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If X(t) is a stochastic process taking values in some space 9C and g

is a real-valued function on 9C then we may consider the process

g(X(t)). Often from some knowledge about the process X(t) and the

function g one can deduce properties of the process g(X(t)). For

example: if X(t) is Brownian motion in R" and g is a subharmonic

function on Rn that doesn't grow too fast then g(X(t)) is a semi-

martingale (Doob [2, p. 92]). Sometimes the implication can be

reversed in the sense that from some knowledge of the processes

X(t) and g(X(t)) one can deduce properties of the function g. For

example: if X(t) is Brownian motion in Rn and g(X(t)) is a martingale

then g is equal almost everywhere to a harmonic function (Theorem 2,

below). In this note we will consider implications of both sorts in

several rather special cases, making use of the notion of subordina-

tion of one process to another.

1. The notion of subordination is systematically introduced in

Bochner [l, p. 91 ]. We will use the following definition: let 9C be a

set and (B a Borel field of subsets of 9C, and let P(t, x, B) (t^O) be a

stationary Markov transition function on (9C, 03). (We always set

P(0, x, B) equal to 1 or 0 according to whether x is or is not in B.

In addition we will assume that for each B in <S> the transition func-

tion P is jointly measurable in (t, x) with respect to the product

Borel field 3X<B where 3 denotes the Borel subsets of [0, 00)).

Further, let G(u, A), M=i0, A in 3, be a family of probability meas-

ures on 3 such that (a) G(u, {0}) = 1 or 0 according to whether u = 0

or u>0, (b) for every 5>0, G(u, [0, 5])—>1 as u—>0, (c) for all wSiO,

^ = 0 G(u, o)*G(v, o)=G(u+v, o) where * denotes convolution. De-

fine a function Q(u, x, B) by the equation

P(t,x,B)G(u,dt).
0

Using property (c) it is easy to verify that Q is again a Markov

transition function on (9C, (&). It is also easy to show that for each

B in (B, Q is jointly measurable in (u, x), but this is not important.

If  {X(t); t^O}  is a time homogeneous Markov process with P as
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transition function and { Y(t); t^O} is a time homogeneous Markov

process with Q as transition function and with the same initial dis-

tribution as the X process then we say that the Y process is sub-

ordinate to the X process, and we call G the subordinator.

The most familiar application of this notion is to the symmetric

stable processes in R". The symmetric stable process of index a

(0<a = 2) is a process with stationary independent increments hav-

ing the transition function Pa(t, x, B) =Ji3fa(t, x — y)dy where fa(t, y)

is the continuous probability density on Rn having the Fourier trans-

form exp (—1\£\ "). For a = 2 we have (except for a scale factor in

the time parameter) the Brownian motion. If Gy(u, A) has the La-

place transform f"e~'vGy(u, dr)=exp ( — uyy) (0<7 = 1) then sub-

ordination by Gy transforms the process of index a into the process

of index ya. The relationship between the densities is given by

fa(t, x)Gy(u, dt).
0

In terms of the sample functions the relationship between the

original process and the subordinate process is this: suppose the

Markov process \X(t); t^tO] with transition function P is defined

over some basic probability space fi. Suppose \T(u); w3:0} is a

process defined over the same space fl but completely independent

of the X process, having stationary independent increments, with

T(0)=0, and with the distribution of T(u) — T(v) (u^v) being given

by G(u—v, o); (here we are of course supposing that fi is large enough

to support two such processes). Then the process Y(u, co)

= X(T(u, co), co) is a Markov process with transition function Q and

hence is subordinate, with subordinator G, to the X process. The

above statement is somewhat loose and some regularity assumptions

on the X process and transition function P are necessary to make it

precise. But the idea is that the subordinate process is obtained by

applying to the original process a certain type of optional sampling

procedure. We will not use the sample function interpretation of sub-

ordination.

A real-valued function g on R" will be called subharmonic if it is

Borel measurable and if for every x in R" and r > 0, g(x)

= fcg(x — ry)a(dy). (Here C= {yERn\ \y\ =l} and cr is the measure

distributing unit mass uniformly on C. The integral is to exist ab-

solutely.) If the inequality above is replaced by equality then g will

be called harmonic. If \X(t); t^O} is a process taking its values in

9C and g is real valued and (B-measurable then \g(X(t)); t^O} is a

real-valued process. Whenever we say that {g(X(t)); t^O} is a semi-
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martingale or martingale we mean that it is so relative to the family

of Borel fields {$(t)}, where 5(s) is generated by all sets of the form

{X(r)EA } with A in (B and rfks. If X is a Markov process with

transition function P this is equivalent to the assertion that for

every t _ 0, £|g(X(£))| < °° and that for every r > 0 and s = 0

SxS(y)P(r, x, dy) *zg(x) for almost all x in the sense of the distribu-

tion in 3C of X(s); (replace = by = in the martingale case).

A measure p on the Borel sets of Rn ((S(Rn)) will be called radially

symmetric about x in Rn if p(B) =p(T(B)) whenever B is a Borel set

and T is an orthogonal transformation about x of Rn.

2. The first theorem is a trivial generalization of the theorem of

Doob mentioned in the introduction.

Theorem 1. Let P(t, x, B) be a stationary Markov transition function

on Rn and let {X(t); r = 0} be a Markov process having P as transition

function. Suppose further that for every t>0 and x in R" the measure

P(t, x, o) is radially symmetric about x. If g is subharmonic [harmonic]

and E\g(X(t))\ < oo for all J = 0 then {g(X(t); £ = 0J is a semimartin-

gale [martingale].

Proof. First note that if ju is a probability measure on (&(Rn) and

x = (xi, • • • , Xn) is in Rn then integration with respect to p. can be

radialized about x as follows: there is a probability measure vx on 3

and a function ax(r, A), r = 0, A in <S>(Rn) which is for each A Borel

measurable in r and for each r a probability measure in A concentrat-

ing all its mass on the surface of the sphere with center at x and radius

r such that if / is any Borel measurable function on R" with

fRn\f(u)\p(du)<co then

(3) f  f(u)»(du) =   f      vx(dr) f  f(y)*x(r, dy).
J Rn J [0,oo) J Rn

For this we simply regard the coordinate functions (u\, ■ • ■ , un) as

random variables with joint distribution p, and we let Rx be the ran-

dom variable (E"=i (M»~x,)2)1'2. Then crx(r, o) is the (regular) condi-

tional distribution of («i, • • ■ , u„) given Rx = r and vx is the dis-

tribution of Rx. If in addition p. is radially symmetric about x then

we may assume that for each r, ax(r, o) is the uniform distribution of

unit mass on the surface of the sphere with center at x and radius r.

The fact that a conditional distribution with these properties may

be set up follows from the discussion given in Loeve [3, p. 353].

Now the hypothesis £|g(A"(0| < °° for all t implies that for any

i>0 and 5 = 0 the integral /s»|g(y)|P(ii x, dy) is finite for almost all x
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relative to the distribution of X(s), and if g is subharmonic we have,

for any such x,

f  g(y)P(t, x, dy) =   f      vx(dr)  f g(y)<rx(r, dy)
J B" J [0,oo) J Rn

(4)

=  j       vx(dr) I g(x - ry)a(dy) ^ g(x)
J [0,«j) J c

where vx and ax are the measures appearing in the radial decomposi-

tion of P(t, x, o). If g is harmonic the inequality in (4) is replaced by

equality and in either case the proof is complete.

An implication of the other sort mentioned in the introduction is

contained in the following theorem.

Theorem 2. Let {X(t); t^O} be Brownian motion in R" and sup-

pose g is Borel measurable. If {g(X(t)); t^O} is a martingale then g is

equal almost everywhere (Lebesgue measure) to a harmonic function.

Proof. Let us first remark that the conclusion of this theorem is

immediate from the following formal viewpoint: if we assume that g

is continuous and that g(X(t)) is a martingale then it follows im-

mediately that Ag = 0 where A denotes the infinitesimal generator of

the semi-group of transformations associated with the transition func-

tion of the process. Since for the Brownian motion A can generally

be identified as the ordinary Laplacean it follows that g is harmonic.

But here, as elsewhere in this paper where semi-group considerations

seem appropriate, we have encountered difficulty in choosing a suita-

ble domain for the semi-group of transformations and then obtaining

enough information about the corresponding infinitesimal generator

to make this viewpoint precise. So we proceed with the proof. By

hypothesis for each t>0jRn\g(y)\f2(t, x — y)dy< °o and

(5) f g(y)h(t, x - y)dy = g(x),

each assertion holding for almost all x, where f2(t, y)=2~"(i:t)~"'2

•exp (— \y\ 2/it). From the definition of f2 it follows easily that the

integral is finite for all x and that the left side of (5) defines a con-

tinuous function of x. So we may as well assume that g is itself con-

tinuous, and then (5) holds for all t>0 and x in R". (5) can also be

written asfBn(g(x — y) —g(x))f2(t, y)dy = 0, and then changing to polar

coordinates we have

/i 00

(gr(x) - g(x))r"-1e-^'itdr = 0
o
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for alU>0 where kn is a positive constant and gT(x) = fcg(x — ry)a(dy).

From the uniqueness theorem for the Laplace transform and the

fact that gr(x) —g(x) is continuous in r it follows that gr(x) =g(x) for

all r>0 so g is harmonic.

Theorem 3. Suppose the Markov process {X(t); t = 0} has transition

function P, the Markov process { Y(t); < = 0} has transition function Q

and that Y is subordinate to X with subordinator G. If {g(X(t)); 12:0 }

is a semimartingale [martingale] and f^E\ g(X(t))\ G(u, dt) < oo for

all 77 =0 then {g(Y(t)); t^O} is a semimartingale [martingale].

Proof. From our joint measurability assumption on P it follows

that E\g(X(t)) | is a measurable function of t. Also the last hypothe-

sis is equivalent to the assertion £|g(F(re))| < oo for all w = 0. Now

by hypothesis for each t>0 and s = 0 we have

(V) f g(y)P(t, x, dy) St g(x),
Jx

the integral existing absolutely and the inequality holding for almost

all x relative to the distribution of X(s). Let p be the initial distribu-

tion of the processes, let A be the set of points (t, x) such that the

integral in (7) fails to exist absolutely or the inequality fails to hold,

and let A(= {x|(/, x)GA}, A*= {t\ (t, x)GAJ. Fix w>0 and r = 0 and

consider the measure

UA) =   I      f P(t,x,A)n(dx)G(r,dt)
Jo   Jx

=   I   Q(r, x, A)fi(dx)
J 9C

on (B, the measure G(u, o) on 3, and the product measure on 3X®

formed from these two. A is in 3X(B and for each t dr(At) =0 so by

Fubini's theorem for almost all x relative to dT, G(u, A*)=0. If we

take any nonexceptional x and integrate each side of (7) with respect

G(u, o) then we have

g(x) =   f   G(u, dl)  f   g(y)P(t, x, dy)
Jo JSC

(8) =  f g(y) f   P(t, x, dy)G(u, dt)
Jx       Jo

=   I   g(y)Q(u, x, dy).
J X
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The justification for interchanging the integration orders may be

obtained from the last hypothesis of Theorem 3. Inequality (8) holds

for almost all x relative to 9r, but 6r is the distribution in 9C of Y(r)

and so this inequality asserts that \g(Y(t)); t^O} is a semimartin-

gale.

In view of the paragraph following equation (2) Theorem 3 may

be regarded as a consequence of Doob's theorems to the effect that

optional sampling transforms martingales into martingales and semi-

martingales into semimartingales, but a good deal of discussion and

possibly some additional hypotheses are needed to make this precise.

We will now reverse the martingale implication of Theorem 3 in

the case of the symmetric stable processes in R. We first recall a few

well-known facts about the transition densities /„. fa(t, y) is con-

tinuous in t>0, y in R and strictly positive. Also if a<2 then

limine \y\ 1+%(1, y) = C(a)>0. Of course/„(*, y) =r1'"fa(l, ^'"y).

From these facts it follows easily that if g is Borel measurable and

a<2 then JR\ g(x — y) \fa(t, y)dy< °o for all t>0 and x in R if and

onlyif/«|g(y)|/a(l, y)dy< oo . Also for any such g, fRg(x — y)fa(t, y)dy

defines a continuous function of x. Further if for some a < 2,

/fiI gW |/<*(1' y)dy<&> then for all t>0, x in R and P in [a, 2]

Jr\ &(x — y) \fs(t, y)dy<&>. We have already mentioned the sub-

ordinated Gy arising in the passage from one stable process to a

subordinate one. Of course Gi(u, o) is the distribution putting unit

mass at \u\. For y<1 Wintner [4] gives Gy as

Gy(u, A) =   I  u~1'~<gy(u-1'ix)dx
J A

where gy(x) = 2/-Kj^e~u"" sinp,sy sin sxds with X = cos 7ty/2, u = sin 7ry/2.

This integral formula is somewhat hard to handle, but for 7 = 1/2 we

have gw(x) = (Air)-1'^-3'^-1'**. In what follows \Xa(t); t^O} will

denote the symmetric stable process of index a in R. For definiteness

we will always assume that XQ(0)=0.

Theorem 4. 7/0<a^l and {g(Xa(t)); t^o} is a martingale then

for allP {g(Xp(t)); t^O} is a martingale. More precisely g equals a har-

monic function almost everywhere from which it follows that g equals a

constant almost everywhere.

Proof. The discussion preceding this theorem guarantees that all

the integrals that follow exist absolutely. Now by hypothesis for all

u>0, jRg(x—y)fa(u, y)dy = g(x) almost everywhere. The integral is a

continuous function of x so we may assume that g is itself continuous,
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in which case the equality holds for all w>0 and x in R. Using sub-

ordination we have

for all re>0. The inner integral is a continuous function of t. After

making a change of variable in the outer integral and using the

uniqueness theorem for the Laplace transform we have that for t>0

and x in R JRg(x — y)f2a(t, y)dy = g(x) or {g(X2a(t)); 7 = 0| is a mar-

tingale. This argument can be iterated and leads to the conclusion

that {g(X2"a(t)); tgiO} is a martingale so long as 2na_2. Since

1 _2no: = 2 for some re it follows that {g(X$(t)); t = 0} is a martingale

for some /3 in [l; 2 ]. Then by Theorem 3 {g(Xi(t)); t >: 0} is a martin-

gale. Using the above argument once more {g(X2(t)); f = 0} is a

martingale and by Theorem 2 g is then harmonic. Now g(x) =ax+b,

but if a^l, 7i|aXa(l)+&| = oo unless a = 0, so g is a constant.

Theorem 5. If l<a = 2, {g(Xa(t)); t^O} is a martingale, and

f\v\>i \s(y)\ |y|~(1+s><7y< °° for some 8<a then g equals a harmonic

function almost everywhere.

Proof. The additional integrability hypothesis is doubtless un-

necessary, but we use it to validate an interchange of integration

orders in what follows. Now if a>0 the continuous function fa(t, y)

= t~llafa(l, t~llay) whose Fourier transform is exp( — 7|i;|a) is

integrable, but it is a probability density only if a fk2. In any event

the relationship fya(u, y) = Jofa(t, y)Gy(u, dt) between these functions

continues to hold as one may easily verify. Also a few integrations by

parts in the Fourier inversion formula for/„ shows that if a>2 then

\y\ 3\fa(l, y)\ remains bounded as y—>co . Assuming now that a is in

(1, 2) (a = 2 is handled by Theorem 2) we have by hypothesis

SrS(x~y)S"(u, y)dy = g(x), where we may assume as usual that g is

continuous. If we fix x then as in the proof of Theorem 4

I g(x - y)dy j   f2a(t, y)Gi/t(u, dt)
J R J 0

(9)

= J    \JS(x- y)fia(t, y)dy) Gi/t(u, dt) = g(x)

subject to the legitimacy of the interchange of integration orders.

That this interchange is permissible follows from the relationship

(take x = 0 and u — 1)
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f "{ f       +  f      (I S(-y)i-lliaM^ t-ll2ay) I dy)\Gil2(l, dt)
Jo      lV|y|sl ■> I»I>1 /

fgM f \f2a(l,y)\dy
J R

+  f    if       \g(-y)\t-ll2aB\t-1l2"y\-«+»dy\Gi,2(l,dt)

= M f \f2a(l,y)\dy
J R

/,x/ r \    i     th'2a

where Af = sup|V|Si g(y) and 5 is a positive constant. So the second

double integral in (9) exists absolutely and by the uniqueness argu-

ment used in the proof of Theorem 4 it follows that for each x

(10) f g(x - y)f2a(t, y)dy = g(x)
J R

for almost all t. Integrating both sides of (10) with respect to

G2/2a(u, dt) we have

/G2/2a(u, dt) I  g(x - y)fia(t, y)dy
0 J R

(11) =  I g(x-y)dy J    f2a(t, y)G2/2a(u, dt)
J R J 0

=   I  g(x - y)f2(u, y)dy = g(x)
^ R

for all u. The interchange of integration orders in (11) may be justi-

fied by almost exactly the same argument used to justify the previous

interchange although here we need the fact that fots'2aG2/2a(u, dt)

< oo. The finiteness of this integral may be obtained by considering

the Fourier transform of G2/2a(u, o) which is

exp[-M cos(tty/2) I £|?(1 + t(sgn £) tan (ttt/2))],        7 = 2/2a.

The fact that g is harmonic now follows from the last equality in (11)

and Theorem 2, so the proof is complete.

The argument of Theorems 4 and 5 can doubtless be extended to

the symmetric stable processes in R", the subordinators that connect

the various processes being the same regardless of the dimension,
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but some justification for the existence of certain expectations and

for the interchange of certain integration orders must be supplied.

There is no difficulty in making the extension to R" ior the cases

0<a = l, but we have not made the necessary verifications for the

cases 1 <o:<2.

4. The method of subordination may be used to obtain uniqueness

theorems for certain classes of transforms, and the following theorem

is of this sort, g denotes a Borel measurable real valued function on

[0, oo) and fa(t, y) is the continuous real valued probability density

on (— oo , oo) with Fourier transform exp( —1\ £| "), (0<afkl).

Theorem 6. (i) (0<o:^l). If for every t>0 Jo\g(y) \fa(t, y)dy< =°

and Jo g(y)fa(t, y)dy = 0 then g = 0 almost everywhere.

(ii) (l<a<2). Suppose supi„|Si g(y)\<<*>- If for every t>0

Joi(y)fa(t, y)dy = 0 and fi\g(y)\\y -1~8Jy<oo for some 8<a then

g = 0 almost everywhere.

Proof. In either case the arguments used in the proofs of Theo-

rems 4 and 5 imply that, for every t>0, Jo\g(y)\ft(t, y)dy< oo and

Jo g(y)h(l, y)dy = 0 and the conclusion then follows from the unique-

ness theorem for the Laplace transform.
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