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1. Introduction. The present paper may be regarded as a continuation of

[3]. In [3] we showed that if X is a Hunt process (i.e., satisfies Hunt's hypothesis

(A)) then there is a one-to-one correspondence between strictly increasing con-

tinuous additive functionals A of X (subject to certain finiteness requirements)

and Hunt processes Y with the same hitting distributions as X. This correspond-

ence is given by the relationship that Yis stochastically equivalent to t -> X[/r(f)]

where z is the functional inverse to A. In this paper we investigate this relation-

ship under the additional assumption that X satisfies Hunt's hypothesis (F)

as well as (A).

We begin by setting up a one-to-one correspondence between the appropriate

class of additive functionals and a certain class of measures (called smooth)

on the state space. This is described in §§4-6 (§§2 and 3 are of a preliminary

nature). This correspondence was set up by McKean and Tanaka [7] in the

case that X is Brownian motion; and our presentation is similar to theirs. §7

then relates this correspondence to processes Y with the same hitting distribu-

tions as X. Since X satisfies hypothesis (F) there exists another Hunt process X

called the dual of X (see §2 for definitions). It is natural to ask if given Y with

the same hitting distributions as X, then does there exist y with the same hitting

distributions as X and which is dual in some sense to Y. §§8 and 9 are devoted

to giving an essentially affirmative answer to this question.

2. Preliminaries. In the present paper we will adopt the terminology and

notation of P. A. Meyer [8] with only minor changes. In order to fix the notation

we review briefly the basic definitions. The state space £ is a locally compact

Hausdorff space with a countable base for its topology. (Meyer uses X instead

of E.) Let A be a point adjoined to E as the point at infinity if E is noncompact

and as an isolated point if E is compact. We write E = £u{A}. Let 38(08) be

the topological Borel field of E (E) and let j& (stf) be the a-algebra of universally

measurable subsets of E (E) that is, A is in (si) if it is in the completion of 38 (38)

with respect to all finite measures p on 08(38). Let SI* denote the space of all

maps (o* from [0, oo] into E such that a>* is right continuous and has left-hand
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limits on [0, oo), co*(oo) = A, and if co*(t0) = A then co*(r) = A for all t 2; f0.

As usual, X,(oi*) = X(t,co*) = co*(r) denotes the rth coordinate function and

(F°) denotes the cr-algebra of subsets of Q* generated by sets of the form

X,~ l(A) where A is in & and t£s(t< oo). The shift operators 0, are defined

on Q* by 0tco*(s) = co*(t + s). We assume that for each x in E we are given a

probability measure Px on Jr° satisfying:

(i) x -> PX(A) is ^ measurable for each A £ J^0; and

(ii) Px[X(0) = x] = 1 for all x in E.

Note that (ii) implies that PA is unit mass at the function co* which is identi-

cally equal to A.

For each finite measure p on 3$ we define P"(A) = JP*(A)|/(dx) for A in F°

and we then define 3F* to be the intersection over all such p of the P" com-

pletions of ^r0(^r°). Now let (Q0,^,P) be any sufficiently large probability space

and set Q = Q* x £20, & = 3F* x <8 (J5", = J^* x 0); and, at the risk of momentary

confusion, redefine = x {0,QO} and P" = P" x P. If co = (co*,co0) is a

typical point of O define the shift operator 6, by 6,co = 0((<a*,coo) =(0tco*,coo)

and also set X,(co) = X,(co*). It follows that x->Px(A) is stf measurable for each

A in & and that (t,co) -> X,(co) is jointly measurable with respect to^ x and

^. Here 3" denotes the Borel sets of [0, oo). A function T: Q -> [0, oo] is called

a stopping time if {T<r} is in for each t > 0, and for such

a stopping time !FT denotes the cr-algebra of all sets A in IF such that

An{T<t}e^, for all t > 0. We assume (in addition to (i) and (ii) above):

(iii) For any increasing sequence {T„} of stopping times with limit T we have

X(Tn)->X(T) almost surely on {T< oo}. Here and henceforth almost surely

(abbreviated a.s.) means almost surely with respect to each Px.

(iv) Strong Markov property. For each stopping time T, bounded measur-

able function F on Q, and A in ^T we have

£*{F(0rco);A} = £*{£*<r)(F);A}

for all x. Here £X(F;A) = ^FdP".

Using the terminology introduced in [3] a process X = (E,PX) satisfying

(i)—(iv) is called a Hunt process. Such processes are exactly those satisfying Hunt's

hypothesis (A) [5,1]. We will use the standard properties of such processes with-

out mention. See [4], [5], or [10]; also the required properties are outlined in

[3] and [8]. As usual Pt(x,dy) = Px(Xt e dy) is the transition function of X,

and we adopt the convention that any function / defined on E is extended to E

by setting/(A) = 0, unless explicitly stated otherwise. We letcr = inf{/ > 0:X, = A}

be the lifetime of the process. (Meyer [8] uses S in place of cr.)

If A is an analytic subset of E we let TA = inf{r > 0: X(t) £ A} be the first hitting

time of A, which is known [5] to be a stopping time. Also PX(TA = 0) is either

zero or one, and in the latter case x is said to be regular for A. More generally

if A is any set, x is not regular (irregular) for A if there exists a Borel set B con-
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taining A such that PX(TB > 0) = 1. A set A is said to be finely open if each

point in A is irregular for E — A. The collection of all finely open sets is a to-

pology on £ called the fine topology induced by X. See [10] for a discussion

of the fine topology. In particular it is not difficult to see that the finely open

Borel sets form a base for the fine topology.

Throughout the remainder of this paper we assume that X = (£,£*) is a

Hunt process which, in addition, satisfies Hunt's hypothesis (F) [5, III, p. 154].

We will now recall some of the consequences of (F) that we will use in the sequel.

There exists on £ a positive measure £ (we will write dx for £{dx)) finite on com-

pacts and positive on nonvoid open sets. In addition there exists another Hunt

process X = (E,PX) which will be referred to as the dual process. The basic

measure £, is excessive with respect to both X and X, that is, for A in #J

jdxP,(x, A) g Z(A);   JP,(A, x)dx g &A)

for each t > 0. Here P,(dy,x) is the transition function of X. Note the unusual

order of the symbols. We will follow the terminology of Meyer [8, part II, §6]

and designate quantities defined relative to X by the prefix "co." Thus we will

speak of coexcessive functions, the cofine topology, etc. This differs from Hunt's

terminology in which the prefixes "right" and "left" designate quantities defined

relative to X, and X respectively.

We now list the fundamental properties that we will use:

(a)  The space C0(£) is invariant under the semi-groups

P,/(x) =   \p,(x,dy)f(y);   P,f(x) =

where C0(£) denotes the continuous functions on £ that vanish at infinity.

(b) For each X S; 0 there exists a function Ux(x,y) on £ x £ such that the

potential kernels for X and X are given by

Ux(x,dy) = U\x,y)dy;   Ü\dx,y) = dxU\x,y)

where as usual

/»00 00

U\x,A)=       e~x,P,(x,A)dt;   Üx(A,x)= i e~x,P,(A,x)dt.
Jo Jo

The functions U\x,y) are separately lower semi-continuous in x and y and if

/ is a bounded stf measurable function vanishing outside a compact subset of £

then for X > 0 the functions

x-+ J U\x,y)f(y)dy,  y^j f(x)U\x,y)dx

belong to C0(£). Given a measure p we can then define the potential Uxp
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(copotential pU*) of p, which is a A-excessive (A-coexcessive) function. (L7 = U°

may be identically infinite.)

(c) Excessive (coexcessive) functions are lower semi-continuous.

(d) If A is an analytic subset of E then TA, the first hitting time of A, is a

stopping time for both X and X. Let Sx denote a non-negative random variable

that is independent of both X and X, and has an exponential distribution with

parameter X > 0. If we define

PA{x,D) = Px[X(TA)eD;   TA < SA] = Ex[e~XTA;   X(TA) e D]

and PA(D,x) in a similar fashion relative to X, then the following identity is

the basic consequence of (F):

PAU\x,y) = jpA(x,dz)Vx(z,y) = j U\x,z)PA(dz,y) = [/^(x.y).

See Hunt [5, III, p. 168]. Note that Hunt writes HA in place of P\.

(e) If </> is an excessive (coexcessive) function, then the following statements

are equivalent [5, III, p. 167]:

(i) (p is finite on a set dense in E.

(ii) (p is finite a.e. on E; almost everywhere refers to the basic measure c; unless

explicitly stated otherwise.

(iii) <p is locally integrable with respect to c;.

(f) The basic measure d; is positive on nonvoid finely (cofinely) open Borel

sets and hence if A in s/ has measure zero, then E — A is both finely and co-

finely dense in E. Thus if two excessive functions agree a.e. they are identical.

The cr-algebras #,*,#,, etc. are defined relative to X as ^'(*,Jr(, etc. are

defined relative to X. Since in general and ß"f need not be the same, the

fact that Tis a stopping time for X does not imply that Tis a stoppingtime for X.

Of course, if A is an analytic set then TA is a stopping time for both X and X,

and a similar statement holds for limits of such stopping times.

A set A c E is polar (thin) if A is contained in a Borel set B such that

PX(TB = oo) = 1 (PX(TB > 0) = 1) for all x in E. A set is semi-polar if it is con-

tained in a countable union of thin sets. These definitions differ slightly from

those given by Meyer [8, p. 159] but are equivalent to his under hypothesis (F)

(or more generally under Meyer's hypothesis (L); see [8, p. 160 and p. 163]).

In [5] Hunt uses the terminology negligible instead of polar. Meyer [8, p. 214]

has shown that a set is polar (semi-polar) if and only if it is copolar (cosemi-polar)

so that these concepts coincide for the two processes X and X. The following

result will be useful in the sequel.

Theorem 2.1. Let A be a Borel subset of E with compact closure contained

in E and let B (&) be the set of points which are not regular (coregular) for

Ac = E — A. Then B — B and B — B are semi-polar.



1964]     ADDITIVE FUNCTIONALS OF MARKOV PROCESSES IN DUALITY       135

Proof. Let F = B - B and note that every point that is either in F or co-

regular for F is coregular for Ac. Let I > 0 and define <bp(x) = Ex[e~XTr\

Arguing as in [5, III, Proposition 21.1] we have

o>£ = uxnF = uxP^nxF = pjcfcf

where HF is the natural /l-capacitary measure of F, which is concentrated on F

union the points coregular for F. Since PxAc(x,E) < 1 for x in F and Op g 1,

it follows that 0£<1 on F. Define F„ = {x eF:<bxF(x) g 1 - 1 /«} so that

F = {JF„. We claim that each F„ is thin. If y is not regular for F it certainly

is not regular for F„. If y is regular for F then ®F(y) = 1 and so y is not regular

for any F„. Hence each F„ is thin and consequently F is semi-polar. Dually

ß — B is cosemi-polar and hence semi-polar.

An argument similar to that above shows that if A is analytic then the set

of points in A which are not regular for A is semi-polar.

A non-negative measurable function c6 is called super mean valued if

Pt<p g cf> for all (> 0. It is easy to see that then P,c6 increases as t decreases to

zero and the limit c6* is an excessive function dominated by <f>. One calls <f>*

the (excessive) regularization of c6. The following result is due to Doob and will

be needed in the sequel; for a proof see [10, Chapter 9].

Theorem 2.2. Let {$„} be a decreasing sequence of excessive functions with

limit <p. Then (j> is super mean valued and it differs from its regularization

<t>* on at most a semi-polar set.

3. Exit sets. We will assume throughout the remainder of this paper that X

is a Hunt process satisfying hypothesis (F) on E with dual process X. We will

also assume that neither X nor X have any traps in E (x is a trap for X if

P*(T{x}c = oo) = 1). An open set G with compact closure g in E is said to be an

exit set if Ex{Tq^) and Ex{Tqc) are both bounded in x. For typographical con-

venience we will let G' denote gc = e— g whenever G is an exit set. The proof

of the following lemma is elementary and hence is omitted. See [6, p. 640].

Lemma 3.1. If A is a Borel set and if there exist t > 0 and ß < 1 such th a

Px(T^c >i)<ß for all x, then EX(TAC) is bounded.

The next theorem is the main result of the present section. Let p be a fixed

metric on E that is compatible with the given topology.

Theorem 3.2. There exist a countable collection {Gs;j ^ 1} of exit sets that

covers E and a Borel measurable function N from E to the positive integers

such that:

(i) x e GA-(X) for all x.

(ii) // K is compact then p(x,G^w) is bounded away from zero on K.

Proof. Let {iVj be a countable family of open sets with compact closures

forming a base for the topology of E. Define
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u,(x) = e-'P,(x,NJdt,

/•CO

«,(*) =   Jo e-'Pt(Nhx)dt

and set       = iVj n {u; < 1 - 1/;'} n {w, < 1 — Since u; and w; are

continuous (property (b) of hypothesis (F)) each Wu is open and E = [JWiJ

since there are no traps in E for either X or X. Moreover,

rVu cz Nj n {Uj ̂  1 - 1 //} n g 1 - 1 //} and it then follows easily from

Lemma 3.1 that each nonvoid WtJ is an exit set. Let {G„} be an enumeration of

the distinct nonvoid Wu. Clearly E = [JG„.

If we define

Hu = \y:p{y,Ge{) > jj,

then is open and U^,- = E. Let {K„} be an enumeration of the distinct non-

void Hij, and define as follows:

M(x) = inf{;:xeK,.},

m(k) = that i such that Vk = H^,

N(x) = m(M(x)).

It is evident that x eGNOt) for each x in £, and that x -* N(x) is Borel measurable.

Let K be a compact subset of £ and choose y'0 so that Vl,---,Vjo cover K. Let

fc0 be largest value of k such that Hik appears in the list V1,---,VJo. Thus any x

in K is in HN(x)k for some fc ̂  /c0, and so /?(x,G^(x)) 5: /cq 1 for all x in K. This

completes the proof of Theorem 3.2.

The next result will also prove useful in the sequel.

Theorem 3.3. Let K be a compact subset of E and suppose that

Px(TKc< co)>0 and Px(TKc < co) > 0 for each x in K. Then there exists an

exit set G with K c G.

Proof. The function f(x)= fQe~'P,(x,K)dt is continuous and strictly less

than 1 on K according to our hypothesis. Let H be a neighborhood of K with

compact closure on which / is bounded away from 1. Let {G„} be a decreasing

sequence of open sets contained in H with Gn + 1czG„ and f]G„ = K. If

f„(x) = §oe~'P,(x,Gn)dt, then the /„ are continuous and decrease to /. Hence

they decrease to / uniformly in H. If n is large enough that /„ is bounded away

from 1 on H, then Lemma 3.1 implies that E*(TG.n+t) is bounded in x. In the

same way we can find a neighborhood J of K with compact closure such that

£x(Tj ) is bounded. Clearly G = Gn + 1 n J has the desired properties.
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4. Continuous additive functionals: local theory. We assume that X and X art

as in §3. The family of random variables A = {A{t)\t Si 0} is said to be a con-

tinuous additive functional of X if

(i) A(0) = 0, 0 g A(t) g oo for all t Si 0, t -»A(t) is increasing and continuous

(relative to the topology of the extended real line) on [0, oo], and .4(f) = A(o)

for all ( Si a; all of these statements holding almost surely.

(ii) A(t) is      measurable for each t Si 0.

(iii) For each fixed t and s we have A(t + s,co) = A(t,o)) + A(s,9,co) almost

surely.

Meyer [8] has shown that a continuous additive functional (hereafter abbrevi-

ated c.a.f.) has the following strong Markov property: If T is a stopping time

and H a random variable such that H Si 0 a.s., then

A\H(<o) + T(o),(o] = A[T(<o),(o] + A\_H{oj),Otoo\ a.s.

In general when writing such statements we will omit the co's.

Let G be a fixed exit set and let T= TG.; then (X, T) denotes the processes X

terminated at time T. Let B and B be the state spaces for (X, T) and (X, T), i.e.,

B(ß) consists of all points not regular (coregular) for G'. Clearly B(ß) is a finely

(cofinely) open Borel set and, according to Theorem 2.1, B — ß and ß — B are

semi-polar. Let V\x,y),X Si 0, be the potential kernels for (X, T) and (X,T).

See Hunt [5, III, §21] for the existence and properties of Vx. Note

that the fact that G is an exit set implies that hypothesis (G*) of Hunt [5, III,

§21] holds. If (p is excessive relative to (X, T) then c6 is Borel measurable. (See

the argument above Proposition 21.2 of [5, III].) If d is an analytic set, we write

(following Hunt)

KD(x,dy) = Px\_X(TD)edy; TD < min(T,SA)]

= E'le-^d; X(TD)edy, TD < T],

and define KB(dy,x) similarly with respect to X. Hunt [5, III, §21] proved the

basic relationship

(4.1) KDVX = VXRB.

Finally, a family of random variables {C(r); t Si 0} is a c.a.f. of (X, T) if (i),

(ii), and (iii) above are satisfied with a replaced by T in (i) and      replaced by

Let D„ = {x:E\e T) < 1 - 1/n}. Then ß= \Jd„ and each dn is cospecial.

Recall [5, III, p. 205] that a set is special if it is a finely open analytic set with

compact closure and is contained in {x:Ex(e~T) < ß} for some ß < 1. Cospecial

sets are defined similarly with respect to X and T. Furthermore each d„ is a

cofinely open Borel set and if T„ = TD°n then PX(T„ -» T) = 1 for each x.
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Lemma 4.1.  P*(T„-> T as n-+ oo) = 1 for almost all x.

Proof.   Let K„ = KD°n and K„ = KDi; then

E\t-tn; T„<T) = ^ dxV{x,y)^Kn{dy,z).

Therefore

0 = lim I dz ̂  dxV(x,y)\^Kn{dy,z)

= lim jdxl^jK„(x,dy) jv(y,z)dz}.

But $V(y,z)dz is bounded away from zero on special sets [5, II, Proposition

12.1], while the expression in braces equals EX(T- T„; Tn < T) and is therefore

decreasing in n. Thus if D is a special set K„(x,D)->0, a.e. as n->co. Let

Bk = {x:Ex{e~T) < 1 - 1/k}, so that each Bk is special and \jBk = B. Let

Rk = tb*. If x is in Bk then X(T„) is in Bk a.s. P* on {T„ < Kt}. Therefore since

Px(X(Tn)eBk;T„<T) = K„(x,Bk)-+Q as n->oo for each k and almost all x,

it follows that Px(limII^oorB t Rk) = 1 for almost all x in Bt for each k. Now

using the fact that Px(Rk -> T) = 1 for each x we find that Px(Tn -> Tas n -»• oo) = 1

for almost all x in B. Of course, if x is in Bc then PX(T= 0) = 1, and we always

have T„ ̂  T since D„c ß cz G. This completes the proof of Lemma 4.1.

Lemma 4.2. Let {C(t);t^0} be a c.a.f. of (X,T) and suppose that

c/>(x) = EX[C(T)] is finite for all x. If K„ = KD° where the D„ are defined above,

then K„c/>-»0 a.e. and KDtic6t c/> everywhere.

Proof.  A simple calculation yields

KM*) = Ex{C(T)-C(Tn)},

and so the first statement follows from Lemma 4.1 and the continuity of C.

Concerning the second statement, since PX(T> 0) = 1 for all x in B, it follows

from Lemma 4.1 that almost all x in B are regular for some D„ and for such an

x and n we have KDnc/>(x) = c/>(x). Since KDn(j)(x) = EX{C(T) - C(TDn)} is increas-

ing in n, the last sentence implies that KDn<p t <p almost everywhere on B. But

both <f> and lim„_00XBnc/) being (X, T) excessive we must have KDJ>\ (j) every-

where on B and hence everywhere since c/> and KDJ> vanish off B.

The next theorem is the main result of this section.

Theorem 4.3. Let {C(t);t^0} be a c.a.f. of (X, T) and suppose that

<p(x) = EX{C(T)} is finite for all x. Then there exists a unique measure p carried

by B and finite on cospecial sets such that <p = Vp.
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Proof. The measure v(dx) = <j)(x)dx is excessive relative to (X,T) and so

according to Theorem 14.6 of Hunt [5, II], when interpreted in the present

situation, we can write c6 = Vp + \\i where p is a measure in jV (hence finite

on cospecial sets) and i/f is excessive relative to (X, T). See Hunt [5, III, p. 206]

for the definition of JT. Moreover, if n(dx) — \j/(x)dx then the operator MD

in Theorem 14.6 of [5,11] is given by MDn(dx) = KD\j/(x)dx. Therefore ij/ satis-

fies Kn\j/ = \]/ for all n where K„ = KD-=n and D„ are those defined above. Since

Vp S; 0 we have i/c g c6 and so ij/ = Kn\j/ g JC„c6. Using Lemma 4.2 this implies

that i/f = 0 a.e., and hence everywhere since ip is excessive. Thus </> = Vp. The

uniqueness is a consequence of the fact that a measure in Jf is determined by

its potential. Thus Theorem 4.3 is established.

The next result is essentially due to Meyer [8, Theorem 6.4, p. 218]. The proof

given here, although less general, is much simpler than Meyer's.

Theorem 4.4. Ler {C(t); t s; 0} be as in Theorem 4.3.17 h is a non-negative

(measurable) function, then

where p is the measure corresponding to C constructed in Theorem 4.3.

Proof. It is enough to establish (4.2) when h = IFi, where Fl is an open sub-

set of E whose boundary has p measure zero and IFl denotes the indicator (char-

acteristic) function of Ft. Let F2 = E — Fx and set ht = IFi, i = 1,2, and

Since t-* JJAr hlX,)dC(s), where TA * = min(T,r), is a c.a.f. of (X,T) and

<6( ̂ c6, it follows from Theorem 4.3 that there exist measures p; such that c6; = Vpt.

Because <p = <px + <j>2 the uniqueness of p implies that p = pY + p2. Thus pf

is absolutely continuous with respect to p and if we let dpt = fdp, then

fi +fi = 1 M- Since C is continuous

and hence (p^Kf.Vpi = VKF.pj. Therefore p; = KF ph and this implies that

p.- is concentrated on Ft. Using the fact that the p measure of the boundary of P;

is zero we see that ft=ht [p] and so dpt = hjdp. But this is what we wanted to

prove.

Corollary 4.5. // D is semi-polar then p(D) = 0. Here p is the measure

constructed in Theorem 4.3.

Proof.  It suffices to show that p(D) = 0 when D is a thin Borel set. But in

(4.2)
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this case X(t) is in D for only countably many values of t. See Hunt [5,1,Prop-

osition 2.4]. Therefore using Theorem 4.4 and the continuity of C we obtain

0 = Ex ClD(X,)dC(t) = f V(x,y)n(dy),
JO JD

and this yields p(D) = 0.

A consequence of this corollary is that p is concentrated onßni since B — B

is semi-polar. Thus we have shown that if c/> is the finite potential of a c.a.f.

{C(t);t ^ 0} of (X, T) then <j) = V[i where p is a measure concentrated on B r\B,

charging no semi-polar set, and finite on cospecial sets. Moreover p is unique

and (4.2) holds whenever h ^ 0. Recall that the potential of C is just the function

<Kx) = E\C{T)\

5. Smooth additive functionals. The previous assumptions on X and X

remain in force. A smooth additive functional (s.a.f.) of X is a continuous ad-

ditive functional, A, which satisfies the following finiteness condition: Whenever

Gisan exit set, A(TG.) is a.s. finite. It will be seen later on that if Ais an s.a.f. then

A(t) is a.s. finite on {t < a}. This section and the following one are devoted to

setting up a one-to-one correspondence between smooth additive functionals

and a certain class of measures on E.

Let A = (4(0; 1^0} be an s.a.f. of X and let G be a fixed exit set. Let T = TG,

and set

g{x) = E*{e-Am],

(5.1) AT

C(0 = g[_X(s)]dA{s),  i A T= min(f.T).
J o

Since A(T) is a.s. finite we see that 0 < g(x) ^ 1, and it is not difficult to see

that 1 — g is excessive relative to (X, T). Clearly t-*C(f) is a c.a.f. of (X, T)

and a routine calculation using the right continuity of t -* g(X,) on [0, T) yields

<Kx) = EX{C(T)} = Ex^\xp{-IA(T) - A(s)-]}dA(s)

= £*[1 - <TX(r)] = l-g(x),

and so <p ̂  1. The results of §4 imply the existence of a unique measure v con-

centrated on BnS, charging no semi-polar set, and finite on cospecial sets

such that <t> — Vv. Here B and B have the same meetings as in §4. Define

(5.2) p(D)= jigixyj-'vidx).

Since 0 < g ^ 1 the measures p and v are equivalent and, according to Theorem

4.4, if     0 we have
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V{fp)(x) = K[(//*)v](x)

(5.3) ,r
= E* f(X,)dA(t).

J o

Finally there exists at least one strictly positive f (namely g) for which the above

integrals are bounded in x.

Theorem 5.1. There exists an increasing sequence {B„} of finely open

Borel sets such that

(i) B = \jBn.

(ii) \BnV(x,y)p(dy) is bounded in x for each n. Here V is the potential

kernel for (X, T).

(iii) PX(TB* = T)-*l as n-+oofor all x.

Proof. Define B„ = ßn{g>l/n} where g is defined in (5.1). Since g is

Borel measurable and strictly positive it is clear that {Bn} is an increasing se-

quence of finely open Borel sets whose union is B. Also

f V(x,y)p(dy)S n f V(x,y)g(y)p(dy)
Jb„ J b„

< nVv(x) S n

so that (ii) holds. As to (iii), let T„ = TB° R = lim T„, and for a fixed x let

a = Px(Tn < Tfor all n). Recalling that c6(x) = £*[C(T)] = 1 - g(x), we see that

c6[X(T„)]   1 - 1/n a.s. on {T„ < T} since X{Tn)eBcn a.s. Therefore

(l - J)« ^ E'{<f>lX(T„); T„<T} = EX[C(T) - C(T„)]

EX\C(T) - C(R)] = Ex{(f>\_X(R)~\; R < T).

Because PX(R < T) ^ a and c/> is strictly less than one it now follows that a = 0.

Thus (iii) is established.

So far we have associated with each exit set G a measure p concentrated on

B C\S and for which (5.3) holds. Moreover p is the unique measure concentrated

on B ni? such that (5.3) holds—this follows since v(dx) = g(x)p(dx) is unique

and g > 0. Since E can be covered by exit sets (Theorem 3.2) we may define

a unique measure m on E with the property that for each exit set G with associated

measure p we have p(D) = m(D nB) = m(D n ß) for all Borel sets D c E, once

the following compatibility relationship is established.

Theorem 5.2. // Gt and G2 are exit sets with associated measures px and

p2, then Pi(D) = p2(D) whenever D cr B1CiB2.

Proof. Let T{ = TG;, Vt be the potential kernel of (X, Tt), and K'D be the

hitting distribution of D by (X,T(), i = 1,2. Let B = Bt r\B2 and T= TBC so
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that T=TtAT2 = min(TuT2), a.s. If W denotes the potential kernel for

(X, T), then it is not difficult to see that for each fixed x in B

with the possible exception of a semi-polar set of y (one can actually show that

the exceptional set of y is polar), i = 1,2. Let h be a function that is strictly pos-

itive on Bx U B2 and such that

is bounded in x for i = 1,2. Such an h is easily constructed from gY and g2.

Since p; does not charge semi-polar sets, a simple calculation using Theorem 4.4

yields (recall that T = TY f\T2 a.s.).

Therefore hdp.Y = hd\i2 on B since they have the same potential, and hence

pt = p2 on B. This completes the proof of Theorem 5.2.

Thus, as explained above Theorem 5.2, we can associate with each s.a.f. A of

X a measure m on E with the following properties:

(i) m charges no semi-polar set.

(ii) If G is an exit set and f^O then Exftf(X,)dA(t) = }BV(x,y)f(y)m{dy)

where T,B, and-F-have their usual meanings with regard to G.

(iii) If G is an exit set, then there exists an increasing sequence {B„} of finely

open Borel sets whose union is B, such that lBV{x,y)m(dy) is bounded in x

for each n and -P*(Tfl« = T) -* 1 as n -* oo for each x.

Definition. A measure p on E satisfying (i) and (iii) above is said to be smooth

(relative to X).

Let us now prove the assertion made at the beginning of this section.

Theorem 5.3. // A is an s.a.f. then t-* A{t) is a.s. finite on the interval [0,ct).

Proof. Let R = inf {t: A(t) = oo} and assume that there exists an x in E such

that PX(R < <t) > 0; then there exists an exit set G such that PX(X(R)eG,R< o) > 0.

Let Rn = M{t:A{i) = n}. Then R„\R and R„< R on {R < o}. Now

lim,tRA:(r) exists Px a.s. on {R< a] and since X(Rn)^X(R), Rn< R, Px a.s.

on {R < <t}, it follows that lim,TRX(r) = X(R) a.s. P*on {R < a). But G is open

W(x,y) = Vix,y) - KBC{x,dz)Viz,y)
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and so there exists an integer n such that P*{X(r)eG for all re[Ä„,.R]} >0.

Using A(R) = A(Rn) + A(R-R„,9Rn), A(R„) = n, and  R-Rn = R(9R) we

0 = PX{A(R- Rn,6RJ < oo; X(t)eG for all te [/?„,£/)}

= Ex{PXiR"\A(R)< oo; X(t)eG for all te[0,i?])}

> 0,

since R < TGC and hence A(R) < oo on {X(t) e G for all / e [0, R]}. Thus Theorem

5.3 is established.

Theorem 5.4. The s.a.f. A is strictly increasing on the interval [0,<r) if

and only if the corresponding measure m is strictly positive on nonempty finely

open Borel sets.

Proof. Suppose A is strictly increasing and that D is a nonvoid finely open

Borel set. We may assume D cz G where G is an exit set (replace D by D O G).

With our usual notation (T= TG,, etc.) we have for x e D <= G that

and so m(D) # 0. Conversely let R = inf {t:A(t) > 0}; then since A is finite on

[0,0") the assertion that A is strictly increasing on [0,<r) is equivalent to

Px(R>0) = 0 for all x. Hence, using the zero-one law, we must show that

D = {x:Px(R > 0) = 1} is empty.

We will first show that D is a Borel set. Let {Gf} be a sequence of exit sets form-

ing a basis for the topology of E. Let

and let T= inf{t:X(r) / X(0)}. According to the comments following (5.1) the

function / is Borel measurable. Clearly if x is not in D then f(x) = 0. If x is in D

and PX(T= 0) = 1 then it is equally clear that /(x) = l. If x is in D and

P*(T = 0) = 0, then it is not difficult to see that P*lA(T) = 0] = 1. But for such

an x, P*[X(T) = X(0)] = 0, and so it follows that f (x) = 1. Thus D = {/= 1}

and hence is a Borel set.

If x0 is in D let G be an exit set containing x0 and set F = D O G so that F

is nonempty. Let S be the first hit of Fc. We first assert that PX(R < S) = 0 for

all x in B. We are using our usual notation with regard to the exit set G. If for

some x in B, PX(R < S) > 0, then using the fact that A(R) — 0, we have for

all r > 0

find that

/(x) = sup lim /G|(x)£*{exp[- ^(Tc;)]}

0 < PX(R<S) = Px[A(R + t)>0; R<S]

= Ex{Pxm(A(t)>0); R<S}.
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But X(R)eF, a.s. on {R < S} and A(t) > 0 implies R < t, so that this last ex-

pression approaches zero as t->0 which is a contradiction. Also one easily sees

that F is finely open. Let H = Fc and as usual let T=TC,, g(x) =Ex{e~A(T)},

dp = gdm; then since PX(R < S) = 0 we have

Therefore p = KHp or, recalling that H = Fc, p assigns no mass to the set of

points of F that are not coregular for Fc. Since F is finely open, Theorem 2.1

implies that the set of points in F that are coregular for Fc is semi-polar. Hence

^(F) = 0 and so m(F) = 0. Since F is finely open this implies F is empty which

is a contradiction. Thus Theorem 5.4 is established.

6. Smooth measures. In §5 we associated with each s.a.f. of X a unique

smooth measure. In this section we will begin with a smooth measure and show

that it corresponds to an s.a.f. of X. Thus in the remainder of this section m is

a given smooth measure on E.

To begin the construction of the desired additive functional let G be an exit

set and let B,fi,T,V, etc. have their usual meanings. The following theorem

may be deduced by combining Theorems 2.5 and 6.5 of Meyer [8, part II]. How-

ever, we will give a direct proof that in our opinion is both simpler and more

natural.

Theorem 6.1. Let p be a measure that charges no semi-polar set and such

that (j> = Vp is bounded. If {Dn} is an increasing sequence of Borel subsets of

B, Tn = TDcn, R = limT„, then for all x

Proof. Since R is a stopping time the zero-one law implies that PX(R > 0) is

either zero or one. Let F = {x:Px(R > 0) = 1}. Since the conclusion is obvious

if x is not in F we may assume x in F.

Let / and h denote bounded non-negative functions, and let Kn = KD°n and

similarly for K„. If we define

= KHVp(x) = F/eHp(x).

lim Ex{(t>[X(Tn)-] ;T„<T} = Ex^[X(R)]; R < T}.
n

then each 4>„ is excessive relative to (X,T). Also
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0„W= j f(z)dz j V(z,y)Kn(dy,x)

f(X,)dt;T„<T\,

so that (j)„ decreases as n increases. If q = lim c6„, then q is cosuper mean valued

being the limit of a decreasing sequence of coexcessive functions. Thus by Doob's

Theorem (Theorem 2.2) q differs from its coexcessive regularization q* on at

most a semi-polar set. Moreover

lim J" 4>„(x)h(x)dx = lim I f(y)E»{ T„ < rj

= jf(y)E^j\(Xt)dt;R<T^dy

= j f(y)dy j* KR(y,dz) J* V(z,x)h(x)dx,

where KR(x,A) = Px[X(R)e A;R< T~]. On the other hand lim„ j4>„(x)h(x)dx

= f<j(x)/i(x)dx, and so

(6.1) q(x) = jf(y)dy j KR(y,dz)V(z,x)

for almost all x. Therefore q* must equal the right-hand side of (6.1) a.e. and

hence everywhere since q* and the right-hand side of (6.1) are both coexcessive.

This in turn implies that (6.1) must hold except on a semi-polar set. But p. charges

no semi-polar set and so we obtain

lim j(Jf(z)dz j Kn(z,dy) V(y,x)j p{dx)

= I (j f{2)dz j KR(z,dy) V(y, x)j p(dx).

Since Vp is excessive it follows that K„Vp decreases with n and that

KnVp 2i KRVp for all n. However, if ijj = \\m„K„Vp what we have shown above

implies that ip = KRVp a.e. Let A be the exceptional set on which \j/ # KRVp;

then if x is in B let {tj} be a sequence decreasing to zero such that

Px[X(tj) e A] = 0 for all j. This is possible since £(4) = 0 implies that P,(x,A) = 0

for almost all t. Now (recall c/» = Vp)

Ex{KnVn[X(tjy];tj<T}

22 {cA[X(r„)]; T„<T}; t, < T„}

= Ex{<l>lX(Tj];TH<T; tj<Tn},
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where the Markov property was used in obtaining the last equality. But this

last expression is equal to

Ex{<t>[X{Tn)\, T„<T) — £*{0[X(r„)]; T„ < T; Tn ̂  tj]

and combining these facts we find

E'{KH<l>{X(tjy]; tj < T} + Ex{<p{X{Tn)\, T„ ̂  /,}

(6'2) ^ £^[X(Tn)];rn<r}^^).

On the other hand if we let n -* oo the first term on the left-hand side of (6.2)

approaches

Ex{KR<p[X(tj)l,tj<T}

by the choice of tj, while the second term is dominated by

(sup*)P"[7; ^ tj] - (sup<t>)Px(R g tj).

If we now let tj -»0, then P*(R ^ tj) -» 0 if x is in £ = {x: P*(R > 0) = 1}. Also

it is easily seen that KRqb is super mean valued with respect to (X, T) and so

\im.jEx{KR(j)(XtJ); tj < T} ^ KR<j)(x). Combining these statements with (6.2) we

finally find that KR(j>(x) — ip(x) for all x in F. Hence KRct> = ifr on £ since we

already knew that }J/^KR<j). Recalling that \]/(x) = \im„Kn<f>(x) we obtain the

desired conclusion of Theorem 6.1.

Let G continue to denote a fixed exit set. Since m is smooth there exists an

increasing sequence {B„} of finely open Borel sets whose union is B and such that

</>»(*) = Uy(x>y)™\dy) is bounded and P*(TB°n =T)-*l for all x.

Theorem 6.2. There is a continuous additive functional A of (X,T) with

A(T) finite a.s., and such that for each f^. 0 we have

Ex jTKXt)dA(t) = j V(x,y)f(y)m(dy).

Proof. Let us define p„(f>) = m(D n B„) so that each p„ is a measure which

charges no semi-polar set. Clearly V\in = 4>„ which is bounded. Therefore Theorem

6.1 applies to </>„. It is by now a standard fact due to Sur [9] (see also Proposition

5.2 and Theorem 5.3 of [3]) that because of this there exists a c.a.f. A" of (X, T)

such that EX{A"(T)} = <pn{x) = Vfi„(x). Theorem 4.4 then implies that

(6.3) Ex jj(Xt)dA\t) = j V(x,y)f(y)n„(dy)

for all/^0.

Let T„ = TBcn, K„ = KB>, Kn = KB<; then if k £ n

(6.4) Ex{A\Tn)} = I/p,(x) - FJU(x).

But
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since the set of points in Bc„ not coregular for B°n is semi-polar. It is now immediate

from (6.4) that Ex{Ak{Tn)} = EX{A"(T„)} for all x and so the uniqueness theorem

for c.a.f. (see Meyer [8, Theorem 4.5, part II]) implies that A"(t) and A\t) agree

a.s. on the interval [0,T„]. However Px(Tn = T)-»1 as n->oo. Therefore we

can define A(t) = lim„_m A"(t) and obtain a finite (since A"(T) is finite and T„=T

a.s. for sufficiently large n) continuous additive functional of (X, T).

If we let n -» oo in (6.3) and use Fatou's lemma we obtain

for all /S; 0. To obtain the reverse inequality let 0 z%f ̂  1 and let / vanish off

Bn; then V(fm) = V(fpk) for all k ^ n. Using (6.3) we find that

But KkV(fpk) z% KkVpn-+0 as fc —> oo since Vp„ is the bounded potential of the

c.a.f. A". Thus we obtain the conclusion of the theorem for any / vanishing off

some Bn and hence for any / vanishing off B, but this suffices to establish Theo-

rem 6.2.

We are now in a position to construct an s.a.f. A of X such that the smooth

measure corresponding to A is m.

Theorem 6.3. There exists a s.a.f. A of X such that for each exit set G

and f^O we have

where Tand Vhave their usual meanings with regard to G.

Proof. Let {Gy} be a covering of E by exit sets and let N be a Borel measurable

function from E to the positive integers such that: (i) xeGN(x) for all x; (ii)

p(x,GcN(X)) is bounded away from zero on compacts where p is the metric for £.

Theorem 3.2 shows the existence of {Gy} and JV. As usual let 7} = TG'j, and

let Vj denote the potential kernel for (X, Tj). Also let Aj be the c.a.f. of (X, Tj)

constructed in Theorem 6.2. Recall that AjiTf) is a.s. finite. We intend to piece

the Aj together in order to obtain A.

= £npn{D) + pk{DC\B%,
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Define T=T .V[*(0)] if X(0) e E and 0 otherwise, and then let

o 0,

R,n + 1 R» + T(6RJ, n^O.

It is easy to see that Px[Rn+1 = Rn; Rn < <r] = 0 for all x, and from property

(ii) above of the covering {G,} together with the fact that the paths have left-hand

limits it follows that PX[R„ 5= t for all n, t < a] = 0 for each t and x. Consequently

Rn-+o a.s. We now define

A(t,co) = Asm0ian(t,(o),     0 S t ^ Äi(ß>),

and having defined A{t) for t ^ R„ we set

for R„(oj) g t < Rn+1(co). This then defines A{t,oS) on the interval [0,<x) as a

continuous, nondecreasing function of t. Of course, we set A(t, a>) = lims tff(a))>l(s,cü)

if t S; o(oj). The assertions of the theorem are easily checked once we establish

the following compatibility condition: Let Gt and G2 be any two exit sets (not

necessarily the first two elements in our covering {Gj}) and let Tu T2, Vu V2,

etc. have their usual meanings; then Ax and A2 agree a.s. on the interval

[O.Tj A T2]. Here Aj is the c.a.f. of (X, T;) constructed in Theorem 6.2; j = 1,2.

Just as in the proof of Theorem 5.2 one can find a strictly positive function, h,

on B = Bt c\B2 such that

for j — i,2, where W is the potential kernel for the process terminated when it

first leaves B and h is such that both expressions in (6.5) are bounded in x. Meyer's

uniqueness theorem then implies that the c.a.f.'s f-> jl*Th(X,)dA1(s) and

*-* U"Tn(Xs)äA2(s) agree a.s. on [0,Tt A T2], and hence it follows that Ax

and A2 agree a.s. on this interval. Thus Theorem 6.3 is proved.

We have now completed the task begun in §5 of setting up a one-to-one cor-

respondence between s.a.f. of X and smooth measures. Moreover, the corre-

spondence is suchthat a functional is a.s. strictly increasing on [0,ct) if and only

if the corresponding measure is strictly positive on nonvoid finely open Borel

sets.

7. Processes with identical hitting distributions. As before X = (E,PX) de-

notes a Hunt process satisfying (F) with dual process X — {E,PX), and, as

usual, we suppose that there are no traps in E for either X or X. Let Y = (E/P1)

be another Hunt process with the same distribution of first hits as X, i.e.,

^oCv) = *Pd(x»') for all x and whenever D = K or D = E - K where K is

A(t,co) = A\_Rn(co),co-] + A [t-RH(co),6Rnoj~]

(6.5)
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a compact subset of E. Our notation is such that the symbol *P has the same

relationship to 7 as P has to X. For example

It was shown in [3] that there exists a unique s.a.f. A of X that is a.s. strictly

increasing on [0,<r) and such that if z(t) is the function inverse to A(t), i.e.,

t(i) = s  if  t< A(a) and A(s) = t,

t(0 = a   if  t Z A{6),

then X[-r(f)] is equivalent to Y(r), that is,

Px[X[t(0] e D] = *Px[X(t)eD~]

for all Borel sets D and all x. It follows from the results of §§5 and 6 that there

is a smooth measure m corresponding to the additive functional A which is strictly

positive on nonvoid finely open Borel sets.

Conversely if m is a smooth measure which is strictly positive on nonvoid

finely open Borel sets and if A is the corresponding functional then it is easy to

see that Y(r) = X[t(r)], where t(r) is again the function inverse to A(t), is a Hunt

process on E with the same hitting distributions as X. However, in general Y

does not satisfy hypothesis (F). Thus there is a one-to-one correspondence be-

tween smooth measures strictly positive on finely open Borel sets and Hunt

processes with the same hitting distributions as X. If m corresponds to Y, we

will call m the speed measure of Y. Note that the speed measure of X is just

the basic measure £.

Let T be a Hunt process having the same hitting distributions as X and with

corresponding speed measure m. It is easy to see that X and Y induce the same

fine topology on E and it was shown in [3] that X and Y have the same excessive

functions. Now let G be an exit set (for X) and let T, V, etc., have their usual

meanings. Also let W{x,dy) be the potential kernel for (Y, T); then if f = 0 we

have (*EX is the expectation operator going with *PX)

*PD{x,dy) = *P\X{TD)edy; TD < go] .
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Hence W(x,dy)= V(x,y)m(dy), that is, V(x,y) is a density for W(x,dy) with

respect to the speed measure m.

In a certain sense the speed measure m of Y depends only on the basic measure

f and not on X. Namely let Xt and X2 be Hunt processes satisfying hypothesis

(F) with basic measures t,y and <jj2 and with the same hitting distributions. Now

if Y is a Hunt process with the same hitting distributions as XY and hence X2i

and if nij is the speed measure of Y relative to Xj; j = 1,2, then it is easily seen

that nil = m2 provided that £2 is the speed measure of X2 relative to Xt. This

is the reason we call m the speed measure of Y rather than the speed measure

of 7relative to X. Of course, if the basic measure is changed then so are all speed

measures.

If h is the indicator function of B, then h is excessive relative to (X, T) and

so there exists a sequence {/„} of positive functions on B such that

J dyfniy) V(y,x) increases to h. Therefore if p is the restriction of m to BC\B

and dv„ = f„d^, we have for D c B

so that p is excessive relative to (Y,T) provided it satisfies the appropriate

finiteness conditions.

Finally let us remark that it is an immediate consequence of the definition

of a smooth measure m that each point x in E is contained in a finely open Borel

set B such that if Vis the potential kernel for X terminated when it first leaves B

then Vm is bounded.

8. Duality and smooth additive functionals. Suppose that m is a smooth

measure. Then it is natural to ask if m is cosmooth, i.e., smooth relative to the

dual process X. Obviously if X = X then this is the case. Unfortunately, in

general, m need not be cosmooth. However, it is always possible to find a polar

set N such that m is smooth relative to X restricted to E — N. This section is

devoted to proving this statement. Of course, the deletion of a polar set from

the state space is a trivial modification of the process X.

Let us begin with an example which shows that a smooth measure need not

be cosmooth, and which at the same time illustrates rather well the general

situation. Let E be the real line and let X be the stable subordinator of index £;

see [2]. Let the basic measure f be Lebesgue measure; then probabilistically,

starting at 0, the dual process X is just —X. Moreover the potential kernel is

given by

v,

(x(y-x)~112   if   y > x,
U(x,y) =

0 if   y ^ x,

where a is a positive constant. Any finite open interval G = (a, b) is an exit set
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and the corresponding state spaces are B = \a,b), & = (a, 6] while the potential

kernel V is just V(x,y)= U(x,y) for xeB, yeS. Finally a basis for the fine

topology is given by intervals of the form (a,b) and \a,b), while a basis for

the cofine topology is given by intervals of the form (a,b) and {a,b~\, a <b.

Let g(x) = (-x)~1/2 if x < 0 and g(x) = 1 if x ^ 0 and set m(dx) = g(x)dx.

Clearly m charges no semi-polar set and is strictly positive on both nonvoid

finely open sets and nonvoid cofinely open sets. If G = (a, b) with a and b finite,

then it is immediate that Vm is bounded and so m is smooth. The corresponding

additive functional A is given by A(t) = j'0g[X(s)~\ds. But any cofine neighbor-

hood of 0 must contain a set of the form (a,0] and if Kis the potential kernel

for X terminated when it leaves (a,0], a simple calculation shows that mV(0) = co,

and so m cannot be cosmooth. However, if we delete the (polar) set {0} from £

it is not difficult to see that m is smooth relative X on £ — {0}. That is, we only

consider X starting from an x ^ 0. Again the corresponding additive functional

is given by A{i) = j'0g[X(t)"]dt which is Px a.s. finite for all t provided x # 0.

It is easy to see that A(t) = oo for all f > 0 with P° probability one. Thus in this

special case m becomes cosmooth if we delete a polar set from the state space,

and as we will see this is the typical situation in the general case.

Theorem 8.1. Let p be a measure on E that charges no semi-polar set

and is strictly positive on nonvoid finely open Borel sets. Then p is strictly

positive on nonvoid cofinely open Borel sets.

Proof. Let D be a nonvoid cofinely open Borel set with compact closure

and let B denote the set of points which are not coregular for Dc. Then B z> D,B

is a cofinely open Borel set, and B — D is semi-polar so that p(B — D) = 0. Now

let Bt denote the set of points which are not regular for Bc; then Bt — B

and B — Bi are semi-polar by Theorem 2.1. Also Bt is a finely open Borel set

and By is nonvoid, since if By were empty then B would be semi-polar which

is impossible because B is a nonvoid cofinely open set. Hence

0 < p(Bt) = p(B) = p(D).

This completes the proof of Theorem 8.1.

Lemma 8.2. Let G be an open set with compact closure and suppose G c H

where H is an exit set. Let T = TH.. If D is polar relative to (X, T) then D o G

is polar.

Proof. Let K be open with G <= K, R cz H and let R = TK. Every point of

DnG is coregular for K and so Proposition 18.5 of [5, III] implies that the

point X(R) is regular for D oG a.s. on the set {X(R)eD oG, R< co}. How-

ever, no point is regular for D n G since D is polar relative to (X, T) and there-

fore Px[X(R)eD r\G; R< oo] = 0 for all x. We now define Tt = 0 and



152 R. M. BLUMENTHAL AND R. K. GETOOR (July

S,n = Tn + T(6TJ,   n ^ 1

= S„ + R(6Sn),    n = l,

so that Tl^S1<T2<S2<-- whenever the quantities involved are finite.

Clearly P*[S„-> oo] = 1 for all x. We have X(t) not in K a.s. on each interval

[S„,Tn + 1) and X(t) not in DnC a.s. on each interval (Tn,S„) since D is polar

relative to (X, T). But the third sentence of the proof implies that Px[X(Tn) e D n G

for some n > 1] = Ofor all x, and consequently Px[_X(t) e D (~\G for some t>0] = 0

for all x.

From now on let m be a fixed smooth measure. We intend to show that by

altering the state space trivially one can associate with m an additive functional

of X on the altered state space. We begin the construction locally.

Theorem 8.3. Let G and H be exit sets with G<=H. Let T= Tw and let

V, B, and K denote the potential kernel, the state space, and the hitting distri-

butions for (X,T). Then the following statements are valid:

(i) The sequence {B„} whose union is B that appears in the definition of

the smoothness of m (relative to H) may be chosen so that m(B„) is finite for

all n.

(ii) // T„ = TB$ where {B„} is the sequence in (i) and S = TG. then

Px\Tn    S] -»1 as n -* oo for almost all x.

(iii) Let A denote the exceptional set in (ii) and R = TCnA. Then PX\_R < S] = 0

for all x in G — A.

(iv) Gry A is polar relative to (X,S).

Proof, (i) Let G* be an exit set with He G*. Let V*, B* have their usual

meaning relative to G*. Since m is smooth there exists a sequence {D„} of finely

open Borel sets whose union is B* and such that (a) <£„(x) = lDV*(x,y)m(dy)

is bounded and (b) Px\TDcn = T*] -> 1 as n->oo. If L is an open neighbor-

hood of H with Lc G* then Lemma 2.1 of [1] easily implies that Lis cospecial

(and special) with respect to (X, T*). Therefore Proposition 12.1 of [5, II] to-

gether with the boundedness of cj)n quickly yield the fact that m(D„ n L) is finite.

Define Bn = D„C\B <= D„C\L. Clearly the sequence {Bn} has the desired pro-

perties.

(ii)  Since P\T„ = T) -> 1 it follows that Kn(x,E) -»0 for all x where Kn = KB<n,

But the inner integral decreases as n increases and hence JV Kn(x,z)dx -+0 as

n -* oo for almost all z. However G is contained in a cospecial set and therefore

\V(x,y)dx is bounded away from zero on G. (We use here as in (i) Lemma

and so
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2.1 of [1] and Proposition 12.1 of [5, II].) Thus K„(G,x) -» 0 a.e., which clearly

yields Px\Tn S; S] -» 1 for almost all x.

(iii) Suppose (iii) does not hold; then there is a z in G — A and a compact

set DcC nA such that PZ[TD < S] > 0. Indeed using (ii) we may pick a k

so large that

Pz[TD<S^Tk~] > 0.

Let n > k; then

^(T„ <S) ^ P\Tn <S,TD< S, TD < T„]

= Ez{PX{TD\Tn < S]; TD<S, TD< T„}

^ £^^(rD)[T; < s]; TD < S ^ TJ.

But PZ(T„ < S) -> 0 as n -» oo since z is not in X, while X(TD) eDcA a.s. on

{TD<S} and so lim PX(Tü)[T„ < S] > 0 a.s. on {TD<S}. (This limit exists

since the T„ are increasing.) We now have a contradiction and hence (iii) is es-

tablished.

(iv) Let x be a fixed point in G and choose a sequence {f,} decreasing to

zero such that

(8.1) Px[X(tj)eGr\A; tj<S] = 0

for each j. This is possible since £(A) = 0. Now

Px[X(t) e G n A for some t e (tj, S)]

^ Ex{PXi"\R<S); tj<S},

and (iii) and (8.1) imply that this last expression is zero. Letting I^Owe obtain

Px[X(t)eGC\A for some te(0,S)] = 0,

which is the desired conclusion.

Theorem 8.4. Let G be an exit set and let T, V, B, etc., have their usual

meanings relative to G. There exist a polar Borel set N and a c.a.f. Äof(X,T)

restricted to ß — N such that for any/2i0

Ex jj[X(t)-]dA(t) = J m(dy)f(y)V(y,x)

for all x not in N.

Proof. Note that since N is polar restricting (X, T) to P» — N means that

we only look at the trajectories of (X, T) which start from points not in JV. Also

it is clear that £ - N is both finely and cofinely open. Now let H be an exit set

with G <= H and let Wbe the potential kernel for (X, Tw). According to Theorem
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8.3 (i) we can choose the sequence {D„} that appears in the definition of the

smoothness of m (relative to the exit set H) so that m(Dn) is finite. If p„ is the

restriction of m to Bn = B n D„ (B is the state space for (X, T)), then

and so n„Wis finite a.e. Therefore {p„W = 00} is (X, TH ) polar and hence Lemma

8.2 implies that Ni = G n {p„W= 00} is polar. Also let Lbe a neighborhood of G

with L <= H; then Theorem 8.3 (iv) implies that N2 = Gn {x:Px(TD- St Tl.)-h> 1}

is polar relative to (X, TL) and hence polar. We let AT be a polar Borel set con-

taining N1<JN2-

As above B„ = B C\Dn and p„ is the restriction of m to B„ so that p„(£) < 00

and p„K ̂  p„IK is finite off N. Define B„t = {p,,!^ k}nß and let p„k be the

restriction of p„ to Bnk. Since p„ charges no semi-polar set it follows easily that

Hnk ̂ P„KBnk and so \inkV ̂  everywhere. Therefore the argument of the first

part of the proof of Theorem 6.2 is applicable and consequently we obtain a

c.a.f. Ank of (X,T) such that

for all/S: 0 and all x. The usual compatibility argument shows that for fixed n

and j S; fc we have ,4„4 = /lnj- on [0, Tnk~\ a.s. for all x, where T„t is the time

the process first leaves B„k. But if x is not in N then

and so Px\_Tnk< T] -> 0 as fc -> 00 for each x not in N. Thus we may define

An(t) = limkAnk(t) and obtain a c.a.f. of (X,T) restricted to B- N with A„(T)

finite a.s. with respect to Px for each x not in N. Arguing as in the last paragraph

of the proof of Theorem 6.2 yields

for all x not in JV and all /2;0.

Once again we find that if k S; n then Ak = A„ on [0, T„] a.s. Px for all x not

in N, where T„ is the time the process first leaves B„. Also it follows quickly from

the definition of N2 that Px\Tn < T] -»-0 if x is not in N. Therefore we may

define Ä{i) = \\mn An{i) and obtain a c.a.f. of (X, T) restricted to P> -N with

A(T) finite a.s. relative to each Px for x not in N. One then establishes (8.2) as

before. Finally observe that given the exceptional set TV then Ä is uniquely de-

termined by (8.2), that is, if C is another c.a.f. of (X, T) restricted to P>-N

satisfying (8.2) then Ä = C on [0, T] with Pxprobability one for each x not in N.

The next theorem extends the local construction as in Theorem 6.3.

00 > n„V(x) ^ HnVKBcJx) St kPx[_Tnk<T-\,
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Theorem 8.5. There exist a polar Borel set N and a c.a.f. Ä of X restrictdv

to £ = E — N such that for each exit set G and x not in N we haee

PX[Ä{T) < co] = 1 and

E~x jj[X(t)]dA(t) = j m(dy)f(y) V(y,x)

for each/2;0. Here T and V have their usual meanings.

Proof. Let {Gj} be a covering of E by exit sets with the properties of Theorem

3.2. Let Nj be the polar Borel set and Aj the c.a.f. relative to Gj constructed

in Theorem 8.4. Let N = [jNj so that N is polar. If R„ has the same meaning

as in the proof of Theorem 6.3 then it follows that R„-*o a.s. Px for all x.

The additive functional A of X restricted to £ = £ - N can then be constructed

just as in the proof of Theorem 6.3.

Just as before one can show that A will be strictly increasing on [0,<r) a.s. Px

for all x in £ if and only if m is strictly positive on nonvoid cofinely open Borel

sets which, in view of Theorem 8.1, is equivalent to m being strictly positive on

nonvoid finely open Borel sets.

9. Duality and hitting distributions. Let X and Xhave their usual meanings and,

as in §7, let Y= (£,*£*) be another Hunt process with the same hitting distri-

butions as X. Let m be the speed measure of Y so that m is a smooth measure

strictly positive on nonvoid finely open Borel sets. The results of §8 imply the

existence of a polar set N and a continuous additive functional A of X restricted

to £ = E — N which is strictly increasing a.s. on [0,o-) and which corresponds

to m in the manner described in §8. If ? is the functional inverse to A we can

form the process

tit) = *[f(0]

with state space £. (Sometimes it will be more convenient to consider fas a

process on £ but only consider it starting from points in £.) It is easy to see

that t has all the important properties of a Hunt process and that t and X

have the same hitting distributions starting from any point in £, since TV is

polar. The problem then arises as to what extent the processes Y and t are in

duality. The present section is devoted to investigating this question.

We will denote the expectation operators for t by *£*defined for x e £ = £ — N.

Let G denote a fixed exit set and let V, T, B, etc., have their usual meanings. As

was seen in the proof of Theorem 8.4 we can choose a sequence {B„} of finely

open Borel sets with the following properties:

(i) If p„ is the restriction of m to B„ then p„{E) < co, Vp„ is bounded, and

pnV{x) < co if x is not in N.

(ii) If T„ = rB; then Px(Tn = T) -+ 1 for all x and Px[Tn = T] -»1 for all x

not in N.
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There is no loss of generality in assuming that the state space for (X, T„) is B„.

Let 8„ be the state space for (X, T„) and B* = B„ — N. For the time being let us

suppress the index n so that B denotes a fixed B„, T= T„, p is the restriction of

m to B, and V is the potential kernel for (X, T). Let us introduce the potential

operators for (Y, T) and (f,T) defined by

Q\x,A) = *EX f e~XtIA\X{tj\dt, xeE,
Jo

Qx(A,x) = *EX [Te-x,IA[X(ty]dt,  xe£ = E-N,
Jo

where IA is the indicator function of A. It follows from the discussion in §7 and

the construction of f that

(91) Q°(x,dy)=V(x,y)tidy), xeE,

Q\dy,x) = p(dy)V(y,x), xe£.

The next theorem is the basic step in setting up the duality between Yand f.

Theorem 9.1. For each X^.0 there exists a function qx(x,y) defined on

E x £ with the following properties:

(i) x -* q\x,y) is X-excessive relative to (Y, T) for each yeE and y -» qx(x,y)

is X-excessive relative to (Y,T) for each xeE.

(ii) Q\x,dy) = q\x,y)p{dy) for xeE and Q\dy,x) = p(dy)q\y,x) for x e £.

(Üi)«W) = V(x,y)- X\-Q\x,dz)V(z,y) = V(x,y) - X \V{x,z)Q\dz,y)
for all (x,y) in (E x £,) - Y where T = {(x,y): V(x,y) = oo}.

Proof. Since z-» V(z,y) is (X, T) and hence (Y, T) excessive for each yeE

it follows that XQXV^ V everywhere and so we may define

(9.2) q\x,y) = V(x,y) - X j Qx(x,dz)V(z,y)

for (x,y) not in T. Then qx^ 0 for such (x,y). We leave qx undefined on T for

the moment. Of course V, and hence q\ vanish off B x ß. Also it is immediate

from the resolvent equation that Qx(x,dy) = q\x,y)p(dy) for all x in E. This

last expression makes sense since Tx = {y: V(x,y) = co} is polar relative to (X, T)

and hence certainly p null. Also T" = {x: V(x,y) = oo} is polar relative to (X, T).

Let yeE be fixed; then for n > 0 and x not in     we have

nQx+'q\x,y) = nQx+"V(x,y)-XnQx+-QxV(x,y),

and both terms on the right are finite since x is not in T". But nQx*"Qx =QX-QX+"

and so

lQX+nq\x,y) = (n+ X)Qx+*V{x,y) - XQxV{x,y).



1964]     ADDITIVE FUNCTIONALS OF MARKOV PROCESSES IN DUALITY 157

Since x-» V(x,y) is A-excessive relative to (Y, T) the first term on the right in-

creases to V(x,y) as w —> oo. Thus we have shown

(9.3) nQk^q\x,y)U\x,y)

as r\ -» co provided (x,y) is not in T. Now define = qx off T and gA = co on T.

It is immediate from (9.3) that nO/"1" ^ £A> and so for each fixed y the function

x -»r\QlJrng\x,y) increases to a function A-excessive relative to (Y, T) as n -* co.

Moreover it is clear from (9.3) that this limit agrees with q\x,y) for x not in

Tv. Thus if we set

(9.4) qx = lim nQx+Y = lim nQx + "qx

everywhere, then this agrees with our previous definition (9.2) off T and

x -* q\x,y) is A-excessive with respect to (Y, T) for all y.

Now define ÄA(dy,x) = p(dy)qx(y,x). We want to show that R\,x) = Q\-,x)

for all x not in N, and we already know that this is true when A = 0. Let Lx = Lx(p).

Since F/i is bounded (say by M) and since q'{x,y)^ K(x,y)we see that RX.LX-*LX

and that ^ M||/|| t for all A ̂  0. Also ßV v, x) ^ r}°(dy,x) = p(dy)V(y,x)

for x not in N and so ß^Li -> Lx and || ßVli ^ M\f\x for all A ̂  0, since N

is a null.

Since {Qx; A ̂  0} satisfies the resolvent equation on the space of bounded

measurable functions we have for A > n ^ 0

(9.5) <?W) - q\x,y) = (n - A) J<zW)<r>,>0M^)

a.e. (/;) in y for each fixed x. The Fubini theorem then implies that {Rx; A ̂  0}

satisfies the resolvent equation on Lx.

Let Mx = R°LX = Q°LX and M2 = R°MX = ß°M,. Using the fact that ||Rx\\x

and || Qx ||! are bounded in A on A S: 0, standard manipulations with the resolvent

equation yield the result that Rx and Qx are one-to-one on M2. Since R° = Q°

it is again a standard argument to conclude that Rx = Qx on M2 for all A ̂  0.

If/is continuous with compact support (and hence in Lx since p is a finite measure)

it follows from the right continuity of the paths of t that o-Q"f{x)-*f{x) as

a -» co for all x in B — N, hence in Lx since p is concentrated on B O ß and

|<xÖa/| =sup|/|- Also ßQßQ*f-> Qxf as /J-> co point wise boundedly and hence

in Lx since ||    ||<» ̂Therefore

and so letting /? -» oo and then a -> oo we obtain Rxf = gY as elements

of Lx. However, if 0 then ßA/ is A-excessive with respect to (f, T) and it is

easy to see that this implies that Qxf is cofinely continuous off N. Also Rxf is the

difference of two (X, T) excessive functions and hence is cofinely continuous
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where both are finite. But fiV < oo off TV and this yields the fact that Rxf is

cofinely continuous off TV. Therefore Rxf(x) = Qxf(x) for all x not in JV and

all continuous / = 0 with compact support, and so we finally obtain

Qx(dy,x) = n(dy)qx(y,x) for all x not in TV.

So far q\x,y) is defined on E x E and x -> q\x,y) is 1-excessive with respect

to (Y, T) for each fixed y. We must still investigate the function y -y q\x,y).

We begin by defining for y not in TV and x not in F" the function

(9.6) q\x, y)=V(x,y)-lj V(x, z)Qx(dz, y)

which is easily seen to be well defined and non-negative for (x,y) in (£ x £) — T.

We extend qx to E x in a manner analogous to that used in the extension of qx

from (£ x £) — T to £ x £. This extension is such that y -»#A(x,)>) is A-excessive

with respect to (f, T) for each fixed x. Clearly

fi(dx)q\x,y) = Qx(dx,y), y$N.

But this implies that qx = qx on (£ x £,) — T. Recalling the method used in

the extension of qx and qx we have for y not in TV

q\x,y) = lim tlQx+nq\x,y)
1|—»oo

= lim n \qx+\x,z)n{dz)q\z,y)

= lim n \qx + \x,z)n(dz)q\z,y)
r/-» CO */

Thus qx= qx on E x E and this completes the proof of Theorem 9.1.

A consequence of Theorem 9.1 is that

j V(x,z)qx(z,y)p(dz) = j q\x,z) V(z,y)p.(dz)

first on £ - Ty for each fixed y not in TV and then on £ x £ since both sides

of the above equation are finely continuous in x for each fixed y not in TV.

Recalling the discussion preceding Theorem 9.1 we reintroduce the index n;

thus for our (still) fixed exit set G we have B = [JB„ where the B„ have the prop-

erties listed above Theorem 9.1. If we let T„ = TB< and Vn be the potential kernel

for (X, Tn) we can apply Theorem 9.1 for each n and obtain using an obvious

notation

Qt(x,dy) =

Üx{dy,x) =

qx„{x,y)m{dy) for all x,

m(dy)qx(y,x), x£TV.
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If /^0 then Qx„f(x) ̂  QxJ(x) for each fixed x and k>n. Therefore

qx„{x,-) S qx(x,-),a.e.(m),on E = E — N, and hence everywhere since the functions

in question are cofinely continuous on £. Thus we may define

(9.7) q\x,y) = lim qxn(x,y)
n-»oo

on E x£, and the limit in question is increasing with n. But P*(T„ = T)-> 1 for

all x and PX(T„ = T) ->• 1 for all x not in N, and consequently

Q\x,dy) = q\x,y)m(dy), xeE,

Q\dy,x) = m{dy)q\y,x), xe£,

where qx is as defined in (9.7).

Fix y in £ = £ — N and fix n; if k> n define

Since x-^^x,^) is A-excessive relative to (Y,Tk) it is easy to check that

/i is A-excessive relative to (Y, T„) for all k> n. Moreover fxk{x) increases to

lBn(x)<l(x>y) - gXn(x>y) as k -> oo and so gx is A-excessive relative to (Y, T„) and

increases to qx with n. Since

C-^£*{gt(X„y); t < T„} ̂  g„(x,y) q\x,y),

we obtain on letting n -+ oo

e-x,*Ex{q\xt,y);t<T} z% q\x,y)

for each x in £. Also

lim inf e~x,*Ex{qx(Xt,y); t<T}
<-»o

^ lim «-A»*£-{^„y); /<T„}
r->0

= g$(x,y) -* as co,

and combining this with the previous inequality it follows that x~*qx(x,y) is

A-excessive relative to (Y, T) for each y in E. Similarly y-+ q\x,y) is

A-excessive relative to (f, T) for each x in £. We may now state the following

theorem (still relative to our fixed exit set G).

Theorem 9.2. For each A^O there exists a function q\x,y) defined on

£ x £ such that x^q\x,y) is X-excessive relative to (Y,T) and y-*q\x,y)

is X-excessive relative to (Y,T). Moreover

(i) Q\x,dy) m q\x,y)m(dy), xeE,

(ii) Q\dy,x) = m(dy) q\y,x), xe£,

(iii) KxDq\x,y) = qxKo(x,y) for all (x,y) in E x £ and all Borel sets D.
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Proof. Everything except (iii) has already been proved above. However (iii)

can now be proved in a manner similar to that used by Meyer in [10, Chapter

10]. We refer the reader to [10] for details. Of course q°(x,y) = V(x,y) and

q\x,y) vanishes off B x (B - TV).

Theorem 9.2 establishes the duality between (Y, T) and (T, T) with respect

to the speed measure m of Y. In order to extend this duality to the nonterminated

processes Y and f we first establish the duality in a special case.

Theorem 9.3. Suppose that E is the union of an increasing sequence {Gj}

of exit sets. Let Rx and Ax denote the potential kernels (X > 0) for Y and ¥

respectively. Then there exists a function rx defined on E x £ such that

R\x,dy) = rx(x,y)m(dy) and k\dy,x) = m{dy)rx(y,x). Moreover x->r\x,y)

is X-excessive relative to Yfor each y in £ and y -* r\x,y) is X-excessive relative

to X for each x in E.

Proof. Theorem 9.2 may be applied to each exit set G} in the increasing

sequence {G,}. We denote the corresponding function by q%x,y). Now using

an argument similar to the one given above Theorem 9.2, one sees that qx(x,y)

increases on E x £ as j; oo and that r\x,y) — lirn,.,,» q){x,y) has the desired

properties. Thus Theorem 9.3 is established.

We now state the main result of this section.

Theorem 9.4.   The conclusion of Theorem 9.3 is true without the assump-

ion that E is the union of an increasing sequence of exit sets. Moreover for

any analytic set D one has

Kr\x,y) = rxPx(x,y)

for all (x,y) in E x £ and X>0.

Proof. Let S be an exponentially distributed random variable with para-

meter one that is independent of X and X. Let S"= Sip for any p > 0 so that

S" is exponentially distributed with parameter p. Let X" and X*1 be the processes

X and X terminated at time S", that is, X\i) = X(t) if t < S" and X"{t) = A

if t St S", and similarly for X". Clearly X" and X11 are Hunt processes satisfying

hypothesis (F) with respect to the same basic measure £ and for which the state

space E is an increasing union of exit sets (relative to X* and X"). The

lifetime is now a" = a A Su. We use the notation a A b for min(a,fc). Of

course the representation of X"and X^as (X,S") and (^S*1) is not the canonical

representation of these processes described in §2, but that causes no difficulties

in what follows.

As above m denotes the speed measure of Y and TV the exceptional set such

that m is cosmooth on £ = E — TV. Let A and Ä be the strictly increasing additive

functionals of X and X (restricted to £) corresponding to m. Define
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L A(S") if / ^ S";

Then Aß is a continuous additive functional of X"that is a.s. continuous and

strictly increasing on [0,o-w), and a similar statement holds for Ap relative to

X" restricted to E. We now claim that Aß is smooth relative to X". Since

any open set with compact closure is an exit set for the pair (X", Xß), we

must show that Aß{TKc AS") is a.s. finite for all compact subsets K of E. (TA

will always denote the first hit of A by X (or X) so that the first hit of Kc by

X" is TKcA S".) Since A(t) is finite a.s. on [0,<r) it is immediate that Aß{TK<\ A S")

is a.s. finite on the set {TKC A S"< a). However on the complementary set we

have TKc = a ^ S" < oo and one can prove that A(c) is a.s. finite on the set

{TKc = a < 00} by the same argument as that used in the proof of Theorem 5.3.

Thus A# is smooth relative to X".

Let G be an exit set for (X, X) and let / ^ 0 be such that

j V(x,y)f(y)m(dy) = E* jj(Xt)dA(t)

is bounded in x. Here V, T have their usual meanings relative to G. Now the

above expression equals

Exj^S f(X,)dA(t) + £*{       f(Xt)dA(t); S" < t]

= E' f**' f(Xf)dA,(t) + ̂ n/mXx).

Hence using the resolvent equation

E* f    ' f(Xf)dAß(t) = (V-fiVVXfmXx)
(9.8) Jo

= J V(x,y)f(y)m(dy).

Of course V is the potential kernel with parameter u for (X, X), or equivalently

the potential kernel with parameter 0 for (X", X"). Since exit sets for (X, X)

cover E, it is immediate from (9.8) that the measure corresponding to A^ is m.

A similar calculation shows that Äu is the additive functional of X" re-

stricted to E corresponding to m (the exceptional set is the fixed set JV). Clearly

X"(XM) induce the same fine (cofine) topology on E as X(X).

We now define t„ and t„ as the functional inverse to Aß and Äß, that is,

t„(0 = s    if t < A^o A S") and t = AJs),

x,(t) = a A S" if t Z Au((j A S"),
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with a similar definition of ?„. If we recall the definition of Aß and Ap it is immediate

that

t„(r) = T(0       if tKA^AS"),
(9.9)

T„(f) = a A S"   if t St A(a A S"),

with a similar relationship between t„ and x. We next define

rw-jPTt/o]; no =^(01
with state spaces £ and /? respectively. Theorem 9.3 is now applicable, and so

for each k > 0 there exists a function rx(x,y) defined on £ x E such that

x-+r*(x,.y) is A-excessive relative to Y" for each y in £ and y-* r£(x, y) is

A-excessive for Y" for each x in £. Moreover for any bounded /StO we have

(9.10) J* r£(x, y)f(y) m(dy) = Ex J V^r^O)]^

for each x in £, and also for each y in £

(9.11) J m(dx)/(x) rx(x, y) = £> J" ""/[^ ?„(*))] <*'.

Let x be fixed; then using (9.9)

J«0O /•HAS"
e-^[X"(tM(0)]rft = £* e-^fiX'WdAJJ)

o Jo

Sin

e~XA(,) f{X,)dA{i).

Combining this with (9.10) it follows that r*(x,-) increases a.e. (m) as p decreases.

But y->rx(x,y) is cofinely continuous and so rx(x,y) increases for each fixed

(x,y) in £ x £ as p decreases. Define rA(x,>>) = lim„_0 r*(x,.y). It is then clear

that

\ r\x,y)f(y)m{dy) = £* JV^'ftW^O

= *£x ̂  e-x'f(X,)dt

= Rxf(x),

for each x and /StO where J?A(x,dy) is the potential kernel with parameter k

jor Y. A similar argument yields R\dx,y) = m(dx)r*(x,>>) for all y in £ where kx

is the potential kernel with parameter k for Y.

We must still investigate the functions x-*rx(x,y) and y -* rx(x,y). Using

the properties of rx we have
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= e-x,E'{iilX"(T,(t))>yl, t<A(aAS")}

= e-x,Ex{rx[X(T(t)),y-]; t < A{a A S")}.

But as ju 4,0, A(oA_ S")t A(o) and hence

r\x,y) ^ e-x,Ex{r\X{x{t)),y\, t < A(c)}

= e-Xt*E\r\Xt,yy\

for each t. On the other hand for each n > 0

liminf e-x'Ex{rx\_X(t(t)),y']; t < A(a)}
t-0

^ liminf e-XtEx[rx(Y?,y); t < A(a A S")]
t->0

and letting ^->0 we see that the first expression in the above display is not less than

r\x,y). Combining this with the previous inequality one concludes that x -> r\x,y)

is 1-excessive with respect to Y for each y in £. In a similar manner one finds

that y -» rx(x,y) is A-excessive with respect to f for each x in E.

Thus the first sentence in Theorem 9.4 is established. The second sentence

can now be proved in a manner similar to that used by Meyer in [10, Chapter 10].

Once again, we omit the details.
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