , then, recalling Remark 4.2, it follows

that θb(n)θ
−1 = (θb)(n) for all b ∈ V , n ∈ Z and hence θ is a vertex algebra antilinear

automorphism.

Now let V be a vertex operator algebra with a normalized scalar product (·|·) and
let a ∈ V be a quasi-primary vector. Then we shall call the corresponding quasi-
primary field Y (a, z) Hermitian (with respect to (·|·)) if (anb|c) = (b|a−nc) for all
b, c ∈ V and all n ∈ Z. This means that for all n ∈ Z the adjoint a+n of an on V
exists and coincides with a−n. The following consequence of Thm. 5.16 gives a useful
characterization of simple unitary vertex operator algebras.

Proposition 5.17. Let V be a vertex operator algebra with conformal vector ν and let
(·|·) be a normalized scalar product on V . Assume that V0 = CΩ. Then the following
are equivalent

(i) (V, (·|·)) is a unitary vertex operator algebra.

(ii) Y (ν, z) is Hermitian and V is generated by a family of Hermitian quasi-primary
fields.

Proof. (i) ⇒ (ii). If (V, (·|·)) is a unitary vertex operator algebra and θ is the corre-
sponding PCT operator then Y (ν, z) is Hermitian by Eq. (86). Moreover, if a is a
quasi-primary vector then, by Eq. (85) a+n = (−1)da(θa)−n for all n. Accordingly if
b = 1

2
(a+(−1)daθa) and c = −i

2
(a− (−1)daθa) then Y (b, z) are and Y (c, z) are Hermi-

tian quasi-primary fields such that Y (a, z) = Y (b, z) + iY (c, z). Since V is generated
by its quasi-primary fields then it follows that it is also generated by its Hermitian
quasi-primary fields.

(ii) ⇒ (i) If Y (ν, z) is Hermitian then the normalized scalar product (·|·) has
clearly unitary Möbius symmetry. Now let F ⊂ V be the generating family of quasi-
primary vectors corresponding to a generating family of Hermitian quasi-primary
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fields. Then for a ∈ F the hermiticity condition gives Y (a, z)+ = z2daY (a, z) and
hence Y (a, z) has a local adjoint i.e. a ∈ V (·|·). Hence F ⊂ V (·|·) and since F
generates V and V (·|·) is vertex subalgebra of V by Prop. 5.14 it follows that V = V (·|·)

and hence, by Thm. 5.16, (V, (·|·)) is a unitary vertex operator algebra.

5.3 Unitary automorphisms and essential uniqueness of the

unitary structure

Now, let (V, (·|·)) be a unitary vertex operator algebra. We denote by Aut(·|·)(V )
the subgroup of the elements of Aut(V ) which are unitary with respect to (·|·). In
other words an element g of Aut(·|·)(V ) is a VOA automorphism of V such that
(ga|gb) = (a|b) for all a, b ∈ V . We will say that Aut(·|·)(V ) is the automorphism
group of the unitary VOA (V, (·|·)).

Remark 5.18. It follows from Prop. 4.6 (iii) that if V is simple and g ∈ Aut(V )
then g ∈ Aut(·|·)(V ) if and only if g−1θg = θ. Accordingly, if VR = {a ∈ V : θa = a}
is the real form as in Remark 5.4, then g ∈ Aut(·|·)(V ) if and only if g restricts to a
VOA automorphism of the real vertex operator algebra VR. Conversely, every VOA
automorphism of VR give rise to a VOA automorphism of V and hence we have the
identification Aut(·|·)(V ) = Aut(VR).

In general Aut(·|·)(V ) is properly contained in Aut(V ). If g ∈ Aut(V ) is VOA
automorphism of V which does not belong to Aut(·|·)(V ) then {·|·} = (g · |g·) is a

normalized invariant scalar product on V different from (·|·). In fact θ̃ = g−1θg is an
antilinear VOA automorphism of V and {θ̃ · |·} = (θg · |g·) is an invariant bilinear
form on V . In the case of a simple unitary VOA every normalized invariant scalar
product arises in this way. In fact we have the following

Proposition 5.19. Let (V, (·|·)) be a simple unitary VOA with PCT operator θ and
let {·|·} be another normalized invariant scalar product on V with corresponding PCT
operator θ̃. Then there exists a unique h ∈ Aut(V ) such that:

(i) {a|b} = (ha|hb) for all a, b ∈ V ;

(ii) θ̃ = h−1θh;

(iii) θhθ = h−1;

(iv) (a|ha) > 0 for every non-zero a ∈ V .

Proof. Let g ≡ θθ̃. Then g is an automorphism of V . Moreover, since θ and θ̃ are
involutions we have θgθg = 1V and hence θgθ = g−1. From Prop. 4.6 (iii) we have
{θg · |·} = {θ̃ · |·} = (θ · |·) and hence

(ga|b) = (θθga|b) = {θgθga|b}
= {a|b},
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for all a, b ∈ V . It follows that for every integer n the restriction of g to Vn is a strictly
positive Hermitian operator (with respect to (·|·) ) end hence that g is diagonalizable
on V with positive eigenvalues. Hence we can take the square root of g and define
h ≡ g1/2. With this h (i) – (iv) hold and we have to show that h ∈ Aut(V ). It is clear
that h leaves Ω and ν invariant. Now if a, b are eigenvectors of g with eigenvalues λa

and λb respectively and n ∈ Z then

g(a(n)b) = g(a)(n)g(b) = λaλba(n)b.

Hence
h(a(n)b) = (λaλb)

1/2a(n)b = h(a)(n)h(b),

and by linearity, since g is diagonalizable, it follows that h ∈ Aut(V ). The uniqueness
of h can be easily shown using (i) and (ii).

As a consequence of the above proposition a simple VOA has, up to unitary iso-
morphisms, at most one structure of unitary VOA. We know from the same Prop.
that this structure is really unique (i.e. not up unitary isomorphisms) iff every au-
tomorphism of V is unitary. Using [59, Remark 4.9c] one can easily give examples
of non-unitary automorphism. However there are VOA for which the the normalized
invariant scalar product is unique and we will give a characterization of this class
using the topological properties of Aut(V ).

Let (V, (·|·)) be a unitary VOA. Then V is a normed space with the norm ‖a‖ =
(a|a)1/2, a ∈ V . Using the norm on V we can topologize End(V ) with the strong
operator topology. The corresponding topology on Aut(V ) coincides with the topology
discussed at the end of Subsect. 4.3. Being a subgroup of Aut(V ), Aut(·|·)(V ) is also
a topological group. We have the following

Lemma 5.20. Let (V, (·|·)) be a unitary VOA. Then Aut(·|·)(V ) is a compact subgroup
of Aut(V ).

Proof. Let U(Vn), n ∈ Z be the compact subgroup of GL(Vn) whose elements are the
unitary endomorphisms with respect to the restriction of (·|·) to Vn. Then

∏
n∈Z U(Vn)

is the subgroup of unitary elements the group
∏

n∈Z GL(Vn) of grading preserving vec-
tor space automorphisms of V . Since

∏
n∈ZU(Vn) is compact by Tychonoff’s theorem

Aut(·|·)(V ) = Aut(V ) ∩
∏

n∈Z

U(Vn)

is also compact because Aut(V ) is closed in
∏

n∈Z GL(Vn), see the end of Subsect.
4.3.

Theorem 5.21. Let (V, (·|·)) be a simple unitary VOA and let θ be the corresponding
PCT operator. Then the following are equivalent:

(i) (·|·) is the unique normalized invariant scalar product on V .
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(ii) Aut(·|·)(V ) = Aut(V ).

(iii) Every g ∈ Aut(V ) commutes with θ.

(iv) Aut(V ) is compact.

(v) Aut(·|·)(V ) is totally disconnected.

Proof. The implication (i) ⇒ (ii) is clear from the comments before Prop. 5.19. Now,
let g be a VOA automorphism of V . Then g ∈ Aut(·|·)(V ) iff (gθa|gb) = (θa|b) for
all a, b ∈ V . By Corollary 4.11 we have (θga|gb) = (θa|b) for all a, b ∈ V . Hence
g ∈ Aut(·|·)(V ) if and only if θ and g commute proving (ii) ⇔ (iii). The implication
(ii) ⇒ (iv) follows from Lemma 5.20.

Now let {·|·} be a normalized invariant scalar product on V . By Prop. 5.19 there
is a VOA automorphism h of V which is diagonalizable with positive eigenvalues and
such that {a|b} = (ha|hb) for all a, b ∈ V . Moreover, by the same proposition λ is an
eigenvalue of h if only if λ−1 is. Hence if h is not the trivial automorphism then it has
an eigenvalue λ > 1 and since h preserves the grading we can find a corresponding
eigenvector a ∈ Vn for some positive integer n. But then the sequence hm(a) = λmv
is unbounded in Vn and (iv) cannot hold proving that (iv) → (i). Similarly if a
nontrivial h ∈ Aut(V ) has the properties given in Prop. 5.19 then R ∋ t 7→ hit is
a nontrivial continuous one-parameter group in Aut(·|·)(V ) so that (v) cannot hold.
Hence (v) ⇒ (i).

To conclude the proof of the theorem we now show that (ii) ⇒ (v). Let us assume
that Aut(·|·)(V ) is not totally disconnected and denote by G its component of the iden-
tity. Then G is a closed connected subgroup of Aut(·|·)(V ) which is not just the iden-
tity subgroup {1V }. For every N ∈ Z≥0 we denote πN the projection of

∏
n∈Z GL(Vn)

onto
∏N

n=0GL(Vn). The maps πN , N ∈ Z≥0 separate points in
∏

n∈Z GL(Vn) (re-
call that Vn = {0} if n < 0). Moreover, if N1, N2 are non-negative integers and
N2 ≥ N1 we denote by πN2,N1 the projection of

∏N2

n=0GL(Vn) onto
∏N1

n=0GL(Vn)
so that πN2,N1 ◦ πN2 = πN1 . For every N ∈ Z≥0 GN ≡ πN(G) is a compact (and

thus closed) connected subgroup of the finite-dimensional Lie group
∏N1

n=0GL(Vn)
and ,for sufficiently large N , GN is not the identity subgroup. Moreover, if N1, N2

are non-negative integers and N2 ≥ N1 πN2,N1 restricts to a group homomorphism
of GN2 onto GN1 . As a consequence, for every N , we can choose a continuous one-
parameter group t 7→ φN(t) in GN so that φN(t) is nontrivial for sufficiently large N
and πN2,N1(φN2(t)) = φN1(t) for N2 ≥ N1. Now it is not hard to show that there is a
group homomorphism R ∋ t 7→ φ(t) in G such that πN(φ(t)) = φN(t) for all N ∈ Z≥0.
Clearly R ∋ t 7→ φ(t) is continuous and nontrivial. Now let δ be the endomorphism
of V defined by δ(a) = d

dt
φ(t)a|t=0, a ∈ V . Then δ is a derivation of V ( i.e. δ(a(n)b)

= δ(a)(n)b + a(n)δ(b) for a, b ∈ V , n ∈ Z) commuting with L0. Moreover, φ(t) = etδ

so that δ is non-zero and the VOA automorphism eαδ cannot be unitary for every
α ∈ C.
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5.4 Unitary subalgebras

Let (V, (·,·)) be a unitary VOA, with PCT operator θ and energy-momentum field
Y (ν, z) =

∑
n∈Z Lnz

−n−2 and let W ⊂ V be a vertex subalgebra. Recall that the
invariant scalar product allows to consider the adjoints of vertex operators. Obviously,
if W is a vertex subalgebra of V and a, b ∈ W , then the product a(n)b belongs to W
for every n ∈ Z, but there is no guarantee that a+(n)b is in W , too. This fact motivates
the following definition.

Definition 5.22. A unitary subalgebra W of a unitary vertex operator algebra
(V, (·,·)) is a vertex subalgebra of V satisfying the following two additional properties:

(i) W compatible with the grading, namely W =
⊕

n∈Z(W ∩ Vn) (equivalently
L0W ⊂ W ).

(ii) a+(n)b ∈ W for all a, b ∈ W and n ∈ Z.

Note that if (i) is satisfied then (ii) is equivalent to a+n b ∈ W for all a, b ∈ W and
n ∈ Z.

The following proposition gives a useful characterization of unitary subalgebras of
the unitary vertex operator algebra V .

Proposition 5.23. A vertex subalgebra W of a unitary vertex operator algebra V is
unitary if and only if θW ⊂ W and L1W ⊂ W .

Proof. Let W be a unitary subalgebra of V . If a ∈ W is homogeneous, by Eq. (84)
we have

a+n = (−1)da
∞∑

j=0

1

j!
(Lj

1θa)−n, (95)

for all n ∈ Z. Hence
∑∞

j=0
1
j!
(Lj

1θa)−nΩ ∈ W for all n ∈ Z. For n = 0 we find that

Lda
1 θa ∈ W . For n = 1 that also Lda−1

1 θa ∈ W and so on. Hence, Lj
1θa ∈ W for all

j ∈ Z≥0. Since the homogeneous vector a ∈ W was arbitrary it follows that θW ⊂ W
and L1W ⊂ W .

Conversely let us assume that W is a vertex subalgebra of V such that θW ⊂ W
and L1W ⊂ W . Since every vertex subalgebra is L−1 invariant we also have

L0W =
1

2
[L1, L−1]W ⊂ W.

Moreover, Property (ii) in the definition of unitary subalgebras is an easy consequence
of Eq. (84).

Using the definition and the above proposition one can give various examples of
unitary subalgebras of a unitary vertex operator algebra V .
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Example 5.24. The vertex subalgebra L(c, 0) ⊂ V generated by the conformal vector
ν of the unitary VOA V having central charge c is a unitary subalgebra. We call it
the Virasoro subalgebra of V .

Example 5.25. For a closed subgroup G ⊂ Aut(·|·)(V ), the the fixed point subalgebra
V G (i.e. the set of fixed elements of V under the action of elements of G) is unitary.
In fact every g ∈ G commutes with θ and L1 and hence θV G ⊂ V G and L1V

G ⊂ V G.
When G is finite V G is called orbifold subalgebra.

Example 5.26. A vertex subalgebra W ⊂ V generated by a θ invariant family of
quasi-primary vectors, is clearly invariant for θ and from Eq. (70) it easily follows
that it is also invariant for L1. Hence W is unitary.

Example 5.27. Let W be a vertex subalgebra of a unitary vertex operator algebra
V . Then W c = {b ∈ V : [Y (a, z), Y (b, w)] = 0 for all a ∈ W} is a vertex subalgebra
of V , and we call it coset subalgebra (see [59, Remark 4.6b] where W c is called
centralizer). By the Borcherds commutator formula Eq. (59) b ∈ V belongs to W c

if and only if a(j)b = 0 for all a ∈ W and j ∈ Z≥0, cf. [59, Cor.4.6. (b)]. Now if W
is a unitary subalgebra and a, b ∈ W c then, for all c ∈ W and all n,m ∈ Z, we have
[a+(n), c(m)] = [c+(m), a(n)]

+ = 0, as a consequence of Eq. (95). Hence for all c ∈ W ,

j ∈ Z≥0, n ∈ Z we have c(j)a
+
(n)b = a+(n)c(j)b = 0 so that a+(n)b ∈ W c. Moreover, if

a ∈ W is homogeneous and b ∈ W c then a(j)L0b = aj−da+1L0b = L0aj−da+1b + (j −
da + 1)aj−da+1b = L0a(j)b+ (j − da + 1)a(j)b = 0 for all j ∈ Z≥0. Hence L0W

c ⊂ W c.
It follows that if W ⊂ V is an unitary subalgebra then the corresponding coset
subalgebra W c ⊂ V is also unitary.

Now, suppose that W ⊂ V is a unitary subalgebra. Then W , is a vertex algebra
and it inherits from V the normalized scalar product (·|·). We want to show that
when V is simple can we find a conformal vector for the vertex algebra W making
the pair (W, (·|·)) into a simple unitary VOA. In order to do so, let us first note that
the orthogonal projection eW onto W , is a well-defined element in End(V ). This is
an easy consequence of the fact that W is compatible with the grading, and that the
subspaces Vn (n ∈ Z) are finite-dimensional. Note also that e+W = eW .

Lemma 5.28. Let W ⊂ V be a unitary subalgebra. Then [Y (a, z), eW ] = 0 for all
a ∈ W , [Ln, eW ] = 0 for n = −1, 0, 1 and [θ, eW ] = 0. Moreover, for every a ∈ V ,
eWY (a, z)eW = Y (eWa, z)eW .

Proof. Let a ∈ W . Since, for every n ∈ Z, W is invariant for a(n) and a+(n) we have

eWa(n) = eWa(n)eW = (eWa+(n)eW )+ = (a+(n)eW )+ = eWa(n) for integer n. Hence

[Y (a, z), eW ] = 0. By Prop. 5.23, W is also invariant for Ln, n = −1, 0, 1 and for
θ. Since L+

1 = L−1, L+
0 = L0 and θ is an antiunitary involution it follows that

[Ln, eW ] = 0 for n = −1, 0, 1 and [θ, eW ] = 0.
Now let a ∈ V . Then eWY (a, z)eW ↾W is a field on W which is mutually local

with all vertex operators Y (b, z)↾W , b ∈ W . Moreover, eWY (a, z)eWΩ = eW ezL−1a =
ezL−1eWa. By the uniqueness theorem [59, Thm.4.4], we have eWY (a, z)eW ↾W =
Y (eWa, z)↾W . Thus eWY (a, z)eW = Y (eWa, z)eW .
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Proposition 5.29. Let (V, (·|·)) be a simple unitary VOA with conformal vector ν,
W be a unitary subalgebra of V and νW = eW ν. Then θνW = νW and Y (νW , z) =∑

n∈Z L
W
n z−n−2 is a Hermitian Virasoro field on V such that LW

n ↾W = Ln↾W for
n = −1, 0, 1. In particular νW is a conformal vector for the vertex algebra W and W
endowed with νW is a vertex operator algebra. Moreover, (W, (·|·)) with the conformal
vector νW is a simple unitary VOA with PCT operator θ↾W .

Proof. By Lemma 5.28 νW is a quasi-primary vector in V2 and the coefficients in
the expansion Y (νW , z) =

∑
n∈Z L

W
n z−n−2 satisfy LW

n eW = eWLneW . Moreover, for
n = −1, 0, 1 we also have LW

n eW = LneW and hence LW
n ↾W = Ln↾W .

From Borcherds commutator formula Eq. (59) and the fact that LW
j νW = 0 for

j > 2 we have (m,n ∈ Z)

[LW
m , LW

n ] = (LW
−1ν

W )(m+n+2) + (m+ 1)(LW
0 νW )(m+n+1)

+
m(m+ 1)

2
(LW

1 νW )(m+n) +
m(m2 − 1)

6
(LW

2 νW )(m+n−1).

Now, LW
−1ν

W = L−1ν
W , LW

0 νW = L0ν
W = 2νW and LW

1 νW = L1ν
W = 0. Moreover,

since V is simple, we have V0 = CΩ by Prop. 5.3 so that LW
2 νW = cW

2
Ω for some

cW ∈ C. Hence

[LW
m , LW

n ] = −(m+ n+ 2)(νW )(m+n+1) + 2(m+ 1)(νW )(m+n+1)

+
cW
12

(m3 −m)δm,−n1V

= (m− n)LW
m+n +

cW
12

(m3 −m)δm,−n1V ,

i.e. Y (νW , z) is a Virasoro field with central charge cW . That (W, (·|·)) is a unitary
VOA with PCT operator θ↾W now follows directly from the fact that W is invariant
for θ, and Ln, n = −1, 0, 1. Moreover, W is simple by Prop. 5.3 because W0 =
W ∩ V0 = CΩ.

Remark 5.30. Let W be a unitary subalgebra of a simple unitary vertex operator
algebra. Then the following are equivalent:

(i) W = CΩ.

(ii) νW = 0, where νW = eW ν.

(iii) cW = 0, where cW is the central charge of νW .

Proposition 5.31. Let (V, (·|·)) be a simple unitary VOA with conformal vector ν,
let W be a unitary subalgebra of V and le W c be the corresponding coset subalgebra.
Then we have ν = νW + νW c

. Moreover, the operators LW
0 = νW

(1) and LW c

0 = νW c

(1) are
simultaneously diagonalizable on V with non-negative eigenvalues.
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Proof. Let ν ′ = ν−νW and let a ∈ W . By Prop. 5.29 we have ν ′
(j)a = 0 for j = 0, 1, 2.

Hence by the Borcherds commutator formula Eq. (59) we have [ν ′
(m), a(n)] = 0, for

m = 0, 1, 2 and all n ∈ Z. Note also that since νW is quasi-primary then [L0, L
W
0 ] = 0

and hence z
LW
0

1 = elog(z1)L
W
0 is well defined on V . As a consequence we find

zL0
1 Y (a, z)z−L0

1 = z
LW
0

1 Y (a, z)z
−LW

0
1 (96)

and
z
LW
0

1 Y (ν ′, z)z
−LW

0
1 = Y (ν ′, z). (97)

Hence if a ∈ W is homogeneous then

z
LW
0

1 [Y (ν ′, z), Y (a, w)]z
LW
0

1 = [Y (ν ′, z), zL0
1 Y (a, w)z−L0

1 ]

= wda[Y (ν ′, z), Y (a, z1w)]. (98)

Hence, by locality, [Y (ν ′, z), Y (a, w)] = 0 for all homogeneous a ∈ W so that
ν ′ ∈ W c. The same argument also shows that ν − νW c ∈ W cc. Accordingly, for every
b ∈ W c we have

[Y (ν ′, z), Y (b, w)] = [Y (ν, z), Y (b, w)] = [Y (νW c

, z), Y (b, w)] (99)

and thus ν ′−νW c ∈ W c∩W cc. It follows that Y (ν ′−νW c

, z) commutes with the energy-
momentum field Y (ν, z) and hence with all vertex operators Y (a, z), a ∈ V . Since V
is simple we have Y (ν ′ − νW c

, z) ∈ C1 and hence ν ′ = νW c

so that ν = νW + νW c

.
Now, LW

0 and LW c

0 coincide with their adjoints on V and commute. Moreover,
they commute with L0 which is diagonalizable with finite-dimensional eigenspaces.
Hence LW

0 and LW c

0 are simultaneously diagonalizable on V with real eigenvalues.
It remains to show that these eigenvalues are in fact non-negative. Let a ∈ V be
a non-zero vector such that LW

0 a = sa and LW c

0 a = ta, s, t ∈ R. Assume that
s < 0. Then as a consequence of unitarity and of the fact that Y (νW , z) is a Virasoro
field it easy to show that (LW

1 )na is non-zero for every positive integer n. Moreover,
L0(L

W
1 )na = (s+t−n)(LW

1 )na in contradiction with the fact that L0 has non-negative
eigenvalues. Hence s ≥ 0 and similarly t ≥ 0.

Corollary 5.32. Let W be a unitary subalgebra of the unitary Virasoro VOA L(c, 0).
Then, either W = CΩ or W = L(c, 0).

Proof. Since L(c, 0)2 = CL−2Ω = Cν, see e.g. [62], then either W2 = {0} and hence
νW = 0 so that W = 0 by Remark 5.30 or W2 = Cν and hence W = L(c, 0), because
L(c, 0) is generated by ν.

We conclude this section with the following example.

Example 5.33. Let V ♮ be the moonshine VOA. Then, V ♮ is a framed VOA of rank 24
namely it is an extension of L(1/2, 0)⊗48, [84]. In fact , V ♮ contains the corresponding
copy of L(1/2, 0)⊗48 as a unitary subalgebra. Now, let W ⊂ V ♮ be the unitary
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subalgebra of V ♮ isomorphic to L(1/2, 0) corresponding to the embedding L(1/2, 0)⊗
Ω⊗47 ⊂ L(1/2, 0)⊗48 ⊂ V ♮. Then W c is a simple unitary framed VOA of rank 47/2,
namely, the even shorter Moonshine vertex operator algebra V B♮

(0) constructed by

Höhn, see [54, Sect. 1]. It has been proved by Höhn that the atomorphism group
Aut(V B♮

(0)) of V B♮
(0) is the Baby Monster group B, the second largest sporadic simple

finite group, see [54, Thm.1].

6 Energy bounds and strongly local vertex opera-

tor algebras

Let (V, (·|·)) be a unitary VOA. We say that a ∈ V (or equivalently the corresponding
field Y (a, z)) satisfies (polynomial) energy bounds if there exist positive integers
s, k and a constant M > 0 such that, for all n ∈ Z and all b ∈ V

‖anb‖ ≤ M(|n|+ 1)s‖(L0 + 1V )
kb‖. (100)

If every a ∈ V satisfies energy bounds we say that V is energy-bounded. Note
that if V is energy-bounded then, obviously, every unitary subalgebra W ⊂ V is
energy-bounded.

The following proposition will be useful.

Proposition 6.1. If V is generated by a family of homogeneous elements satisfying
energy bounds then V is energy-bounded.

Proof. A linear combination of elements satisfying energy bounds also satisfies energy
bounds. Moreover, if a ∈ V(d), then (Ta)n = −(n+d)an and hence if a satisfies energy
bounds, then so does Ta. However, starting from a generating set, any element of
V can be obtained by a repeated use of: derivatives (multiplication by T = L−1),
(n)-products with n ≥ 0, (n)-product with n = −1 (which correspond to normally
ordered product of vertex operators [59, Sect.3.1]), and linear combinations. This
follows from Eqs. (56) and (57), see also [59, Sect.3.1 and Prop.4.4].

Derivatives or (n)-products of homogeneous elements are homogeneous, and tak-
ing linear combinations “commutes” with taking derivatives and with forming (n)-
products. Thus it is enough to show, that if a and b are homogeneous elements
satisfying energy bounds, then a(n)b satisfies energy bounds for all n ≥ 0 and for
n = −1.

So suppose that a, b ∈ V are homogeneous elements of conformal weight da and
db, respectively, and that there exist some positive Mx, sx and rx (where x = a, b)
such that for all c ∈ V and m ∈ Z, we have

‖xmc‖ ≤ Mx(1 + |m|)sx‖(1V + L0)
rxc‖ (x = a, b). (101)

As [L0, ym] = −mym, we have that (1V + L0)
rxym = ym ((1−m)1V + L0)

rx and so

47



from the assumed energy bounds it follows that for every c ∈ V

‖xm1ym2c‖ ≤ Mx(1+|m1|)sx‖(1V + L0)
rxym2c‖

= Mx(1+|m1|)sx‖ym2((1−m2)1V + L0)
rxc‖

≤ MxMy(1+|m1|)sx(1+|m2|)sy‖(1V + L0)
ry((1−m2)1V + L0)

rxc‖
≤ MxMy(1+|m1|)sx(1+|m2|)1+sy‖(1V + L0)

rx+ryc‖. (102)

To have a bound for (am1b)m2 rather than for am1bm2 , we use the special case of the
Borcherds identity obtained by substituting m = 0 into (58):

(a(n)b)(k) =
∞∑

j=0

(−1)j
(
n
j

)(
a(n−j)b(k+j) − (−1)nb(n+k−j)a(j)

)
. (103)

When n ≥ 0, there are at most n + 1 possibly non-zero terms in the sum appearing

on the right-hand side, since if j > n ≥ 0 then

(
n
j

)
= 0. So using (102), it is

straightforward to show that in this case a(n)b satisfies energy bounds.
If n = −1, then in general : ab :m≡ (a(−1)b)m cannot be reduced to a finite sum.

As :ab : is of conformal weight da + db, by (103) we have

:ab :m=
∑

j≥da

a−jbm+j +
∑

j<da

bm+ja−j . (104)

Nevertheless, to estimate ‖ :ab :m c‖ for a c ∈ V(k), we only have to deal with a finite
sum, since a−jc = 0 for j < k and bm+jc = 0 for j > k−m. This, together with (102),
gives a k-depending bound for ‖ :ab :m c‖. But as kc = L0c, the k-dependence can be
easily “integrated” into the degree of (1V + L0).

Finally, if c is not homogeneous, then it is a sum c =
∑

c(k) of homogeneous
elements. Correspondingly, we may try to “sum up” our already obtained inequality
for the homogeneous vectors appearing in the sum.

Of course, in general the norm inequalities ‖vk‖ ≤ ‖wk‖ (k = 0, 1, ...) do not imply
that ‖

∑
k vk‖ ≤ ‖

∑
k wk‖. They do however, if one has some extra conditions; for

example that both {vk : k = 0, 1, ...} and {wk : k = 0, 1, ...} are sets of pairwise
orthogonal vectors.

This is exactly our case, since by the corresponding eigenvalues of L0, one has that
both {:ab :m c(k) : k = 0, 1, ...} and {(1V + L0)

rc(k) : k = 0, 1, ...} are sets of pairwise
orthogonal vectors. Hence the obtained bound is applicable to every c ∈ V .

Corollary 6.2. If V α and V β are energy-bounded VOAs then V α ⊗ V β is energy-
bounded.

Proposition 6.3. If V is a simple unitary VOA generated by V1 ∪F , where F ⊂ V2

is a family of quasi-primary θ-invariant Virasoro vectors, then V is energy-bounded.
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Proof. From the commutator formula in Eq. (59) it follows that V1 is a Lie algebra
with brackets [a, b] = a0b. Again from Eq. (59) we have that for a, b ∈ V1, m, k ∈ Z,

[am, bk] = [a, b](m+k) +m(θa|b)δm,−k1V ,

i.e. the operators ak, a ∈ V1, k ∈ Z satisfy affine Lie algebra commutator relations.
As a consequence the vectors a ∈ V1 ∪F satisfy the energy bounds in Eq. (100) with
k = 1 (linear energy bounds), see e.g. [14, Sect.2], and the conclusion follows from
Prop. 6.1.

The first step in the construction of a conformal net associated with the unitary
VOA (V, (·|·)) is the definition of the complex Hilbert space H = H(V,(·|·)) as the
completion of V with respect to (·|·). For every a ∈ V and n ∈ Z we can consider
a(n) has an operator on H with dense domain V ⊂ H. Due to the invariance of the
scalar product a(n) has densely defined adjoint and hence it is closable. Now let V be
energy-bounded and let f(z) be a smooth function on S1 = {z ∈ C : |z| = 1} with
Fourier coefficients

f̂n =

∫ π

−π

f(eiϑ)e−inϑdϑ

2π
=

∮

S1

f(z)z−n dz

2πiz
(105)

For every a ∈ V we define the operator Y0(a, f) with domain V by

Y0(a, f)b =
∑

n∈Z

f̂nanb for b ∈ V. (106)

The sum converges in H due to the energy bounds and hence Y0(a, f) is a densely
defined operator on H . From the invariance of the scalar product it follows that
Y0(a, f) has densely defined adjoint and hence it is closable. We denote Y (a, f) the
closure of Y0(a, f) and call it smeared vertex operator. Note also that if the vector
a satisfies the energy bounds

‖anb‖ ≤ M(|n|+ 1)s‖(L0 + 1V )
kb‖, b ∈ V, (107)

then the operator Y (a, f) satisfies

‖Y (a, f)b‖ ≤ M‖f‖s‖(L0 + 1H)
kb‖, b ∈ V (108)

where
‖f‖s =

∑

n∈Z

(|n|+ 1)s|f̂n| (109)

In particular the domain Hk of (L0 + 1H)
k is contained in the domain of Y (a, f) and

every core for the first operator is a core for the second. It follows that

H
∞ =

⋂

k∈Z≥0

H
k (110)
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is a common core for the operators Y (a, f), f ∈ C∞(S1), a ∈ V . Moreover, the
map f 7→ Y (a, f)b, b ∈ H

∞ is continuous and linear from C∞(S1) to H namely
f 7→ Y (a, f) is an operator valued distribution. Moreover, using the straightforward
equality

eitL0Y (a, f)e−itL0 = Y (a, ft), t ∈ R, (111)

where ft is defined by ft(z) = f(e−itz), and the energy bounds it is rather easy to
show that, if b ∈ H

∞ then Y (a, f)b ∈ H
1 and

L0Y (a, f)b = −iY (a, f ′)b+ iY (a, f)L0b,

where f ′(eiϑ) = d
dϑ
f(eiϑ). It follows that Y (a, f)b ∈ H

∞ so that the common core
H∞ is invariant for all the smeared vertex operators.

If a ∈ V is homogeneous we can use the formal notation

Y (a, f) =

∮

S1

Y (a, z)f(z)zda
dz

2πiz
. (112)

Note that if a ∈ V is homogeneous and L1a = 0 we have the usual relation for the
quasi-primary field Y (a, z):

(−1)daY (θa, f̄) ⊂ Y (a, f)∗. (113)

If a ∈ V is arbitrary Y (a, f)∗ still contains H∞ in its domain as a consequence of
Eq. (94).

Now we can associate with every interval I ∈ I a von Neumann algebra A(V,(·|·))(I)
by

A(V,(·|·))(I) ≡ W ∗({Y (a, f) : a ∈ V, f ∈ C∞(S1), suppf ⊂ I}). (114)

The map I 7→ A(V,(·|·))(I) is obviously inclusion preserving. Moreover, it is not hard
to show that Ω is cyclic for the von Neumann algebra

A(V,(·|·))(S
1) ≡

∨

I∈I

A(V,(·|·))(I). (115)

We now discuss covariance. The crucial fact here is that the unitary representation
of the Virasoro algebra on V associated with the conformal vector ν ∈ V gives rise to
a strongly continuous unitary projective positive-energy representation of the covering

group ˜Diff+(S1) of Diff+(S1) onH by [48, 98] which factors through Diff+(S1) because
ei2πL0 = 1, see Subsect. 3.2.

Hence there is a strongly continuous projective unitary representation U of Diff+(S1)
on H such that, for all f ∈ C∞(S1,R) and all A ∈ B(H),

U(Exp(tf
d

dϑ
))AU(Exp(tf

d

dϑ
))∗ = eitY (ν,f)Ae−iY (ν,f), (116)

Moreover, for all γ ∈ Diff+(S1) we have U(γ)H∞ = H∞.
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For any γ ∈ Diff+(S1) consider the function Xγ : S1 → R defined by

Xγ(e
iϑ) = −i

d

dϑ
log(γ(eiϑ)). (117)

Since γ is a diffeomorphism of S1 preserving the orientation then Xγ(z) > 0 for
all z ∈ S1. Moreover, Xγ ∈ C∞(S1). Another straightforward consequence of the
definition is that

Xγ1γ2(z) = Xγ1(γ2(z))Xγ2(z). (118)

It follows that, for any d ∈ Z>0 the family of continuous linear operators βd(γ),
γ ∈ Diff+(S1) on the Fréchet space C∞(S1) defined by

(βd(γ)f)(z) =
(
Xγ(γ

−1(z))
)d−1

f(γ−1(z)) (119)

gives a strongly continuous representation of Diff+(S1) leaving the real subspace of
real functions invariant.

Proposition 6.4. If V is a simple energy-bounded unitary VOA and a ∈ V is a quasi-
primary vector then U(γ)Y (a, f)U(γ)∗ = Y (a, βda(γ)f) for all γ ∈ Möb. If a ∈ V is
a primary vector then U(γ)Y (a, f)U(γ)∗ = Y (a, βda(γ)f) for all γ ∈ Diff+(S1).

Proof. Let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the Virasoro field associated to the conformal

vector ν. The case in which a is quasi-primary follows by a straightforward adaptation
of the argument in pages 1100–1001 of [21] and recalling the commutation relations
between an and Lm, n ∈ Z, m = −1, 0, 1 given in Eq. (72).

The case in which a is primary can be treated in a similar but taking into account
the commutation relations an and Lm, n,m ∈ Z given again in Eq. (72). Note that for
expository reasons in the proof in [21] complete argument is given only for γ ∈ Möb

but the proof can be adapted to cover the case γ ∈ Diff+(S1) by noticing that as a
consequence of the results in [98] we have eiY (ν,f)H∞ ⊂ H∞ for all f ∈ C∞(S1,R)
and that Diff+(S1) is generated by exponentials of vector fields because it is a simple
group [83].

We now discuss locality. It follows from Prop. A.1 in Appendix A that for any
a, b ∈ V the fields Y (a, z) and Y (b, z) are mutually local in the Wightman sense, i.e.
for any f, f̃ ∈ C∞(S1) with suppf ⊂ I, suppf̃ ⊂ I ′, I ∈ I we have

[Y (a, f), Y (b, f̃)]c = 0 (120)

for all c ∈ H∞. As discussed in the Introduction and in Subsect.2.2 this is a priori
not enough to ensure the the locality condition for the map I 7→ A(V,(·|·))(I).

Lemma 6.5. Let A be a bounded operator on H, a ∈ V , and I ∈ I . Then AY (a, f) ⊂
Y (a, f)A for all f ∈ C∞(S1) with suppf ⊂ I if and only if (A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac)
for all b, c ∈ V , and all real f ∈ C∞(S1) with suppf ⊂ I.
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Proof. The only if part is obvious. The proof of if part is based on a rather
straightforward adaptation of the proof of [33, Lemma 5.4]. Let us assume that
(A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac) for all b, c ∈ V , and all real valued f ∈ C∞(S1) with
suppf ⊂ I. Then the same relation holds also for all complex valued f ∈ C∞(S1)
with suppf ⊂ I. Now let f be a given function in C∞(S1) with suppf ⊂ I. Then
there is a δ > 0 such that the support of the function ft(z) ≡ f(e−itz) is again
contained in the open interval I for all real numbers t such that |t| < δ. From the
relation eitL0Y (a, f)e−itL0 = Y (a, ft) for all t ∈ R and the fact that eitL0V = V for
all t ∈ R it then follows that, for all b, c ∈ V and every smooth function ϕ on R with
support in the open interval (−δ, δ), (A(ϕ)∗b|Y (a, f)c) = (Y (a, f)∗b|A(ϕ)c), where
A(ϕ) =

∫
R
eitL0Ae−itL0ϕ(t)dt. Now, a standard argument shows that A(ϕ)c ∈ H∞ for

every c ∈ V and from the fact that H∞ is contained in the domain of Y (a, f) we can
conclude that A(ϕ)Y (a, f)c = Y (a, f)A(ϕ)c for every smooth function ϕ on R with
support in (−δ, δ) and every c ∈ V .

For any real number s ∈ (0, δ) we fix a smooth positive function ϕs on R with
support in (−s, s) and such that

∫
R
ϕs(t)dt = 1. For every c ∈ V we then have

A(ϕs)Y (a, f)c = Y (a, f)A(ϕs)c. Now, a standard argument shows that if s tends to 0
A(ϕs) tends to A in the strong operator topology. Accordingly lims→0 Y (a, f)A(ϕs)c =
AY (a, f)c and lims→0A(ϕs)c = Ac for every c ∈ V . Since Y (a, f) is closed it follows
that Ac is in domain of Y (a, f) and Y (a, f)Ac = AY (a, f)c for every c ∈ V and since
V is a core for the closed operator Y (a, f) it follows that AY (a, f) ⊂ Y (a, f)A.

The following proposition shows that the algebras A(V,(·|·))(I) are generated by
quasi-primary fields.

Proposition 6.6. Let A be a bounded operator on H and let I ∈ I. Then A ∈
A(V,(·|·))(I)

′ if and only if (A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac) for all quasi-primary a ∈ V ,
all b, c ∈ V and all real f ∈ C∞(S1) with suppf ⊂ I. In particular

A(V,(·|·))(I) = W ∗({Y (a, f) : a ∈
⋃

k∈Z

Vk, L1a = 0, f ∈ C∞(S1,R), suppf ⊂ I}).

(121)

Proof. Given I ∈ I we denote by Q(I) the set of bounded operators A such that

(A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac)
for all quasi-primary a ∈ V , all b, c ∈ V and all f ∈ C∞

R (S1) with suppf ⊂ I.
Then the same equalities hold also for all complex valued functions f ∈ C∞

R (S1)
with suppf ⊂ I. It is evident that A(V,(·|·))(I)

′ ⊂ Q(I) and hence we have to show
that Q(I) ⊂ A(V,(·|·))(I)

′. Now, if A ∈ Q(I), a ∈ V is quasi primary, b, c ∈ V and
f ∈ C∞(S1) has support in I we have, for all quasi-primary a ∈ V , all b, c ∈ V and
all f ∈ C∞(S1) with suppf ⊂ I.

(Ab|Y (a, f)c) = (−1)da(Ab|Y (θa, f̄)∗c) = (−1)da(Y (θa, f̄)∗c|Ab)
= (−1)da(A∗c|Y (θa, f̄)b) = (−1)da(A∗c|Y (θa, f̄)b)

= (−1)da(Y (θa, f̄)b|A∗c) = (Y (a, f)∗b|A∗c).
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It follows that A∗ ∈ Q(I).
Now let a ∈ V be homogeneous. An elementary calculation shows that (L−1a)n =

−(n + da)an and hence that Y (L−1a, f) = Y (a, if ′ − daf) for every smooth func-
tion on S1, where f ′(eiϑ) = d

dθ
f(eiϑ). It follows that, for a non-negative integer k,

Y ((L−1)
ka, f) = Y (a, f(k,a)), where f(k,a) is a linear combination of f, f ′, f ′′, . . . , f (k).

If suppf ⊂ I also suppf(k,a) ⊂ I and hence if a is quasi-primary we have

(A∗b|Y ((L−1)
ka, f)c) = (A∗b|Y (a, f(k,a))c) = (Y (a, f(k,a))

∗b|Ac)
= (Y ((L−1)

ka, f)∗b|Ac).

Since the Lie algebra representation determined by L−1, L0, L1 is completely reducible,
V is spanned by elements of the form (L−1)

ka with k a non-negative integer and a
quasi-primary. Hence, for all a, b, c ∈ V we have (A∗b|Y (a, f)c) = (Y (a, f)∗b, Ac). It
follows from Lemma 6.5 that AY (a, f) ⊂ Y (a, f)A for all a ∈ V and all f ∈ C∞(S1)
with suppf ⊂ I. Since also A∗ ∈ Q(I) we also have A∗Y (a, f) ⊂ Y (a, f)A∗ and hence
AY (a, f)∗ ⊂ Y (a, f)∗A for all a ∈ V and all f ∈ C∞(S1) with suppf ⊂ I. It follows
that A ∈ A(V,(·|·))(I)

′

From the covariance properties of quasi-primary fields it follows that the net is
Möbius covariant.

Definition 6.7. We say that a unitary VOA (V, (·|·)) is strongly local if it is energy-
bounded and A(V,(·|·))(I) ⊂ A(V,(·|·))(I

′)′ for all I ∈ I.

Theorem 6.8. Let (V, (·|·)) be a simple strongly local unitary VOA. Then the map
I 7→ A(V,(·|·))(I) defines an irreducible conformal net A(V,(·|·)) on S1. If {·|·} is another
normalized invariant scalar product on V then (V, {·|·}) is again strongly local and
A(V,(·|·)) and A(V,{·|·}) are isomorphic conformal nets.

Proof. We only discuss covariance. The Möbius covariance of the net follows from
Prop. 6.4 and Prop. 6.6. Then conformal (i.e. diffeomorphism) covariance follows
from [18, Prop.3.7].

Due to the above theorem, when no confusion arises, we shall denote the conformal
net A(V,(·|·)) simply by AV . We shall say that AV is the irreducible conformal net
associated with the strongly local unitary simple vertex operator algebra V .

Using the strategy in [66, Sect.5] we can now prove the following theorem.

Theorem 6.9. Let V be a strongly local simple unitary VOA and let AV be the
corresponding irreducible conformal net. Then Aut(AV ) = Aut(·|·)(V ). If Aut(V ) is
finite then Aut(AV ) = Aut(V ).

Proof. Let H be the Hilbert space completion of V . Then any g ∈ Aut(·|·)(V ) uniquely
extends to a unitary operator on H again denoted by g. We have gΩ = Ω. Moreover,
since gY (a, f)g−1 = Y (ga, f) for all a ∈ V and all f ∈ C∞(S1) we also have that
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gA(I)g−1 = A(I) and hence g ∈ Aut(AV ). Conversely let g ∈ Aut(AV ). Then
gLng

−1 = Ln for n = −1, 0, 1. It follows that g restricts to a linear invertible map
V → V preserving the invariant scalar product (·|·). For any a ∈ V the formal series
gY (a, z)g−1 is a field on V and, since A is local then, by Prop. 2.1 and Prop. A.1,
gY (a, z)g−1 is mutually local (in the vertex algebra sense) with all Y (b, z), b ∈ V .
Moreover, gY (a, z)g−1Ω = gY (a, z)Ω = gezL−1a = ezL−1ga, where for the last equality
we used [59, Remark 1.3]. Hence, by the uniqueness theorem for vertex algebras [59,
Thm.4.4] we find that gY (a, z)g−1 = Y (ga, z) and hence g is a (linear) vertex algebra
automorphism of V . Since g commutes with L0 we have gVn = Vn for all n ∈ Z and
hence gν = ν by Corollary 4.11 so that g ∈ Aut(·|·)(V ). Now, if Aut(V ) is finite then
Aut(V ) = Aut(·|·)(V ) by Thm. 5.21 and hence Aut(AV ) = Aut(V ).

We end this section with a new proof of the uniqueness result for diffeomorphism
symmetry for irreducible conformal nets given in [101, Thm.6.1.9]. The theorem was
first proved in [20] using the additional assumption of 4-regularity.

Theorem 6.10. Let A be an irreducible Möbius covariant net on S1 and let U be
the corresponding unitary representation of Möb. If Uα and Uβ are two strongly-
continuous projective unitary representations of Diff+(S1) extending U and making
into A an irreducible conformal net. Then Uα = Uβ.

Proof. Let H be the vacuum Hilbert space of A and let Hfin be the algebraic direct
sum of the eigenspaces Ker(L0 − n1H), n ∈ Z≥0. Then, by Thm. 3.4, then one can
differentiate the representations Uα and Uβ in order to define two unitary represen-
tations of the Virasoro algebra on Hfin by operators Lα

n, n ∈ Z and Lβ
n, n ∈ Z, see

also [18, 20, 72]. By assumption we have Lα
n = Lβ

n for n = −1, 0, 1. The formal series
Lα(z) =

∑
n∈Z L

α
nz

−n−2 and Lβ(z) =
∑

n∈ZL
β
nz

−n−2 are fields on Hfin that are local
and mutually local in the Wightman sense as a consequence of the locality of A and
of Prop. 2.1. Hence they are local and mutually local (in the vertex algebra sense) by
Prop. A.1. Let V be the cyclic subspace generated from the action of the operators
Lα
n, L

β
n, n ∈ Z on the vacuum vector Ω. By the existence theorem for vertex alge-

bras, cf. [59, Thm.4.5], V is a Vertex algebra of CFT type and it has two conformal
vectors, να = Lα

−2Ω and νβ = Lβ
−2Ω. It satisfies V0 = CΩ and L1V1 = 0. Hence by

[92, Thm.1] there exists a unique normalized invariant bilinear form (·, ·) on V and
this form satisfy (Ω, a) = (Ω|a) for all a ∈ V . By the invariance property of (·, ·) and
the unitarity of the Virasoro algebra representations it follows that for any b ∈ V we
have (a, b) = 0 for all a ∈ V if and only if (a|b) = 0 for all a ∈ V i.e. if and only if
b = 0. Therefore, (·, ·) is non-degenerate. Accordingly, by Prop. 4.8 and Remark 4.9
we have that να = νβ and hence Uα = Uβ .

7 Covariant subnets and unitary subalgebras

Let W ⊂ V be a unitary subalgebra of the simple unitary vertex operator algebra V .
Then, by Prop. 5.29, W is simple unitary vertex operator algebra.
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Theorem 7.1. Let W be a unitary subalgebra of a strongly local simple unitary VOA
(V, (·|·)). Then the simple unitary VOA (W, (·|·)) is strongly local and AW embeds
canonically as a covariant subnet of AV .

Proof. Let H be the Hilbert space completion of V and let eW be the orthogonal
projection of H onto the closure HW of W . Then we have

W = eWV = HW ∩ V.

The vertex operator Ỹ (a, z), a ∈ W of W coincides with the restriction to W of
Y (a, z) and therefore it is obvious that W satisfies energy bounds. Moreover, for
b ∈ V , f ∈ C∞(S1) we have

Y (a, f)eW b ∈ HW , Y (a, f)∗eW b ∈ HW .

Hence for a ∈ W , b, c ∈ V we have

(b|eWY (a, f)c) = (Y (a, f)∗eW b|c) = (Y (a, f)∗eW b|eW c)

= (eW b|Y (a, f)eW c) = (b|Y (a, f)eW c)

and being V a core for Y (a, f) it follows that Y (a, f) commutes (strongly) with eW .
Now, define a covariant subnet BW ⊂ AV by

BW (I) = AV (I) ∩ {eW}′ I ∈ I.

It follows from the previous discussion that Y (a, f) is affiliated with BW (I) if a ∈ W
and suppf ⊂ I. As a consequence HBW

= HW and hence the subnet net BW is
irreducible when restricted to HW . In particular, for all I ∈ I we have

(BW (I)eW )′ = BW (I ′)eW .

Note also that, since for a ∈ W , Y (a, f) commutes with eW and Y (a, f)b =
Ỹ (a, f)b for all b ∈ W , then

D(Ỹ (a, f)) = eWD(Y (a, f)) = D(Y (a, f)) ∩HW .

Hence, if suppf ⊂ I, Ỹ (a, f) is affiliated with (BW (I ′)eW )′ = BW (I)eW . It follows
that the von Neumann algebras AW (I), I ∈ I on HW defined by

AW (I) ≡ W ∗({Ỹ (a, f) : a ∈ W, suppf ⊂ I})

satisfy AW (I) ⊂ BW (I)eW for all I ∈ I proving that (W, (·|·) is strongly local. Finally
from Thm. 6.8 and Haag duality for conformal nets we find AW (I) = BW (I)eW for
all I ∈ I.

We now want to prove a converse of Thm. 7.1. We begin with the following
lemma.
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Lemma 7.2. Let A be a self-adjoint operator on a Hilbert space H and let U(t) ≡ eitA,
t ∈ R be the corresponding strongly-continuous one-parameter group of unitary opera-
tors on H. For any k ∈ Z≥0 let H

k denote the domain of Ak and let H∞ = ∩k∈Z≥0
Hk.

Assume that there exists a real number δ > 0 and two dense linear subspaces Dδ and
D of H∞ such that U(t)Dδ ⊂ D if |t| < δ. Then, for every positive integer k, D is a
core for Ak.

Proof. Let k any positive integer and let B denote the restriction of Ak to D. We
have to show that (Ak)∗ = B∗ and since (Ak)∗ ⊂ B∗ it is enough to prove that
B∗ ⊂ (Ak)∗ = Ak.

Let D(B∗) denote the domain of B∗ and let b ∈ D(B∗). Then, by assumption we
have

(U(t)Aka|b) = (AkU(t)a|b) = (U(t)a|B∗b),

for all a ∈ Dδ and all t ∈ (−δ, δ). Now let ϕ : R → R be a smooth non-negative
function whose support is a subset of the interval (−δ, δ). We can assume that

∫ +∞

−∞

ϕ(x)dx = 1.

For any positive integer n let ϕn : R → R be defined by ϕn(x) = nϕ(nx), x ∈ R so
that suppϕn ⊂ (−δ, δ) and

ϕ̂n(p) ≡
∫ +∞

−∞

ϕn(x)e
−ipxdx = ϕ̂(

p

n
),

for all p ∈ R. From equality (U(t)Aka|b) = (U(t)a|B∗b), t ∈ R and the spectral
theorem from self-adjoint operators it follows that

(Akϕ̂n(A)a|b) = (ϕ̂n(A)a|B∗b),

for all n ∈ Z>0 and all a ∈ Dδ and since Akϕ̂n(A), and ϕ̂n(A) belong to B(H) for for
every positive integer n we also have that

(Akϕ̂n(A)a|b) = (ϕ̂n(A)a|B∗b),

for all n ∈ Z>0 and all a ∈ H. Now, it follows from the spectral theorem for self-
adjoint operators that ϕ̂n(A)a → a and Akϕ̂n(A)a → Aka for n → +∞, for all
a ∈ Hk. Hence (Aka|b) = (a|B∗b), for all n ∈ Z>0 and all a ∈ Hk so that b ∈ Hk and
Akb = B∗b. Thus, since b ∈ D(B∗) was arbitrary we can conclude that B∗ ⊂ Ak.

We will need the following proposition, cf. the appendix of [16] and [101, Thm.2.1.3]

Proposition 7.3. Let A be an irreducible Möbius covariant net on S1 ant let H be
its vacuum Hilbert space. Then A(I)Ω∩H

∞ is a core for (L0+1H)
k for all I ∈ I and

all k ∈ Z≥0.
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Proof. We first show that A(I)Ω ∩H∞ is dense in H for all I ∈ I. The argument is
rather standard. For any I ∈ I, let I1 ∈ I be such that I1 ⊂ I. Then there is a real
number δ > 0 such that eitI1 ⊂ I for all t ∈ (−δ, δ). Now now let ϕn, n ∈ Z>0, as
in the proof of Lemma 7.2. Then, for any A ∈ A(I1) we consider the operators Aϕn ,
n ∈ Z>0 defined by

(a|Aϕnb) =

∫ +∞

−∞

ϕn(t)(a|eitL0Ae−itL0a)dt, a, b ∈ H.

Then Aϕn ∈ A(I) for all n ∈ Z>0. Moreover,

AϕnΩ = ϕ̂n(L0)AΩ ∈ H
∞, n ∈ Z>0.

Since ϕ̂n(L0)AΩ → AΩ for n → +∞ and A ∈ A(I1) was arbitrary we can conclude
that the closure of A(I)Ω∩H∞ contains A(I1)Ω and hence it coincides with H by the
Reeh-Schlieder property. Hence, since I was arbitrary we have shown that A(I)Ω∩H∞

is dense in H for all I ∈ I.
Now, let I1 and I and δ as above. We know that A(I1) ∩ H∞ is dense in H.

Moreover,

eit(L0+1H) (A(I1)Ω ∩H
∞) = A(eitI1)Ω ∩H

∞

⊂ A(I)Ω ∩H
∞,

for all t ∈ (−δ, δ). Hence, the conclusion follows from Lemma 7.2.

Theorem 7.4. Let (V, (·|·)) be a simple strongly local unitary VOA and let B a Möbius
covariant subnet of AV . Then W = HB ∩ V is a unitary subalgebra of V such that
and AW = B.

Proof. Since HB is globally invariant for the unitary representation of the Möbius
group on H we have Ω ∈ W and LnW ⊂ W for n = −1, 0, 1. In particular W is
compatible with the grading of V i.e it is spanned by the subspaces W ∩Vn, n ∈ Z≥0.
Now let a ∈ W and assume that, for a given positive integer n, a(−n)Ω ∈ W . Then

a(−n−1)Ω =
1

n
[L−1, a(−n)]Ω =

1

n
L−1a(−n)Ω ∈ W.

Since a(−1)Ω = a ∈ W it follows that a(n)Ω ∈ W for all n ∈ Z and all a ∈ W . Hence
Y (a, f)Ω ∈ HB for every smooth function f on S1 and every a ∈ W . Now let eB
be the projection of HV onto HB, a ∈ W , f ∈ C∞(S1) and, for I ∈ I let ǫI′ be the
unique vacuum preserving normal conditional expectation of AV (I

′) onto B(I ′), see
e.g. [75, Lemma 13]. If suppf ⊂ I and A ∈ AV (I

′) we find

Y (a, f)eBAΩ = Y (a, f)ǫI′(A)Ω = ǫI′(A)Y (a, f)Ω

= eBAY (a, f)Ω = eBY (a, f)AΩ.

Since AV (I
′)Ω is a core for Y (a, f) by Prop. 7.3 it follows that Y (a, f) commutes

with eB. Hence, Y (a, f) and Y (a, f)∗ are affiliated with A(I) ∩ eB
′ = B(I). Now if
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f is an arbitrary smooth function on S1 it is now easy to see that Y (a, f) and eB
again commute if a ∈ W . As a consequence we find that anb ∈ W for all a, b ∈ W
and all n ∈ Z and hence W is a vertex subalgebra. Moreover, using the fact that also
Y (a, f)∗ and eB commute for every smooth function f on S1 and all a ∈ W , we have
a∗nb ∈ W for all a, b ∈ W and all n ∈ Z. Hence, since we also have L0W ⊂ W , W is a
unitary subalgebra of V . Finally that B(I) = AW (I) follows easily.

As a direct consequence of Thm. 7.1 and Thm. 7.4 we get the following theorem.

Theorem 7.5. Let V be a strongly local simple unitary vertex operator algebra. Then
the map W 7→ AW gives a one-to-one correspondence between the unitary subalgebras
W ⊂ V and the Möbius covariant subnets B ⊂ AV .

Proposition 7.6. Let V be a simple unitary strongly local VOA and let G be a closed
subgroup of Aut(·|·)(V ) = Aut(AV ). Then AG

V = AV G.

Proof. For any g ∈ G we have gY (a, f)g−1 = Y (a, f) for all a ∈ V G and all f ∈
C∞(S1). Hence g ∈ AV G(I)′ for all I ∈ I so that AV G ⊂ AG

V . Conversely, by Thm.
7.4 there is a unitary subalgebra W ⊂ V such that AG

V = AW . Clearly W ⊂ V G and
hence AG

V ⊂ AV G .

We now can prove the following Galois correspondence for compact automorphism
groups of strongly local vertex operator algebras (“Quantum Galois theory”), cf. [29,
52].

Theorem 7.7. Let V be a simple unitary strongly local VOA and let G be a closed
subgroup of Aut(·|·)(V ). Then the map H 7→ V H gives a one-to-one correspondence
between the closed subgroups H ⊂ G and the unitary subalgebras W ⊂ V containing
V G.

Proof. Let W be a unitary subalgebra of V such that W ⊃ V G. Fix an interval I0 ∈ I.
By Thm. 7.1 and Prop. 7.6 we have

AV (I0)
G ⊂ AW (I0) ⊂ AV (I0).

Moreover, by [17, Prop.2.1], the subfactor AV (I0)
G ⊂ AV (I0) is irreducible, i.e.(

AV (I0)
G
)′ ∩ AV (I0) = C1. Since Aut(·|·)(V ) and G ⊂ Aut(·|·)(V ) is closed then,

G is compact. Hence, by [55, Thm.3.15] there is unique closed subgroup H ⊂ G such
that AW (I0) = AV (I0)

H . Hence, by conformal covariance AW (I) = AH
V (I) for all

I ∈ I and hence, again by Prop. 7.6, AW (I) = AV H (I) and thus W = V H .

The following proposition shows that in the strongly local case the coset construc-
tion for VOAs corresponds exactly to the coset construction for conformal nets.

Proposition 7.8. Let V be a strongly local unitary simple VOA and let W ⊂ V be a
unitary subalgebra. Then Ac

W = AW c.
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Proof. Let UW be the projective unitary representation of ˜Diff+(S1) on H obtained
from the representation of the Virasoro algebra on V given by the operators LW

n , n ∈ Z

defined in Prop. 5.31. For an element γ̃ ∈ ˜Diff+(S1) we denote by γ ∈ Diff+(S1) its

image under the covering map ˜Diff+(S1) → Diff+(S1). Then for any γ̃ ∈ ˜Diff+(S1)
and any I ∈ I we have UW (γ̃)AUW (γ̃)∗ = U(γ)AU(γ)∗ for all A ∈ AW (I) and
UW (γ̃)AUW (γ̃)∗ = A for all A ∈ AW c(I). It follows that A ∈ AW c(I) commute with
AW (I1) for every I1 ∈ I and thus AW c(I) ⊂ Ac

W (I) so that AW c ⊂ Ac
W . On the other

hand, by Thm. 7.4 there is a unitary subalgebra W̃ ⊂ V such that Ac
W = AW̃ . Let

a ∈ W̃ . Then Y (a, f) is affiliated with AW (S1)′ for all I ∈ I and all f ∈ C∞(S1) with
suppf ⊂ I. It follows that Y (a, f) is affiliated with AW (S1)′ for all f ∈ C∞(S1). As
a consequence [Y (a, z), Y (b, w)] = 0 for all b ∈ W and hence a ∈ W c. Since a ∈ W̃
was arbitrary we can conclude that W̃ ⊂ W c and hence that Ac

W ⊂ AW c .

We conclude this section with a result on finiteness of intermediate subalgebras
for inclusions of strongly local vertex operator algebras, cf. [61, 105].

Theorem 7.9. Let V be a simple unitary strongly local vertex operator algebra and
let W ⊂ V be a unitary subalgebra. Assume that [AV : AW ] < +∞. Then the set of

unitary subalgebras W̃ ⊂ V such that W ⊂ W̃ is finite.

Proof. The claim follows directly from Thm. 7.5 and the fact that that, since the
index [AV : AW ] is finite, the set of intermediate covariant subnets for the inclusion
AW ⊂ AV is also finite, see Subsect. 3.4.

8 Criteria for strong locality and examples

In this section we consider some useful criteria which imply strong locality. We then
apply them in order to give various examples of strongly local vertex operator algebras.

Let V be a simple unitary VOA satisfying energy bounds. If F is a subset of V
and I ∈ I we define a von Neumann subalgebra AF (I) of AV (I)

AF (I) = W ∗({Y (a, f) : a ∈ F , suppf ⊂ I}). (122)

The following theorem is inspired by [33, Thm.6.1].

Theorem 8.1. Let F ⊂ V be a subset of the simple unitary energy-bounded VOA
V . Assume that F contains only quasi-primary elements. Assume moreover that F
generates V and that, for a given I ∈ I, AF (I ′) ⊂ AF (I)′. Then, V is strongly local
and AF (I) = AV (I) for all I ∈ I.

Proof. As a consequence of Lemma 6.5 we have AF (I) = AF∪θF (I), for all I ∈ I.
Accordingly we can assume that F = θF . We first observe that the map I 7→ AF (I)
is obviously isotonous and since every element of F is quasi-primary it is also Möbius
covariant as a consequence of Prop. 6.4. Hence AF (I ′) ⊂ AF (I)′ for all I ∈ I.
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Now, let PF be the algebra generated by the operators Y (a, f) with a ∈ F , and
f ∈ C∞(S1). Moreover, for I ∈ I, let PF (I) be the subalgebra of PF corresponding
to functions f ∈ C∞(S1) with suppf ⊂ I. Both algebras have H∞ as invariant
domain and are ∗-algebras because F is θ invariant. Moreover, since F is generating
V ⊂ PFΩ and hence the latter subspace is dense in H. With a slight modification
of the argument in [38, page 544] it can be shown that, for every I ∈ I, PF (I)Ω is
invariant for the action of the Möbius group and hence it is independent from the
choice of I and we denote it by HF . Then, it can be shown that HF ∩ H∞ is left
invariant by the algebras PF (I) for all I ∈ I. As a consequence PFΩ ⊂ HF and
hence PF (I)Ω is dense in H for all I ∈ I (Reeh-Schlieder property for fields). Now,
let f ∈ C∞(S1) have support in a given I ∈ I and a ∈ F . Since Y (a, f) is affiliated
with AF (I) there is a sequence An ∈ AF (I) such that limn→∞Anb = Y (a, f)b for all
b ∈ H∞. It follows that AF (I)Ω ∩ H∞ is left invariant by the action of PF (I) and
hence PF (I)Ω ⊂ AF (I)Ω which implies that also AF (I)Ω is dense in H. Accordingly
the map I 7→ AF (I) also satisfies the cyclicity of the vacuum conditions and it thus
define a local irreducible Möbius covariant net on S1 acting on H.

We have to show that AV (I) ⊂ AF (I) for all I ∈ I. By Möbius covariance it
is enough to prove the inclusion when I is the upper semicircle S1

+. Let ∆ and J
be the Tomita’s modular operator and modular conjugation associated with AF (S1

+)

and Ω and let S = J∆
1
2 . It follows from [49, Prop.1.1] that JAF (I)J = AF (j(I))

and JU(γ)J = U(j ◦ γ ◦ j) for every I ∈ I and every Möbius transformation γ of
S1, where j : S1 7→ S1 is defined by j(z) = z (|z| = 1). It follows that JLnJ = Ln

for n = −1, 0, 1. In particular JV = V and for every a ∈ V the formal series
Φa(z) =

∑
n∈Z Ja(n)Jz

−n−1 is a well defined field on V such that [L1,Φa(z)] =
d
dz
Φa(z)

and Φa(z)Ω|z=0 = Ja so that Φa(z)Ω = ezTJa. From the properties of the action of
J on the net AF one can show that, for a, b, c ∈ F , Φa(z), Y (b, z) and Y (c, z) are
pairwise mutually local fields (in the vertex algebra sense) as a consequence of the
locality of A of Prop. 2.1 and Prop. A.1. Hence, since F generates V , Φa(z) and
Y (b, z) are mutually local for every a ∈ F and every b ∈ V as a consequence on
Dong’s lemma [59, Lemma 3.2]. It then easily follows that for all a ∈ F and all
b ∈ V also Y (a, z) and Φb(z) are mutually local. Using again Dong’s lemma and
the fact that F generate V we obtain that Φa(z) and Y (b, z) are mutually local for
all a, b ∈ V . Hence it follows from the uniqueness theorem for vertex algebras [59,
Thm.4.4] that Φa(z) = Y (Ja, z) for every a ∈ V and thus that J defines an antilinear
automorphism of V .

Now let a ∈ F and let f ∈ C∞(S1) with suppf ⊂ S1
+. Since Y (a, f) is affiliated

with AF (S1
+) we have J∆

1
2Y (a, f)Ω = Y (a, f)∗Ω. On the other hand since a is quasi-

primary using the Bisognano-Wichmann property for AF and Thm. B.4 in Appendix
B we find

θ∆
1
2Y (a, f)Ω = θe

1
2
KY (a, f)Ω = Y (a, f)∗Ω.

By the Bisognano-Wichmann property of Möbius covariant nets on S1 and the fact
that θLnθ = JLnJ = Ln for n = −1, 0, 1 we see that both J∆

1
2J and θ∆

1
2 θ are equal

to ∆− 1
2 . Hence we find that JY (a, f)Ω = θY (a, f)Ω. Since θ and J commute with
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L0 we find that JY (a, ft)Ω = θY (a, ft)Ω for all t ∈ R. By partition of unity it follows
that JY (a, f)Ω = θY (a, f)Ω for all f ∈ C∞(S1) and hence that Ja = θa. Since
a ∈ F was arbitrary, θ and J are antilinear automorphisms and F generates V it
follows that θ = J . Hence, again by Thm. B.4 in Appendix B we find that, for every
quasi-primary element a ∈ V and every f ∈ C∞(S1) with suppf ⊂ S1

+, Y (a, f)Ω is in
the domain of S and SY (a, f)Ω = Y (a, f)∗Ω.

Now, let I be an open interval containing the closure of S1
+ and let A ∈ AF (I ′).

Then there is a δ > 0 such that eitL0Ae−itL0 ∈ AF (S1
−) for all t ∈ R such that |t| < δ.

Hence if ϕs, s ∈ (0, δ) and A(ϕs) are defined as in the proof of Lemma 6.5 we have
that A(ϕs) ∈ AF (S1

−) for all s ∈ (0, δ). Let X1, X2 ∈ PF (S1
−) and B ∈ AF (S1

+).
Then we have

(X∗
1A(ϕs)X2Ω|SBΩ) = (X∗

1A(ϕs)X2Ω|B∗Ω)

= (BX∗
1A(ϕs)X2Ω|Ω)

= (X∗
1A(ϕs)X2BΩ|Ω)

= (BΩ|X∗
2A(ϕs)

∗X1Ω).

As a consequence X∗
1A(ϕs)X2Ω is in the domain of S∗ and

S∗X∗
1A(ϕs)X2Ω = X∗

2A(ϕs)
∗X1Ω.

Using this fact we find that, for every quasi-primary a ∈ V every f ∈ C∞(S1) with
suppf ⊂ S1

+ and all X1, X2 ∈ PF (S1
−),

(X1Ω|A(ϕs)Y (a, f)X2Ω) = (X∗
2A(ϕs)

∗X1Ω|Y (a, f)Ω)

= (S∗X∗
1A(ϕs)X2Ω|Y (a, f)Ω)

= (SY (a, f)Ω|X∗
1A(ϕs)X2Ω)

= (Y (a, f)∗Ω|X∗
1A(ϕs)X2Ω)

= (Y (a, f)∗X1Ω|A(ϕs)X2Ω)

= (X1Ω|Y (a, f)A(ϕs)X2Ω),

s ∈ (0, δ). Hence, since PF (S1
−)Ω is dense we find that A(ϕs)Y (a, f)XΩ

= Y (a, f)A(ϕs)XΩ for allX ∈ PF (S1
−) and all s ∈ (0, δ). Now, we have lims→0A(ϕs)c

= Ac for all c ∈ H and hence, for every X ∈ PF (S1
−), AXΩ is in the domain of Y (a, f)

and Y (a, f)AXΩ = AY (a, f)XΩ. Since V is energy-bounded by assumption, there
exists a positive integer k such that any core for (L0 + 1H)

k is a core for Y (a, f).
We want to show that PF (S1

−)Ω is a core for (L0 + 1H)
k. To this end let I ∈ I

whose closure is contained in S1
−. Then there exists a real number δ > 0 such that

eitI ⊂ S1
− for all t ∈ (−δ, δ). Hence, by the Möbius covariance of the vertex operators

we see that U(t)PF (I)Ω ⊂ PF (S1
−)Ω for all t ∈ (−δ, δ) and hence, by Lemma 7.2,

PF (S1
−)Ω is a a core for (L0 + 1H)

k and consequently a core for Y (a, f). It follows
that AY (a, f) ⊂ Y (a, f)A and since the latter relation holds for every A ∈ AF (I ′) it
follows that Y (a, f) is affiliated with AF (I) = AF (I ′)′ for all quasi-primary a ∈ V
and all f ∈ C∞(S1) with suppf ⊂ S1

+ . Hence using Prop. 6.6 we can conclude that
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AV (S
1
+) ⊂ AF (I) whenever the interval I ∈ I contains the closure of S1

+. Now, it
follows easily from Möbius covariance that

AF (S1
+) =

⋂

I⊃S1
+

AF (I).

Hence we can conclude that AV (S
1
+) ⊂ AF (S1

+).

Corollary 8.2. Let V α and V β be strongly local simple unitary VOAs. Then V α⊗V β

is strongly local and AV α⊗V β = AV α ⊗AV β .

Proof. By Corollary 6.2 the simple unitary VOA V α ⊗ V β is energy-bounded. Now
let Fa be the family of all quasi-primary vectors in V α and let Fβ be the fam-
ily of all quasi-primary vectors in V β . Then, V α ⊗ V β is generated by the fam-
ily F of quasi-primary vectors in V α ⊗ V β defined by F ≡ (Fα ⊗ Ω) ∪ (Ω⊗ Fβ)
and AF (I) = AV α(I)⊗AV β(I) for all I ∈ I so that AF (I ′) = AV α(I ′)⊗AV β(I ′) ⊂
(AV α(I)⊗AV β(I))

′
. Then the conclusion follows from Thm. 8.1.

The following consequence of Thm. 8.1 is more directly applies to many interesting
models.

Theorem 8.3. If V is a simple unitary VOA generated by V1 ∪F , where F ⊂ V2 is
a family of quasi-primary θ-invariant Virasoro vectors, then V is strongly local.

Proof. By Prop. 6.3 (and its proof) V is energy-bounded and the vectors a ∈ V1 ∪F
satisfy the energy bounds in Eq. (100) with k = 1 (linear energy bounds). Then,
the argument in [14, Sect.2] based on [32], see also [45, Sect.19.4], can be used to
show that the von Neumann algebras AV1∪F (I), I ∈ I, satisfy the locality condition
in Thm. 8.1 so that AV1∪F (I) = AV (I) for all I ∈ I and thus V is strongly local.

We now give various examples of VOAs that can be easily shown to be strongly
local as a consequence of Thm. 8.3.

Example 8.4. The simple unitary vertex algebra L(c, 0) is strongly local. The corre-
sponding irreducible conformal net AL(c,0) is the Virasoro net AVir,c defined in Subsect.
3.3.

We use the above example to give an application of Thm. 7.4 by giving a a new
proof of the main result in [15].

Theorem 8.5. Let B be a Möbius covariant subnet of the Virasoro net AVir,c. Then,
either B = C1H or B = AVir,c.

Proof. By Thorem 7.4 there is a unitary subalgebra W ⊂ L(c, 0) such that B = AW .
The conclusion then follows from Corollary 5.32.
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Example 8.6. Let VH be the (rank one) Heisenberg conformal vertex operator algebra
[59]. Then VH is generated by the one-dimensional subspace (VH)1 = Ker(L0 − 1VH

)
and hence it is strongly local. The central charge is given by c = 1. The corresponding
conformal net AVH

coincides with free Bose chiral field net AU(1) considered in [13].

Example 8.7. Let g be a complex simple Lie algebra and let Vgk be the corresponding
level k simple unitary VOA, see [58, 59, 70]. Then Vgk is generated by (Vgk)1 ≃ g and
hence it is strongly local. The real Lie subalgebra gR ≡ {a ∈ g : θa = a} is a compact
real form for g. Let G be the compact connected simply connected real Lie group
with simple Lie algebra gR. Then AVgk

coincides with the loop group conformal net
AGk

associated to the level k positive-energy projective unitary representations of the
loop group LG [47, 88, 98], see [44, 57, 97, 99, 100] (see also [60, Sect.5]).

Example 8.8. Let n be a positive integer and let L2n ≡ Z
√
2n be the rank-one

positive definite even lattice equipped with the Z-bilinear form 〈m1

√
2n,m2

√
2n〉 ≡

2nm1m2. Moreover, let VL2n be the simple unitary lattice VOA with central charge
c = 1 associated with L2n, see e.g. [27, Sect.2]. Then VL2n contains the the Heisenberg
vertex operator algebra VH as a unitary subalgebra. Moreover, VL2n describes the same
CFT model as the irreducible conformal net AU(1)2n ⊃ AU(1) with c = 1 and µ-index
equal to 2n considered in [104]. The net AU(1)2n is denoted by AN , N = n in [13].
We have VL2 ≃ Vg1 for g = sl(2,C) = A1. For n > 1 VL2n can be realized, by a coset
construction, as a unitary subalgebra of Vg1 for g = D2n, see [13, Sect.5B]. It follows
that VL2n is strongly local for every n ∈ Z>0 and using the classification results in [13]
and [104] it is not difficult to show that AVL2n

= AU(1)2n .

Example 8.9. The known c = 1 simple unitary vertex operator algebras are

V G
L2
, VL2n , V

Z2
L2n

, (123)

where G is a closed subgroup of SO(3) and n is not the square of an integer, see [26,
Sect.7] and [104, Sect.4]. It follows from Example 8.8 that all these vertex operator
algebras are strongly local. The corresponding c = 1 irreducible conformal nets are the
c = 1 irreducible conformal nets classified in [104] by assuming a certain “spectrum
condition”.

We now show another application of our general results by giving a new proof of
[17, Thm.3.2]. Let us consider the case g = sl(2,C) and level k = 1. Then Vsl(2,C)1

has central charge c = 1 and hence we have the embedding L(1, 0) ⊂ Vsl(2,C)1 .

Lemma 8.10. Let W be a unitary subalgebra of Vsl(2,C)1. Then either W = CΩ or
W ⊃ L(1, c).

Proof. Assume first that W1 6= {0}. Then we can find a vector a ∈ W such that
L0a = a, θa = a and ‖a‖ = 1. By the proof of Prop. 6.3 we see that the operators an
satisfies the Heisenberg Lie algebra commutation relations

[am, an] = mδm,−n1,
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for all m,n ∈ Z and hence a generate a copy of the Heisenberg vertex operator algebra
VH inside W , cf. Example 5.8. Since the central charge of VH is 1, VH have to contain
the Virasoro subalgebra L(1, 0) of V . Accordingly, L(1, 0) ⊂ W .

Assume now that W1 = {0}. The characters formulae in [58] gives for q ∈ (0, 1),

TrVsl(2,C)1
qL0 =

∑

j∈Z

qj
2

p(q),

where p(q) =
∏

n∈Z>0
(1− qn)−1. Hence,

TrVsl(2,C)1
qL0 = 1 + 3q + 4q2 + · · · (124)

so that the dimension of
(
Vsl(2,C)1

)
2
is 4.

Since W1 = {0}, then

(a|b−2Ω) = (a|L−1b) = (L1a|b) = 0,

for all a ∈ W and all b ∈
(
Vsl(2,C)1

)
1
. Hence W2 is orthogonal to the three-dimensional

subspace {a−2Ω : a ∈
(
Vsl(2,C)1

)
1
}. But also the conformal vector ν is orthogonal to

the latter subspace since for any a ∈
(
Vsl(2,C)1

)
1
we have

(ν|a−2Ω) = (Ω|[L2, a−2]Ω) = (Ω|2a0Ω) = 0.

Hence W2 ⊂ Cν. Now, by Remark 5.30 if νW = 0 then W = CΩ. Hence if
W 6= CΩ then W2 = Cν and hence L(1, 0) ⊂ W .

Now, let a ∈
(
Vsl(2,C)1)

)
1
. Then, by [59, Remark 4.9c] ea0 converges on Vsl(2,C)1

and defines an element in Aut
(
Vsl(2,C)1

)
. In fact, if θa = a then ea0 is unitary i.e.

ea0 ∈ Aut(·|·)
(
Vsl(2,C)1

)
, and the group generated by such unitaries is isomorphic to

SO(3). The following proposition was first proved in [27], see also [91].

Proposition 8.11. The fixed point subalgebra V
SO(3)
sl(2,C)1

coincides with the Virasoro

subalgebra L(1, 0).

Proof. By characters formulae for the unitary representations of affine Lie algebras,
see e.g. [58], and for the unitary representations of the Virasoro algebra, see e.g. [62],
one finds

Tr
V

SO(3)
sl(2,C)1

qL0 = (1− q)p(q) = TrL(1,0)q
L0 ,

see [27, 91]. Since L(1, 0) ⊂ V
SO(3)
sl(2,C)1

the conclusion follows.

Corollary 8.12. Aut(·|·)
(
Vsl(2,C)1

)
= SO(3).

Theorem 8.13. The map H 7→ V H
sl(2,C)1

gives a one-to-one correspondence between

the closed subgroups H ⊂ SO(3) and the unitary subalgebras W ⊂ Vsl(2,C)1 such that
W 6= CΩ.
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Proof. Let W ⊂ Vsl(2,C)1 be a unitary subalgebra such that W 6= CΩ. By Lemma 8.10

and by Prop. 8.11 W contains the fixed point subalgebra V
SO(3)
sl(2,C)1

and the conclusion
follows from Thm. 7.7.

The following theorem is [17, Thm.3.2]

Theorem 8.14. The map H 7→ AH
SU(2)1

gives a one-to-one correspondence between

the closed subgroups H ⊂ SO(3) and the subnets B ⊂ ASU(2)1 of the loop group net
ASU(2)1 such that B 6= C1.

Proof. It follows from Example 8.7 that ASU(2)1 is the irreducible conformal net as-
sociated with the strongly local simple unitary vertex operator algebra Vsl(2,C)1 . The
claim then follows from Thm. 7.5 and Thm. 8.13.

The next example is given by the moonshine vertex operator algebra V ♮. As
explained in Example 5.10 V ♮ is a simple unitary VOA. We now show that it is
strongly local. Note that the following theorem also gives a a new proof of [66,
Thm.5.4].

Theorem 8.15. The moonshine vertex operator algebra V ♮ is a simple unitary strongly
local VOA. If AV ♮ denotes the corresponding irreducible conformal net then Aut(AV ♮)
is the Monster group M. Moreover, up to unitary equivalence, AV ♮ = A♮ where A♮ is
the moonshine conformal net constructed in [66].

Proof. By [66, Lemma 5.1] the moonshine vertex operator algebra V ♮ is generated
by a family F ♮ of Hermitian quasi-primary Virasoro vectors in V ♮

2 and hence , it is
strongly local by Thm. 8.3. Moreover, by Thm. 8.1, AV ♮ = AF ♮ , where AF ♮ is defined
as in Eq. (122). Since Aut(V ♮) = M is finite then, by Thm. 6.9, Aut(AV ♮) = M.
Moreover, by [66, Corollary 5.3], A♮ = AF ♮ and hence A♮ = AV ♮ .

As a consequence of Thm. 7.1 also the unitary subalgebras of the above examples,
such as orbifolds, cosets, etc., are strongly local. Further examples of strongly local
VOAs are obtained by taking tensor products. All these examples give a rather large
and interesting class of strongly local VOAs. Moreover, they show that our results
gives a uniform procedure to construct conformal nets associated to the corresponding
CFT models. As an example we consider here the case of the even shorter moonshine
vertex operator algebra V B♮

(0), cf. Example 5.33.

Theorem 8.16. The even shorter moonshine vertex operator algebra V B♮
(0) is a

a simple unitary strongly local VOA. If AV B♮
(0)

denotes the corresponding net then

Aut(ABV ♮
(0)
) is the Baby Monster group B.

Proof. As explained in Example 5.33 V B♮
(0) is a unitary subalgebra of the moonshine

vertex operator algebra V ♮ and hence V B♮
(0) is a simple unitary VOA. Since V ♮ is

strongly local by Thm. 8.15 then, also V B♮
(0) is strongly local as a consequence of

Thm. 7.1. Since Aut(V B♮
(0)) = B is finite then, by Thm. 6.9, Aut(AV B♮

(0)
) = B.
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We conclude this section with two conjectures.

Conjecture 8.17. Let L be an even positive definite lattice. Then the corresponding
sumple unitary lattice VOA VL is strongly local and the corresponding conformal net
AVL

coincides with the lattice conformal net AL constructed in [30].

Conjecture 8.18. Every simple unitary vertex operator algebra is strongly local and
hence generates an irreducible conformal net AV .

9 Back to vertex operators

In this section we discuss problem of (re-) constructing vertex operator algebras start-
ing from a given irreducible conformal net A. This problem is related to the problem
of constructing quantum fields from local net of von Neumann algebras. In partic-
ular we will prove that for any strongly local vertex unitary operator algebra V it
is possible to recover all the vertex operators, and hence V together with its VOA
structure, from the conformal net AV . To this end we will crucially rely on the ideas
developed by Fredenhagen and Jörß in [38] where pointlike-localized fields where de-
fined starting from irreducible Möbius covariant nets. In fact we will give a variant
of the construction in [38] which avoids the scaling limit procedure considered there
and completely relies on Tomita-Takesaki modular theory together with the results
in Appendix B of this article.

We first need to recall some facts by the Tomitata-Takesaki theory, see e.g. [94,
Sect.1.2] for details and proofs. Let M be a von Neumann algebra on a Hilbert space
H and let Ω ∈ H be cyclic and separating for M. As usual we denote by S the Tomita
operator associated with the pair (M,Ω) and by ∆ and J the corresponding modular
operator and modular conjugation respectively. Hence S = J∆1/2. For a ∈ H consider
the operator L 0

a with dense domain M′Ω and defined by L 0
a AΩ = Aa, A ∈ M′. If a

is in the domain D(S) it is straightforward to see that L 0
Sa ⊂ (L 0

a )
∗ and hence L 0

Sa

and L 0
a are closable and their closures LSa and La satisfy LSa ⊂ L ∗

a . Moreover,
LSa and La are affiliated with M. As pointed out in [19] that in certain situations
the operators La, a ∈ D(S) can be considered as abstract analogue of the smeared
vertex operators, see also [4]. Our variant of the Fredenhagen and Jörß construction
will clarify this point of view.

Let A be an irreducible Möbius covariant net on S1 acting on its vacuum Hilbert
space H. For any I we can consider the Tomita operator SI = JI∆

1/2
I . The covariance

of the net implies that for any γ ∈ Möb we have U(γ)SIU(γ)∗ = SγI , U(γ)JIU(γ)∗ =
JγI and U(γ)∆IU(γ)∗ = ∆γI . Moreover, by the Bisognano-Wichmann property we

have ∆it
S1
+
= eiKt, t ∈ R. where K ≡ iπ(L1 − L−1). Hence ∆

1/2

S1
+

= e
1
2
K . We will

denote JS1
+
by θ (PCT operator). Then θ commutes with L−1, L0 and L1.

Now, let a ∈ H be a quasi-primary vector of conformal weight da ∈ Z≥0. Then,
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for every f ∈ C∞(S1) we can consider the vector a(f) defined in Appendix B, namely

a(f) =
∑

n∈Z≥0

f̂−n−da

1

n!
Ln
−1a. (125)

In the following for unexplained notations and terminology we refer the reader to
Appendix B.

By Thm. B.4, if suppf ⊂ S1
+ then a(f) is in the domain of SS1

+
and

SS1
+
a(f) = (−1)da(θa)(f). (126)

Hence the operator AΩ 7→ Aa(f), A ∈ A(S1
+)

′, is closable and its closure L
S1
+

a(f)

is affiliated with A(S1
+). By the above stated covariance property of the modular

operators ∆I , I ∈ I and Prop. B.1 we see that we can define in a similar way an
operator L I

a(f) for any I ∈ I and any f ∈ C∞(S1) with suppf ⊂ I. Then by the
discussion above and Prop. B.1 we have

U(γ)L I
a(f)U(γ)∗ = L γI

a(βda (γ)f)
, (127)

for all I ∈ I, all f ∈ C∞(S1) with suppf ⊂ I and all γ ∈ Möb. Moreover,

(−1)daL I
(θa)(f)

⊂ (L I
a(f))

∗ (128)

for all I ∈ I, and all f ∈ C∞(S1) with suppf ⊂ I. Note also that also that for any
I ∈ I and any b ∈ A(I)′Ω the linear map : C∞

c (I) → H given by f 7→ L I
a(f)b is

continuous, namely f 7→ L I
a(f) is an operator valued distribution on C∞

c (I1). Note

also that if I1 ⊂ I2, I1, I2 ∈ I, and f ∈ C∞
c (I1) then L I2

a(f) ⊂ L I1
a(f).

All the above properties justify the following notation and terminology. For every
quasi-primary vector a ∈ H and all f ∈ C∞

c (I) we define YI(a, f) by YI(a, f) ≡ L I
a(f).

We call the operators YI(a, f), I ∈ I, f ∈ C∞
c (I) Fredenhagen-Jörß (shortly FJ)

smeared vertex operators or FJ fields.
The FJ smeared vertex operators have many properties in common with the

smeared vertex operators. These are obtained simply by a change of notations for
the corresponding properties of the operators L I

a(f), I ∈ I, f ∈ C∞(S1). First of all,

for any I ∈ I, f 7→ YI(a, f) is an operator valued distribution on C∞
c (I1) in the sense

that the map : C∞
c (I) → H given by f 7→ YI(a, f)b is linear and continuous for every

b ∈ A(I)′Ω. Moreover, the following compatibility condition holds

YI2(a, f) ⊂ YI1(a, f) (129)

if I1 ⊂ I2, I1, I2 ∈ I, and f ∈ C∞
c (I1) so that if b ∈ A(I2)

′Ω the vector valued
distribution C∞

c (I2) ∋ f 7→ YI2(a, f)b extends C
∞
c (I1) ∋ f 7→ YI1(a, f)b. Finally, from

Eq. (127) and Eq. (128) we get the following covariance and hermiticity relations

U(γ)YI(a, f)U(γ)∗ = YγI(a, βda(γ)f)), (130)
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for all I ∈ I, all f ∈ C∞(S1) with suppf ⊂ I and all γ ∈ Möb. Moreover,

(−1)daYI(θa, f) ⊂ YI(a, f)
∗ (131)

for all I ∈ I, and all f ∈ C∞(S1) with suppf ⊂ I.
As usual for distributions we can use the formal notation

YI(a, f) =

∫

I

YI(a, z)f(z)z
da

dz

2πiz
. (132)

Then we say that the family {YI(a, z) : I ∈ I} is an FJ vertex operator or an FJ
field. Unfortunately there it is not known if the FJ smeared vertex operators admit
a common invariant domain. Hence we cannot extend the family of distributions
{YI(a, z), z ∈ I : I ∈ I} to a unique distribution Ỹ (a, z). In particular the FJ fields
cannot in general be considered as quantum fields in the sense of Wightman [95].

The following proposition is a slightly weaker form of the result vi) stated in [38,
Sect.2] and proved in [38, Sect.4].

Proposition 9.1. The FJ smeared vertex operators generate the irreducible Möbius
covariant net A, namely

A(I) = W ∗({YI1(a, f) : a ∈
⋃

k∈Z≥0

Ker(L0−k1H), L1a = 0, f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I})

for all I ∈ I.

Proof. For any I ∈ I we define B(I) by

B(I) ≡ W ∗({YI1(a, f) : a ∈
⋃

k∈Z≥0

Ker(L0−k1H), L1a = 0, f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I}).

Clearly the family {B(I) : I ∈ I} is a Möbius covariant subnet ofA. LetHB ≡ B(S1)Ω
be the corresponding vacuum Hilbert space. Then a(f) ∈ HB for every quasi-primary
vector a ∈ H and every f ∈ C∞(S1). Since the representation U of Möb is completely
reducible the linear span of the vectors a(f) with a quasi-primary and f ∈ C∞(S1) is
dense in H so that HB = H and thus B = A.

Our next goal in this section is to prove that the FJ smeared vertex operators of
a conformal net AV associated with a strongly local simple unitary VOA V coincide
with the ordinary smeared vertex operator of V .

Theorem 9.2. Let V be a simple unitary strongly local VOA and let AV be the
corresponding irreducible conformal net. Then, for any quasi-primary vector a ∈ V
we have YI(a, f) = Y (a, f) for all I ∈ I and all f ∈ C∞

c (I), i.e. the smeared vertex
operator of V coincide with the FJ smeared vertex operator of AV . In particular one
can recover the VOA structure on V = H

fin from the conformal net AV .
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Proof. We first observe that, for any f ∈ C∞
c (I), Y (a, f) is affiliated with A(I) and

hence its domain contains A(I)′Ω ⊃ A(I ′)∩H
∞. Since the latter is a core for Y (a, f),

by Prop. 7.3 then also A(I)′Ω is a core for the same operator. On the other hand
A(I)′Ω is a core for YI(a, f) by definition. Using Prop. B.5 in Appendix B, for any
A ∈ A(I)′ we find

Y (a, f)AΩ = AY (a, f)Ω = Aa(f) = YI(a, f)AΩ.

Accordingly the closed operators Y (a, f) and YI(a, f) coincides on a common core
and hence they must be equal.

We now consider a general irreducible conformal net A. We want to find conditions
on A which allow to prove that A = AV for some simple unitary strongly local VOA
V . As a consequence of Thm. 9.2 a necessary condition is that for every primary
vector a ∈ H the corresponding FJ vertex operator {YI(a, z) : I ∈ I} satisfies energy
bounds i.e. there exist a real number M > 0 and positive integers k and s such that

‖YI(a, f)b‖ ≤ M‖f‖s‖(L0 + 1H)
kb‖ (133)

for all I ∈ I, all f ∈ C∞
c (I) and all b ∈ A(I)′Ω∩H∞. We will see that the condition is

also sufficient and that actually it can be replaced by an apparently weaker condition.

We say that a family F ⊂ H of quasi-primary vectors generates A if the corre-
sponding FJ smeared vertex operators generates the local algebras i.e. if

A(I) = W ∗({YI1(a, f) : a ∈ F , f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I}). (134)

Theorem 9.3. Let A be an irreducible conformal net that is generated by a family
of quasi-primary vectors F . Assume θF = F and that for every a ∈ F the FJ
vertex operator {YI(a, z) : I ∈ I} satisfies energy bounds. Moreover, assume that
Ker(L0−n1H) is finite-dimensional for all n ∈ Z≥0. Then, the vector space V ≡ Hfin

admits a VOA structure making V into a simple unitary strongly local VOA such that
AV = A.

Proof. By the same argument used for the ordinary smeared vertex operator in Sect.
6 it can be shown that the energy bounds imply that H∞ is a common invariant core
for the operators YI(a, f), I ∈ I, f ∈ C∞

c (I), a ∈ F . Let {I1, I2}, I1, I2 ∈ I be a cover
of S1 and let {ϕ1, ϕ2}, ϕ1, ϕ2 ∈ C∞(S1,R) be a partition of unity on S1 subordinate
to {I1, I2}, namely suppϕk ⊂ Ik, k = 1, 2, and

∑2
j=1 ϕk(z) = 1 for all z ∈ S1. For any

a ∈ F and any f ∈ C∞(S1) we define an operator Ỹ (a, f) on H with domain H∞ by

Ỹ (a, f)b =

2∑

j=1

YIj(a, ϕjf)b, b ∈ H
∞.
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Let {Ĩ1, Ĩ2}, Ĩ1, Ĩ2 ∈ I be another cover of S1 and ϕ̃1, ϕ̃2 ∈ C∞(S1,R) be a partition
of unity on S1 subordinate to {Ĩ1, Ĩ2}. Then, using the compatibility conditions in
Eq. (129) for the FJ smeared vertex operator we find that

2∑

j=1

YIj(a, ϕjf)b =
2∑

j,m=1

YIj(a, ϕ̃mϕjf)b

=
2∑

j,m=1

YĨm
(a, ϕ̃mϕjf)b

=

2∑

m=1

YĨm
(a, ϕ̃mf)b

for all b ∈ H∞. Hence, Ỹ (a, f) does not depend on the choice of the partition of unity
{ϕ1, ϕ2} nor on the choice of the cover {I1, I2}. It follows that for any I ∈ I and
any f ∈ C∞

c (I) we have Ỹ (a, f)b = YI(a, f)b for all b ∈ H
∞. Moreover, we have the

covariance property
U(γ)Ỹ (a, f)U(γ)∗ = Ỹ (a, βda(γ)f)),

the adjoint relation
(−1)daỸ (θa, f) ⊂ Ỹ (a, f)∗

and the state field correspondence Ỹ (a, f)Ω = a(f) for all f ∈ C∞(S1) and all γ ∈
Möb.

By assumption the FJ vertex operator {YI(a, z) : I ∈ I} satisfies energy bounds
with a real number M > 0 and positive integers s, k. Given ϕ, f ∈ C∞(S1) we have

(|n|+ 1)s|(̂ϕf)n| ≤
∑

j∈Z

(|n|+ 1)s|f̂j | · |ϕ̂n−j|

hence

‖ϕf‖s =
∑

n∈Z

(|n|+ 1)s|(̂ϕf)n|

≤
∑

n,j∈Z

(|n|+ 1)s|f̂j| · |ϕ̂n−j|

=
∑

j,m∈Z

(|m+ j|+ 1)s|f̂j| · |ϕ̂m|

≤ ‖ϕ‖s‖f‖s.

It follows that

‖Ỹ (a, f)b‖ = ‖
2∑

j=1

YIj(a, ϕjf)b‖

≤ M

(
2∑

j=1

‖ϕj‖s
)
‖f‖s‖(L0 + 1H)

kb‖
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for all f ∈ C∞(S1) and all b ∈ H∞, i.e. the operators Ỹ (a, f), f ∈ C∞(S1) satisfy
energy bounds with the same positive integers s, k and the positive constant M̃ ≡
M
(∑2

j=1 ‖ϕj‖s
)
.

Now, let en ∈ C∞(S1), n ∈ Z, be defined by en(z) = zn, z ∈ S1. For every a ∈ F
we define an ≡ Ỹ (a, en), n ∈ Z. We have

‖anb‖ ≤ 2sM̃(|n|+ 1)s‖(L0 + 1H)
kb‖,

for all n ∈ Z and all b ∈ H∞. By the covariance property we have eitL0ane
−itL0 =

e−intan for all t ∈ R. It follows that [L0, an]b = −nanb for all n ∈ Z and all b ∈ H∞

and hence that anH
fin ⊂ Hfin for all n ∈ Z. The covariance properties also implies

that [L−1, an]b = (−n− da+1)an−1b and [L1, an]b = −(n− da+1)an+1b for all n ∈ Z

and all b ∈ H∞. Moreover, we have a−daΩ = a(e−da) = a for all a ∈ F . Now let,
V ⊂ Hfin be the linear span of the vector of the form

a1n1
a2n2

· · · aknk
Ω,

with a1, a2, · · · , ak ∈ F and n1, n2, · · · , nk ∈ Z. We want to show that V = Hfin.
Let HV ⊂ H be the closure of V and eV be the orthogonal projection onto HV . First
note that since the series

∑
n∈Z f̂nen converges to f in C∞(S1) and thus

∑

n∈Z

f̂nanb = Ỹ (a, f)

for all a ∈ F , all b ∈ H∞ and all f ∈ C∞(S1). It follows that Ỹ (a, f)b and Ỹ (a, f)∗b
belong to HV for all a ∈ F , all b ∈ H

fin and all f ∈ C∞(S1).
From the fact that ≡ Ker(L0−n1H) is finite-dimensional for all n ∈ Z≥0 it follows

that eVH
fin = V . As consequence we have [eV , Ỹ (a, f)]b = 0 for all a ∈ F , all

b ∈ V and all f ∈ C∞(S1). Recalling that Hfin is a core for every FJ smeared vertex
operator we can conclude that eV YI(a, f) ⊂ YI(a, f)eV for all a ∈ F , all I ∈ I and
all f ∈ C∞

c (I). Hence, since the family F generates the net A, we see that eV = 1H
by the irreducibility of A so that V = Hfin.

The above properties imply that the formal series

Φa(z) ≡
∑

n∈Z

anz
−n−da , a ∈ F

are fields on V that are local and mutually local (in the vertex algebra sense) as
a consequence of the locality of the conformal net A and Prop. A.1. In fact they
satisfy all the assumption of the existence theorem for vertex algebras [59, Thm.4.5].
Accordingly V is a vertex algebra whose vertex operators satisfy Y (a, z) = Φa(z)
for all a ∈ F . A unitary representation of the Virasoro algebra on V by operators
Ln, n ∈ Z is obtained by differentiating the representation U of Diff+(S1) making
A covariant, see Thm. 3.4 and [18, 20, 72]. Then, L(z) =

∑
n∈ZLnz

−n−2 is a local
field on V , which, as a consequence of the locality of A, is mutually local with all
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Y (a, z), a ∈ V . Moreover, L(z)Ω = ezL−1L−2Ω. By the uniqueness theorem for vertex
algebras [59, 4.4] we have L(z) = Y (ν, z) where ν ≡ L−2Ω. Hence ν is a conformal
vector and hence V is a VOA.

Now, the scalar product on H restrict to a normalized scalar product on V having
unitary Möbius symmetry in the sense of Subsect. 5.2. For every a ∈ F the adjoint
vertex operator Y (a, z)+ defined in Eq. (91) satisfies

Y (a, z)+ = (−1)daY (θa, z)

and hence it is local and mutually local with respect to all the vertex operators Y (b, z),
b ∈ V . Now, let

F+ = {a + (−1)daθa

2
: a ∈ F}

and let

F− = {−i
a− (−1)daθa

2
: a ∈ F}.

Then, {Y (a, z) : a ∈ F+ ∪ F−} is a family of Hermitian quasi-primary fields which
generates V . Hence, V is unitary by Prop. 5.17. Moreover, by Prop. 5.3 V is
simple because V0 = CΩ. By Prop. 6.1, V , being generated by the family F of
elements satisfying energy bounds, is energy-bounded. Since the net AF , cf. Eq.
(122), coincides, by assumption, with A, we can apply Thm. 8.1 to conclude that V
is strongly local and AV = A.

We end this section with the following conjecture.

Conjecture 9.4. For every conformal net A there exists a simple unitary strongly
local vertex operator algebra V such that A = AV .

A Vertex algebra locality and Wightman locality

The axiom of locality for vertex algebras is a purely algebraic formulation of the
locality axiom for Wightman fields, see [59, Chapter 1]. In this work we use in
various occasions some consequences of the correspondence of these two formulations
of the axiom of locality. In the this appendix, using the simplifying assumption of
the existence of polynomial energy bounds, we give a proof of the equivalence of these
two formulations in a framework which is sufficiently general for all the applications
in this paper.

Let H be a Hilbert space and let L0 be self-adjoint operator on H with spectrum
contained in Z≥0. We denote by V the algebraic direct sum

H
fin ≡

⊕

n∈Z≥0

Ker(L0 − n1H). (135)
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Then V is dense in H. Moreover, we denote by H∞ ⊂ H, the dense subspace of C∞

vectors for L0 namely

H
∞ ≡

⋂

k∈Z>0

D
(
(L0 + 1H)

k
)
. (136)

Let an, bn, n ∈ Z be operators on H with common domain V and assume that

eitL0ane
−itL0 = e−intan, eitL0bne

−itL0 = e−intbn

for all t ∈ R and all n ∈ Z. It follows that

anKer(L0 − k1H) ⊂ Ker(L0 − (k − n)1H)

and
bnKer(L0 − k1H) ⊂ Ker(L0 − (k − n)1H)

for all n ∈ Z and all k ∈ Z≥0 so that the operators an, bn restrict to endomorphisms
of V and for every c ∈ V we have anc = bnc = 0 for n sufficiently large. As a
consequence the formal series Φa(z) =

∑
n∈Z anz

−n and Φb(z) =
∑

n∈Z bnz
−n are

fields on V in the sense of Subsect.4.1, see also [59, Sect.3.1]. We assume that the
fields Φa(z) and Φb(z) satisfy (polynomial) energy bounds in the sense of Sect.6 i.e.
there exist positive integers s, k and a constant M > 0 such that, for all n ∈ Z and
all c ∈ V

‖anc‖ ≤ M(|n|+ 1)s‖(L0 + 1H)
kc‖, ‖bnc‖ ≤ M(|n|+ 1)s‖(L0 + 1H)

kc‖. (137)

Accordingly we can define the smeared fields

Φa(f) =
∑

n∈Z

anf̂n, Φb(f) =
∑

n∈Z

bnf̂n, (138)

f ∈ C∞(S1), having H∞ as common invariant domain.
According to Subsect.4.1 we say that the fields Φa(z) and Φb(z) are mutually

local in the vertex algebra sense if there exists a non-negative integer N such
that

(z − w)N [Φa(z),Φb(w)]c = 0 (139)

for all c ∈ V . Moreover, we say that the fields Φa(z) and Φb(z) are mutually local
in the Wightman sense if

[Φa(f),Φb(f̃)]c = 0 (140)

for all c ∈ H∞ if suppf ⊂ I and suppf̃ ⊂ I ′, I ∈ I, cf. [95]. We now show that under
our assumptions these two locality conditions are equivalent.

Proposition A.1. The fields Φa(z) and Φb(z) are mutually local in the vertex algebra
sense if and only if they are mutually local in the Wightman sense.
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Proof. For every c, d ∈ V the two variable formal series

(d|[Φa(z),Φb(w)]c) =
∑

n,m∈Z

(d|[an, bm]c)z−nw−m

can be considered as a formal distribution ϕc,d(z, w) on S1×S1 i.e. a linear functional
on the complex vector space of the two variable trigonometric polynomials, see [59,
Sect.2.1]. Because of the energy bounds this formal distribution extends by continuity
to a unique ordinary distribution, again denoted by ϕc,d(z, w), on S1 × S1, i.e. a
continuous linear functional on C∞(S1×S1). If the fields Φa(z) and Φb(z) are mutually
local in the vertex algebra sense then, by [59, Thm.2.3 (i)], the distribution ϕc,d(z, w)
has support in the diagonal z = w of S1 × S1 and hence (d|[Φa(f),Φb(f̃)]c) = 0 if
suppf ⊂ I and suppf̃ ⊂ I ′, I ∈ I. Since c, d ∈ V where arbitrary it follows that
[Φa(f),Φb(f̃)]c = 0 for all c ∈ V if suppf ⊂ I and suppf̃ ⊂ I ′, I ∈ I. Now, as a
consequence of the energy bounds, the same equalities also hold for for any c ∈ H

∞

and hence the fields Φa(z) and Φb(z) are mutually local in the Wightman sense.
Conversely let us assume that the fields Φa(z) and Φb(z) are mutually local in the

Wightman sense. Then, the distribution ϕc,d(z, w) has support in the diagonal z = w
of S1 × S1. Moreover, as a consequence of the energy bounds, there is an integer
N > 0 such that, for all c, d ∈ V , ϕc,d(z, w) is a distribution of order less then N − 1,
i.e. for every c, d ∈ V there is a constant Mc,d > 0 such that

|〈ϕc,d, f〉| ≤ Mc,d max
{∣∣∂αf(eiϑ1 , eiϑ2)

∣∣ : eiϑ1 , eiϑ2 ∈ S1, |α| ≤ N − 1
}

for all f ∈ C∞(S1×S1), where, as usual, for a multi-index α ≡ (α1, α2), α1, α2 ∈ Z≥0,
|α| denotes the sum α1 + α2 and ∂α denotes the partial differential operator of order
|α| defined by

∂α ≡
(

∂

∂ϑ1

)α1
(

∂

∂ϑ2

)α2

,

see [93, Chapter 6]. Then, it follows by a rather straightforward adaptation of [93,
Thm.6.25] and by [59, Thm.2.3], that (z−w)Nϕc,d(z, w) = 0 for all c, d ∈ V and hence
that the fields Φa(z) and Φb(z) are mutually local in the vertex algebra sense.

B On the Bisognano-Wichmann property for rep-

resentations of the Möbius group

Let U be a strongly continuous unitary positive-energy representation of the Möbius
group Möb ≃ PSL(2,R) on a Hilbert space H. Let L0 be the self-adjoint generator
of the one parameter subgroup of U of (anti-clockwise) rotations. Then the spectrum
of L0 is a subset Z≥0. Accordingly, the (algebraic) direct sum H

fin of the subspaces
Ker(L0 − n1H), n ∈ Z≥0 is dense in H. As it is well known the vectors in Hfin are
smooth vectors for the representation U and it is invariant for the representation of
sl(2,R) obtained by differentiating U , see [76, 89] and [18, Prop.A.1]. Accordingly
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there is a representation of sl(2,R) on Hfin by essentially skew-adjoint operators and
hence a unitary representation of its complexification sl(2,C). The latter Lie algebra
representation is spanned by L0 together with operators L1, L−1 satisfying L1 ⊂ L∗

−1

and the commutation relations [L1, L−1] = 2L0, [L1, L0] = L1 and [L−1, L0] = −L−1.
We say that a vector a ∈ Hfin is quasi-primary if L1a = 0 and L0a = daa for some

da ∈ Z≥0. We say that da is the conformal wight of a. If a is quasi-primary we consider
the vectors an ∈ H

fin, n ∈ Z≥0 defined by an ≡ 1
n!
Ln
−1a. The linear spanH

a,fin of {an :
n ∈ Z≥0} is invariant for the action of the operators L−1, L0, L1 and the corresponding
representation of sl(2,C) on Ha,fin is the irreducible unitary representation of sl(2,C)
with lowest conformal energy da. Note that L0a

n = (n + da)a
n for all n ∈ Z≥0.

Moreover, the closureHa ofHa,fin is an irreducible U -invariant subspace ofH carrying
the unique (up to unitary equivalence) strongly continuous unitary positive-energy
representation of Möb with lowest conformal energy da ∈ Z≥0.

If da = 0 then an = 0 for all n > 0 and the corresponding representation of Möb

is the trivial one. For da > 0 it is rather straightforward to prove by induction that
L1a

n = (2da + n)an−1 for all n ∈ Z>0 and that, as a consequence,

‖an‖2 =
(
2da + n− 1

n

)
‖a‖2, for all n ∈ Z≥0. (141)

The above computation shows that for every f ∈ C∞(S1) the series

∑

n∈Z≥0

f̂−n−daa
n

converges to an element a(f) ∈ Ha ⊂ H. Moreover, f 7→ a(f) is a linear continuous
map : C∞(S1) → Ha. Now, for any γ ∈ Diff+(S1) let βda(γ) : C∞(S1) → C∞(S1)
be the map defined in Eq. (119). Following the strategy for the proof of Prop. 6.4
one can prove the following proposition which in fact can also be easily proved to be
a consequence of Prop. 6.4 together with Prop. B.5 here below.

Proposition B.1. Let a ∈ H be a quasi-primary vector of of conformal weight da > 0.
Then U(γ)a(f) = a

(
βda(γ)f

)
for all γ ∈ Möb and all f ∈ C∞(S1).

Now, for every I ∈ I we define the closed real linear subspace Ha(I) ⊂ H
a to be

the closure of the real linear subspace subspace

{a(f) : f ∈ C∞(S1,R), suppf ⊂ I}.

Then, as a consequence of Prop. B.1, the family {Ha(I) : I ∈ I} is Möbius covariant,
namely U(γ)Ha(I) = Ha(γI) for all I ∈ I and all γ ∈ Möb. Moreover, the family
obviously satisfies isotony, namely Ha(I1) ⊂ Ha(I2) if I1 ⊂ I2, I1, I2 ∈ I.

We now want to show that the family is a local Möbius covariant net of real linear
subspaces of Ha in the sense of [76, Def. 4.1], see also [77] and [11]. To this end we
need to show that the family satisfies locality. Let f1, f2 ∈ C∞(S1,R). Then
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ℑ(a(f1)|a(f2)) =
1

2i

∞∑

n=0

(
(̂f1)n+da

(̂f2)−n−da
− (̂f2)n+da

(̂f1)−n−da

)
‖an‖2

=
1

2i

∞∑

n=0

(
(̂f1)n+da

(̂f2)−n−da
− (̂f2)n+da

(̂f1)−n−da

)(2da + n− 1
n

)
‖a‖2

=
1

2i

∞∑

n=da

(
(̂f1)n(̂f2)−n − (̂f2)n(̂f1)−n

)(
da + n− 1
n− da

)
‖a‖2.

Now let pda(x) be the polynomial defined by

pda(x) ≡
(da + x− 1)(da + x− 2) · · · (da + x− 2da + 1)

2da − 1
. (142)

Then

pda(n) =

(
da + n− 1
n− da

)

for every integer n ≥ da. Moreover, pda(n) = 0 for n = 0, 1, · · · , da − 1. Note also
that pda(x) = x for da = 1 while for da > 1 we have

pda(x) =
x

2da − 1

da−1∏

n=1

(x2 − n2), (143)

so that pda(x) is an odd polynomial. Hence

ℑ(a(f1)|a(f2)) =
‖a‖2
4i

∑

n∈Z

(
(̂f1)n(̂f2)−n − (̂f2)n(̂f1)−n

)
pda(n)

=
‖a‖2
4πi

∫ 2π

0

f2(e
iϑ)pda(−i

d

dϑ
)f1(e

iϑ)dϑ.

As a consequence, if suppf1 ⊂ I and suppf2 ⊂ I ′, I ∈ I then ℑ(a(f1)|a(f2)) = 0 and
hence the Möbius covariant isotonous family {Ha(I) : I ∈ I} satisfies locality so that
it is a local Möbius covariant net of real linear subspaces of Ha in the sense of [76,
Def. 4.1].

Lemma B.2. Let a ∈ H be a quasi-primary vector of conformal weight da > 0 and
let K ≡ iπ(L1 − L−1). Then, there exists αa ∈ C with |αa| = 1 such that a(f) is in

the domain of e
1
2
K and e

1
2
Ka(f) = αaa(f ◦ j) for all f ∈ C∞(S1) with suppf ⊂ S1

+,
where j(z) = z−1 for all z ∈ S1.

Proof. Let H ≡ Ha(S1
+). Then by [76, Thm.4.2] H is a standard subspace of Ha,

see [76, Sect.3]. Hence one can define on H
a the antilinear closed operator SH having
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polar decomposition JH∆
1/2
H as in [76, Sect.3]. Le δ(t) be the one-parameter subgroup

of Möb defined by

δ(t)(z) =
z cosh t/2− sinh t/2

−z sinh t/2 + cosh t/2
,

(“dilations”) corresponding to the vector field sin ϑ d
dϑ

on S1, z = eiϑ. We have
δ(t)S1

+ = S1
+ for all t ∈ R.

Since eiKt = U(δ(−2πt)) for all t ∈ R, it follows from [76, Thm.4.2] that ∆
1/2
H

coincides with the restriction to Ha of e
1
2
K . Accordingly, if f : S1 → C is a smooth

function with suppf ⊂ S1
+ then a(f) is in the domain of e

1
2
K and JHe

1
2
Ka(f) =

SHa(f) = a(f) and thus e
1
2
Ka(f) = JHa(f). Now, again by [76, Thm.4.2], JH

commutes with the restrictions of L−1, L0, L1 toHa and hence there exists αa ∈ Cwith
|αa| = 1 such that JHa

n = αaa
n for all n ∈ Z≥0. It follows that JHa(f) = αaa

(
f ◦ j

)

for all f ∈ C∞(S1). Hence, if suppf ⊂ S1
+ then e

1
2
Ka(f) = αaa(f ◦ j).

Our next goal is to compute the constant αa in Lemma B.2 for every quasi-primary
a ∈ H with conformal weight da > 0.

Proposition B.3. αa = (−1)da for every quasi-primary vector a ∈ H of conformal
weight da > 0.

Proof. Let f be a smooth real function on S1 whose support is a subset of S1
+ and

let f da,t ≡ βda(δ(−2πt))f , t ∈ R.
Consider the function ϕ : R → C defined by

ϕ(t) ≡ (a|a(f da,t)) = ‖a‖2(̂f da,t)−da
=

‖a‖2
2π

∫ π

−π

f da,t(eiϑ)eidaθdϑ.

Recalling the explicit form of f da,t(eiϑ) and Eq. ( 119) we find

ϕ(t) =
‖a‖2
2π

∫ π

−π

(
Xδ(−2πt)(δ(2πt)(e

iϑ))
)da−1

f(δ(2πt)(eiϑ))eidaθdϑ.

We now change the variable in the integral by setting eiϑ = δ(−2πt)(eiα), α ∈ [−π, π]
with the following result

ϕ(t) =
‖a‖2
2π

∫ π

−π

f(eiα)
(
Xδ(−2πt)(e

iα)
)da−2 (

δ(−2πt)(eiα)
)da

dα

=
‖a‖2
2π

∫ π

−π

f(eiα)

(
−i

d

dα
log(δ(−2πt)(eiα))

)da−2 (
δ(−2πt)(eiα)

)da
dα

=
‖a‖2
2π

∫ π

0

f(eiα)

(
−i

d

dα
log(δ(−2πt)(eiα))

)da−2 (
δ(−2πt)(eiα)

)da
dα

≡
∫ π

0

kda(t, α)f(e
iα)dα
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where we used the fact that f(eiα) = 0 for α ∈ [−π, 0] by assumption. Now, using
the explicit expression

δ(−2πt)(eiα) =
eiα cosh(πt) + sinh(πt)

eiα sinh(πt) + cosh(πt)
,

it is straightforward to check that, for any α ∈ [0, π]. t 7→ kda(t, α) extends to a
continuos function z 7→ kda(z, α) on the closed strip S ≡ {z ∈ C : ℑz ∈ [−1/2, 0]},
which is holomorphic in the interior of S. Moreover, the function of two variables
(z, α) 7→ kda(z, α) is continuous on S× [0, π]. Accordingly

Φ1(z) ≡
∫ π

0

kda(z, α)f(e
iα)dα

is continuous on the strip S and holomorphic in its interior. Clearly Φ1(t) = ϕ(t) for
all t ∈ R. Moreover, one finds that

kda(−i/2, α) =
‖a‖2
2π

(−1)dae−idaα

and thus

Φ1(−i/2) = (−1)da
‖a‖2
2π

∫ π

0

f(eiα)e−idaαdα

= (−1)da
‖a‖2
2π

∫ 0

−π

f(e−iα)eidaαdα

= (−1)da(a|a(f ◦ j)).

On the other hand, since ϕ(t) = (a|eiKta(f)) for all t ∈ R and a(f) is in the domain

of e
K
2 there is a function Φ2(z) which is continuous on the strip S and holomorphic

in its interior, such that Φ2(t) = ϕ(t). Moreover, by Lemma B.2 we have Φ2(−i/2) =
αa(a|a(f ◦ j)). Now, Φ1(t) = Φ2(t) for all t ∈ R and hence, by the Schwarz reflection
principle we have Φ1(z) = Φ2(z) for all z ∈ S and hence (−1)da(a|a(f◦j)) = αa(a|a(f◦
j)). The conclusion then follows from the fact that we can take f ∈ C∞(S1,R) with
support in S1

+ and such that (a|a(f ◦ j)) 6= 0

The following theorem is a straightforward consequence of Lemma B.2 together
with Prop. B.3.

Theorem B.4. Let K ≡ iπ(L1 − L−1) and let f ∈ C∞(S1) with suppf ⊂ S1
+. Then

a(f) is in the domain of e
1
2
K and e

1
2
Ka(f) = (−1)daa(f ◦ j), where j(z) = z−1 for all

z ∈ S1.

Proposition B.5. Let V be a simple unitary energy-bounded VOA and let a ∈ Vda

be quasi-primary. Then Y (a, f)Ω = a(f).
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Proof. It follows directly from Eq. (69) that a−n−daΩ = 1
n!
Ln
1Ω for all n ∈ Z≥0.

Moreover, anΩ = 0 for all integers n > −da. Hence the conclusion follows from the
definition of a(f).

The following theorem plays a crucial role in the proof of Thm. 8.1.

Theorem B.6. Let V be a simple unitary energy-bounded VOA and let a ∈ Vda

be quasi-primary. Let K ≡ iπ(L1 − L−1) and let f ∈ C∞(S1) with suppf ⊂ S1
+.

Then Y (a, f)Ω is in the domain of e
1
2
K and e

1
2
KY (a, f)Ω = (−1)daY (a, f ◦ j), where

j(z) = z−1 for all z ∈ S1.

Proof. The theorem follows directly from Thm. B.4 and Prop. B.5 in the case da > 0.
In the case da = 0 it holds true trivially.
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