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Abstract

Current hypotheses stipulate core symptoms of schizophrenia (SZ) result from the brain’s incapacity to integrate
neural processes. Converging diffusion magnetic resonance imaging and graph theory studies provide evidence of
macrostructural alterations in SZ. However, age-related topological changes within and between white matter
(WM) networks and its relationship to gene expression with disease progression remain incompletely understood.
This cross-sectional study uses network modeling to investigate changes in WM network organization with disease
progression in chronic SZ as well its relationship with gene expression in healthy brains. First, we replicate prior
findings demonstrating altered global WM network topology in SZ. Novel results show significantly altered age-
related network degradation patterns in patients compared with controls. Specifically, controls show stereotyped,
linear global network decline with age. In contrast, patients show nonlinear network decline with age. Further anal-
ysis reveals lack of significant topological decline in younger adult patients, which is subsequently followed by
stereotyped linear decline in older adult patients. Node-specific analyses show significant topological differences
in frontal and limbic regions of younger adult patients compared with age-matched controls, which become less
pronounced with age in older adult patients compared with age-matched controls. Lastly, we show several gene
expression profiles, including DISC1, are associated with age-related changes in WM disconnectivity. Together,
these findings provide novel WM topological and genetic evidence supporting neurodevelopmental models of
SZ, suggesting that network remodeling continues throughout the third decade of life before stabilizing.
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Introduction

Current models stipulate schizophrenia (SZ), a psy-
chiatric disease characterized by hallucinations, flattened

affect, and cognitive disturbances, is a disorder of dysconnec-
tivity arising not from focal pathophysiology, but rather
from impaired neuroanatomical integration across the brain
(O’Donoghue et al., 2017). Converging neuroimaging, physi-
ological, and molecular evidence suggest that core symptoms
of the disease are related to altered connectivity between dis-
tinct brain regions, causing inefficient information integration
in the network (Pettersson-Yeo et al., 2011; van den Heuvel
et al., 2010).

Importantly, a wide body longitudinal evidence suggests
SZ is not a static neurodevelopmental disorder, but rather

an alteration in cortical plasticity that occurs over the life-
time of an individual (Bassett et al., 2008; DeLisi et al.,
1997; Gogtay et al., 2004; Greenstein et al., 2006). Although
these studies establish alterations of gray matter in SZ, it is
less clear how organization of the white matter (WM) net-
work changes (i.e., dynamics of network organization) oc-
curs in SZ as a joint function of disease, age, and regional
gene expression.

A large number of diffusion magnetic resonance imaging
(MRI) studies examining tract-level changes report findings re-
flective of altered WM integrity in SZ (Kubicki et al., 2002,
2011; Luck et al., 2011; Price et al., 2008; Szeszko et al.,
2008). Furthermore, prior studies applying graph theory analy-
sis to diffusion MRI data show abnormal path length, centrality,
and efficiency in frontal and temporal network structure as well
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as impaired efficiency and clustering coefficient in medial fron-
tal, parietal/occipital, and left temporal lobes (van den Heuvel
et al., 2010; Wang et al., 2012; Zalesky et al., 2011). Although
such studies elucidate macrostructural changes in disease path-
ophysiology, age-related changes within and between WM net-
works with SZ progression remain incompletely understood
(Gogtay, 2008). The goal of this study is to model dynamics
of structural network organization in SZ and identify genes
that may underlie such dynamic processes.

Prior work provides comprehensive insight into specific
genes that may be involved in the etiology of SZ (Ripke
et al., 2014; Walsh et al., 2008). Fewer studies examine asso-
ciations between SZ neuroimaging biomarkers and genes
(Chavarria-Siles et al., 2016; Terwisscha van Scheltinga
et al., 2013). Still, much of this work consists of large
genome-wide association studies (GWAS) studies that do not
specifically link the relationship between the brain’s local
gene expression and structural architecture. Earlier this year,
the relationship between local gene expression and connectome
disconnectivity in SZ was established, as measured by fiber
tract connectivity density (Romme et al., 2017). However, a
comparable discovery of multiple topological graph metrics is
missing. This article is the first to empirically evaluate the rela-
tionship between local gene expression and WM network orga-
nization with age in SZ.

This study uses a cross-sectional design to test network
models based on diffusion tensor imaging (DTI) and genetic
expression data. We hypothesize that network topology will
degrade faster in SZ than in controls, with a significant asso-
ciation between gene expression and topological abnormali-
ties. To test this hypothesis, graph theory analysis is utilized
to examine age-related patterns of global and local topolog-
ical degradation. In addition, we model the topological rela-
tionship with gene expression as measured by microarray
data from healthy human brains from the Allen Brain Institute.

Materials and Methods

Subjects

DTI data were acquired from 24 individuals with chronic,
treatment-resistant SZ and 51 healthy controls. Patients were

recruited from inpatient and outpatient units at the University
College Hospital Galway (UCHG) and in the catchment area
of HSE West of Ireland. All patients were diagnosed by ex-
perienced psychiatrists, using the Structured Clinical Inter-
view for DSM disorders (SCID) (First and Pincus, 2002),
as meeting the criteria for SZ per the DSM-IV-TR (Diag-
nostic and Statistical Manual of Mental Disorders, Fourth
Edition).

Patients and control subjects were age and gender matched
(Table 1). All patients with chronic SZ were treatment resis-
tant at the time of scanning and being considered for treat-
ment with clozapine, an atypical antipsychotic medication
for treatment resistance. Treatment resistance was defined
as failure to respond to at least two antipsychotic medica-
tions, one of which an atypical, with a prolonged period
of moderate to severe positive and/or negative symptoms.
At time of scanning, all patients were medicated with atypi-
cal antipsychotics, with some on two or more medications
(Table 1). Mean chlorpromazine equivalent dose was 247 mg.
The control group consisted of 51 participants with no current
or past axis I or II disorders (DSM-IV-TR) and was screened
using the SCID-Non-Patient Version (First and Pincus,
2002). Both the UCHG and the National University of
Ireland Galway Ethics committees granted ethical appro-
val, and written informed consent was obtained from each
participant.

Image acquisition

Structural MR images were acquired on a 1.5T Siemens
Magnetom Symphony MRI scanner, as detailed in Holleran
and associates (2014). For each individual, a two-dimensional
midsagittal scan was used to position the subject so that the
floor of the fourth ventricle was parallel to the y axis of the scan-
ner coordinates system. The anterior–posterior (AP) axis was
determined on the midsagittal slice using the anterior
commisure–posterior commisure (AC-PC) line. Detailed high-
resolution, whole head contiguous axial slices (thickness
0.9 mm, field of view 230 · 230 mm) parallel to this axis were
acquired using a set of three-dimensional T1-weighted magne-
tization prepared rapid gradient-echo (MPRAGE) sequences
(relaxation time (TR): 1140 ms; echo time (TE): 4.38 ms;

Table 1. Demographic Information of Study Participants

Characteristic
Patients (n = 24)
mean – SD, range

Controls (n = 31)
mean – SD, range

t-test/x2

(p value)

Age (years) 36.2 – 10.02, 20–59 34.4 – 11.31, 19–57 p = 0.48
Male/female (% male) 35/16 (46) 17/7 (41) p = 0.41
Duration of illness (years) 14.42 – 8.16, 4–39 —
No. of psychotic episodes 4.8 – 3.38, 2–20 —

Medications
Typical antipsychotics 12 —
Atypical antipsychotics 24 —
Clozapine 0 —

Clinical scales
Total PANSS 53.9 (17.2) —
SAPS 27.9 (16.3) —
SANS 42.5 (20.6) —
GAF 46.8 (10.8)

PANSS, Positive and Negative Syndrome Scale (scored on the 0–6 scale); SANS, Scale for the Assessment of Negative Symptoms; SAPS,
Scale for the Assessment of Positive Symptoms; GAF, Global Assessment of Functioning.

AGE-RELATED CHANGES IN WM TOPOGRAPHY AND GENES IN SZ 575



inversion time (TI): 600 ms; flip angle 15�; acquisition matrix
256 · 256, pixel resolution of 0.45 · 0.45 mm).

The diffusion sequence utilized echo planar imaging-
based diffusion, 64 independent diffusion gradient directions
at a b-value of 1300 s/mm2, and seven undirected images,
TR = 8100 ms, TE = 95 ms, in-plane voxel resolution of 2.5 ·
2.5 mm, slice thickness of 2.5 mm, and signal-to-noise ratio
(SNR) of b = 1000 s/mm2 images >20. After scout images,
the total imaging time was 10.24 min for the diffusion MRI
sequence. Diffusion parameters are further described in Hol-
leran and associates (2014) utilizing methodologies recom-
mended by Jones and associates (1999).

Image preprocessing: structural and diffusion MRI

Whole brain networks were constructed from 51 control
and 24 schizophrenic subjects, as depicted in Figure 1,

using previously described methodology (Iturria-Medina
et al., 2008; Raj and Chen, 2011). In brief: T1-weighted
MR images were processed using the FreeSurfer automatic
volumetric pipeline to map and construct cortical volumes
(Dale et al., 1999; Fischl et al., 1999, 2001, 2004a; Fischl
et al., 2002, 2004b; Ségonne et al., 2004) (http://surfer
.nmr.mgh.harvard.edu). Inspection of T1 data revealed that
seven subjects (five patients and two controls) had motion
artifacts. These were excluded from analysis and not in-
cluded in subject demographics.

Primary visual inspection did not indicate presence of
major artifacts in any of the diffusion MRI data. Slice-by-
slice inspection showed that motion was most evident in
the frontal pole, but no major artifacts were detected that
would result in additional exclusion from the study. Any
potential confounding motion artifact was successfully
addressed by eddy current and motion distortion correction
using methodology detailed in Leemans and Jones (2009).

Cortical and subcortical volume mappings from the Free-
Surfer aparc+aseg parcellation atlas were used to establish 86
region-of-interest (ROI) nodes for tractography. The pro-
cessed tissue segmentation defined the white–gray matter
interface, which was used to seed points for probabilistic
tractography with 1000 streamlines drawn per seed voxel
(Behrens et al., 2007). Each streamline is assigned a probabil-
ity score according to established criteria (Iturria-Medina et al.,
2008). WM tracts are estimated by the connection strength of
each ROI, which is obtained by summing the probabilities of
the streamlines terminating between two regions.

Graph theory analysis

Characteristic graph metrics to examine differences in net-
work topology were calculated from undirected, weighted,
nonthresholded structural connectivity matrices. Network
metrics including density, global efficiency, clustering coef-
ficient, small-worldness, local connection strength, local ef-
ficiency, and local modularity were computed in MATLAB
using the Brain Connectivity Toolbox (BCT) as described
in Rubinov and Sporns (2010). Additional metrics including
power law alpha and largest eigenvalue of adjacency matrix
were not available in the BCT and calculated using the
igraph tool (Csardi et al., 2006). See Supplementary Data
for definitions of additional network properties (Supplemen-
tary Data are available online at www.liebertpub.com/brain).

Genetic data

Microarray gene expression data from postmortem healthy
human brains were downloaded from the Allen Brain Atlas
Institute and obtained as described in Hawrylycz and associ-
ates (2012). The microarray data are composed of 926 re-
gions of the brain, each one belonging to a set of 58,692
probes that correspond to 29,181 distinct genes. Unique
probe IDs often represented the same gene and the average
as used for analysis of the gene, as done by Freer and asso-
ciates (2016). For analysis, the 926 regions in the microarray
data were mapped to 86 regions of the Desikan Atlas.

We narrowed gene expression work to six genes identified
as the top genes reported to be associated with SZ from a
GWAS database to capture maximum power across thou-
sands of studies and limit Type-I error. Genes of interest im-
plicated in SZ were selected from a DisGeNET database,

FIG. 1. Image preprocessing construction of the structural
brain network. (A) T1 images were used to partition the brain
into 86 cortical and subcortical areas with FreeSurfer (B) WM
fibers were arranged as determined by probabilistic tractogra-
phy. Colors indicate directionality. Green is dorsal to ventral,
red is left to right, and blue is anterior to posterior. (C) Individual
structural connectivity matrices were created from probabilistic
tractography (D) Graph network analysis performed with nodes
representing brain regions and edges representing the strength
of WM tract connections. WM, white matter. Color images
available online at www.liebertpub.com/brain
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which generates human gene–disease associations from cu-
rated databases and text mining (Piñero et al., 2015).

Statistical analysis

Independent, two-sided t-tests were used to test for differ-
ences in characteristic graph metrics. All reported significant
global p values survived false discovery rate (FDR) correc-
tion for multiple comparisons and are FDR adjusted (Benja-
mini and Hochberg, 1995). When noted, permutation testing,
randomly mixing group assignment, was performed to obtain
a null distribution of component size, independent of group
status (5000 permutations). Permutation tests for group dif-
ferences in global network metrics were FDR corrected for
multiple comparisons. Local metrics did not survive FDR
corrections and local reported p values are uncorrected.
Using global metrics as dependent variables and age as inde-
pendent variables, network degradation was modeled using
regression analysis. The significance of regression model
fits was evaluated using the F-statistic.

Correlation analyses were carried out to determine
whether identified brain topological changes were associated
with gene expression. Correlations between a specific gene’s
expression and a local graph metric were Bonferroni cor-
rected across all three tested age ranges ( p < 0.05/3). This
Bonferonni correction method was applied in a manner sug-
gested by Mayo and Cox (2006), which urges each exper-
iment’s goals be considered when applying Bonferroni
correction. Specifically, this study considers each gene and
its relationship with age to represent its own experiment to ex-
plore the effect of age on the relationship between gene ex-
pression and topology. Within each experiment exist three
hypotheses (one hypothesis for younger subjects, one hypoth-
esis for older subjects, and one hypothesis for all subjects).

Results

WM network topology in all subjects

First, we confirm results from our imaging pipeline repro-
duce numerous previously published data on altered global
WM topology in SZ. We observe that patients show signif-
icantly decreased density ( p = 0.02), global efficiency
( p = 0.01), clustering coefficient ( p = 0.01), largest eigen-
value of the adjacency matrix ( p = 0.02), and power law
alpha ( p = 0.02) than controls. No significant difference in
small-worldness is observed between patients and controls
( p = 0.38; Supplementary Fig. S1). All reported global p
values survived FDR correction for multiple comparisons.
To mitigate concerns of small sample, p values were repli-
cated with permutation testing (5000 permutations—FDR
corrected in Supplementary Table S1).

Age-dependent network degradation

To quantify changes in network topology with age, regres-
sion models were fit to each global metric over the age range
of all subjects. The graphs showing global network metrics
as a function of age are hereby referred to as ‘‘age-resolved’’
plots and are depicted in Figure 2. Linear models were tested
because prior work shows WM microstructure changes line-
arly with age in healthy control subjects (Hagmann et al.,
2010). In addition, we hypothesized that quadratic models
may also capture network degradation as this study encom-

passes a later, wider age range than prior work. To test
these hypotheses, model fits were evaluated using signifi-
cance of the F-statistic of the overall model, whether the
model considered was linear, quadratic, or polynomial. The
model that reports the smallest p value of the F-statistic was
considered the most appropriate model for any given graph
metric. We observe that in control subjects, all metrics de-
graded in a stereotyped manner. Density ( p = 0.02), efficiency
( p = 0.002), clustering coefficient ( p = 0.005), and power law
alpha ( p = 0.05) degrade linearly with age (Fig. 2; Table 2).
Interestingly, largest eigenvalue of the adjacency matrix de-
grades quadratically with age in controls ( p = 0.007).

In contrast, age-related network degradation patterns in
patients do not follow similar, stereotyped trends. Density
( p = 0.076) and global efficiency ( p = 0.075) degrade in a
moderate quadratic trend toward significance with age in pa-
tients (Fig. 2A, B). However, neither linear nor quadratic fits
accurately model age degradation patterns in clustering co-
efficient, power law alpha, and largest eigenvalue of the
adjacency matrix. The best regression equations for these
age-resolved graphs are over-fitted, fifth degree polynomials,
which are likely not generalizable (Table 2; Fig. 2C) (power
law alpha and largest eigenvalue of the adjacency matrix are
not shown). Taken together, these data show that although
controls show stereotyped, linear degradation of network or-
ganization with age, a stereotyped linear model for SZ is
overall poor, as the best result shows merely a moderate
trend toward significance (Fig. 2A, B). Given that quadratic
fits are appreciable in the SZ group over age, subsequent
analysis splits patients into two separate age groups with
the goal of elucidating whether two linear models segregated
by age can explain the abnormal degradation trajectory ob-
served in SZ better than a single linear model over all ages.

To further investigate age-related network degradation
within SZ, regression was performed with patients split
into a ‘‘younger adult’’ or ‘‘older adult’’ group. Age 37
was selected as the cut-off between ‘‘older’’ and ‘‘younger’’
subjects because visual inspection of SZ age-resolved graphs
shows that age 37 years represents the peak of the parabolic
age effect. Specifically, it is evident in Figure 2A and B that
density and global efficiency continue to grow in the younger
age range, before reaching a peak at age 37 then declining.
This finding suggests a possible age-related topological
change that warranted further analysis (Fig. 2A, B). Hence,
to test this hypothesis, regression analysis was carried out
separately in each age group. These individual regression
fits are depicted in Figure 3. Owing to the small sample
size in each age group, permutation testing consisting of
5000 iterations was carried out after the initial regression.
In the younger adult group, degradation slopes of density,
global efficiency, power law, and largest eigenvalue of the
adjacency matrix slopes do not significantly differ from 0.
This result survived permutation testing (Supplementary
Table S2). In contrast, preliminary regression analysis
shows all four of those metrics degrade in a significant, linear
manner in older adults (Fig. 3). However, only between the
age effect of global efficiency and largest eigenvalue of the
adjacency matrix survived permutation testing (Supplemen-
tary Table S2). Clustering coefficient did not follow this
trend and does not degrade at a slope significantly different
in either age group, suggesting a more sophisticated model
may be necessary (data not shown).
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Younger adult versus older adult global network analysis

Next, we examine network organization between patients
and controls within the two age groups. Younger adult patients
show significantly decreased global efficiency ( p = 0.002) and
clustering coefficient ( p = 0.002) compared with age-matched
controls (Fig. 4B, C). Density ( p = 0.11) shows significant be-
fore multiple corrections, but does not survive FDR correction
(Fig. 4A). Similarly, power law alpha ( p = 0.11), largest eigen-
value of the adjacency matrix ( p = 0.11), also show significance
before multiple corrections, but do not survive FDR correction
(data not shown). Small-worldness ( p = 0.55) is preserved be-

tween younger patients and controls (Fig. 4D). No global
graphic metrics are significantly different between older adult
patients and age-matched controls (Fig. 4E–H).

Relationship between gene expression
and local network analysis

Owing to the highly heritable nature of WM abnormalities
in SZ, we investigated the relationship between changes in
topological degradation and gene expression in both younger
adult and older adult subjects. This study’s six genes of inter-
est include DISC1, DRD2, DTNB1, GRM3, COMT, and

A B

C

FIG. 2. The best regression fits for age-resolved plots of network metrics (A) density, (B) global efficiency, and (C) clus-
tering coefficient in all controls and patients. Global metrics in control subjects degrade in a significant linear, stereotyped
manner. Patient networks do not exhibit the same trends. Color images available online at www.liebertpub.com/brain

Table 2. p Values of F-Statistics Evaluating Linear and Quadratic Regression Model

Fit of Global Graph Metrics Versus Age

Metric
Age (CON),

p value
Age2 (CON),

p value
Age (SZ),
p value

Age2 (SZ),
p value

Density 0.024a 0.03 0.12 0.076a

Global efficiency 0.002a 0.01 0.18 0.075a

Clustering coefficient 0.005a 0.02 0.91 0.47
Power law alpha 0.05a 0.06 0.316 0.277
Largest eigenvalue of adjacency matrix 0.018 0.007a 0.106 0.128

aIndicates significant and moderate trends toward significance.
SZ, schizophrenia.
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A

B

C

D

FIG. 3. p Values of linear regression fits for age-resolved plots of global metrics of (A) density, (B) global efficiency, (C)
power law alpha, and (D) largest eigenvalue of the adjacency matrix for patients, divided into young (less than age 37) and old
(more than age 37). A nonsignificant linear fit indicates the slope is not significantly different from 0. Color images available
online at www.liebertpub.com/brain
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BDNF (see Supplementary Table S3 for full gene names).
These genes were identified as the top genes reported to be
associated with SZ from a GWAS database. Glass brains
of healthy gene expression of DISC1 from postmortem
brains are illustrated, as DISC1 in the literature reports it
as most associated with SZ (Fig. 5; see Supplementary
Fig. S2 for glass brains of all genes of interest).

To pinpoint regional abnormalities, local network analysis
of connection strength, efficiency, and modularity was per-
formed. Reported local effects did not survive FDR cor-
rection. Group analyses reveal reduced local connection
strength between younger adult patients and age-matched

controls in frontal, temporal, and cingulate regions
(Fig. 6A). Specifically, the most drastic reductions in local
connection strength of these regions are observed in the
left caudal anterior cingulate cortex ( p = 0.00005), bilater-
ally in the superior temporal gyrus ( p = 0.0008, p = 0.04),
left pars triangularis ( p = 0.005), left transverse temporal
gyrus ( p = 0.01), and right precentral gyrus ( p = 0.01; Sup-
plementary Table S4). Older adult patients show only three
nodes with altered local connection strength compared with
age-matched controls, which include the right middle tempo-
ral gyrus ( p = 0.004), right hippocampus ( p = 0.009), and
left nucleus accumbens ( p = 0.02; Fig. 6B; Supplementary

A B C D

E F G H

-
-

FIG. 4. Boxplots less than age 37 of (A) density, NS (B) global efficiency, significant, p = 0.0018 (C) clustering coefficient,
significant, p = 0.0018 (D) small-worldness, NS. More than age 37 boxplots of (E) density, NS (F) global efficiency, NS (G)
clustering coefficient, NS (H) small-worldness, NS. Error bars express standard deviation. NS, not significant. Color images
available online at www.liebertpub.com/brain

FIG. 5. Sagittal and axial glass
brains of gene expression of DISC1
from postmortem brains of healthy
subjects. Color images available
online at www.liebertpub.com/
brain
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Table S4). Interestingly, DISC1, DRD2, DTNBP1, and GRM3
show an age-related change in association between local con-
nection strength and gene expression (Table 3). Age-related dif-
ferences in the relationship between DISC1 and local
connection strength disturbances appear to be driven by a sig-
nificant correlation in younger subjects, an effect absent in
older subjects (Fig. 6C). Conversely, age-related differences
in the relationship between DRD2 and DTNBP1 are driven
by a significant correlation in older subjects and absent in youn-
ger subjects. We observe no age-related effect of connection
strength disturbances and BDNF nor COMT expression.

Local efficiency is also reduced in younger adult patients
compared with age-matched controls in frontal, temporal,

and cingulate regions (Fig. 7A). The most significant reduc-
tions in local efficiency are observed bilaterally in the superior
frontal gyrus ( p = 0.0005, p = 0.003), bilateral caudal anterior
cingulate ( p = 0.003, p = 0.02), bilateral rostral middle frontal
gyrus ( p = 0.004, p = 0.02), left pars triangularis ( p = 0.01),
and bilateral precentral gyrus ( p = 0.03, p = 0.04; Supplemen-
tary Table S5). In contrast, older adult patients reveal only
two nodes with abnormal local efficiency compared with
age-matched controls, which include the right pars orbitalis
( p = 0.02) and left pericalcarine cortex ( p = 0.05; Fig. 7B; Sup-
plementary Table S5). Age-related differences in the relation-
ship between DISC1 and local efficiency alterations appear to
be driven by a significant correlation in younger subjects, an

FIG. 6. Coronal, sagittal, and axial glass brains with decreased local connection strength in patients (blue nodes) and increased
connection strength in patients (gold nodes) versus controls. (A) Younger subjects less than age 37 and (B) older subjects more
than age 37. Node size represents t-statistic. Effects did not survive FDR correction. (C) Correlation between differences in local
connection strength (t-statistic) versus healthy DISC1 expression. Colors correspond to lobe. FDR, false discovery rate. Color
images available online at www.liebertpub.com/brain
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Table 3. Age-Related Differences in the Relationship Between Gene Expression

and Local Connection Strength

Gene All subjects Younger subjects Older subjects Age effect

BDNF R = 0.05 R = 0.04 R = 0.19 —
p = 0.61 p = 0.71 p = 0.08

DISC1 R =�0.30 R =�0.32 R =�0.14 Driven by younger subjects
p = 0.005a p = 0.003a p = 0.21

COMT R = 0.07 R = 0.08 R = 0.03 —
p = 0.50 p = 0.47 p = 0.79

DRD2 R =�0.33 R =�0.26 R =�0.31 Driven by older subjects
p = 0.002a p = 0.02 p = 0.004a

DTNBP1 R =�0.26 R = 0.16 R =�0.30 Driven by older subjects
p = 0.02 p = 0.15 p = 0.005a

GRM3 R =�0.22 R =�0.09 R =�0.30 Driven by older subjects
p = 0.04 p = 0.39 p = 0.006a

Gray highlight indicates age-related changes in the relationship between gene expression and WM fiber connection strength.
aSurvived Bonferroni correction significance threshold of p = 0.016.

FIG. 7. Coronal, sagittal, and axial glass brains with decreased local efficiency in patients (blue nodes) and increased ef-
ficiency in patients (gold nodes) vs. controls. (A) Younger subjects less than age 37 and (B) older subjects more than age 37.
Node size represents t-statistic. Effects did not survive FDR correction. (C) Correlation between differences in local effi-
ciency (t-statistic) versus healthy DISC1 expression. Colors correspond to lobe. Color images available online at www
.liebertpub.com/brain
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Table 4. Age-Related Differences in the Relationship Between Gene Expression and Local Efficiency

Gene All subjects Younger subjects Older subjects Age effect

DISC1 R =�0.23 R =�0.30 R = 0.02 Driven by younger subjects
p = 0.03 p = 0.0049a p = 0.88

DRD2 R =�0.20 NS NS —
p = 0.06

DTNBP1 R =�0.21 NS NS —
p = 0.05

GRM3 R =�0.08 NS NS —
p = 0.49

Gray highlight indicates age-related changes in the relationship between gene expression and local efficiency.
aSurvived Bonferroni correction significance threshold of p = 0.016.
NS, not significant.

FIG. 8. Coronal, sagittal, and axial glass brains with decreased local modularity in patients (blue nodes) and increased
modularity in patients (gold nodes) versus controls. (A) Younger subjects less than age 37 and (B) Older subjects more
than age 37. Node size represents t-statistic. Effects did not survive FDR correction. (C) Correlation between differences
in local efficiency (t-statistic) versus healthy DISC1 expression. Colors correspond to lobe. Color images available online
at www.liebertpub.com/brain
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effect that is absent in older subjects (Fig. 7C). There is no re-
lationship between DRD2, DTNBP1, and GRM3 (Table 4).
BDNF and COMT were omitted from analysis due to lack of
relationship with connection strength disturbance.

Similarly, we observe decreased modularity in frontal,
cingulate, and temporal regions between younger adult pa-
tients and age-matched controls (Fig. 8A). The most signif-
icant reductions in modularity occur bilaterally in the
supramarginal gyrus ( p = 0.01, p = 0.02), bilateral rostral
middle frontal gyrus ( p = 0.01, p = 0.03), bilateral frontal
pole ( p = 0.01, p = 0.03), bilateral caudal anterior cingulate
( p = 0.01, p = 0.02), and bilateral transverse temporal gyrus
( p = 0.02, p = 0.03; Supplementary Table S6). Older adult
subjects display only three nodes with abnormal local mod-
ularity compared with age-matched controls, which include
the right pars orbitalis ( p = 0.04) and bilateral nucleus ac-
cumbens ( p = 0.03; Fig. 8B; Supplementary Table S6).
Older adult patients exhibit trends of increased modularity
compared with controls. Age-related differences in the rela-
tionship between DISC1, DRD2, DTNBP1, and local modu-
larity appear to be driven by a significant correlation in older
subjects, an effect that is absent in younger subjects (Fig. 8C;
Table 5). BDNF and COMT were omitted from analysis due
to lack of relationship with connection strength. Interest-
ingly, there is an age-related effect in the association be-
tween GRM3 expression and local modularity alterations.
Specifically, younger subjects show a significant positive
correlation between SZ disturbances in modularity and
GRM3 expression, whereas older subjects show a significant
negative relationship (Table 5).

Discussion

This study uses DTI, advanced graph theory, and postmor-
tem microarray data in a cross-sectional design to show novel
alterations in age-related topological network degradation and
its relationship with gene expression in SZ. These findings
support popular disconnection models suggesting that WM
disruptions underlie pathophysiology in SZ, which compro-
mise network integration throughout the lifespan.

First, we replicate prior findings of disrupted global topol-
ogy in SZ and preserved small-worldness between patients
and controls across all subjects (Supplementary Fig. S1).
Previous diffusion MRI and graph theory studies support
these findings of abnormal global topology, which, together,
suggest a limited capacity of brain information integration in
SZ (Bassett et al., 2008; Filippi et al., 2013; Pettersson-Yeo

et al., 2011; van den Heuvel et al., 2010; Zalesky et al.,
2011). It is believed that such topological differences may
be due to the outcome of different growth processes and neu-
rodevelopmental abnormalities in SZ that specifically impact
large multimodal cortical organization (Bassett et al., 2008).

Because largest eigenvalue of the adjacency matrix (Sup-
plementary Fig. S1D) and power law alpha (Supplementary
Fig. S1E) are novel metrics in the context of DTI and SZ,
they will be briefly discussed. Power law alpha is a derivative
of degree, and follows previously published results of de-
creased degree in SZ compared with patients (Fornito
et al., 2012). Eigenvalues are a set of characteristic roots as-
sociated with a system. Thus, reduced largest eigenvalue of
the adjacency matrix (Fig. 2D) across all patients compared
with controls suggests a network more vulnerable to insult
with decreased information flow and robustness (Navlakha
et al., 2014; Restrepo et al., 2007). Because our study is
the first to examine these metrics in the present context,
these results will benefit from independent replication.

Regression analysis reveals control network topology de-
grades in a stereotyped manner, whereas corresponding pa-
tient networks do not (Fig. 2; Table 2). Owing to the small
sample size arising from splitting up the patient group, per-
mutation testing was carried out. Significant age-related dif-
ferences remained significant after permutation testing with
FDR correction in metrics largest eigenvalue of the adja-
cency matrix and global efficiency.

Prior graph theory analysis of network topology on diffu-
sion MRI data in healthy networks shows a significant posi-
tive stereotyped, linear effect of age on network costs (Gong
et al., 2009). This suggests that the aging network experi-
ences a linear reduction in overall cortical connectivity,
causing it to become less connected. This result converges
with our findings of linear degradation in global efficiency
in control subjects because networks with higher costs tend
to have lower efficiencies (Fig. 2A).

Additional network modeling shows absence of significant
network degradation in younger adult patients. In contrast,
significant linear network degradation, which more closely
resembles control networks, is observed in older adult pa-
tients (Fig. 3). Interestingly, global network topology of
younger adult patients is significantly compromised when
compared with age-matched controls (Fig. 4A–D). This ef-
fect is not observed in older patients (Fig. 4E–H). Local anal-
ysis reveals that global network abnormalities in younger
adult patients are driven by changes in frontal, temporal,
and cingulate regions (Figs. 6A, 7A, and 8A). These regional

Table 5. Age-Related Differences in the Relationship Between Gene Expression and Local Modularity

Gene All subjects Younger subjects Older subjects Age effect

DISC1 R =�0.25 R =�0.02 R =�0.26 Driven by older subjects
p = 0.02 p = 0.87 p = 0.01a

DRD2 R =�0.06 R = 0.18 R =�0.27 Driven by older subjects
p = 0.57 p = 0.10 p = 0.009a

DTNBP1 R =�0.23 R = 0.02 R =�0.31 Driven by older subjects
p = 0.03 p = 0.85 p = 0.004a

GRM3 R = 0.11 R = 0.33 R =�0.26 Sign of relationship changes with age
p = 0.33 p = 0.002a p = 0.01a

Gray highlight indicates age-related changes in the relationship between gene expression and local modularity.
aSurvived Bonferroni correction significance threshold of p = 0.016.
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differences become markedly less pronounced in older pa-
tients than in age-matched controls (Figs. 6B, 7B, and 8B).
Specifically, we observe age-related differences in local con-
nection strength, efficiency, and modularity. Because
strength is a metric reflecting total wiring cost of a node,
this finding suggests decreased local robustness in SZ, an ef-
fect driven by younger patients. Our local efficiency results
suggest abnormal control of information flow within frontal,
temporal, and cingulate regions of younger patients with SZ
(Rubinov and Sporns, 2010). Finally, modularity is a metric
of segregation. Hence, reduced modularity findings in youn-
ger patients suggest less tightly connected neighborhoods
and increased network randomness, which may reflect break-
down of encapsulated information processing underlying ab-
normal cognitive processes in SZ (Fornito et al., 2012).

Observed local topology disruptions in younger patients con-
verge with DTI studies examining WM integrity, as reflected
by fractional anisotropy (FA). It is reported that patients with
SZ show globally reduced FA, including in frontal, temporal,
and cingulate regions compared with controls (Kochunov and
Hong, 2014; Kubicki et al., 2002; Luck et al., 2011; Mori
et al., 2007; Price et al., 2008; Szeszko et al., 2008). Indeed,
many of these changes are observed at the earliest stages of ill-
ness (Kuswanto et al., 2012; Samartzis et al., 2014).

Model of age-related topological degradation in SZ

Our age model of disrupted topology, presented in Figure 9,
supports neurodevelopmental hypotheses of SZ, which postu-
late that a neurodevelopment risk factor of SZ acts during ad-
olescence, disrupting the synaptic reorganization and pruning
stages later in life (Kochunov and Hong, 2014). This work
shows that younger adult patients (ages 20–37 years) show
compromised topology but lack of network degradation,
which we believe is evidence of compensatory rewriting, re-
flective of the dynamic nature of brain networks. There is sup-

port for rewiring and extended development into the third
decade of life (Petanjek et al., 2011). Further evidence suggests
that homeostatic mechanisms can often compensate for one in-
sult by shifting weights in parallel pathways (Marder and
Goaillard, 2006; Tononi et al., 1999). Subsequently, older
adult patients (ages 38–68 years) show linear degradation of
global networks and less pronounced network differences be-
tween patients and controls. There is evidence for structural
brain changes at different stages of the illness. In line with
our results, several cross-sectional studies show that WM def-
icits in chronic patients are either absent or less severe than in
first episode patients (Friedman et al., 2008; Kong et al., 2011).

Prior anatomical studies in SZ also support our age
model. Graph network findings of anatomical architecture
suggest that topological differences between divisions of
normal cortex may represent the outcome of different
growth processes in SZ, which impact cortical organization
(Bassett et al., 2008). Furthermore, in a 19-year longitudi-
nal study of cortical thickness, brain developmental trajec-
tory in patients normalizes with age in posterior regions,
while remaining divergent in frontal and temporal regions
(Greenstein et al., 2006). Specifically, the diminished posterior
anatomical differences represent attenuation of loss with age,
and as a result healthy controls appear to ‘‘catch up’’ with pa-
tients, as controls also have a parietal-frontal ‘‘wave of loss’’
that characterizes normal development (Gogtay et al., 2004).

Similarly, diffusion MRI studies examining WM integrity
(FA) support our age-related WM degradation model. It is
suggested that progressive brain abnormalities exist early
in the disease and that ongoing brain changes occur in the ini-
tial years of diagnosis (Karlsgodt et al., 2008; Kyriakopoulos
and Frangou, 2009; Pantelis et al., 2005). Patients early in the
SZ disease process show decreased connectivity in structural
networks compared with controls, with structural connectiv-
ity negatively correlating with illness duration (Zhang et al.,
2015). Prior literature shows differences in WM integrity
(FA) of the frontal cortex between SZ patients and controls.
Differences are most pronounced in the youngest subjects
and disappear with increasing age, suggesting age-related
differences in WM maturation between groups ( Jones
et al., 2006). This result was recently replicated and extended
in a 300-subject study examining the impact of age on WM
integrity in SZ, the largest study of its kind to date. It is
reported that FA differences do not appear to progress with
age. Converging with our data, controls show a gradual FA
decline, whereas patients show a flat relationship in FA de-
cline. Younger patients show lower FA than controls, a dif-
ference that disappears with age (Kanaan et al., 2017).

Relationship between age-related topological changes
and gene expression

Correlation analysis reveals age-related differences in the
relationship between gene expression in our genes of interest
and disturbances in logical topology. Although more than
108 common associated loci have been identified with SZ,
we specifically tested a priori hypotheses of the six most
highly published genes associated with the disease to capture
maximum power across thousands of studies and limit type-I
error (Ripke et al., 2014).

Our gene-related topological results converge with prior
gene findings also utilizing WM networks, which suggest

FIG. 9. Figure illustrates our model of topographical deg-
radation. Control networks degrade in a constant, linear
manner. In schizophrenia, network metrics are stagnant at
a significantly compromised level throughout younger adult-
hood and begin to degrade linearly in old age. Color images
available online at www.liebertpub.com/brain
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that WM disconnectivity in SZ is a neuron-driven (mal)devel-
opmental process (Arikkath and Mirnics, 2017; Romme et al.,
2017). Although we performed analysis on six genes of inter-
est, we show that DISC1 is the only gene to consistently
illustrate age-related associations with connectivity impair-
ments across all surveyed topological metrics (Figs. 6C, 7C,
and 8C). This finding is logical and in line with our a priori
hypothesis, as DISC1 is a gene discovered and named for its
causative implications in SZ. Specifically, DISC1 is shown to
impair neurite outgrowth in vitro and proper development of
the cerebral cortex in vivo, suggesting that loss of DISC1
function may underlie neurodevelopmental dysfunction in
SZ (Kamiya et al., 2005). Although DISC1 was the only
gene with a significant, age-related topological association
in local efficiency, we observe that DISC1, DRD2,
DTNBP1, and GRM3 all show significant relationships
with disturbances in modularity (Table 5). Younger patients
show decreased modularity compared with controls, a segre-
gation metric similar to clustering coefficient, and a result
replicated in other studies (van den Heuvel et al., 2010). Inter-
estingly, later in the disease, this trend changes in older pa-
tients, showing increases in modularity. The corresponding
significant relationships with gene expression experience the
same sign flip between younger and older subjects (Table 5).
DRD2, DTNPB1, and GRM3 are, respectively, implicated in
stability of the dopamine receptor, cytoskeletal binding, and
metabotropic glutamate receptor 3 (Duan et al., 2003; Guo
et al., 2009; Tan et al., 2007). Although strong associations
with these genes have been reported in human SZ populations
and endophenotypes have been shown in mouse models, mech-
anistic implications of these genes are less clear (Arinami et al.,
1997; Egan et al., 2004; Kellendonk et al., 2009; Straub et al.,
2002). Because this is the first study examining the relationship
between modularity and gene expression in SZ, this result will
benefit from independent replication.

Because COMT and BDNF are reported to mediate WM
microstructure disconnectivity in SZ, the lack of relationship
between connection strength disturbance in COMT and
BDNF is surprising (Table 3) (Chen et al., 2017; Poletti
et al., 2016). However, it is not wholly unexpected as FA
changes in the same subjects are not reported to be identical
to connection strength measurements in SZ (van den Heuvel
et al., 2010).

Prior work establishes a precedent that gene networks
show associations with regional structural connectivity (For-
est et al., 2017). Similarly, a recently published survey of
20,000 genes shows the average transcriptional profile of
85 SZ risk genes is associated with WM connectome discon-
nectivity (Romme et al., 2017). Dissecting these 85 risk
genes into 6 functional classes such as neurodevelopment,
synaptic function, and glutamatergic neurotransmission
illustrates that only one gene class (calcium signaling)
shows a significant relationship between connection strength
in SZ. This study did not test age effects. Upon first survey of
the entire subject age range of our genes of interest, we sim-
ilarly observe nonexistent or weak correlations that did not
survive Bonferroni correction. However, significant associa-
tions emerge when subjects are separated into the older and
younger age range. Together, these results support age-
related models of WM topological degradation in SZ while
also informing genetic underpinnings of age-related changes
in connectivity.

Limitations

Some points should be taken into account when interpret-
ing our results. The first is that we acknowledge the possible
confounding factor of antipsychotic medications on the ob-
served findings. This study includes a relatively homogenous
group with a clinical profile of severe enduring SZ despite
being medicated with atypical antipsychotics. However, it
remains possible that long-term use of antipsychotic medi-
cations contributes to effects observed in older subjects.
Although the effect of antipsychotic medications on gray
matter volume is well documented, there is relatively little
evidence to suggest that antipsychotics changes WM micro-
structure (Navari and Dazzan, 2009). To some extent, the ef-
fect of duration of medication is reflected in our results, since
all our reported graph metrics are reported by age. Additional
analysis examining the relationship between medication
strength/duration and graphics metrics was not feasible in
this study, but this is the subject of ongoing and future
work. We do note that prior work in these subjects suggested
no relationship between medication strength and WM micro-
structure. Specifically, previous analysis carried out in this
subject cohort showed no correlation between patient FA
and chlorpromazine equivalents for each patient’s medication
status (Holleran et al., 2014). Although these two studies are
not directly comparable due to differences in cohort size and
analysis metrics, the previous negative result indicates that a
thorough exposition of medication response and graph metrics
will require a detailed and careful analysis on a larger cohort
than currently available. Such a demonstration of linkage to
mechanisms of treatment response could be very valuable.

The second point to take into account is that global graph
metrics are not independent. Graph theory measures depend
on the network density and thresholding of weak connec-
tions. In this study, we chose not to vary the threshold to
test for robustness because weak synaptic connections have
been suggested to be critical for the expression of plasticity
within a network (Poirazi and Mel, 2001).

Limitations of the study include the small patient sample
size and that reported local effects did not survive FDR cor-
rection. The issue of small sample size was addressed by ex-
tensive permutation testing, which is applicable to very small
sample sizes (Legendre et al., 2012). Owing to the multiple
thousands of voxels that are tested, lack of survival of FDR cor-
rection is a frequently reported phenomenon in structural con-
nectomics (Dennis et al., 2013; van den Heuvel et al., 2010;
Verstraete et al., 2011; Zou et al., 2008). Although alternative
correction methods to reduce family-wise error rate have been
proposed, none have been extensively adopted (Zalesky et al.,
2010). An additional limitation of this study is its cross-sectional
design, which does not control for age of onset and medication
history between patients. However, all subjects were relatively
homogenous with SZ diagnosis. All patients were chronic and
treatment resistant, being considered for a trial of clozapine. It
is our hope that these findings provide a basis for future studies
involving a longitudinal experimental design.
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