
ON THE DISTRIBUTION OF FIRST HITS FOR THE
SYMMETRIC STABLE PROCESSES

BY

R. M. BLUMENTHAL, R. K. GETOOR AND D. B. RAY(»)

1. Introduction. Let {X(t); ¿ = 0] be the symmetric stable process in RN

of index a with 0<a = 2; that is, a process with stationary independent

increments whose continuous transition density, relative to Lebesgue meas-

ure in RN, is

(1.1) p(t,x) = (2^)-* f ei(*^e->w"dt.

Here t>0, x and £ are points in RN, ci£ is A^-dimensional Lebesgue measure,

(x, £) is the usual inner product in RN, and |£|2=(£, £). Throughout this

paper integrals will be over all of RN unless explicitly stated otherwise. Of

course, to determine our process we must also specify the distribution of

X(0). We will always assume that our process starts from some fixed point

x in RN ; that is, X(0) =x with probability one. We will write Px and Ex for

probabilities and expectations under the condition X(0) =x. We will assume

that the sample functions are normalized to be right continuous and to have

left limits everywhere. See [2, §2] for a complete description of this setup.

Define

T = ini{t: I X(t)\   > l},
(1-2)

T* = inf{¿: | X(t)\   < 1}.

It is easy to see that P and P* are random variables, T being the first pas-

sage time to the exterior of the unit ball and P* the first passage time to the

interior of the unit ball. Let

ßx(dy) = PX[X(T) Edy,T < «],

ßx*(dy) = PX[X(T*) E dy, T* < «,].

Thus ¡xx and u* are, respectively, the distributions of first hits of the exterior

and interior of the unit ball when X(0)=x. Of course, ux({y: \y\ <l})=0

and/4({y: |y|>l})=0.
Define
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/ N\       ra

\l)*l(1.4)  fix;y) =*-W2+i>r[— jsin— | 1 -|x|2|«'2 | 1 -|y|2 |-"'2 \x-y\-N.

The main results of this paper are the following theorems:

Theorem A. If 0<a<2 and \x\ <1, fAeM

Pxidy) = fix;y)dy, \ y\   fc 1.

Theorem B. If a<N or if a = N=l, then for \x\ >1,

ßx*(dy) = f(x;y)dy, \ y\   g 1.

Theorem C. 7/ 7V=1 <a<2 and \x\ >1, then

ra rM
Hx*(dy) =f(x;y)dy - (a - lK^sin — (m2 - ^"^"'¿«(l - y2)-"'2dy,

2 J i

\y\ si i.

Theorem A was obtained by Spitzer [9] in the case N= 1 and a= 1, and

by Widom [lO] in the case 7V=1 and 0<o¡<2. We are informed the result

has also been proved by Kesten and J. R. Kinney, independently.

Relatively straightforward computations yield the following corollaries:

Corollary 1. £ef A7=l and for \x\ <1 define pix) =?,[l(r)^l, £< oo ]¡

that is, the probability that the process starting from x first leaves the interval

[ — 1, 1 ] to the right. Then

pix) = 21-T(a) |"r(—)1     f  (1 - M2)a/2_1¿M.

Again in the case a= 1 this is due to Spitzer [9].

Corollary 2. For a<N and \x\ > 1, define qix) to be the probability that

the process starting from x never hits the unit ball: qix) =£*[£*= « ]. Then

/N\r    /N-a\     /a\l~l r]x]1~l
«<"-r(7)Lr(—)r(7)J /„     <H-ir«%~*.

Corollary 3. Let N=l and l^a<2. For |jc| > 1 and t>0, let r(x, f) be

the probability that the process starting from x has not hit the unit ball by time

t:rix, f) =£*[£*>/]. Then

lim log f rix, t) = log( | x|  + (s2 - l)1'2), if a » 1,
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lim tl-*l«r(x, t) - a sin — r(2 - a) \T il-jl    |r ( —jl

l»l
lY'^du,     ifl<a<2.

The last result is a corollary of the technique of the proof rather than

of Theorems A, B, and C themselves. The distinction between the cases

0<a<l and l=a<2 when N=l reflects the fact that the one-dimensional

symmetric stable process is transient if 0<a<l and recurrent if 1 =a<2.

Another consequence of Theorem A deserves mention. Let P be a meas-

urable subset of the unit ball. For \x\ < 1, let H(x, F) be the expected amount

of time the process starting at x spends in P before leaving the unit ball : that

is,

(1.5) H(x,F) = Exlj   VF(X(t))dt\,

where Vf is the characteristic function of P. For each x, \x\ <1, H(x, •) is

a measure on the unit ball.

Corollary 4. For \x\ <1 and \y\ =1,

H(x, dy) = 2-air-N'2 \T (— Yl   T (—) f  (u + îy^W^du \ x - y\^Ndy,

where z= (1 — | x\ 2)(1 — |y| 2)|x —;y|~2.

Corollary 4 was obtained by Kac and Pollard [3] in the case ^ = «=1;

by Kesten [5] in the case ^=1, 0<a<l; and by Widom [10] in the case

N=l, 0<a<2, in a different form.

In [10], Widom uses techniques not unrelated to those of this paper.

Spitzer [9] used the special relation of the Cauchy process (a = N= 1) to the

two-dimensional Brownian motion; and Kac and Pollard [3] used the special

behavior of the Tchebycheff polynomials under the generator of the Cauchy

process. In [5], Kesten applies the result we call Theorem A here to obtain

some interesting and deep limit theorems for Toeplitz matrices.

The techniques of this paper consist, in the case a<N, simply of noticing

that ux is the harmonic measure of the unit ball corresponding to the Riesz

potential of exponent a in RN. As such it was calculated by Riesz [7] in 1938.

The extensions necessary to cover the case N = 1 =a<2 are due, in this con-

text, to Kac [4]. Our results are stated in terms of the unit sphere, but they

carry over immediately to an arbitrary sphere, since the symmetric stable

processes are homogeneous in space and satisfy the scaling relationship
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Px[rX(t) EB] = P„[X(ft) E B],

which holds for all r>0 and all Borel sets £ in £JV.

2. Equations for the hitting probabilities. All the information necessary

to determine the hitting probabilities ux and u* is contained in the "first

passage time relation" or "Désiré-André equation" (cf. [6]). Let A be an

open set in £", A its closure. Define the random variable r for a symmetric

stable process starting from x in RN by

t = infjf: A(f) G ^4}.

For B a measurable subset of £^ and s = 0, define

H.ix, B) = £,[" JTe-"VB[Xit)]dt\,

L.ix, B) = Ex[e~"; A(r) G B, r < «].

Again, VB is the characteristic function of the set £. Finally, set

e-"pit, y)dt,
0

where pit, y) is the transition density of the process, defined in (1.1). Then

the first passage time relation, easily derived from the strong Markov prop-

erty [l], states

j R.ix - y)dy = H.ix, B) + f_L.ix, du) j £.(m - y)dy, s > 0.

From this it follows that £f,(x, £) has a continuous density H,ix, y), satisfying

(2.1) R.ix - y) = H.ix, y) + f L.(x, du)R.iu - y), s > 0.

Note that (2.1) is trivial if x is in A, while if y is in A and x is not, H.ix, y) = 0.

Now suppose that a<N. Then one can calculate without much difficulty

that

lim £,(*) = rY—— ^pv^rY—Y]   | x\—N.

Since all the functions involved in (2.1) increase as 5 decreases to zero, we

obtain in the limit

| x _ y\a-N =  j    Loix,du)\u - y\"-N, xEA,yEA,
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H.ix, y) = r(^^)[2^/2r^)] '

• "II * _ y \°~N —  I -Lo(x, du) | u - y \a~N^ ,       x,y E A.

These equations may be specialized further by making A the unit ball or its

exterior. Then L0(x, du) =p*(du) or uxidu); and if A is the exterior of the

unit ball, Ho is the kernel H defined in (1.5).

(2.2) \x-y\a-N=\        | m - y\"-Nßxidu), \ x\   < 1 <  | y\ ,
•'Nil

(2.3) \x-y\"-N=(       |«-y|«-W(¿«), M   <1<|*|,
J Mit

*hJ»"r(ihr)[**"*(ï)r
■l\x-y\-»- f      \u-y\^'„,l.d«)\,

(2.4)

' *l i I y\ < L

If A7= 1 ̂ a<2, R.ix) becomes infinite as s tends to zero, but a technique

which was used by Kac [4] on a similar problem may be applied. One has

lim [Ca(s) - R.(x)] = Ga(x),
»->o

where

= [«sin^]dis) = I a sin -       î1'"-1, 1 < a < 2,

1
Cais) =-log j, a = 1,

r

ra r !..
Ga(x) = sin— T(2 - a)[x(o - l)]-x| x^1, 1 < a < 2,

1
Gaix) = —log  | x\ , a =  1.

r

In fact, the function C„is)— R.ix) increases to Gaix) as s decreases to zero,

for each pertinent value of a. Subtracting each side of (2.1) from Ga(s),

Cais) - R.ix - y)

= - H.ix, y) + J" £.(*, du)[dis) - R.iu -y)] + Ca(s)[l - L.ix, J)].
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In the limit,

Ga(x — y) = — Ha(x, y) + I _L0(x, du)Ga(u — y) + ga(x),

where

ga(x) = lim C«(í)(l - L,(x, J))
»-K)

= lim Ca(s)Ex[l - €-"}
f—o

exists when y is in A and x is not, since all the other terms involved, being

increasing and bounded, have limits. It is not hard to see that if the comple-

ment of A is compact, then Px[t]<<», so that ga(x)=0 and H,(x, y) is

bounded, for each x not in A.

We specialize again, in several directions, separating the cases

x E A, y E A; x E A, y E A; a = 1; 1 < a < 2;

A = (-l;l);        A = (-oo,l)U(l, *);

and their combinations: If a= 1,

(2.5) log | x - y\   =   I        log | u - y \ nx(du), | x\   < 1 < | y| ;
J |u|il

(2.6) log | x — y |   =   I        log | u - y\ ^(du) + ki(x),     \y\   < 1 < | x\ ,
J |u|Sl

where

(2.7) ki(x) = lim   - logsPjl - e-'T'};
s->0

1         .            ,        1   f . .
(2.8)        H(x, y) =-log | x - y \ -\-I        log | u - y \ nx(du,)

IT IT  J |u|ïl

|*|, \y\ <i.

If Ka<2,

(2.9) |*-y|°_1=r       I « - y|a-Vx(á«), \x\   <l<|y|;
*Mu|il

(2.10) lüf-yl-1-]        \u-y\°-1u*(du) + ktt(x),       |y|<l<|*|,

where
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(2
ir        ira "I   1

11)     *„(*) = ir(a - 1)   a sin— sin — T(2 - a)        lim sl'«-lE,[l - e-T'],
\_ a 2 J      »—o

H(x,y) = sin— T(2 - a)[r(a - l)]'1

(2.12)

■\f      |«-y|"-V.(d«) - |*-y|"-7,     |*|,|y|<l.
W|u|il /

It will be seen that (2.6) or (2.10), together with the property u*( [ — 1, 1 ])

= 1, determine both p.* and A0.

3. Some calculations of M. Riesz and extensions of them. Equations

(2.2) and (2.3) state that ux and u* are the harmonic measures of the exterior

and interior of the unit ball, corresponding to the Riesz potential of exponent

a in Rw. Riesz has shown ([7, pp. 13-17] and [8]) that the unique solutions

of (2.2) and (2.3) are those indicated in Theorems A and B. We repeat his

calculations here, since they must be extended a bit to cover (2.4) and (2.5)-

(2.12).
The basis of the calculations in [7] is the idea of inversion in a sphere

{u: \u — x\ =r} in RN: that is, the change of coordinates

u—>v = x + r2\u — x \2(u — x).

Riesz noted that if f(u) is a potential of exponent a in RN, then after inver-

sion in a sphere with center x, \x — v\ a~Nf(v) is a potential. This enabled him

to calculate the harmonic measure of a ball from its equilibrium distribution,

as we will do in this section. Besides the equilibrium distribution, we shall

also evaluate the equilibrium potential outside the ball.

To avoid repetition of lengthy formulas, let us set, recalling the definition

of/(x;y)in(1.4),

g(y)= \i- |*|,|-/,l*-y|*/(*;y)
(3.1) ira    /N\. .    . .

=   T-(AT/2+l) sin _  r I \ |   1   _    |  y |l |-a/2j

(3.2) h(x;y) = r (7) [r (f) r (~J^J\    j\r + l^^'^dr,

where

Z=  |1- |s|2| |1- |y|2| |*-yh2,

A(y) =   lim   h(x, y)

(3.3)

\y\ > 1.
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Lemma 3.1. If0<a<2, then

(3.4) f      \u-y\»-»giu)du= 1, \y\   :£ 1

(3.5) = 1 -hiy), \y\ =L

Proof. If | y | > 1, inversion in the sphere {« : | y — « |2 = | y |2 — l} yields

f       (1 -   | mI2)-"'2! u - y\a~Ndu
J l«lsi

- (\y\*~ i)"'2 f      (1-1 v\2)-°l2\ v- y\-Ndv.
•'MO

Setco„ = 27r"'2[r(M/2)]-1, if m = 1; then when 7V^2,

|        (1 -   | v |2)~a/2|. » - y|-*rfn

., f  drrN~li\-r2)-al2 f  dd sin "-20(r2 +  |yj2-2r|y|   coso)-"'2
•7 o «7 o

y |2~A' f  *-i*->(l - r2)-«/2( | y|2 - r2)"1,

•7 o

l»lsi

co.v

by the Poisson formula in RN. The end result is trivially the same if 7V= 1.

We shall complete the calculation only for the case a<N; the changes

necessary when Ar=l and 1 <a<2 are fairly obvious.

r{i)riljr1)[r(i)Tf/r,^<,-,'r"'{] yl'-ñ"

= 2 f drr(l - r2)-"'2( | y|2 - r2)"1  f  <»-*-»(r« _ ,2)(a-2)/2d/
.7 o «7 o

= r dt tN-"-x r ds j-°'2(i - f2 - f)«'*-»(i +1 y i2 - i)_i
•7 o «7 o

ï r l

J   C
= ( I y 12 - 1)-«'V csc — j    dt íAT-«-i( | y |2 - f2)°/2-i

2 J o

= ( I y |2 - 1)""/21 y \N~2 — csc— f       dr(r+ l)-*/V«'»-».
2 2 J iv|i_i

Combining the three sets of equations gives (3.5) when a<N.

Ii \y\ <1 invert in the sphere {u: | u — y\ 2 = 1 — \y\2} and reflect in the

point y: the combined change of coordinates is the same as before: w—*v

= y — (1 — \y\ 2)| u — y\ _2(m— y). Then proceeding as before,
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f      (1 -  |M|2)-"/2|«-y|«-"¿M
■J Mil

=   f      (1 -  I y |2)a/2( I v |2 - l)-«/21 v - y |-wd»

drr(r2- l)-«'2(r2 - |y|2)-'COATI,

1 Ta
= — C0j\r7T CSC — j

2 2

the required result.

Lemma 3.2. If 0<a<2 and \x\ >1, /Acm

(3.6) f      /(*;«)| y - «!"-*<*« =  |*-y|--w, M=l
J l«isil«l*

//   *  < 1, íAeM

(3.7) f      f(x;u)\y-u\^du=\x-y\^, M = 1,

(3.8) =  \x-y\^(l-h(x;y)),       \y\   g 1.

Proof. Equation (3.6) is obtained from (3.4) by inversion in the sphere

{u: \u — jc |2 = | JC |2 — l}; (3.7) then follows by inversion in the unit sphere

about the origin. These two inversions applied to (3.5) yield (3.8).

Lemma 3.3. Let N=a=l. Then

(3.9) f      g(u)log \y-u\ du = -log 2, I ?|   £ 1-
J lulil

If \x\ >1, <AeM

//(x; u) log I y — «I du

= log | y - «|   - log[| x|  4- (*2 - l)1'2],        I y|   =1.

If \x\<l, then

(3.11) I       /(*;«) log | y - «| du = log | y - x| , |y|   =1,
J |u|2i

(3.12) = log [1 - sy + (1 - *»)l'i(i - y2)1'2], |y|ál,
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Proof. It is a standard result, of course, that

/g(u) log | y - m I du = - log 2, | y |   á 1,
l«lsi

= log[|y| +(y2- i),/2] -log2, \y\  fc 1.

We can reduce the rest of Lemma 3.3 to this by the same changes of co-

ordinates as before.

Let w=(yx—l)iy — x)~l. Making the substitution v= (wx— 1)(m — x)~l,

r I       fix; u) log | y — u \ du
J |»|S1

= (a:2 - l)1'2 f       (1 - M2)-1'21 x - u I"1 log | y - u \ du
J |u|sl

=   f      (1 - d2)-1/2 log [ I w - v I I y - * I | x - v \~l]dv
•7 Msi

= T log | y — x I   — r log [ | x |   + (a:2 — 1)1/2],

if |;c| >l>|y|. And if |x| <1, the same substitution yields

r I       fix; u) log | y — u \ duf     f(x; u

-X(1 — v2) 1/2 log[\ w — v\ \ y — x\ \ x — v\_1]dv
l»lsi

= r log | y - x | , | y |   > 1 ;

= Trlogj | y — x\ [\ w\   + (w2 — 1)1/2]}

= 7rlog[l - xy+ (1 - x2Y'2il -y2)1'2], |y|   < 1;

since | w| < 1 if and only if | y | > 1.

4. Uniqueness of the solutions of the equations. That (2.2) and (2.3)

uniquely determine the hitting probabilities ux and u* when a <N is a stand-

ard result in potential theory. Again, we owe to Kac the extension of the

argument necessary to treat (2.5), (2.6), (2.9) and (2.10).

Since the left side of (2.2) is bounded for \y\ ^ 1, when x is a fixed point

inside the unit ball, the energy integral

J l«Ui«/ li/lïi
u _ y^-XpJjduÏPzidy)

is finite. Similarly p* has finite energy when \x\ >1. Hence the uniqueness

for (2.2) and (2.3) follows from the following well-known result.
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Lemma 4.1. Let A be a closed subset of RN, and let 0<a<2, a<N. Let v

be a bounded signed measure on A whose total variation \v\ has finite energy:

Then

/| v | idu) f | v | idy) | u - y \*-N < «.
a Ja

/| « - y\"-Nvidu) = 0, y G A,
A

implies v = 0.

Proof. By (1.1),

pit,u- y)dt = i2r)~N I    dt j  e«l.»V-Ut.«'>*-«IÎIa'd|.
o J o      J

Hence if the bounded signed measure v has total variation of finite energy,

one may interchange integrals to obtain

TÍ- j pV^r(—j 1     f v(du) f vidy) \u-y\°~n

=  J     dt I   n(d«) I   vidy)pit, u - y)
Jo      Ja Ja

= i2r)-» f" dt f \p^)\2e-'^ad^,

where

*(Ö =  F ei(«'«)v(dM)

is the Fourier-Stieltjes transform of v. But if

/I « - y\a~Nvidu) = 0, y G ^4,

then the energy integral vanishes; hence t/> = 0, implying v = 0.

Next consider (2.10). Multiplying both sides by

giy) = r-'sin- (1 - y2)""'2,
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and integrating over \y\ =1, we have by (3.4) and (3.5)

1 - h(x) =  f       | x - y\"~1g(y)dy
J   iKlSl

(4.1) = f      p*(du) f      | u - y\-1g(y)dy + ka(x) f     g(y)dy
J |«|S1 J Ivlsl J Ulsi

_1 + rU.[r(|)r(L^)T'*.w.

Hence ka(x) is determined from (2.10) by merely the fact that /z*( [ — 1, l])

= 1. In particular, if (2.10) has two solutions, each of total mass one, then the

difference v will satisfy the homogeneous equation

f      | « - y^-^du) = 0, |y[   =51-
•' lulSl

Moreover, the total variation \v\ will again have finite energy.

The same remarks apply to (2.6). In fact, multiplying by g(y)

= 7T_1(1—y2)-1'2 and integrating over \y\ =1, by Lemma 3.3

(4.2) logl| x|   +(x*-iyi*] = ki(x), \x\  >1,

whenever (2.6) holds for a measure p.* of total mass one.

Finally, again in the case of (2.5) and (2.9), the solutions satisfy

Ux({u: \u\ =l}) = l and have a finite energy integral. Hence that these four

equations determine the hitting probabilities uniquely is a corollary of the

following:

Lemma 4.2. Let G« be the kernel defined in §2, for N=l, lga<2. Let A be

a closed subset of the real line. Let v be a bounded signed measure on A with

v(A) =0, whose total variation \v\ has finite energy:

f | v | (du) J | v I (dy)G„(tt - y) <

Then

Ga(u - y)v(du) = 0, y £ A,LA

implies v = 0.

Proof. Because \v\ has finite energy,

/,
Ga(u - y)v(du) =0, y £ A,

implies
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0 =  i* vidu) f vidy)Gaiu - y)
Ja Ja

= lim   f vidy) f vidu)[dis) - R.iu - y)],
»-*o J a Ja

the integrands C0(s)—£,(w—y) being dominated by G„(m—y). But for s>0,

since PÍA) =0,

J vidy)Ç vidu)[Cais) - R.iu - y)]

= —  |  vidy) f   vidu)R,iu — y)

= - f»-1 f vidy) f vidu) f e^e'^is + Ifl»)-1^

= - o)-iJ(*+ lihH-KöN,

where again <p is the Fourier-Stieltjes transform of v. The last integral is

bounded away from zero for small s, unless <p = 0.

5. Concluding remarks. Because of the uniqueness results of the last sec-

tion, we need only now sort out the various calculations into the proper order.

By (3.7), fix; y), for \x\ <1 < | y\, is the unique solution of (2.2). This

proves Theorem A for a<N, while Theorem B for a<N follows from (3.6)

and (2.3). To prove Theorem A for 7V=1, l<a<2, apply (3.7) and (2.9);

for 7V=l=a, apply (3.11) and (2.5).

By (3.6) and (3.4), the unique solution of (2.10) is

Mxidy) = /(*; y)dy - kaix)giy)dy,

where by (4.1),

ka(x)   =    -   T-^T^jv(^-^-^h(x).

After a change of variable, this is the result of Theorem C.

Theorem B, when N=l=a, follows similarly: (3.9) and (3.10) show that

the unique solution of (2.6) is

»?(dy) =f(x;y)dy - (log 2)-i{log[| x\   + (s2 - l)1'2] - Ux)}giy)dy

= fix; y)dy

by (4.2).
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The calculations involved in proving Corollary 1 may be carried out as

follows: using again the substitution y=(l—ux)(x — u)~1,

ira rx
ircsc — p(x) = (1 - x2)"12 I     (y2 - l)~a/2(y - x)~xdy

2 J i

=  f  (x - uy-^l - u2)~a/2du

dv I    (v- m)«-2(1 - u2)-°'2du

= 21~°r(a)r(i - —j |r(—)]    f (i - v2)*'2-^.

if a>l. When a = l the result may be obtained from this by analytic con-

tinuation in the parameter a.

Corollary 2 is simply a restatement of (3.5): multiplying (3.6) by g(y),

as defined in §2, integrating over \y\ = 1, and using (3.4) and (3.5),

1 - h(x) =  J       g(y) | x — yl'^áy

=  I       f(x; u)du I       g(y) \ x - y \<^Ndy
-Mulsi •'Ulsi

=   I        f(x; u)du
J l«ISl

=  1 - q(x).

Corollary 3 follows from (2.7) and (4.2), if a = 1, or from (2.11) and (4.1),

if 1 <a<2, upon applying Karamata's Tauberian theorem, since

,[1 - e->T'} = s f   e~"Px[T* > t]dt
J o

and since Px[T*>t] is a decreasing function of t (cf. [il, pp. 208-209]).

Finally, Corollary 4 is immediate from (3.8) and (3.12) applied to (2.4),

(2.8) and (2.12).
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