
SOME THEOREMS ON STABLE PROCESSES

BY

R. M. BLUMENTHALO) AND R. K. GETOOR

1. Introduction. Let {Xit); t^O} be the symmetric stable process in P"

of index a, 0<aS2; that is, a Markov process with stationary independent

increments, whose continuous transition density, fait, x — y), relative to

Lebesgue measure in R" is uniquely determined by its Fourier transform

(1.1) e-'\l\" =  C  e«*-Vfa(t, x)dx.
J Rn

Here £ and x are points of Rn, dx is 77-dimensional Lebesgue measure, (£, x)

is the ordinary inner product in Pn, and | £| 2= (£, ij). We will be mainly inter-

ested in properties of the sample functions of these processes. Our main theo-

rems (§4) extend some results of McKean [10; 11 ] on the Hausdorff-Besico-

vitch dimension of the range of the sample functions, and some results of

Bochner [2, p. 127] on the variation of the sample functions. Some of these

extensions are immediate, while for others the methods of Bochner and Mc-

Kean are not immediately available. Our main tool is the notion of sub-

ordination. §§2 and 3 contain preliminary material that will be needed in §4.

Finally, in §5, we obtain the asymptotic distribution of the eigenvalues for

certain operators that are naturally associated with the symmetric stable

processes.

2. Preliminaries. Letfa(t, x—y) he the continuous transition density de-

fined by (1.1). Then fa(t, x)=t~nlafa(l, t~llax), where/„(1, x) is a continuous

strictly positive function on P" depending on x only through |x| . Using the

Fourier inversion theorem for radial functions  [3, Chapter II, §7] we find

(2.1) fa(l, x) = [(27r)»'2| xi"'2"1]-1 f    e-'>/2/(„_2,/2( I x\ l)dl,
J 0

where J„ denotes the Bessel function of first kind of order u. The following

theorem gives some information on the behavior of/„(1, x) for large values

of |x|.

Theorem 2.1. Let a>0 and f„(l, x) be defined by (2.1). Then

/ 1 V^H-1        air      /n + a\     / a \
| lim       I x K%(1, x) = «2- (_)        sin - V (—) r [-).

Proof. Note that the limit is positive if a<2. For 77=1 this theorem is
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due to Polya [13]. The proof for general n is very similar to Polya's proof

and so we only sketch it. Introducing the Bessel function of the third kind

lPf\z)=Ju(z)+iYa(z) and imitating Polya's argument one easily obtains

(our notation for the Bessel functions is that of [5])

/     1    \ nil I* oo

lim    | x\n "fa(l, x) = al-)      lim Re   I      exp [— (t/r)"]tn '       Hnii(t)dt
W->» \2ir /      r->«= J o

/ i y'2 2      i«r
= a (-)     — sin- |    t»l2+°-iKnii(t)dt.

\ 2ir /       ir 2   J o

This last integral is easily evaluated [5, p. 51 ] and Theorem 2.1 results.

We next set down a few facts about the processes under consideration. Let

{X(t); t^O], the symmetric stable process of index a, be defined over some

basic probability space (£2, ff, P). We assume that the process is separable

relative to the closed sets, over the rationals. Then the following are true:

(2.2) The process has no fixed discontinuities.

(2.3) There is a subset A»/fl with P(A) =0 such that if co is in 12—A then:

(i) X( •, co) is bounded on every bounded t-interval,

(ii) X(-, co) has finite right hand and left hand limits at every value of t,

(iii) if t is not a rational then X(-, co) is either left continuous or right con-

tinuous at t.

This last property follows from others coupled with the fact that the

process is separable over the rationals. The other properties are well-known.

For convenience we will normalize the sample functions to be everywhere

right continuous, although this is not really necessary for anything that fol-

lows. We will always assume A^(0) = 0.

Let X be a real number such that 0 <X < 1, and let { T(t); t ^ 0} be a real

valued Markov process with stationary independent increments, whose con-

tinuous transition density g\(t, u — v)=t~ll*g\(l, t~llx(u — v)) relative to one

dimensional Lebesgue measure is determined by its Laplace transform

(2.4) e-'«   =  I    e-"*g*(t, v)dv
J o

and the condition that g\(t, v)=0 if v<0. If we assume that this process is

separable over the rationals then almost all sample functions are strictly in-

creasing and bounded on bounded intervals. Since there are no fixed discon-

tinuities we will normalize the sample functions to be everywhere right con-

tinuous although again this is not necessary. We will call this process the sub-

ordinated of index X. Let { Y(t); t^O} he the Brownian motion process in R",

that is, the symmetric stable process of index 2. (This definition of Brownian

motion differs from the usual one by a change in the time scale. However, the

above definition is the most convenient for our purposes.) Let {T(t); t^O]

be the subordinator of index X defined on the same basic space £2 as the
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Brownian motion, but completely independent of it. If we set X(t, u)

= Y(T(t, «), o)), then JX(/.); t>0} is the symmetric stable process of index

2X in Rn. This is easily verified by computing the Fourier transforms involved

and making use of the regularity properties that we have assumed the sample

functions of our processes have. The notion of subordination is systematically

developed in [2].

We will need the following lemma.

Lemma 2.1. If a>0 then f"uag\(l, u)du< °o if and only if a<\.

Proof. We note that the Fourier transform of gx(l, u) is given by

exp[—|7;|x(cos(X7r/2)—7 sign z; sin (\7r/2))] and hence g\(l, u) is a stable

density of index X. Lemma 2.1 now follows from the known properties of

stable distributions [9, §36].

We will now define the ^-variation of a function and the /3-dimensional

outer measure. Let fi he a positive real number and let E be any subset of

Pn, then for each e>0 set Af(P) =inf J^Lj (diam E/)^ where {£<, i*z 1} is a

cover of E by subsets of P" all of diameter less than e and the infimum is

taken over all such covers of E. We would get the same number if we re-

stricted the Pi's to be closed sets or open sets, or in the case of the real line

to be closed intervals. Let A"(P) =lim,_0 Af(P). Then A? is called the Haus-

dorff /3-dimensional outer measure on Pn. It is a metric outer measure and so

the Borel sets are always measurable. We will need the fact that if E is a

Borel set such that AS(P) = MS x and if 0<h< M then there exists a closed

set F contained in E such that A$(F)=h. In particular this implies that A^

restricted to the Borel sets is inner regular; in general, A^ is not outer regular.

The above fact, actually for analytic E, is proved in [4], It is also true that

sup{/3: Af>(E) = oo} = inf{/3: A"(P) = 0}.

This common value is called the Hausdorff-Besicovitch dimension of P, and

is denoted by dim(£).

The following theorem is implicit in [ll].

Theorem 2.2. Let f be a measurable function from [0, l] to R", and E be

a Borel subset of [0, l]. If there is a Borel probability measure, m, on [0, l]

with m(E) = 1 swc/7 that

f   f \f(s)-f(t)\-t>m(ds)m(dt) < »,
J E J E

then A"I/(£)]>0.

Proof. Let Af < oo and let Q be a Borel subset of E such that 777(<3) >0 and

f \fis)-f(i)\-hn(dt) <M
J E
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for all sGQ- Yet {0»; t^lj be a countable cover of f(Q) by Borel sets and

Qi=f~l(0i), then [Qil^Q; i^l] is a countable cover of Q by Borel sets. For

fixed i we have

m(Qi r\Q)g (diam 0*)" f       \ f(s) - f(t) \-fa(dt)
J Qi<~\Q

for all sGQiP\Q, since (diam Oi)t>\f(s)-f(t)\~^liisandt are in QiC\Q. Thus
m(QiP\Q) ^ Af (diam 0ty for all i and then

co co

0 < M-'m(Q) ̂ M-1 T,™(Qi^Q) ^ E (diam 6i)».
t=i t=i

Therefore A"[/(P)] ^A"[/(0] ^ M~im(Q)>0.
Let |3>0 and let/ be a function from [0, l] to Rn. For any finite subset

0^k< ■ ■ ■ <*,gl of [0, 1] let j8(/; *„, • ■ • , tn)=Jf]U \f(U) ~f(U-i) \" and
define

(2.5) /3-var/= sup/3(/;/0, • • ■ , *»)

where the supremum is taken over all finite subsets of [0, l]. This number

(possibly infinity) is called the /3-variation of/ (over [0, 1 ]). If |8^ 1 the num-

bers /?(/; to, ■ ■ ■ , tf) are monotone nondecreasing as our subdivisions become

finer; however, this need not be the case if j3>1. We will need the following

lemma.

Lemma 2.2. Let /3>0 and let f be a measurable function from [0, l] to Rn

and suppose that there is a countable dense set S of [0, 1 ] such that if t is not in

S then f is either right or left continuous at t. In this case

j8-var/= sup/3(/; to, ■ ■ ■ , tf)

where the supremum is taken over all subsets to<h< • • ■ <tn of S.

Proof. This follows easily from the regularity properties of / and the fact

that |x|0 is a continuous function on R".

If we take 5 to be the rationals then almost all sample functions of the

symmetric stable processes satisfy the hypothesis of Lemma 2.1. Thus

/3-var X( •, co) is the supremum of a countable family of random variables and

hence is itself a random variable. A similar statement holds for the sub-

ordinated of index X.

3. Variation and dimension of the subordinators. In this section we estab-

lish certain properties of the subordinators that will be used in §4 to prove the

analogous statements for the symmetric stable processes. We begin by dis-

cussing the variation of the subordinators.

Theorem 3.1. Suppose 0<X<1 and [T(t); t^O] is the subordinator of

index X. Then
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(3.1) P[/3-var T(-, co) = oo] = 1 or 0

according as fiS^ or fi>~k.

Proof. Clearly we may assume fiS 1. Let

/, OO

e-u^gxit, u)du.
o

Since fiSl all the conditions of Bochner's Theorem 5.3.3 of [2] are satisfied

(in our application Bochner's p is given by p(u, v) = | u — v\&), and hence we

need only calculate lim^o t^1 [l — A (t) ]. Making a change of variable we have

/»  00

exp [-fi'xu»]gxil, u)du,
o

and so

(3.3)        r»[l - A(l)] = pi*-* f   r«x[l - exP (-tmu»)]gx(l, u)du.
do

If j3<X the integral approaches fo^g\(l, u)du and the factor in front ap-

proaches oo as /—»0. If /3=X the factor in front is one and the limit inferior

of the integral is no less than ftfu^gxil, u)du= <». Thus if fiS>\ we have

lim(„o i_1[l—^4(/)] = oo and so applying Bochner's Theorem 5.3.3 we obtain

P[fi-var T(-, co)==o] = l.

U\<fiSl we have

/I  00o

/I  00 fA  00g\(t, u) j    e-,ttgf,(l, s)dsdu
o Jo

/'°° X
e~" gn(l, s)ds.

o

Therefore

limr'U - Ait)] =  f  s*gf,il, s)ds < oo
!->0 J 0

since fi >X. Applying Bochner's theorem again we obtain P [fi var P( •, co) < co ]

= 1. This completes the proof of Theorem 3.1.

If \Xit); t^O] is any stochastic process taking values in P" and if E is

a subset of [0, l], then -X"(P, co) = {x£Pn: x = X(/, co) for some tEE}.

Theorem 3.2. Let { Tit); t^O] be the subordinator of index X, and let E

be a Borel subset of [0, 1 ] such that dim (£) =a. Then P[dim P(P, w) =aX] = 1.
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Proof, (i) We first show P[dim T(E, co) ̂ «X] = 1. To this end it is suffi-

cient to show that for each j3>a\ we have P[A.$[T(E, co)] < oo ] = 1. It is easy

to verify that if P is a subset of [0, l], if e>0 and /3>0 are given, and if

{0.1 *' = l} is a cover of E by closed intervals each of diameter less than or

equal to e, then there is a cover {Oi ; i^l] of P by nonoverlapping closed

intervals (that is, if ij^j then 0/ and 0/ have at most one end-point in com-

mon) each of diameter less than or equal to e such that

Y, (diam ofy ^ E (diam 0,-)8.
>=1 i-l

We first consider the case a<l. Given /3>aX pick a' in (a, 1) and X' in (X, 1)

such that a'X'=/3 and a'X'<X. It may be necessary to first choose a smaller

|3 but this doesn't matter. For example let X>/3>aX. As in the proof of

Theorem 3.1 let A(t) =/0"exp[-zf°'x']gx(f, u)du and let e"-8"' =A(t). Clearly

0-^A(t)-gLA(0) = l and B(t)^B(0)=0. A simple calculation shows that

^-"'dA/dt^O as <->0 and since A'(I) = -A(t)B'(t) it follows that t1'"'B'(t)-^0

as t-+0. Thus we can find an e>0 such that 0^B'(t) ^t"'-1 if 0<t^e. Hence

we have

(3.5) B(t) < (a')-H"'

if 0</^€.
For each n>, 1 let {0"; i^l] (here 0?= [ani, &„,-]) be a cover of P by non-

overlapping closed intervals of diameter less than e (the e of (3.5)) and such

that Ei"i (bni — ani)a'^1/n. This can be done since A"'(P)=0. Define

00

*"»(«) = Z [T(bni, co) - T(ani, co)]"'*'
i—l

and F(co) =inf F„(co). Then for every n we have

(3.6) 1 ^ &(e~F) S; &(e~F«),

where S is the expectation operator. Now

S(e^») = lim   IIg(exp{-[r(U ~ P(^i)]"'y])
*->°°   ,=i

k

= lim   JX A(bni — a„i)

= lim exp   — X B(bni — a„i)
*-►»       L    .=1 J

^ exp- E (°"i — ani)a' \,
L     a   i-i J
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since bni — aniSe. This last expression approaches one as 77—>oo, and therefore

£(e~F) = 1. Hence F(o)) = 0 for almost all co. This, coupled with the observation

that for each 77 and co { [T(ani, co), T(bni, co)]; i^ 1} is a cover of P(P, co) im-

plies that P[A0[r(P, co)] =0] = 1.

The case a = 1 remains to be dealt with. It is easy to see that if / is a meas-

urable strictly increasing function defined on [0, l] then /3-var/< 00 implies

A"Lf([0, 1 ])]<«. If |3>X Theorem 3.1 implies that P[fi-var P(-,co) < » ] = 1
and hence P[A^[P([0, l], co)] < 00 ] = 1. This implies that

P[dim T([0, 1], w) S X] = 1

and since E is a subset of [0, 1 ] the first part of the proof is complete.

(ii) To complete the proof of Theorem 3.2 we must show that

P[dim T(E, co) ̂ aX] = 1. First of all, a Borel subset E of Pn is said to have

positive /3-capacity (Cs(E) >0) if there exists a Borel probability measure, 777,

concentrated on P such that

(3.7) I    I   I x — y \'^m(dx)m(dy) < 00.
J E J E

We will make use of a theorem of Frostman [6, p. 86] which states that if E

is closed and if A"(P)>0 then C^(P)>0. Now let P be a Borel subset of

[0, l] of dimension a. Then for every fi<a we have AS(P) = co. Choose

fi<\a. Then fi/\<a and hence A?/x(£) = 00. According to Davies' theorem

[4] there exists a closed set P contained in E such that A"/X(P) >0 and hence

by Frostman's theorem C^/x(/7)>0. Let 777 be a probability measure concen-

trated on Psuch that (3.7) holds with fi replaced by fi/\. Now 8( | T(t) - T(s) | -")
= c|< — s|-0/x where c>0. Integrating this relation over FXF with respect to

777X777 and using the Fubini theorem we find that

(3.8) f   f I P0,co) - r(s,co) \^m(dt)m(ds) < 00

for amost all co. Theorem 2.2 implies that P[A"[P(P, co)]>0] = l. Since

T(F, oi) C P(P, w) and fi <Xa was arbitrary the second half of the proof of

Theorem 3.2 is complete.

4. Variation and dimension of the symmetric stable processes. In this

section we obtain complete information about the variation and dimension

of the symmetric stable processes. We begin, again, by considering the varia-

tion.

Theorem 4.1. Let \X(t); t^O] be the symmetric stable process in Rn of

index a (0 <a S 2). Then

P[0-varX(-,co) = 00] = 1 or 0

according as fiSa or fi>a.
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Proof. We assume /3>1 as the case /3^1 is treated in [2], although the

proof which follows does not depend upon the fact j3>l. If /3^a let

P,(co) =j8(Z(.,«);0, 1/2-, -..,1)

and

F(co) = sup Fn(co).

Defining

,4(0 = e-B(o =  f  e-\*Pfa(t, x)dx,

we have

0 g S(e"F) g &(e-F») = [4(2-»)]2n = exp [-2"B(2~n)].

Exactly as in the proof of Theorem 3.1 one finds that t~lB(t)—>°o as t—->0

provided L3^a<2 (or provided /3<2 in the case a = 2). Thus, in these cases,

F(a)) = oo for almost all co and since F(co) ^/3-var X( •, co) we have established

Theorem 4.1 for these values of /3 and a. This is just the argument of [2].

The fact that the 2-variation of the 2 process is infinite with probability one

was established by Paul Levy [8, Theorem 9] at least if n= 1. The same fact

for general n is a trivial consequence of this. Thus we have taken care of all

the cases in which j3±= a.

For the case /3>a we will need to make use of the following well-known

fact, a proof of which can be found in [12, Theorem 47] in the case « = 1.

(Again the result for general n follows trivially.)

(4.1) Let { Y(t); t^O] be the Brownian motion in Rn (i.e., the symmetric

stable process of index 2), let 0<X<l/2, and let K>0. Then there exist random

variables B(io) < oo for almost all co and e(co) >0 for almost all co such that

| Y(t2, co) - Y(h, co) |   < B(u) | ti - h |x

provided O^h, h^K and \ti — t2\ ^e(co). If a = 2 and/3>a = 2 the desired result

is an immediate consequence of (4.1). Next consider the case j3>a and a<2.

Yet { T(t); t ^ 0} be the subordinator of index a/2, and pick X < 1/2 such that

/?X>a/2. Given 5>0 there exists a K< oo and a set QiC^ with P(12i) > 1-5/3

such that P(l, co) ̂ K if coG^i- Applying (4.1) with this K and X there exists

a S<oo, and e>0, and a set £22CQ with P(£22) > 1-5/3 such that 5(co)gP

and e(co)j^e if coG^22- Finally there exists a J< oo and a set 123C£2 with

P(Q3)> 1-5/3 such that | Y(t, a)\gJ for all t^K provided coGfts. We de-

fine S2o = S2iPi£22fM23 and then P(S20) > 1-5. If 0^0</i< •■• <ln^ lis any

finite subset of [0, l] then at most [K/e + l]=K' of the differences T(tJ+i, <a)

— T(tj, a>) can exceed e provided coG£2o. Thus if «G£2o we have



1960] SOME THEOREMS ON STABLE PROCESSES 271

£ | Xitj, co) - Xitj-h co) |" = E | Y[Titj, co), co] - F[P(/y_i, co), co] |"
i=l j-i

S i2J)t>K' + B» Ya I Titj,cc) - Titj-hcc) \<*

where the last sum is taken over those j's ior which T(tj, co) — T(tj-i, <j})Sc

Thus if co£^o we have

(4.2) /3-var X(-, co) S (2J)»K' + B»fi\-var T(-, co).

But fik>a/2 and hence by Theorem 3.1 the last term in (4.2) is finite for

almost all os. Thus P[fi-var X(-, co) <oo]^l — § and since 5 was arbitrary

this completes the proof of Theorem 4.1.

Perhaps a remark on the proof of Theorem 4.1 is in order. If fi>l then

the method of Bochner [2] for studying the fi-variation breaks down. The

idea of the proof of Theorem 4.1 is to reduce the study of the variation of

the a-process to the study of the variation of the (a/2)-subordinator, to

which Bochner's argument (see our Theorem 3.1) is applicable.

Now we consider the dimension of the a process. In order to avoid saying

everything twice we assume 77^2. (If 77 = 1 one must replace aXby min(l, aX)

throughout.)

Theorem 4.2. Let \X(t); t §0} be the symmetric stable process in Rn (tz 2> 2).

If E is a Borel set of [0, 1 ] and dim E =X then P [dim X(E, co) = aX] = 1.

Proof. First of all we remark that McKean [10, 3.1] has established

Theorem 4.2 for the process of index 2 (Brownian motion). That is, if

{ Y(t); f^. 0} is the process of index 2 and if A is a linear Borel set of dimen-

sion X, then P[dim Y(A, co) =2X] = 1. McKean's proof is a bit incomplete at

one point, but by using the theorems of Davies [4] and Frostman [6] as in

the proof of Theorem 3.2 of the present paper one can easily overcome the

difficulty. Now let { T(t); t^0\ be the subordinator of index a/2. We note

that if P is a Borel set so is P(P, co), and that X(E, co) = F(P(P, co), co). Com-

bining Theorem 3.2 of the present paper and McKean's theorem one obtains

the desired conclusion. It should be pointed out that in McKean's theorem

the exceptional set depends on A, and our P(P, co) varies with co although with

probability one it has dimension Xa/2. However, the processes {T(t); t^O}

and { Y(t); t^O) are independent and so an application of Fubini's theorem

shows that the interaction of the exceptional sets causes no trouble.

5. Some asymptotic results. This section contains an application of Theo-

rem 2.1 on the behavior oifa(t, x) for large | x|. The properties of the sample

functions are involved only in a secondary way.

Let \X(t); f^O) be, as usual, the symmetric stable process of index a

in P", let G be an open subset of Pn with finite Lebesgue measure, whose
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boundary has 0 Lebesgue measure (in this section m will denote w-dimensional

Lebesgue measure), and let F be a bounded non-negative measurable func-

tion on G. In [7] Getoor investigates the processes derived from [X(t); t^O]

(and from much more general processes) by "killing" the original process at

the boundary of G and at the same time imposing on it a "local death rate,"

V. The precise definitions of these notions are given in [7]. It is proved

there that associated with the derived process is a strongly continuous semi-

group, { Tt; t^O], of bounded linear operators on L2(G, m). Furthermore, if

£2q denotes the infinitesimal generator of {Tt; r^O} it is shown that there

exists a complete orthonormal set {<py; J^ 1} in L2(G, m) and a nondecreasing

sequence JX,-; J^l} of non-negative numbers tending to infinity such that

®'a4>j= — X/Py- In [l] we determined the asymptotic distribution of the eigen-

values, Xy, under the assumption that f(t, x, y), the underlying density of the

original process, satisfies a regularity condition (D). This condition is the

following:
(D) For every compact subset A of Rn and every n>0 there are numbers

t0>0 and M>0 such thatf(a, x, y)f(t, x, z)-1^ Affor alla^t^to, xin A,y and

z in Rn provided that \x — y\ ^?? and \x — z\ <n.

In the present case/(/, x, y)=fa(t, x — y) and we wish to verify (D). We

first observe that

(5.1) fa(t, x) ^ fa(l, y) if |s| £ |y|.

This follows from the relationship

Mt, x) =  I   fi(u, x)ga/i(t, u)du
J o

coupled with the observation that (5.1) is obviously true in the case a = 2,

since fi(t, x) is just the normal density N(0, (2t)112) in P". Let a<2, let

rj>0 be given and suppose |x| ^n. Since fa(t, x)=t~nlafa(l, t~l,ax) a simple

application of Theorem 2.1 shows that t~lfa(t, x)—>C>0 as t—>0. Using this

fact together with (5.1) one sees easily that condition (D) is satisfied. The

compact set A appearing in (D) is, of course, extraneous here. If a = 2 one

may verify (D) directly from the explicit form of the density. Let A(X) be

the number of eigenvalues, Xy, which do not exceed X. An application of

Theorem 2.3 of [l] yields

N(\) ~ CX"/<T(1 + n/a)~l as X-> oo,

where C = m(G)fa(l, 0). The value of C is readily obtained from (2.1) and we

find

(5.2) N(\) ~ m(G) [ir*"22T(l + «/2)]-1X"'a

as X—> oo. This is the asymptotic distribution of the eigen-values for the de-

rived process we are considering.
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