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ABSTRACT 

Purpose: The radiology department faces a large number of reconstruction algorithms and kernels during their 

computed tomography (CT) optimization process. These reconstruction methods are proprietary and ensuring 

consistent image quality between scanners is becoming increasingly difficult. This study contributes to solving this 

challenge in CT image quality harmonization by modifying and evaluating a reconstruction algorithm and kernel 

matching scheme. 

Methods: The Catphan 600 phantom was scanned with six different CT scanners from four vendors. The phantom 

was scanned with volumetric CT dose indices (CTDIvols) of 10 mGy and 40 mGy, and the data were reconstructed 

using 1 mm and 5 mm slices with each combination of reconstruction algorithm, body region kernel, and iterative 

and deep learning reconstruction strength.  

A matching scheme developed in previous research, which utilizes the noise power spectrum (NPS) and modulation 

transfer function (MTF), was modified based on our organization’s needs and used to identify the matching 

reconstruction algorithms and kernels between different scanners. 

Results: The matching paradigm produced good matching results, and the mean ± standard deviation (median) 

matching function values for the different acquisition settings were (a value of 1 indicates a perfect match): CTDIvol 

10 mGy, 1 mm slice: 0.78 ± 0.31 (0.94); CTDIvol 10 mGy, 5 mm slice: 0.75 ± 0.33 (0.93); CTDIvol 40 mGy, 1 mm 

slice: 0.81 ± 0.28 (0.95); CTDIvol 40 mGy, 5 mm slice: 0.75 ± 0.33 (0.93). In general, soft reconstruction kernels, 

i.e., noise-reducing kernels that reduce sharpness, of one vendor were matched with the soft kernels of another 

vendor, and vice versa for sharper kernels.  

Conclusions: Combined quantitative assessment of NPS and MTF allows effective strategy for harmonization of 

technical image quality between different CT scanners. A software was also shared to support CT image quality 

harmonization in other institutions. 

Keywords: Computed tomography, image quality, modulation transfer function, noise power spectrum, 

reconstruction 
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1. INTRODUCTION 

Computed tomography (CT) has advanced significantly, both in terms of imaging hardware and novel reconstruction 

algorithms. Therefore, the radiology departments face various options to optimize the scanning protocols. Notably, 

the advances in computation algorithms have introduced various proprietary reconstruction methods and kernels that 

are typically distinguished into soft-tissue, lung, and bone kernels. Consequently, ensuring consistent imaging quality 

between different CT scanners, scanner generations, and vendors is becoming increasingly challenging. This 

harmonization is often implemented using the noise magnitude, characterized as the standard deviation of Hounsfield 

Units (HUs) in a homogeneous region-of-interest, and the volumetric CT dose index (CTDIvol). Although this 

approach is a good preliminary approach for adapting the dose and noise between different scanners, it does not 

consider the differences in noise texture and spatial resolution – both necessary measures that also influence the 

subjective image quality. Furthermore, for iterative reconstruction (IR) methods, noise magnitude and spatial 

resolution may exhibit a non-linear relationship (Richard et al 2012), and adapting image noise magnitude, contrast-

to-noise ratio (CNR), and resolution may become difficult with these methods (see Appendix B and C of the 

supplementary document). 

Noise texture defines the intensity correlation of neighboring pixels. More intuitively, it determines the coarseness 

of noise. In practice, the noise power spectrum (NPS) is used to determine the noise texture of an image (Boedeker 

et al 2007, Boedeker and McNitt-Gray 2007). The NPS quantifies the noise power as a function of the spatial 

frequency, offering information about the magnitude and the frequency distribution of noise (Verdun et al 2015). 

The spatial resolution is another critical measure of a CT scanner and imaging protocol since it determines the size 

of the smallest detectable object (Verdun et al 2015). The modulation transfer function (MTF) is commonly utilized 

to evaluate the resolution of the protocol, which specifies the transfer of spatial frequencies through a CT system. 

NPS has been utilized to match the noise texture between two scanners from different vendors using the American 

College of Radiology CT accreditation phantom (Solomon et al 2012). With an attempt to also involve the spatial 

resolution in the assessment of technical image quality, Winslow et al presented a technique that includes the MTF, 

NPS, and CTDIvol in the matching process (Winslow et al 2017). This matching paradigm allowed direct mapping 

of CT kernels between two different scanners, yielding consistent technical image quality. 

The purpose of this study was to further modify and evaluate the aforementioned matching technique by Winslow et 

al (Winslow et al 2017) for the CT scanners and reconstruction techniques found in our local hospital district. More 
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specifically, the performance of a modified version of this technique was assessed for six different scanners from 

four vendors. In addition, a graphical user interface tool is provided for our peers for conducting image quality 

harmonization in their radiology departments. Furthermore, the performance of two alternative image quality 

harmonization approaches, CNR- and structural similarity index-based techniques, are addressed in Appendix C. 

 

2. MATERIALS AND METHODS 

2.1. Phantoms, scanners and measurement parameters 

The Catphan 600 phantom (The Phantom Laboratory, NY, US) was measured with six different CT scanners. The 

necessary information on the utilized scanners and the respective imaging parameters are summarized in Table I. 

Two separate acquisitions were performed, with CTDIvol values of 10 mGy and 40 mGy, as was carried out by 

Winslow et al (Winslow et al 2017). Slices with thicknesses of 5 mm and 1 mm were reconstructed with 1 mm 

increments. GE scanners did not allow for 1 mm increments/slice thickness, and therefore, 1.25 mm was utilized. 

Excluding the head kernels, each available kernel was reconstructed with each plausible reconstruction algorithm, 

i.e., filtered back projection (FBP), IR, and deep learning image reconstruction (DLIR). Furthermore, each available 

Table I. CT scanners, scanning parameters, and reconstruction parameters. 
 

Setting Siemens 
SOMATOM 
Definition 
Flash 

Siemens 
SOMATOM 
Drive 

Toshiba 
Aquilion One 
Vision 
Edition 

Philips 
Ingenuity CT 

GE Discovery 
690 

GE Revolution 
CT  

kVp 120 120 120 120 120 120 
CTDIvol 
(mGy) 

10.0/40.0 10.0/40.0 9.6/39.6 10.1/39.9 10.1/40.0 10.0/40.0 

Pitch factor 1.0 1.0 0.95 1.0 0.984 0.992 
Rotation time 
(s) 

1.0 1.0 1.0 1.0 1.0 1.0 

DFOV (mm) 205 205 205 205 205 205 
Reconstruction 
size 

512 ´ 512 512 ´ 512 512 ´ 512 512 ´ 512 512 ´ 512 512 ´ 512 

Collimation 
(mm) 

0.6 ´ 64 0.6 ´ 64 0.5 ´ 80 0.625 ´ 64 0.625 ´ 64 0.625 ´ 64 

Slice thickness 
(mm) 

1.0/5.0 1.0/5.0 1.0/5.0 1.0/5.0 1.25/5.0 1.25/5.0 

Reconstruction 
algorithm 

FBP, 
SAFIRE1 

FBP, 
ADMIRE2 

FBP, AIDR 
3D3 

FBP, iDose4, 
IMR5 

FBP, ASIR6 FBP, ASIR-V7, 
TrueFidelity8 

1Sinogram-affirmed iterative reconstruction, 2Advanced modeleled iterative reconstruction, 3Adaptive Iterative Dose 
Reduction, 4Fourth-generation hybrid iterative reconstruction, 5Iterative model reconstruction, 6Adaptive statistical 
iterative reconstruction, 7New generation adaptive statistical iterative reconstruction, 8Deep learning image 
reconstruction (Standard kernel only). 
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IR and DLIR strength was reconstructed. These different reconstruction algorithms are briefly described in section 

2.2. 

The information regarding the reconstruction algorithm, kernel, and IR strength is abbreviated following the syntax 

used by the manufacturers. For the Siemens scanners, the abbreviation: I30s\3 for SOMATOM Definition Flash 

indicates that the I30s kernel was used with SAFIRE strength of 3. For Toshiba, the syntax FC43 (AIDR 3D STD) 

means the FC43 kernel with standard AIDR 3D strength. With Philips, the abbreviation iDose (4)/B means that the 

iDose reconstruction algorithm was utilized with an IR strength of 4 and the B-kernel. Finally, as an illustration for 

the GE scanners, the abbreviation STD_AR90 for the Revolution CT indicates a standard kernel with 90% ASIR-V 

strength. 

 

2.2. Overview of the reconstruction algorithms 

The sinogram affirmed iterative reconstruction (SAFIRE) (Siemens Healthcare, Forchheim, Germany) is an IR 

method that utilizes weighted FBP reconstruction as its initial reconstruction estimate. Using this initial estimate, it 

performs two subsequent iteration loops – the first in the projection and the second in the reconstruction domain. 

Noise is reduced in both domains during each iteration. (Grant and Raupach 2012) 

The advanced modeled iterative reconstruction (ADMIRE) (Siemens Healthcare, Forchheim, Germany) is a model-

based IR algorithm that incorporates a model for photon counting statistics to reduce image noise and models the 

imaging geometry during the forward projection. As a model-based method, ADMIRE performs forward and back 

projection during each iteration of the algorithm. (Ramirez-Giraldo et al 2014) 

Third-generation adaptive iterative dose reduction (AIDR 3D; Canon Medical Systems, Otawara, Japan) is an IR 

algorithm that, similarly to SAFIRE, incorporates two subsequent iteration loops for projection and reconstruction 

domains. The algorithm includes a reduction for photon starvation, electronic and statistical noise in the projection 

domain, and a quantum noise reduction in the reconstruction domain. Furthermore, a scanner model is utilized during 

the noise reduction in the projection domain. AIDR 3D Enhanced extends on the traditional AIDR 3D by including 

an NPS model, aiming to produce finer noise texture, and optimizing the FBP blending ratio and the number of 

iterations. (Angel 2012, Hernandez-Giron et al 2018) 
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iDose4 (Philips Healthcare, Best, the Netherlands) performs noise reduction iteratively while aiming to preserve the 

edges. Separate iteration loops are utilized, first in the projection and subsequently in the image domain (Hou et al 

2012). 

IMR (Philips Healthcare, Best, the Netherlands) is a model-based iterative reconstruction method (the vendor used 

the term knowledge-based iterative model reconstruction (Mehta et al 2013)). IMR considers noise statistics and 

system physics (detector sampling, angular sampling, and imaging system geometry) during the reconstruction.   

Adaptive statistical iterative reconstruction (ASIR) (GE Healthcare, Waukesha, WI, USA) is a full-statistical IR 

method that includes a noise model in the projection domain and iteratively denoises the image using forward and 

back projections during each iteration. The result of the ASIR algorithm is blended with FBP to produce the final 

reconstruction. (Willemink et al 2013) 

Compared to traditional model-based IR, ASIR-V (GE Healthcare, Waukesha, WI, USA) has reduced the extent of 

system optics modeling (X-ray source and detector), allowing reduced computation times. Furthermore, ASIR-V 

includes models for photon and electronic noise, imaged object, and physics. (Fan et al 2014) 

TrueFidelity (GE Healthcare, Waukesha, WI, USA) is a DLIR algorithm that utilizes convolutional neural networks 

(CNNs) to produce the reconstruction. The CNN was trained to map the input data, i.e., projection data from low 

radiation dose acquisition, into a ground truth FBP reconstruction of the same object with a high radiation dose. 

(Hsieh et al 2019) 

 

2.3. Image quality harmonization process 

The NPS and MTF were determined utilizing the Catphan modules CTP 486 and CTP 528, respectively (Figure 1). 

Consecutive slices of the image uniformity module CTP 486 were subtracted, and these subtracted slices were 

radially sampled with eight 50x50-pixel regions-of-interest from 31 slices, producing 248 noise realizations. The 

two-dimensional NPS was determined from these noise realizations, and subsequently, this two-dimensional NPS 

was radially averaged. The one-dimensional, radial NPS was used for the determination of noise texture. This strategy 

has been addressed in more depth in a number of publications (Verdun et al 2015, Juntunen et al 2021), and the 

reader is referred to these studies for further information. The CTP 528 contains two tungsten carbide beads with 
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0.28 mm diameter that act as point sources. A slice containing one of these beads was utilized for determining the 

MTF from the point-spread function.  

The matching paradigm largely follows the method described in detail in the previous work by Winslow et al 

(Winslow et al 2017). In summary, the approach utilizes the normalized NPS (nNPS), MTF, and CTDIvol in the 

matching process. For matching the dose, the relative difference was determined: 

𝑑!" =
#!$#"
#"

.              (1) 

with i and j denoting the target reconstruction and the to-be-matched reconstruction, respectively. The dose parameter 

(di) was the CTDIvol-value of the measurement i. 

The study by Winslow et al utilized the peak frequency difference between the nNPS curves and the spatial frequency 

at which the MTF is decreased by 50% to match the noise texture and image resolution. In this study, the root-mean-

square error (RMSE) was used for matching the noise texture and resolution: 

𝑡!" =
%&'()!$&'()"%#

‖&'()"‖#
,           (2) 

𝑟!" =
%+,-!$+,-"%#

‖+,-"‖#
,      (3) 

where nNPS and MTF are equidistantly sampled in the spatial frequency domain with 0.05 1/mm increments for the 

target reconstruction and the to-be-matched reconstruction. The matching function value (m-value), mij, is a weighted 

product 

𝑚!" = 𝐷'−𝑑!" , 𝑎# , 𝑐#,𝑇'𝑡!" , 𝑎.,𝑐.,𝑅'𝑟!" , 𝑎0 , 𝑐0,,          (4) 

 
Figure 1. a) Determination of noise power spectrum (NPS) from the subtraction image. b) Slice used for the 
evaluation of the modulation transfer function (MTF). 
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where a higher value indicates better agreement between the reconstructions (a value of 1 indicates a perfect match). 

The matched reconstruction kernel is the one that produces the highest matching function value. D, T, and R are 

weighting functions for CTDIvol, NPS, and MTF. Specifically, they were defined as 

𝐷(−𝑑!" , 𝑎# , 𝑐#) = 	
1

12	4$%&'$&"!$(&)
,      (5) 

𝑇'𝑡!" , 𝑎. , 𝑐., =
1

124$%*'*"!$(*)
− 1

124$%*'*"!+(*)
,         (6) 

𝑅'𝑟!" , 𝑎0 , 𝑐0, =
1

124$%,',"!$(,)
− 1

124$%,',"!+(,)
	.         (7) 

The weighting parameters for dose (D) and noise texture (T) were modified by selecting the parameters that produced 

visually most comparable image quality between scanners in a prior test  (ad = 10, cd = 0.5; at = 30, ct = -0.2; ar = 30, 

cr = -0.2). In contrast to the original work, we modified the resolution weighting function R to reject kernels with 

substantially improved spatial resolution (Figure 2) by including a second exponential function in its definition (7).  

2.4. Tool for image quality harmonization 

In this work, an extensive dataset containing a large number of reconstructions (N = 5899) was collected. Therefore, 

the results are mainly presented for one imaging setting (CTDIvol = 10 mGy, 1 mm slice thickness) in the publication. 

However, the matched kernels for the remaining scan parameters can be found as supplementary material. 

Furthermore, a dedicated MATLAB (v. 9.2, The MathWorks Inc., Natick, MA, 2017) software and its compiled 

stand-alone executable versions for Windows and macOS, allowing the reader to perform image quality 

harmonization with each imaging setting, can be found from (source code: https://github.com/mjuntu/CTHarmonizer; 

 
Figure 2. Weighting functions used for finding the optimal reconstruction kernel between CT scanners. a) 
Weighting functions used in the study by Winslow et al. b) Modified versions of the original weighting functions 
that were used in this study. 
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data, and compiled stand-alone versions: https://doi.org/10.5281/zenodo.5112674). This tool is published under the 

Creative Commons Attribution 4.0 International license, and it provides software for identifying and visualizing the 

matching kernels between different scanners.   
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3. RESULTS 

The image quality matching scheme weights the nNPS and MTF equally, thus identifying the kernel that produces a 

balanced trade-off in image noise and sharpness (Figure 3). 

The agreement in image quality, i.e., comparable noise graininess and image sharpness, between the matched 

reconstruction was generally good (Figure 4). Yet, at sharper kernels, such as the B50s and I50s\3, poorer matches 

were more frequently observed visually (Figures 4-5). This phenomenon was further evident in the quantitative 

assessment of the m-values, in which lower values were more frequently observed with sharper reconstruction kernels 

(Table II).  

Interestingly, in some cases, the matched kernel changed when comparing 10 mGy and 40 mGy scans (Figure 5). 

The tables containing the matched kernels for the remaining scan settings (CTDIvol 10 mGy, 5 mm slice thickness; 

CTDIvol 40 mGy, 1 mm slice thickness; CTDIvol 40 mGy, 5 mm slice thickness) demonstrate this effect further (see 

Appendix A). The mean ± standard deviation (median) m-values for the different acquisition settings were: CTDIvol 

 
Figure 3. Example reconstructions for Siemens SOMATOM Definition Flash and the corresponding best-
matching reconstructions for Toshiba Aquilion One and their MTFs and normalized NPSs (nNPSs) (m-values 
are indicated in the parentheses, with higher m-value indicating improved agreement). The CTDIvol and slice 
thickness were 10 mGy and 1 mm, respectively. STD = Standard AIDR 3D strength. 

 



 11 

10 mGy, 1 mm slice: 0.78 ± 0.31 (0.94); CTDIvol 10 mGy, 5 mm slice: 0.75 ± 0.33 (0.93); CTDIvol 40 mGy, 1 mm 

slice: 0.81 ± 0.28 (0.95); CTDIvol 40 mGy, 5 mm slice: 0.75 ± 0.33 (0.93). The mean ± standard deviation (median) 

m-values for each scan and reconstruction setting were 0.77 ± 0.31 (0.94). 

Distinguishing the noise texture between the to-be-matched reconstruction and the matched reconstruction was 

difficult with high m-values (m-value > 0.7) (Figure 5). In contrast, with lower m-values (m-value < 0.7), apparent 

differences in noise graininess were observed (Figure 5), demonstrating consistency between the m-value and visual 

agreement in image quality.  

 

 
Figure 4. Example reconstructions for Siemens SOMATOM Definition Flash and the corresponding matching 
reconstructions for the other scanners. The number in the parentheses indicates the matching function value (m-
value), for which a higher value indicates better agreement between the reconstructions. The CTDIvol and slice 
thickness were 10 mGy and 1 mm, respectively. Windowing was set to [-200 HU, 200 HU]. 
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Figure 5. Noise realizations for matched reconstruction kernels for 10 mGy and 40 mGy acquisitions. a) 10 mGy 
acquisition with 1 mm slice thickness. b) 40 mGy measurement with 1 mm slice thickness. Each row represents 
one selected kernel for Siemens SOMATOM Definition Flash and the corresponding matched kernels for the other 
scanners. The number in the parentheses indicates the matching function value (m-value), for which a higher value 
indicates better agreement between the reconstructions. Windowing was set to [-200 HU, 200 HU]. 
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Table II. Reconstruction kernels for Siemens SOMATOM Definition Flash and the corresponding matched kernels with 
other scanners for CTDIvol 10 mGy and 1 mm slice. The m-values are presented in the parentheses. 

m-value grayscale colorbar 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 

 
Flash Drive Toshiba Philips GE Discovery GE Revolution 
B10s Br32s 

(0.98) 
FC41 (AIDR 3D STR) 
(0.93) 

iDose (6)/A 
(0.52) 

SOFT_SS90:Slice 
(0.02) 

SOFT#_AR90 
(0.87) 

B20s Br34s 
(0.98) 

FC17 (AIDR 3D STD) 
(0.97) 

iDose (1)/A 
(0.95) 

SOFT_SS60:Slice 
(0.24) 

SOFT_AR60 
(0.97) 

B26s Br36s\4 
(0.98) 

FC07 (AIDR 3D eSTD) 
(0.97) 

iDose (4)/A 
(0.91) 

SOFT_SS60:Slice 
(0.98) 

STANDARD_AR90 
(0.95) 

B30s Br38s 
(0.97) 

FC18 (AIDR 3D MILD) 
(0.96) 

iDose (4)/B 
(0.81) 

SOFT_SS10:Slice 
(0.81) 

STANDARD_AR50 
(0.97) 

B31s Bf37s 
(0.94) 

FC48 (AIDR 3D MILD) 
(0.94) 

FBP/B 
(0.96) 

SOFT_FBP 
(0.66) 

STANDARD_AR20 
(0.96) 

B35s Br40s 
(0.97) 

FC26 (AIDR 3D MILD) 
(0.98) 

FBP/B 
(0.95) 

SOFT_FBP 
(0.92) 

STANDARD_AR30 
(0.97) 

B36s Bv41s 
(0.98) 

FC64 (AIDR 3D eSTD) 
(0.95) 

FBP/IMR2.Soft Tissue 
(0.75) 

DETAIL_SS50:Slice 
(0.98) 

STANDARD_DLIR_HIGH 
(0.6) 

B40s Bf37s 
(0.96) 

FC48 (AIDR 3D MILD) 
(0.95) 

FBP/B 
(0.95) 

SOFT_FBP 
(0.72) 

STANDARD_AR30 
(0.93) 

B41s Bf42s 
(0.9) 

FC15 (AIDR 3D MILD) 
(0.91) 

FBP/C 
(0.97) 

CHST_FBP 
(0.74) 

CHST_AR30 
(0.95) 

B45s Sh49s 
(0.97) 

FC55 (AIDR 3D STR) 
(0.94) 

FBP/C 
(0.15) 

LUNG_SS90:Slice 
(0.88) 

LUNG_AR90 
(0.6) 

B46s Bv49s 
(0.98) 

FC50 (AIDR 3D STR) 
(0.97) 

FBP/IMR1.Soft Tissue 
(0.38) 

DETAIL_FBP 
(0.84) 

LUNG_AR80 
(0.6) 

B50s Br57s 
(0.98) 

FC30 (AIDR 3D STD) 
(0.82) 

FBP/YA 
(0.71) 

LUNG_FBP 
(0.23) 

LUNG_FBP 
(0.11) 

B60s Br60s 
(0.95) 

FC31 (AIDR 3D STR) 
(0.67) 

FBP/YA 
(0.52) 

BONEPLUS_SS50:Slice 
(0.03) 

ULTRA_FBP 
(0.01) 

B70s Br62s 
(0.98) 

FC51 (ORG) 
(0.88) 

FBP/IMR1.SharpPlus 
(0.86) 

BONEPLUS_SS20:Slice 
(0.53) 

BONEPLUS_AR20 
(0.57) 

B75h Bv66h\3 
(0.95) 

FC90 (ORG) 
(0.96) 

iDose (7)/YB 
(0) 

BONE_FBP 
(0.05) 

BONEPLUS_AR100 
(0.01) 

B80s Bl57s 
(0.98) 

FC56 (ORG) 
(0.58) 

FBP/YA 
(0) 

LUNG_SS10:Slice 
(0.94) 

LUNG_FBP 
(0.97) 

I26s\1 Br38s 
(0.98) 

FC19 (AIDR 3D STR) 
(0.98) 

iDose (5)/B 
(0.92) 

SOFT_SS10:Slice 
(0.95) 

STANDARD_AR60 
(0.97) 

I26s\2 Br38s\2 
(0.98) 

FC42 (AIDR 3D MILD) 
(0.98) 

iDose (5)/B 
(0.95) 

SOFT_SS20:Slice 
(0.97) 

STANDARD_AR70 
(0.97) 

I26s\3 Br38s\3 
(0.98) 

FC43 (AIDR 3D STD) 
(0.98) 

iDose (6)/B 
(0.96) 

SOFT_SS30:Slice 
(0.97) 

STANDARD_AR70 
(0.97) 

I26s\4 Br38s\4 
(0.98) 

FC02 (AIDR 3D STD) 
(0.97) 

iDose (6)/B 
(0.96) 

SOFT_SS40:Slice 
(0.97) 

DETAIL_AR100 
(0.97) 

I26s\5 Br38s\5 
(0.98) 

FC01 (AIDR 3D eSTD) 
(0.96) 

iDose (6)/B 
(0.84) 

SOFT_SS50:Slice 
(0.96) 

DETAIL_AR100 
(0.97) 

I30s\1 Br38s 
(0.98) 

FC19 (AIDR 3D STR) 
(0.98) 

iDose (5)/B 
(0.91) 

SOFT_SS10:Slice 
(0.94) 

STANDARD_AR60 
(0.97) 

I30s\2 Hc40s 
(0.98) 

FC42 (AIDR 3D MILD) 
(0.98) 

iDose (5)/B 
(0.94) 

SOFT_SS20:Slice 
(0.96) 

STANDARD_AR70 
(0.97) 

I30s\3 Br38s\3 
(0.98) 

FC43 (AIDR 3D STD) 
(0.98) 

iDose (6)/B 
(0.96) 

SOFT_SS30:Slice 
(0.97) 

STANDARD_AR70 
(0.97) 

I30s\4 Bv38s\3 
(0.97) 

FC70 (AIDR 3D STR) 
(0.97) 

iDose (6)/B 
(0.94) 

SOFT_SS50:Slice 
(0.96) 

DETAIL_AR100 
(0.96) 



 14 

I30s\5 Br36s\5 
(0.97) 

FC22 (AIDR 3D STD) 
(0.96) 

iDose (6)/A 
(0.79) 

SOFT_SS70:Slice 
(0.93) 

STANDARD_AR100 
(0.9) 

I31s\1 Bf37s 
(0.98) 

FC48 (AIDR 3D MILD) 
(0.98) 

FBP/B 
(0.98) 

STANDARD_FBP 
(0.85) 

CHST_AR70 
(0.97) 

I31s\2 Bf39s 
(0.97) 

FC21 (ORG) 
(0.98) 

FBP/B 
(0.98) 

STANDARD_SS10:Slice 
(0.89) 

CHST_AR70 
(0.97) 

I31s\3 Bf37s\2 
(0.96) 

FC02 (ORG) 
(0.97) 

iDose (2)/B 
(0.97) 

STANDARD_SS30:Slice 
(0.89) 

CHST_AR80 
(0.97) 

I31s\4 Bf37s\4 
(0.96) 

FC12 (AIDR 3D eSTD) 
(0.97) 

iDose (5)/B 
(0.96) 

CHST_SS60:Slice 
(0.9) 

DETAIL_AR80 
(0.96) 

I31s\5 Qv43s 
(0.97) 

FC22 (AIDR 3D MILD) 
(0.91) 

iDose (6)/B 
(0.87) 

CHST_SS90:Slice 
(0.8) 

DETAIL_AR100 
(0.9) 

I36s\1 Hr49s 
(0.98) 

FC49 (ORG) 
(0.9) 

FBP/IMR1.Soft Tissue 
(0.93) 

DETAIL_FBP 
(0.97) 

CHST_AR50 
(0.56) 

I36s\2 Hr49s\1 
(0.97) 

FC83 (AIDR 3D STR) 
(0.95) 

FBP/IMR1.Soft Tissue 
(0.95) 

DETAIL_FBP 
(0.98) 

CHST_AR50 
(0.38) 

I36s\3 Hr49s\3 
(0.97) 

FC49 (AIDR 3D eSTD) 
(0.97) 

FBP/IMR1.Soft Tissue 
(0.93) 

DETAIL_SS10:Slice 
(0.96) 

STANDARD_DLIR_LOW 
(0.29) 

I36s\4 Hr49s\4 
(0.94) 

FC24 (AIDR 3D eSTD) 
(0.95) 

FBP/IMR1.Soft Tissue 
(0.8) 

DETAIL_SS20:Slice 
(0.93) 

STANDARD_DLIR_MEDIUM 
(0.28) 

I36s\5 Hr49s\5 
(0.89) 

FC70 (AIDR 3D eSTD) 
(0.94) 

FBP/IMR2.Soft Tissue 
(0.63) 

DETAIL_SS40:Slice 
(0.82) 

STANDARD_DLIR_HIGH 
(0.16) 

I40s\1 Hc44s 
(0.98) 

FC48 (AIDR 3D MILD) 
(0.98) 

FBP/B 
(0.97) 

STANDARD_FBP 
(0.92) 

CHST_AR70 
(0.95) 

I40s\2 Hc44s\1 
(0.98) 

FC48 (AIDR 3D MILD) 
(0.98) 

FBP/B 
(0.97) 

STANDARD_SS10:Slice 
(0.95) 

CHST_AR70 
(0.96) 

I40s\3 Bf37s\2 
(0.98) 

FC21 (AIDR 3D eSTD) 
(0.98) 

iDose (2)/B 
(0.97) 

STANDARD_SS30:Slice 
(0.96) 

CHST_AR80 
(0.97) 

I40s\4 Bf37s\4 
(0.98) 

FC79 (AIDR 3D STR) 
(0.97) 

iDose (5)/B 
(0.95) 

CHST_SS60:Slice 
(0.96) 

CHST_AR90 
(0.97) 

I40s\5 Qv43s 
(0.98) 

FC02 (AIDR 3D eSTD) 
(0.95) 

iDose (6)/B 
(0.91) 

CHST_SS90:Slice 
(0.93) 

CHST_AR100 
(0.95) 

I41s\1 Bf42s 
(0.97) 

FC15 (AIDR 3D MILD) 
(0.94) 

iDose (1)/C 
(0.97) 

CHST_FBP 
(0.92) 

CHST_AR50 
(0.91) 

I41s\2 Bf42s 
(0.97) 

FC14 (ORG) 
(0.96) 

iDose (3)/C 
(0.97) 

CHST_FBP 
(0.95) 

CHST_AR50 
(0.9) 

I41s\3 Bf42s\2 
(0.96) 

FC04 (ORG) 
(0.95) 

iDose (4)/C 
(0.96) 

CHST_SS10:Slice 
(0.95) 

CHST_AR60 
(0.87) 

I41s\4 Bf42s\4 
(0.95) 

FC23 (AIDR 3D eSTD) 
(0.97) 

iDose (6)/C 
(0.94) 

DETAIL_SS30:Slice 
(0.91) 

STANDARD_DLIR_HIGH 
(0.76) 

I41s\5 Bf42s\5 
(0.93) 

FC13 (AIDR 3D eSTD) 
(0.97) 

FBP/IMR2.Soft Tissue 
(0.88) 

DETAIL_SS60:Slice 
(0.79) 

CHST_AR90 
(0.65) 

I44s\1 Hv45s\5 
(0.96) 

FC05 (AIDR 3D eSTD) 
(0.97) 

FBP/IMR2.Routine 
(0.48) 

DETAIL_SS10:Slice 
(0.93) 

LUNG_AR100 
(0.07) 

I44s\2 Bv41s\5 
(0.89) 

FC79 (AIDR 3D eSTD) 
(0.73) 

FBP/IMR2.Routine 
(0.03) 

BONE_SS100:Slice 
(0.6) 

LUNG_AR100 
(0.02) 

I44s\3 Bv41s\5 
(0.63) 

FC64 (AIDR 3D eSTD) 
(0.1) 

FBP/IMR2.Soft Tissue 
(0) 

DETAIL_SS40:Slice 
(0.16) 

STANDARD_DLIR_HIGH 
(0) 

I44s\4 Bv41s\5 
(0.29) 

FC64 (AIDR 3D eSTD) 
(0.03) 

FBP/IMR2.Soft Tissue 
(0) 

DETAIL_SS60:Slice 
(0.05) 

STANDARD_DLIR_HIGH 
(0) 

I44s\5 Bv41s\5 
(0.04) 

FC62 (AIDR 3D eSTD) 
(0.03) 

FBP/IMR3.Routine 
(0.01) 

DETAIL_SS90:Slice 
(0.08) 

CHST_AR100 
(0) 

I46s\1 Hv45s 
(0.98) 

FC50 (AIDR 3D STD) 
(0.94) 

FBP/IMR1.Routine 
(0.73) 

DETAIL_FBP 
(0.48) 

LUNG_AR70 
(0.43) 

I46s\2 Hv45s\2 
(0.98) 

FC83 (AIDR 3D STD) 
(0.96) 

FBP/IMR1.Routine 
(0.76) 

DETAIL_FBP 
(0.74) 

LUNG_AR80 
(0.32) 

I46s\3 Bv49s\3 
(0.98) 

FC83 (AIDR 3D STD) 
(0.97) 

FBP/IMR1.Routine 
(0.68) 

DETAIL_FBP 
(0.9) 

LUNG_AR80 
(0.16) 

I46s\4 Hv45s\4 
(0.96) 

FC05 (AIDR 3D eSTD) 
(0.93) 

FBP/IMR2.Routine 
(0.85) 

DETAIL_FBP 
(0.94) 

LUNG_AR90 
(0.05) 
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I46s\5 Bv49s\5 
(0.94) 

FC05 (AIDR 3D eSTD) 
(0.94) 

FBP/IMR2.Routine 
(0.61) 

DETAIL_SS20:Slice 
(0.87) 

LUNG_AR100 
(0.02) 

I49s\1 Sb49s\1 
(0.97) 

FC55 (AIDR 3D eSTD) 
(0.96) 

FBP/C 
(0.75) 

LUNG_SS90:Slice 
(0.89) 

LUNG_AR100 
(0.9) 

I49s\2 Sb49s\2 
(0.97) 

FC48 (ORG) 
(0.96) 

iDose (1)/C 
(0.86) 

CHST_FBP 
(0.93) 

LUNG_AR100 
(0.87) 

I49s\3 Sh49s\3 
(0.97) 

FC48 (ORG) 
(0.96) 

iDose (5)/C 
(0.91) 

STANDARD_FBP 
(0.98) 

STANDARD_DLIR_LOW 
(0.93) 

I49s\4 Qv43s\5 
(0.97) 

FC64 (ORG) 
(0.97) 

iDose (6)/C 
(0.83) 

CHST_SS50:Slice 
(0.98) 

STANDARD_DLIR_HIGH 
(0.9) 

I49s\5 Bv40s\5 
(0.97) 

FC62 (AIDR 3D eSTD) 
(0.9) 

FBP/IMR3.Routine 
(0.59) 

STANDARD_SS90:Slice 
(0.96) 

CHST_AR100 
(0.8) 

I50s\1 Br57s 
(0.98) 

FC30 (AIDR 3D STD) 
(0.92) 

FBP/YA 
(0.71) 

LUNG_FBP 
(0.24) 

LUNG_FBP 
(0.09) 

I50s\2 Br57s\1 
(0.98) 

FC30 (AIDR 3D STD) 
(0.94) 

FBP/YA 
(0.7) 

LUNG_FBP 
(0.24) 

LUNG_AR10 
(0.09) 

I50s\3 Br57s\2 
(0.98) 

FC51 (AIDR 3D STR) 
(0.94) 

FBP/YA 
(0.63) 

LUNG_FBP 
(0.22) 

LUNG_AR20 
(0.08) 

I50s\4 Br57s\4 
(0.96) 

FC86 (AIDR 3D STR) 
(0.91) 

FBP/IMR1.Routine 
(0.63) 

BONEPLUS_SS90:Slice 
(0.61) 

LUNG_AR40 
(0.05) 

I50s\5 Qr49s\3 
(0.82) 

FC50 (AIDR 3D eSTD) 
(0.89) 

FBP/IMR1.Routine 
(0.84) 

BONE_SS90:Slice 
(0.74) 

LUNG_AR70 
(0.01) 

I70h\1 Br62s\2 
(0.98) 

FC53 (AIDR 3D STR) 
(0.98) 

FBP/IMR2.SharpPlus 
(0.51) 

BONEPLUS_SS30:Slice 
(0.42) 

BONEPLUS_AR50 
(0.3) 

I70h\2 Br62s\3 
(0.97) 

FC52 (AIDR 3D MILD) 
(0.98) 

FBP/IMR2.SharpPlus 
(0.32) 

BONEPLUS_SS40:Slice 
(0.44) 

BONEPLUS_AR60 
(0.24) 

I70h\3 Br62s\4 
(0.95) 

FC52 (AIDR 3D MILD) 
(0.97) 

FBP/IMR2.SharpPlus 
(0.15) 

BONEPLUS_SS40:Slice 
(0.48) 

BONEPLUS_AR70 
(0.16) 

I70h\4 Br62s\4 
(0.89) 

FC31 (AIDR 3D eSTD) 
(0.94) 

iDose (7)/YA 
(0.12) 

BONEPLUS_SS60:Slice 
(0.68) 

BONEPLUS_AR90 
(0.05) 

I70h\5 Br62s\5 
(0.92) 

FC52 (AIDR 3D eSTD) 
(0.96) 

iDose (7)/YA 
(0.13) 

BONEPLUS_SS70:Slice 
(0.91) 

BONEPLUS_AR100 
(0.01) 

DLIR = Deep learning image reconstruction eSTD = Enhanced standard, ORG = original filtered back projection, STD = Standard, 
STR = Strong. 
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4. DISCUSSION 

This study followed the work by Winslow et al for matching technical image quality between different CT scanners 

(Winslow et al 2017). The method by Winslow et al was modified and extended for additional CT scanners, vendors, 

and reconstruction algorithms. Overall, the matching technique provided visually comparable reconstruction pairs 

between different CT scanners for the Catphan phantom. In some of the presented reconstructions, visually 

observable differences were evident, but in these cases, the poorer match was typically indicated by a lower m-value 

(m-value < 0.7). Consequently, the matching scheme provided relevant feedback for the user on its confidence in the 

matching. For a reconstruction pair with a visually poor agreement, the low m-value indicates that there was no 

comparable reconstruction with similar noise coarseness and image sharpness.  

In general, weaker matches were found with sharper kernels. Similarly, Solomon et al. demonstrated that the higher 

frequency kernels for Siemens (B50f, B60f, B70f, B80f) generally exhibited poorer agreement in NPS between the 

matched GE kernels when compared to softer and medium-coarse kernels (B20f – B46f) (Solomon et al 2012). In 

addition, previous research also demonstrates low matching function values (m-value < 10-5) between the I44s kernel 

of Somatom Definition Flash and those of GE Discovery CT 750HD 120 (Winslow et al 2017). This particular kernel 

provides a very sharp image while simultaneously regularizing noise strongly, and no comparable kernel was found 

for other scanners. 

Despite the aforementioned agreements between these results and those from previous research, specific 

modifications to the weighting functions were made compared to the original study (Winslow et al 2017). In several 

cases with the same peak frequency for the NPS, the shape of the NPS curves deviated substantially between 

reconstruction kernels and algorithms. Although the peak NPS frequency difference provides an intuitive, and in 

many cases, visually acceptable description of the noise texture, particularly for FBP (Solomon et al 2012), the shape 

of the NPS may deviate substantially between FBP and IR (Geyer et al 2015, Ghetti et al 2013). Consequently, the 

RMSE was considered a more robust method for identifying the closest matching noise texture. Regarding the 

comparison of MTF, an RMSE based approach was also adopted since using the spatial frequency at which the MTF 

is decreased by 50% solely may lose information related to edge sharpening (Winslow et al 2017). Furthermore, in 

contrast to the work by Winslow et al, a substantially improved spatial resolution was not allowed, and the difference 

in MTF was weighted with a bell-shaped curve rather than a high-pass-type logistic function. This change was 

implemented because if the image quality of the to-be-matched imaging protocol and reconstruction kernel is 
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optimized for a specific task, a further improvement in MTF would not necessarily be needed. In such a situation, 

the radiation dose could be reduced instead, for example. This may be the case when harmonizing image quality 

between an older and a newer scanner with more dose-efficient scans. However, as discussed in a previous study 

(Winslow et al 2017), the optimization strategy and thus the weighting function naturally varies between 

organizations. 

Specific limitations need to be addressed. First, to limit the amount of data, the reconstructions were collected only 

for body region kernels, and the head kernels were excluded. However, the matching technique also works for head 

kernels, and the kernel matching software, included as a supplementary document, can be used for both body and 

head kernels. Second, the matching paradigm only considers technical measures for image quality. This approach 

was selected since MTF and NPS are commonly used, quantitative, and intuitive measures for medical physicists. 

However, IR algorithms have been shown to exhibit non-linear behavior in noise properties with respect to 

anatomical texture (Solomon and Samei 2014) and resolution with respect to imaging task and radiation dose 

(Richard et al 2012), which should be considered in the future development of the method. An alternative approach 

would be to use subjective image quality metrics (model observers) to approximate the visual assessment by human 

observers (Verdun et al 2015, Barrett et al 1993, Christianson et al 2015). 

In the present study, only one set of weighting parameters was used for the matching technique. In practice, however, 

the diagnostic task should be considered when selecting the optimal weighting parameters (Richard et al 2012, Samei 

et al 2014). For illustration, for volume quantification tasks, such as coronary artery calcium scoring, the preservation 

of spatial resolution is crucial (Juntunen et al 2021), and consequently, the MTF could be weighted more than the 

NPS during the matching. In contrast, applications requiring excellent low contrast detectability, such as tumor 

diagnostics, may benefit from a weighting that prioritizes agreement in NPS. Consequently, the matching scheme 

may benefit from task-based modifications to the weights (Chen et al 2014, Richard et al 2012). The source code for 

the supplemented software is shared, and the user may freely modify the weighting functions based on their 

organization’s needs. 

 

5. CONCLUSION 

This study demonstrated the utility of combined quantitative assessment of NPS and MTF in harmonizing the 

technical image quality between CT scanners, vendors, and institutions. Software, developed for this purpose and 
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containing the data for image quality harmonization, was also shared to support others aiming to harmonize the image 

quality in their institutions. As future work, since IR has been shown to exhibit tissue-dependent changes in noise 

texture (Solomon and Samei 2014), the noise properties could be directly determined from different tissues (Solomon 

and Samei 2013, 2014, Vegas‐Sánchez‐Ferrero et al 2019). Such a method may allow for an even more diagnostically 

grounded approach for harmonization of image quality. 
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