
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 136

OCTOBER 1976, PAGES 772-795

Reorthogonalization and Stable Algorithms for

Updating the Gram-Schmidt QR Factorization

By J. W. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart*

Abstract. Numerically stable algorithms are given for updating the Gram-

Schmidt QR factorization of an m x n matrix A (m > n) when A is modified by

a matrix of rank one, or when a row or column is inserted or deleted. The algo-

rithms require 0(mn) operations per update, and are based on the use of elemen-

tary two-by-two reflection matrices and the Gram-Schmidt process with reorthog-

onalization. An error analysis of the reorthogonalization process provides rigorous

justification for the corresponding ALGOL procedures.

1. Introduction. In many applications, most notably to linear least squares prob-

lems, it is important to have the QR factorization of a real zzz x zz matrix A (zzz > n)

into the product of an zzz x zz matrix Q with orthonormal columns and an zz x zz upper

triangular matrix R. When A has full rank zz the QR factorization is classically com-

puted, in 0(mn2) multiplications and additions, by the Gram-Schmidt process; the diag-

onal elements of R may then be taken positive and, with this normalization, the fac-

torization is unique. In cases when the rank of A is nearly deficient the columns of

Q, computed by the Gram-Schmidt process in the presence of rounding error, can devi-

ate arbitrarily far from orthonormality.

The purpose of this paper is to provide numerically stable and relatively efficient

algorithms for updating the Gram-Schmidt QR factorization of A when a row or column

is inserted or deleted, or when A is modified by a matrix of rank one: A <— A = A

+ vu , where u and v are (column) vectors. The paper may thus be considered sup-

plementary to the important survey [2] of Gill, Golub, Murray and Saunders. It is

emphasized that a principal aim of [2] was to update the complete orthogonal decom-

position of A. This requires storage of an zzz x zzz orthogonal matrix and 0(m2) arith-

metic operations per update. The algorithms presented here arose from the desire to

efficiently extend a stable modification of the secant method [4] to nonlinear least

squares problems. The knowledge of an zzz x zz Q then suffices, and we normally have

zzz » zz. The storage is thus reduced to 0(mn), and we shall show that the same is

true of the operation counts.

The principal tools which we shall use are the Gram-Schmidt process, with

Received March 17, 1975.

AMS (MOS) subject classifications (1970). Primary 65F05; Secondary 15-04, 15A06, 62-

04, 62J05, 65F20, 65F25, 65G0S, 90C05, 90C30.

This research was supported in part by the Office of Naval Research under Contracts

NO0014-67-A-O126-OO15 and N00014-67-A-0314-0018, by the Air Force Office of Scientific Re-

search under Grant AFOSR 71-2006, and by NSF MCS 75-23333.
Copyright © 1976, American Mathematical Society

772

STABLE QR UPDATES 773

reorthogonalization, and elementary two-by-two reflectors (or Givens matrices). The

Gram-Schmidt process is in essence an algorithm for appending columns. Reorthogonal-

ization is used to insure numerical stability, that is to preserve (near) orthogonality of

the columns of the computed Q. There are actually two distinct algorithms for the

general rank one update, and each has implications for the special updates. One algo-

rithm, which will not be described in detail, uses Givens matrices to obtain an inter-

mediate problem of appending a column; after the Gram-Schmidt process is applied the

initial transformations must be undone. We shall present a slightly more efficient algo-

rithm which uses the Gram-Schmidt process first, and then Givens matrices, to reduce

the problem to that of appending a row. We then observe that the algorithm given in

[2] for appending a row applies also to the Gram-Schmidt QR factorization. The algo-

rithm for the stable deletion of rows is essentially the reverse of that for appending a

row, but the arguments involved seem rather subtle.

In the next section we give a heuristic discussion of the reorthogonalization pro-

cess. This is followed in Section 3 by a description of the updating algorithms. Sec-

tion 4 is devoted to an error analysis of the reorthogonalization process. This allows

us to set certain parameters in the ALGOL codes of Section 5, where some numerical

results are also presented.

We shall use the Householder notational conventions [5], with the addition that

RmX" denotes the set of real m x n matrices. Also, || • || refers to the Euclidean vec-

tor norm, as weU as to its induced matrix norm: \\A\\ = max{||/lx||: ||x|| = 1} for A
G Rm x"

2. The Gram-Schmidt Process, With Reorthogonalization. We first recall the

basic step of the Gram-Schmidt process. Let

Q = (qx,q2,...,qn)GRmX" (m > n)

have orthonormal columns, so that QTQ = In, and let v G Rm. We seek vectors q G

Rm,r£R" and a scalar p so that

(Q, v) = (Q, q)(^ ^ and QTq = 0.

The last column is v = Or + qp and multipUcation by QT gives r = QTv. Setting v'

= qp, we now have

v'= v - Qr = (I - QQT)v.

If zzz > zz, we also insist that ||<7|| = 1 which gives p = \\v'\\, and then

q = v'/p if p gt 0.

The process fails if p = 0, in which case v = Qr is in the range of Q and (Q, v) =

(2(7, r) has rank zz. In particular, when zzz = zz the matrix Q is orthogonal so we must

have

q = 0 and p = 0.

774 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

The process, without normalization, uses 2zzzzz multiplications and about the same num-

ber of additions.

If m > zz and the process faUs, then, theoretically, any unit vector orthogonal to

the range of Q could be substituted for q. The corresponding numerical problem is

more subtle. If the process is carried out in the presence of rounding error, it is un-

likely that p would vanish exactly, but it could be quite smaU. The process is designed

to force QTv' to be small relative to ||u||, and indeed our error analysis will show this

to be true. But even if ||Qru'|| = e||u||, with e small, if p is extremely smaU, then the

normalized vector q = u'/p would satisfy only ||ßT<7ll = e||iz||/p; and the error relative

to ||tz|| could be very large. Thus, there could be a catastrophic loss of orthogonality in

the computed q.

To rectify this situation one reasons as follows. If ||iz'||/||iz|| is small, then numeri-

cal cancellation has occurred in forming v'. Thus, v', as well as q, axe likely to be in-

accurate relative to their lengths. If one attempts to correct v' by reorthogonalizing it,

that is by applying the process again with v replaced by v , then one gets (approximately)

s = QTv' and u" = v'- Qs = v - Q(r + s).

Comparing this with the desired result, v' = v - Qr, one sees that v' should be replaced

by u" and r by r + s. If ||u"||/||u'|| is not too small, then v" may be safely scaled to

give a satisfactory q. Otherwise the process is repeated.

Thus, if T) is a parameter satisfying 0 « 17 < 1, for instance 77 = l/\/2, we have

the tentative algorithm:

z-0 =0, v° = v,

for k = 1, 2, 3, . . . until ||u*|| > z?||i;fe_1||

s* = ôV-\ rk=rk-1+sk,

_uk=Qsk, vk=vk-l-uk,

r = rk, p = ||i/||, q=vk/p.

It is unlikely that this iterative reorthogonalization process would fail to terminate, for

ultimately rounding errors would force some iterate vk to have substantial components

(relative to ||ufc-1|l) orthogonal to the range of Q. However, this is only a "probabilis-

tic" argument and so in Section 4 we shall give a completely rigorous alternative.

3. The Updating Algorithms.

Givens Matrices. A Givens matrix is a matrix of the form

G — (1: 7 = cos 6, a = sin 6 ;
\o -y)

G is orthogonal and symmetric and det G = -1. If x = (%x, %2)T, then Gx is the reflec-

tion of x in the line which meets the axis %x > 0 in the angle 6/2. The angle 6 can be

chosen so that

Gx = rex =(t,0)t, t = ±||x||.

STABLE QR UPDATES 775

If %2 = 0, we take 6 = 0 so that y = 1 and a = 0. Otherwise, we compute

zj = max{IÉ,u KaI}, M = ju«pt{(*,/í02 +(!-2lp)2],

t = ±|t|, y = %xh and a = %2¡r.

This computation of |t| = ||x|| avoids artificial problems of overflow and underflow; a

corresponding device will be used to compute the length of any vector. The sign of r

remains unspecified.

The computation of z = Gy, y = (r\x, r¡2)T, may be done rather efficiently as

follows. First compute v = a/(l + 7), and then

7T?i + 07?2 \

"foi +?i)-'?2/

If G is applied to a 2 x zz matrix in this way, the cost is 3« multiplications and addi-

tions, instead of the usual 4zz multiplications and 2zz additions. Finally, the sign of r

is chosen so no cancellation occurs in the formation of v.

r = MsignÇj, sign £ =

Of course, by a trivial modification, G can be chosen so Gx is a scalar multiple of

the second axis vector e2 = (0, l)T. Also, we shall actually use zz x n Givens matrices

G¡ 1 which deviate from the identity only in the submatrix G formed from rows and

columns i and /.

General Rank One Updates. Let

¿ = QReRmX" (m>n), »GR" and v e Rm.

Observe that

A=A +uuT = (Q, v)l 1

Step 1. Apply the Gram-Schmidt process (with reorthogonalization) to obtain

(Q,v) = (Q,q)(V QTq = 0, \\q\\ = \.
\0 p)

We then have

A = (Q, q) QR,

and Q has orthonormal columns.

Step 2. Choose Givens matrices Gn +l, Gn_x „,..., Gx2 so that

776 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

That is, choose the G¡ i+x (i = zz, zz - 1, . . . , 1) to successively introduce zeros into the

vector from the bottom element through the second. The matrix G is orthogonal. The

(zz + 1) x zz matrix

°C*)-c»-°.(o"H
is upper Hessenberg (= almost triangular), and so is

GR =R' + rexuT= R.

Moreover, by the orthogonality of G, the matrix QGT = QGn n+x ■ ■ ■ Gx 2 = Q has

orthonormal columns and A = QR.

Step 3. Choose Givens matrices 77 j 2, 7723, . . . ,Hnn + x to successively annihi-

late the subdiagonal elements of R, giving

. (*\

HR z=Hn,n+l ' ' #1,2^ ~\ñT I

with 7? upper triangular. Then

QHT = QHxa--Hnn + x=-{Q,q)

has orthonormal columns and

A = (Q,q){ TJ = QR,

as required.

This algorithm uses approximately 2(1 + 3)mn + 3n2 multiplications and addi-

tions, where / is the number of orthogonalization steps (/ - 1 z-eorthogonalizations).

The algorithm appears not to be valid for zzz = n, but in this case it actually simplifies.

For then Q is orthogonal, and so

A~=Q(R +ruT), r = QTv.

Steps 2 and 3 apply, with one fewer Givens transformation each, to achieve the result.

Deleting a Column. Let

A=QRERmXn (m> n)

and let a be the /cth column of A, so that

A=(Ax,a,A2) = Q(Rx,r,R2).

Then

a = Qr and 1= {Ax, A2) = Q{RX, R2) = QR.

The matrix R is upper Hessenberg. For instance, when zz = 6 and k = 3, we have

STABLE QR UPDATES 777

R

IX X X X X \

X X X X '

XXX

XXX

\ x:/

where x denotes a possibly nonnull element and the elements not indicated are null.

Thus, only Step 3 is needed, and this simplifies. We choose Givens matrices Hk k+x,

Hfc+l,fc + 2' Hn_x n so that

777? =77,
R

n—l ,n Hk,k+lR -

with 7? upper triangular. Then

QHT = QHkk+x ■■Hn_Xn=(Q,q)

has orthonormal columns and A = QR, as required.

This algorithm uses about 3[m + (n - k)¡2](n - k) multiplications and additions

together with mk more if, as will be done in our ALGOL code, the deleted column vec-

tor a = Qr is retrieved.

Inserting a Column. Let

A=(AX, A2) = Q(RX, R2) = QReRm x("-»> (zzz > n)

with Ax G Rm x(fc-1) and A2 G r« *(»-*>. if the vector a G Rm is inserted "between"

Ax and ,42, it becomes the /cth column of

'R.

A=(Ax,a,A2) = (Q,a)\

We apply Step 1 to get

0 #2

0T 1 0T,

iQ. a) = iQ. q)[
\° P.

QTq = 0,

Then

iQ, q)\
Ri r R2\ ^~

,0J P oT,
= QR,

where R is of the form (zz = 7, /c = 3)

x x x x x x x

x x x x x x

x x x x x

R = x xxx

x xx

x x

x

778 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

Step 2 is consequently simplified and Step 3 is not needed. We choose Givens matrices

G„-i,n> Gn-2,n-l> • • • >Gfc,»c+l so that

GR = Gk,k+i ■Gn_xJ^R

is upper triangular. This fills only the diagonal positions in columns zz, zz - 1,... , k + 1.

Then

QGT = QGn_x^--Gkk + x=-Q

has orthonormal columns and A = QR, as required.

This algorithm uses approximately 2lmn + 3[zrz + (zz - k)/2](n - k) multiplica-

tions and additions.

Inserting a Row. Let

A =QReR{m~i)x" (m>n) and aGR".

Without loss of generality we may append aT to A. Then

_ (A\ ÍQ o\//T

,aT \0T \\aT.
QR.

Here Q already has orthonormal columns so Step 1 can be avoided. So can Step 2

provided Step 3 is altered only slightly. We choose Givens matrices Hx n+x, H2 n+x,

■ ■ ■ 'Hn,n+l so tnat

/ R
HR ~Hn,n+l ' ' ' Hl,n+lR ~

with R upper triangular. Then

QHT = QHXn + x ■Hnin + 1=iQ,q)

has orthonormal columns and A = QR, as required.

This algorithm uses approximately 3(zzz + zz/2)zz multipUcations and additions.

Deleting a Row. Again, we may delete the last row. Let

A=() = ')r G RmX" {m > n)

with

Now also,

«^-.W-v

A_ Q °\R'

aT)\qT \KoT/

STABLE QR UPDATES 779

Apply Step 1, the Gram-Schmidt process (with reorthogonalization), to obtain

\dT lj"V o)\0 pf

The first iteration simplifies, since

r = {QT,q)() = q,

and then

"(:>■(:)-(;)■-(,:,}

Since \\q\\2 + a2 = 1, we have

p2=IIÔ<7l|2 +{l-qTq)2 =qT{I-qqT)q+{\-qTq)2

= 1 -qTq = op.

If p =£ 0, then a = p. If p = 0, then qTq = 1 ; and since <7r<7 + a2 < 1, we have a =

p in any case. Step 1 thus provides

Hence, we have

(;M; %)
We now choose Givens matrices Hnn + l, Hn_x n+l, . . . ,77, n+1 so that

(qT,p)HT = (qT,p)H„,n + l ' ' #1,»+1 S(°V).

Moreover, r = ± 1 since orthogonal transformations preserve length. Now the matrix

(; :M; •;)
has orthonormal columns and so ¿z = 0. Finally, we have

with 7? upper triangular, and

/ j\ /ß oV r\ íqr\

it W ±i/W77 \7T

as required.

780 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

This algorithm uses about 2(1 + \)mn + 3zz2/2 multiplications and additions,

where / is the number of orthogonalization iterations.

4. Construction of the Orthogonalization Code.

Lemma 4.1 (On Matrix by Vector Multiplication). Let ieRmX",x£ R"

and let y G Rm be the result of the algorithm

^o=0,

fork = 1,2,... ,n

yk =yk-i +akh +ek>

y = yn>

in which the (error) vectors {ek}" satisfy

\\ek\\<oc\\yk_x\\+ß\\ak\\\^k\.

Then y = Ax + e with

Hell < [(zz - l)a + min{zzz1/2, zz1/2}|3](l + a)"-1 Mil 11*11-

Proof. By induction on k,

k k

yk=AXk+Zej> xk=-(Çx,...,ïk,0,...,0)T, \\yk\\<\\Axk\\+Z\\ej\U
i i

\\ek+,|| <a\\Axk\\ + fl\ak+,11 \ïk+l\ + a £ fle,«

and

Z UejW <a\\Axk\\ + ß\\ak+x\\\Hk+x\ + (I +a)Z\\ei\\
i i

<a¿(i +a)k-'\\AxfVi +ß Z 0 + «)*+wlk;lll£/l
i i

/ k k+l \

<(1 + o¡)*(a£M*/||+|3¿ llflyllllyl).

The result now foUows from

e = Z ef> WAxjW < Mil \\X,W < IMII 11*11
i

and

« / n \l/2

Z Ik/ll ll/l < \\A\\F\\x\\, \\A\\F = (Z II«/"2) < minizzz1/2, zz1/2}|L4||.

Applications. If y, a and £ are floating point vectors and scalar, respectively, and

y' = y + a% + e' is computed in floating point arithmetic [10], [1], [6] then a typical

element satisfies

STABLE QR UPDATES 781

r?' = T? + a.% + e' = r?(l + ô") + a%(\ + ô)(l + 5'),

where ô, ô' and S" are rounding errors; thus

e' = T?Ô" + a£(5 +ô' + 55').

We assume rounded arithmetic operations and denote the basic machine unit by

S0 (=2~). Quantities which are in practice only slightly larger than §0 will be denoted

by Sj, 52, 63, ... ; in the same vein we put 5_j = S0/(l + 50). When £ = 1 (vector

addition), we have 5=0.

a. (Weak) Single Precision (possibly large relative error in addition). Here we

have |5 !<$_,, |5'| < 350/2 and |5"| < 350/2. Thus,

le'l < |o0|t?| + f 50|a?|, 5¿ =50 (l + J5_A

Hence, in Lemma 4.1 we can take

K\\<jS0\\yk-1\\ + j 5'0\\ak\\ Ifel

to obtain y = Ax + e with

Hell < \[3(n - 1) + 5 min{zzz1/2, zz1/2}]5,|L4|| ||x||

and

5i=ôo(1 + fôo) .

b. 7zzzzez- Products Computed in Double Precision (followed by rounding to single

precision). If y is the unrounded vector, then Lemma 4.1 applies, with

\\ek\\<\o2o(\\yk..x\\ + \\ak\\\%k\)f

to provide a bound for \\y — Ax\\. The double precision vector y is then rounded to

yield the single precision vector z for which ||z -_v|| < 50||j>||. From the triangle in-

equality it foUows that z = ^4x + / with

||/||<50|L4x|| + |(zz + minim1/2, «x/2 >)ôl il^4 II llx||

and

52=52(l+50)(l+|52) .

These bounds, which do not appear in [10], [11], [1], [9] for instance, are

basic to our further analysis.

In the following the Wilkinson symbols fl and fl2 indicate the use of (weak) single

precision and accumulated inner products, respectively.

Theorem 4.1. Let Q G Rm x" (m > n) and v G Rm have floating point entries,

and let the vectors {vk}ô be computed from the algorithm:

782 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

U° = V,

fork= 1,2,3, .. .

sk = ñ2{Q V"1),

uk = ñ(Qsk),

vk = vk-1-uk.

If

Q'Q=I + E, \\E\\<e, 7 = (1 +e)1/2,

a>|75 and ß = e + |(zz1/2 + 1)2T25,

where 5 (in practice only slightly larger than the basic machine unit 50) is defined be-

low, then the following inequalities hold:

1. llßV + 1||<a||>/||+0||ßV||;
2. \\vk+l\\ < [||uk||2 -(1 -e)||ßW]1/2 +a||ufc|| +ß||ßV||;

3. ||u*+1|| > [\\vk\\2 -(1 + e)||ßV||2]1/2 -a||-/|| -/3||ßV||

provided y\\QTvk\\ < \\vk\\.

Likewise, ifñ2 is replaced by fl, and

a>\(m^2 + 1)2725.

Proof. We may suppose k = 1. We elaborate only on the fl2 case, putting r =

s' and u = u'. From the applications of Lemma 4.1 we have

with

and

r = qtv + c, u = Qr + e, v'-v-u+f,

Hell < 50||ßru|| + |(»zz + zz1/2)52||ß|| IMI,

ô3=so(l +ôo)(1 + fs2) , ||e||<y(3zz + 5zz1/2-3)51||ß||||r||

ru < |di«ii < Hun).

Elimination of u from the above equalities and inequalities gives

r = QTv + c, v' = v-Qr+g,

with g = e - / and

IWKjfioNI +-5Ü^MßlllMI.

(We have actually used a slightly sharper bound for ||e|| to avoid introducing 54.)

Eliminating r in a similar manner, we find v' = (I - QQT)v - h with h = Qc + g,

STABLE QR UPDATES 783

IIA|l<fs4IM| + |(w1/2 + i)%||0||||ßru||5

ô4 =50 +(m +n"2)323 (l + ^L±JrÙJl^0 + e)

and

ôs =S0(1 +60)(l +f ô0)"-

In the single precision case a corresponding rather precise bound is

HAH < § MÖHK™1'2 + l)2llßHNI + (n112 + l)2llßrt»ll]

with

/ 3 . W, , 3zz + 5/z1/2 c \
56=S0(l + 2SoJ i1+—1-5»/'

and we now define

5 = max{54,5S,56}.

Since

QTv' = QTv - (I + E)QTv - QTh = -EQTv - QTh,

we obtain the first bound by taking norms and using ||ß|| < 7. The remaining bounds

follow from

iiii/ii-ii(/-ßßr)uin<ra,

\\(I - QQT)v\\2 = Hüll2 - ||ßru||2 4 (QTv)TEQTv

and

|(ßru)r£ßri;|<||£||||ßru||2.

This completes the proof.

The quantities 5fc/50 (k > 0) are nondecreasing functions of 50, zzz, zz and e. For

instance, if 50 < 5 ■ 10~7, zzz < 105, zz < 10s and e < 1 we have 5 < 1.1150.

We shall now apply Theorem 4.1 to construct the orthogonalization code. We

shall assume that the numbers a, ß and e are not extremely large. Restrictions on their

size wiU be expressed in the form of certain "r-conditions" which wiU hold for a wide

range of practical cases. We shall see that the (provable) attainable limiting precision

of the re orthogonalization process is determined by the (minimal) value of a. In prac-

tice this is about 350/2 when accumulated inner products are used and 3zzz50/2 other-

wise.

If u # 0 and ||ßTu||/||i>|| < £ < 1/7, then Theorem 4.1.3 implies

\\v'\\l\\v\\> [l-(7l)2]1/2-a-/^.

784 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

The right side is positive if and only if

<K£) = iß2 + 72)1/2?2 + 2aßC - (1 - a2) < 0.

Equivalently, by Descartes' rule, we must have a < 1 and

£<f =
I -a2

[(1 -a2yy2 + ß2]1'2 + aß'

the positive zero of i//. Hence, by Theorem 4.1.1, a < 1 and | < % imply

\\QTV\\ < , = dt, = <* + %
llü'll ^S>-^- [\-(y%)2]'l2-a-ß%~

The function

V [0, ?) — & +00), | = a/(l-a),

is strictly increasing with reciprocal inverse function

1 = aß(l +g)2 + £{ß2(l +£)2 + T2f£2 -q2(l +g)2l)'/2

^-^(O ?2-a2(l+?)2

The fixed points of <p satisfy

„(g) = |2 [(7£)2 - 1] + (1 + í)2(a + fë)2 = £2.//(?) + x(l) = 0,

and the polynomial x has positive coefficients. By Descartes' rule zr can have at most

two positive zeros. Now zr(0) > 0 and zr(|) > 0. For the limiting values a = ß = 0

and 7 = 1 we have zr(£) = £2(£2 - 1) and the derivative zr'(£) = 2£(2£2 - 1); hence,

7T'(l/\/2) = 0 and zr(l/V2) = -% < 0. For "general" values of a, ß and y we insist

that 7t(1/V2) < 0, that is

r, = e + (3 + 2v/2)(V2a + ßf < 1.

This T-condition implies that <p has exactly two fixed points %* and £** for which j- <

fying

£* < £** < %. If the algorithm of Theorem 4.1 is started with any vector v° ¥= 0 satis-

HöV||/Hw0ll< *<><***.

then it follows from the monotonicity and continuity of ip that

\\QTvk\\/\\vk\\ < %k = ¿Xk-i) ^i* (k^ -)•

For practical values of a, ß and e the difference equation %k+x = v(£k) is extremely

"stiff.

To set a sharp termination criterion we shall ultimately need a rather precise up-

per bound £+ for £*. For now suppose that

%+ = 0a > £* with 6 > 1

as yet unspecified. From the above we may terminate the iteration when

STABLE QR UPDATES 785

[o||ü*-1|l+ffllßV-1|l]/H«*||<{+,

since the left side is at most £fc. Equivalently, we may terminate when

Hi^'Ml + wlIßV-'lKfllltz*!!, w = ß/a.

The termination parameters (co, 0) wUl be specified by the user. Increasing a corre-

sponds to decreasing co, or e, and a weaker accuracy requirement.

We now investigate the possibility of nontermination. If ||ßTufc||/||izk|| > £+ then

||ßri/"'||/||u*-'|| > ^(t) (0 < / < zz),

where yr1' is the /th compositional power of <^-1^. In other words

||uk-'|| < ||ß V-/||/^(-z)(?+) (0 < / < zz).

Then, by induction using Theorem 4.1.1,

rVll< 110 V|| n [ß + «/V~°tt+)] •
i

In particular

?+l|ukll/llu°ll <ypk, P=ß + <*/^(-1)(£+).

Hence, if p < 1 and the termination criterion continually fails to be satisfied, then ufc

—>0.

Our explicit expression for i/-1^ provides the means for studying p. The appar-

ent difficulty in guaranteeing that p < 1 lies in the fact that if £+ is extremely close

to £* (=a), then the denominator

(t)2 -a2(l +£+)2 =a2[02 -(1 +0a)2]

can become extremely small. We now choose 0 conveniently to make the term in

brackets equal to unity. This gives

0 =((2-a2)1'2 +a)/(l -a2)

which is about >/2 for small a. Some simple estimates then show that p < 1 provided

t2 = 0[(1 + e/2)a + (0 + 1)(1 + a)ß] < 1.

In fact p < r2, so in practice p is substantially smaller than unity. Finally, the condi-

tion that £+ > |* is impUed by zr(0a) < 0, which reduces to

T3 s (1-+ e)0 V + 0(2 + 0aXl + 9a)2ß < 1.

The practical reorthogonaUzation process wUl thus either terminate quickly or

else we shaU soon have ||ufc|| < a||u°||, where a > 0 is a parameter somewhat smaller

than the basic machine unit 50 (for instance a = 50/10). In this case vk is certainly

indistinguishable from rounding error; and if vk =£ 0, we can legitimately replace vk by

||i/He,, where the axis vector e¡ is chosen so the /th row ejQ = (QTe)T of ß has

minimal length. (If iz* = 0, we replace vk by e,, but put r = rk and p = 0.) Our

786 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

final, and most stringent, T-conditions will guarantee the convergence of this alternative

procedure.

First, we have

and then,

That is

\\Q\\2F = Z HO7*/!!2 >m\\QTe,\\2;

m1/2||ßre/||^||ß||F<zz1/2||ßll<7"1/2.

Ilß7'e/||/|k/||<7("/"')1/2.

We now obtain a lower bound, % , for £**. Since zr(£**) = 0, we have, from the

quadratic formula,

(|**)2 = l + {l-4[(q+^*)7(l+S**)]2}1/2

272

Since £** < \ < I/7 < 1, 7 < 1 + e/2 and s/T^rj > 1 - 7? for 0 < 77 < 1, we find

«. > ri-4(2+e)(a + g)2]1/2 a
[1 + e ' J ç '

The alternative procedure thus converges if y(n/m)1^2 < £-, or equivalently

t4 = (1 + e)2zz/zzz + 4(2 + e)(a + ß)2 < 1.

For practically small values of a, ß and e this r-condition is surely satisfied if zzz is suffi-

ciently greater than n. However, when reorthogonalization is applied, we always have

zzz > zz and some trivial rearrangement shows that the alternative procedure converges

for all such zzz if

t4 = 2{n + l)[e + 4(a + ß)2] < 1.

For practical values of a and ß this is roughly equivalent with 2(zz + l)e < 1.

For minimal a (= 37Ô/2 or 3(zzzI/2 + l)2725/2) the numbers rk aie increasing

functions of 50, zzz, zz and e. The T-conditions are aU satisfied if, for instance, 50 <

5 • 10-7, zz < 103, zz < m < 104 and e < 10-4. Also, we can choose e = zz maxleJ,

so in these cases we have e < 10-4 provided max|e¿| < zzô0.

Although we shall not pursue the matter in detail, we wish to show how Theo-

rem 4.1.2 can be used to obtain an upper bound for Hß^izll/Hizll from a lower bound

for ||d'||/||i>||. Thus, assume a, ß and e are sufficiently smaU, fix 77 so that a + ßy < 77

< 1, and suppose

77 < Wv'WlWvW, F = \\QTv\\l\M\.

Then

7?<[1 -(l-e)?2]I/2 +a+ß?,

STABLE QR UPDATES 787

or equivalently

(1 - e + ß2)J2 - (77 - a)ßj - [1 - (77 - a)2] < 0.

Hence,

\\QTv\\ < (v-a)ß+ {(l-e)[l-(77-g)2] +|32}1/2_

INI 1-e + ß2 *'

As a, ß and e tend to zero we have £ —> (1 - 7?2)1/2. Theorem 4.1.1 then yields

the bound

||ßVil < a + ßk a + (\-y2)ll2ß

Hull , r¡ 7?

This indicates that our termination criterion with

co = 0, 0 = I/77, 0«t?< 1,

is not unreasonable, especially when a and ß are of comparable size. On the other

hand, when accumulated inner products are used, we may have a « ß for large zz and

we would have to take 77 = 1 to guarantee a limiting precision of £+ = \/2a.

5. ALGOL Procedures and Numerical Results. The principal practical results of

this paper are summarized in the following package of ALGOL procedures.

comment: ALGOL procedures for updating Gram-Schmidt QR factorizations;

begin

integer base; real Inbase;

real omega, thêta, sigma; label fail;

comment: These are global entities, base and Inbase, the base of the machine arith-

metic and its natural logarithm, are used in the procedure length. The others are

relevant to the procedure orthogonalize. omega and theta are used to specify the

termination criterion and sigma is used to test for restarting. See Section 4. The

error exit fail is taken if termination is not obtained in a reasonable number of

iterations;

real procedure length(n, x);

value n; integer zz; real array x;

comment: Computes the accumulated Euclidean length of x[l : n].

Can be coded in machine language for greater efficiency;

begin

integer k; real s, t; double ss, tt;

ss := 0; t := 0;

for k := 1 step 1 until zz do t := max(t, abs(x[k]));

if t > 0 then

begin

r := base \ entier(ln(t)lInbase);

fork := 1 step 1 until zz do

begin

788 J- W. DANIEL, W¡ B. GRAGG, L. KAUFMAN AND G. W. STEWART

tt := x[k]/t;ss := ss + ttt2

end k

end;

s := ss; length := t x sqrt(s)

end length;

procedure orthogonalize(m, zz, Q, v, r, rho);

value m, zz; integer zzz, n; real rho; real array Q, v, r;

comment: Assuming ß[l : m, I : zz] (m > zz) has (nearly) orthonormal columns this

procedure orthogonalizes v[l : zzz] to the columns of Q, and normalizes the result if

zzz > zz. r[l : zz] is the array of "Fourier coefficients", and rho is the distance from

v to the range of Q. r and its corrections are computed in double precision. For

more detaü see Sections 2 and 4;

begin

Boolean restart, null; integer z, /, k; real rho 0, rho 1, t;

double ss, qq, vv; real array u[l : m], s[l : n] ;

label again, standardexit;

restart := null := false;

for / := 1 step 1 until zz do r\j] := 0;

rho := rhoO := lengthen, v);

k :=0;

again:

comment: Take a Gram-Schmidt iteration, ignoring r on later steps

if previous v was null;

for z := 1 step 1 until zzz do « [/] := 0;

for/ := 1 step 1 until zz do

begin

ss := 0;

for i := 1 step 1 until zzz do

begin

qq '■= Q[i, j] ; vv := v[i] ;ss := ss + qq x vv

end z;

s[j] := t := ss;

for i := 1 step 1 until zzz do u[i] := u[i] + Q[i, j] x r

end ;';

if —i null then

for / := 1 step 1 until zz do /•[/'] := /•[/] + s[j] ;

for i := 1 step 1 until zzz do v[i] := v[i] - u[i] ;

rho 1 := length(m, v); t := length(n, s);

k := k+ 1;

comment: Treat the special case zzz = zz if necessary;

if zzz = zz then

begin

for i := 1 step 1 until m do v[i] := 0;

STABLE QR UPDATES 789

rho := 0; go to standardexit

end;

comment: Test for nontermination;

if rho 0 + omega x t > thêta x rho 1 then

begin

comment: Exit to faU if too many iterations;

if k > 4 then go to fail;

comment: Restart if necessary;

if —i restart A rho 1 < rho x sigma then

begin

restart := true;

comment: Find first row of minimal length of Q;

for i := 1 step 1 until zzz do u[i] := 0;

for; := 1 step 1 until n do

for i := 1 step 1 until m do u[i] := u[i] + Q[i, /'] 12

t :=2;

for i := 1 step 1 until m do

if u[i] < t then begin k := i; t := u[k] end;

comment: Take correct action if v is null;

if rho 1 = 0 then begin null := true; rho 1 := 1 end;

comment: Reinitialize v and k;

for i := 1 step 1 until zzz do v[i] := 0;

v[k] :=rho\;k := 0

end;

comment: Take another iteration;

rho 0 := rho 1 ; go to again

end;

comment: Normalize u and take the standard exit;

for i : = 1 step 1 until zzz do v[i] := v[i]/rho 1;

if —i null then rho := rho 1 else rho := 0;

standardexit:

end orthogonalize;

procedure computereflectorix, y, c, s);

real x, y, c, s;

comment: Computes parameters for the Givens matrix G for which

(x, y)G = (z, 0). Replaces (x, y) by (z, 0);

begin

real t, u, v, mu;

u := x;v := y;

if v = 0 then begin c := 1 ; s := 0 end

else

begin

790 J. R. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

mu := max{abs{u), abs(v));

t := mu x sqrt((u/mu)\2 + (v/mu)12);

if u <0 then t := -t;

c := u/t; s := v/t; x := t; y := 0

end

end computereflector;

procedure applyreflectoric, s, k, I, x, y, j);

value c, s, k, 1; integer k, I, j; real c, s, x,y;

comment: When caUed with x := x[j] and y := y[j], this procedure replaces the two

column matrix (x[k:l], y[k:l]) by (x[k:l],y[k:l])G, where G is the Givens matrix

determined by c and s. Uses the Jensen device [8] ;

begin

real t, u, v, nu;

nu := s/(l + c);

for j := k step 1 until / do

begin

u := x; v := y; x := t := u x c + v x s; y := (t + u) x nu - v

end /

end apply reflector;

procedure rankoneupdate(m, n, Q, R, u, v);

value zzz, n; integer zzz, zz; real array Q, R, u, v;

comment: Updates the factorization A = ß[l : m, 1 : «]7<[1 : zz, 1 : zz] (zzz > n)

when the outer product of v[l : zzz] and u[\ : zz] is added to A;

begin

integer i, j, k; real c, s, rho; real array r[l : zz] ;

orthogonalize(m, zz, Q, v, t, rho);

computereflector(t[n], rho, c, s);

applyreflector(c, s, n, zz, R [zz, zz], rho, j);

applyreflector(c, s, 1, zzz, Q[i, zz], v[i], i);

for k := n - 1 step - 1 until 1 do

begin

computereflector(t[k], t[k + 1], c, s);

applyreflectoiic, s, k, n, R [k, j], R [k + 1, /], ;');

applyreflectoric s, \,rr 2[U k], Q[i, k + \], i)

end /c;

for/ := 1 step 1 until n doR[l,j] :=R[l,j] + t[l] x u[j];

for k := 1 step 1 until zz - 1 do

begin

computereflector(R [k, k], R [k + 1, k], c, s);

applyreflectoric, s, k + 1, zz, R [k, j], R [k + 1, /], /);

applyreflectoric, s, 1, zzz, Q[i, k],Q[i, k+ 1], i)

end k;

STABLE QR UPDATES 791

computereflectoriR[n, n], rho, c, s);

applyreflectoric, s, \,m, Q[i, zz], v[i], i);

end rankoneupdate;

procedure deletecolumn(m, n, Q, R, k, v);

value zzz, n, k; integer zzz, n, k; real array ß, R, v;

comment: Updates the factorization A = ß[l : zzz, 1 : zz]/? [1 : zz, 1 : n] (m > zz) when

the /cth column of A is deleted. Returns the deleted column in u[l : zzz] ;

begin

integer /', /, /; real c, s, t;

for i := 1 step 1 until m do v[i] := 0;

for / := 1 step 1 until »c do

begin

t:=R[l,k];

for /' := 1 step 1 until zzz do v[i] := v[i] + Q[i, l] x t

end /;

for / := k step 1 until zz - 1 do

begin

computereflector(R [I, I + 1], R [I + 1, / + 1], c, s);

applyreflectoric, s, I + 2, n, R[l, j], R[l + 1,/],/);

applyreflectoric s, 1, zzz, Q[i, I], Q[i, I + 1], i)

end /;

for / := k step 1 until zz - 1 do

for i := 1 step 1 until / do 7? [i, /] := R[i, j + I];

for i := 1 step 1 until n do R [i, n] := 0;

for i := 1 step 1 until zzz do Q[i, n] := 0

end deletecolumn;

procedure insertcolumn(m, zz, Q, R, k, v);

value m, zz, k; integer zzz, zz, k; real array Q, R, v;

comment: Updates the factorization A = Q[\ : m, 1 : zz - l]R[l : n - 1, 1 : zz - 1]

(zzz > n) when the vector v[l : m] is inserted between columns k - 1 and k of A;

begin

integer i, j, I; real c, s; real array u [1 : zz] ;

for j:= n - I step -1 until k do

for i := 1 step 1 until / do R [i, / + 1] := R [i, j] ;

for / := k + 1 step 1 until zz do R [j, j] := 0;

orthogonalize(m, n - 1, Q, v, u, u[n]);

for i := 1 step 1 until zzz do Q[i, zz] := v[i] ;

for / := n - 1 step -1 until k do

begin

computereflectoriR [/],«[/+ 1], c, s);

applyreflectoric s, I + 1, n, R[l, /], R[l + 1,/],/);

applyreflectoric, s, 1, zzz, Q[i, I], Q[i, I + 1], i)

792 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

end /;

for i := 1 step 1 until /c do R[i, k] := u[i]

end insertcolumn;

procedure insertrowQn, n, Q, R, k, u);

value m, n, k; integer m, n, k; real array Q, R, u;

comment: Updates the factorization A = ß[l : zzz - 1, 1 : zz]7?[l : zz, 1 : zz]

(zzz > zz) when the vector m[1 : zz] is inserted between rows k - 1

and k of A ;

begin

integer i, /, /; real c, s; real array u[l : zzz] ;

for i := 1 step 1 until m do v[i] := 0; v[k] := 1;

for / := 1 step 1 until zz do

begin

for i := zzz - 1 step -1 until k do Q[i +1,1] := Q[i, I] ; Q[k, I] := 0;

computereflectoriR[I, I] ,u[l], c, s);

applyreflectoric, s, I + 1, zz, R[l, /], u [j], j);

applyreflectoric, s, 1, zzz, ß [/', /], v[i], i)

end /

end insertrow;

procedure deleterow(m, zz, Q, R, k, u);

value m, n, k; integer zzz, zz, »c; real array Q, R, u;

comment: Updates the factorization A = ß[l : zzz, 1 : zz]7?[l : n, 1 : n] (zzz > zz)

when the /cth row of A is deleted. Returns the deleted row in «[1 : n] ;

begin

integer i, j, I; real c, s, t; real array u[l : m] ;

for i := 1 step 1 until zzz do v[i] := 0; v[k] := 1;

orthogonalize(m, n, Q,.v, u, t);

for i := k step 1 until zzz - 1 do v[i] := v[i + 1] ;

for I := n step -1 until 1 do

begin

for z := k step 1 until zzz - 1 do Q[i, I] := Q[i + 1, /]

computereflector(t, u[l], c, s);

applyreflectoric, s, I, n, u [j], R [I, /], /);

applyreflectoric, s, 1, zzz - 1, v[i], Q [i, I], /);

Q[m, I] := 0

end /;

for/ := 1 step 1 until zz do «[/] := t x u[j]

end deleter o w;

procedure QRfactorirn, n, A, Q, R);

value m, n; integer m, n; real array A, Q, R;

comment: Computes a Gram-Schmidt QR factorization, ß[l : m, 1 : n]7î[l : zz, 1 : zz],

of A[l : zzz, 1 : n] {m> n);

STABLE QR UPDATES 793

begin

integer i, k; real array u[l : m] ;

for k := 1 step 1 until zz do

begin

for i := 1 step 1 until zzz do v[i] := A[i, k]; insertcolumn(m, k, Q, R, k, v)

end k

end QRfactor;

fail:

end Gram-Schmidt QR updating procedures;

Extensive tests with small matrices have been made to check the logic of our

codes. We report in detaU only the following larger tests with the view of obtaining

numerical experience with the inevitable problem of error propagation.

Experiment 1. To test the numerical stability of the procedure orthogonaUze, as

well as its dependence on the termination criterion, we have constructed numerical

Gram-Schmidt QR factorizations, Q„Rn, of the Hubert sections

77„ =(l/(z+/- 1))GR100X", n = 1,2, . . . , 100.

Since this is done by successively appending columns, no Givens transformations are

used and the propagation of rounding errors is due solely to the orthogonalization pro-

cess. Moreover, the (double precision) Frobenius norms

\\QnRn-Hn\\F and ||ßjß„ -IJF

are easUy updated. A slight and trivial extension of our error analysis shows that, if

the recommended termination pair (cj, 0) is used and the final scale factor p is com-

puted using an accumulated inner product, then we have

hôJô„-^iIf<^1/2ôo

with k essentially independent of m and zz. Our experiments were done on a Burroughs

6700 computer, for which 50 = 0.5/812. Table 1 gives an indicative selection of the

quantities

d\ = \\QnRn -Hn\\Fln^Ho, e~kn = ||ßjß„ -T^/n^ô«,,

for three different termination criteria (A: = 1,2, 3): (1) (co, 0) as prescribed in Sec-

tion 4 with minimal a and e = llßjß„ - 7„||F, (2) (co, 0) = (0, y/2) and (3) (co, 0)

= (0,10).

Table 1

zz ll 71 J2 T2 d3 e~3
_^_n__n_2_n_ n n_ n

20 0.26 0.90 0.25 1.08 0.25 1.7

40 0.27 1.03 0.26 1.68 0.27 54.0

60 0.26 0.93 0.26 1.42 0.27 44.1

80 0.23 0.90 0.23 1.28 0.24 38.2

100 0.21 0.95 0.21 1.25 0.22 34.2

794 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

In cases one and two, for zz > 2 and with only one exception, the number of

orthogonalization iterations was constant at two for small values of zz and three for

large zz. The jumps from two to three iterations occurred at zz = 12 and zz = 38, respec-

tively. Case three was similar except that only one iteration was used for zz = 2, and

the jump then occurred earlier, at zz = 26. A fourth run was made restricting the num-

ber of iterations to two (one reorthogonalization). For this we had

F4 > io10 for n > 45,

that is all orthonormality in the computed Qn had been lost.

In earlier runs we had set the restart parameter a equal to the basic unit 50.

From about fifty calls to the procedure orthogonalize two restarts were observed to

occur. Since restarting is expensive we have thus recommended a somewhat smaller

value of a, in order to give the probabalistic heuristic of Section 2 a fair chance. No

restarts were observed in our experience with the code as given (a = 50/10).

Experiment 2. We now consider updating the numerical QR factorizations,

QmRm, of the Hubert sections

//^(i/(i + /-i))6rX10

by appending and dropping rows. After obtaining the initial factorization of 77j 0 as

above, that is with the procedure QRfactor, we used insertrow to append rows up to

m = 50 and then deleterow to successively drop the last row and return to zzz = 10.

The recommended termination parameters were used consistently, with minimal a and

e = WQmQm ~Aollf Table 2 lists typical values of the magnified error norms

dm = WQmRm "«.Mo. em ~ WQmQm - hoW*0>

which no longer can be computed recursively. For ascending zzz we have also given the

quantities

dm =ln(rfm)/ln(zzz), em = ln{em)/ln{m).

Table 2

zzz

10

20

30

40

50

40

30

20

10

0.7

10.4

18.9

32.1

51.9

52.0

51.6

50.6

47.6

-0.13

0.78

0.86

0.94

1.01

3

37

65

88

123

122

120

118

106

0.54

1.20

1.23

1.21

1.23

STABLE QR UPDATES 795

For ascending zzz these results indicate error growth of roughly zzz in dm and mslA in

em. For descending zzz both errors are moderately decreasing.

Departments of Computer Science and Mathematics

University of Texas at Austin

Austin, Texas 78712

Department of Mathematics

University of California, San Diego

La Jolla, California 92093

Department of Computer Science

University of Colorado

Boulder, Colorado 80302

Department of Computer Science

University of Maryland

College Park, Maryland 20742

1. GEORGE E. FORSYTHE & CLEVE B. MOLER, Computer Solution of Linear Algebraic

Systems, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2306.

2. P. E. GILL, G. H. GOLUB, W. MURRAY & M. A. SAUNDERS, "Methods for modifying

matrix factorizations," Math. Comp., v. 28, 1974, pp. 505-535. MR 49 #8299.

3. PHILIP E. GILL, WALTER MURRAY & MICHAEL A. SAUNDERS, "Methods for com-

puting and modifying the LDV factors of a matrix," Math. Comp., v. 29, 1975, pp. 1051-1077.

4. W. B. GRAGG & G. W. STEWART, "A stable variant of the secant method for solving

nonlinear equations," SIAM J. Numer. Anal, v. 13, 1976.

5. ALSTON S. HOUSEHOLDER, 77ie Theory of Matrices in Numerical Analysis, Blaisdell,

New York, 1964. MR 30 #5475.

6. DONALD E. KNUTH, The Art of Computer Programming. Vol.2: Seminumerical Al-

gorithms, Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.

7. CHARLES L. LAWSON & RICHARD J. HANSON, Solving Least Squares Problems,

Prentice-Hall Ser. in Automatic Computation, Prentice-Hall, Englewood Cliffs, N. J., 1974. MR 51

#2270.

8. HEINZ RUTISHAUSER, Handbook for Automatic Computation. Vol. 1/Part a: Descrip-

tion of ALGOL 60, Die Grundlehren der math. Wissenschaften, Band 135, Springer-Verlag, New

York, 1967.

9. G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.

10. J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood

Cliffs, N. J., 1963. MR 28 #4661.

11. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

MR 32 #1894.

