Biomedical Physics & Engineering Endorsed by l P E M

EXpreSS Institute of Physics and
Enginearing in Medicine

PAPER « OPEN ACCESS You may also like

TIGRE: a MATLAB-GPU toolbox for CBCT image coion o

Malena Sabaté Landman, Ander Biguri,

reconstructlon Sepideh Hatamikia et al.

- IEEGview: an open-source multifunction
. X X X i i GUI-based Matlab toolbox for localization
To cite this article: Ander Biguri et al 2016 Biomed. Phys. Eng. Express 2 055010 and visualization of human intracranial
electrodes
Guangye Li, Shize Jiang, Chen Chen et al.

- An open source benchmarked toolbox for
cardiovascular waveform and interval
analysis
Adriana N Vest, Giulia Da Poian, Qiao Li
etal.

View the article online for updates and enhancements.

This content was downloaded from IP address 3.142.150.7 on 17/05/2024 at 13:26

https://doi.org/10.1088/2057-1976/2/5/055010
https://iopscience.iop.org/article/10.1088/1361-6560/acd616
https://iopscience.iop.org/article/10.1088/1361-6560/acd616
https://iopscience.iop.org/article/10.1088/1741-2552/ab51a5
https://iopscience.iop.org/article/10.1088/1741-2552/ab51a5
https://iopscience.iop.org/article/10.1088/1741-2552/ab51a5
https://iopscience.iop.org/article/10.1088/1741-2552/ab51a5
https://iopscience.iop.org/article/10.1088/1361-6579/aae021
https://iopscience.iop.org/article/10.1088/1361-6579/aae021
https://iopscience.iop.org/article/10.1088/1361-6579/aae021

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
3 April 2016

REVISED
29]June 2016

ACCEPTED FOR PUBLICATION
8July2016

PUBLISHED
8 September 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Biomed. Phys. Eng. Express2(2016) 055010

doi:10.1088/2057-1976/2/5,/055010

Biomedical Physics & Engineering Express

PAPER

TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction

Ander Biguri'”’, Manjit Dosanjh’, Steven Hancock” and Manuchehr Soleimani'

' Engineering Tomography Lab (ETL), Electronic and Electrical Engineering, University of Bath, Bath, UK

2 CERN, Geneva, Switzerland
* Author to whom any correspondence should be addressed.

E-mail: a.biguri@bath.ac.uk and m.soleimani@bath.ac.uk

Keywords: cone beam CT, image reconstruction, tomography software, GPU

Abstract

In this article the Tomographic Iterative GPU-based Reconstruction (TIGRE) Toolbox,a MATLAB/
CUDA toolbox for fast and accurate 3D x-ray image reconstruction, is presented. One of the key
features is the implementation of a wide variety of iterative algorithms as well as FDK, including a
range of algorithms in the SART family, the Krylov subspace family and a range of methods using total
variation regularization. Additionally, the toolbox has GPU-accelerated projection and back
projection using the latest techniques and it has a modular design that facilitates the implementation
of new algorithms. We present an overview of the structure and techniques used in the creation of the
toolbox, together with two usage examples. The TIGRE Toolbox is released under an open source

licence, encouraging people to contribute.

1. Introduction

Among the techniques for x-ray computed tomogra-
phy (CT) in widespread use, cone beam (CB) geometry
is getting increasing attention nowadays, from medical
imaging to material science. The possibility of recon-
structing full 3D images using a reduced x-ray radia-
tion dose is an important feature for CBCT
development in medicine and it has led to high-quality
3D reconstruction in micro-CT [1]. Applications
include maxillofacial imaging [2], guidance for radia-
tion therapy in oncology [3], insect imaging [4] and
material science [5].

In all applications of CBCT, the working principle
is the same: 2D x-ray images of the ‘sample’ are
obtained from different angles and a tomographic
reconstruction algorithm is used to create an image
from the data. The fact that in circular CBCT the origi-
nal image is mathematically impossible to obtain [6, 7]
and other factors, such as the high dimensionality of
the problem or the inconsistency created by different
physical effects with photons, make the image recon-
struction problem what mathematicians define as ill-
posed. Advanced mathematics is needed to generate a
solution. This has led to extended research in image
reconstruction algorithms, with a wide range of

published approaches that give differing results. And it
remains a hot topic.

While the use of CBCT is being increasingly exten-
ded to cover different imaging fields and research on
reconstruction algorithms still sees new methods pub-
lished, the end users of the images, both in medicine
and microtomography, mainly use the simplest recon-
struction algorithm, FDK [8]. This is worrying
because, while FDK produces satisfactory images for
good quality, full-projection, noiseless data, it per-
forms poorly in less ideal scenarios. It has been repeat-
edly demonstrated that iterative algorithms [9]
outperform FDK [10-14].

There are a few factors that influence the lack of
connection between mathematics and usage. The
main one is computation time. Most, if not all, alter-
native algorithms are iterative. They need to recom-
pute repeatedly operations that are very memory- and
computationally expensive, while FDK needs less time
than a single such iteration. This is an important point
especially in medical applications, where an image is
needed rapidly as medical decisions are taken on the
basis of what can be read from it. The time scales for
iterative algorithms to run on a modern computer
CPU are of the order of hours, days or even weeks for
the most complex algorithms and bigger data. Another

©2016 IOP Publishing Ltd

http://dx.doi.org/10.1088/2057-1976/2/5/055010
mailto:a.biguri@bath.ac.uk
mailto:m.soleimani@bath.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/2/5/055010&domain=pdf&date_stamp=2016-09-08
http://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/2/5/055010&domain=pdf&date_stamp=2016-09-08
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

factor is the lack of easy-to-use and free-distribution
iterative algorithms. While some of the most recent
toolboxes (presented later) do include some iterative
algorithms, the vast majority of these algorithms have
been completely ignored by both open source and
commercial image reconstruction software. This lack,
in conjunction with the fact that the research on
reconstruction algorithms requires a deep under-
standing of such fields of mathematics as linear algebra
and inverse problems, makes iterative algorithms
somewhat out of reach for the end users of the recon-
structed images.

In order to reduce the gap between algorithm
research and end use, we have developed the Tomo-
graphic Iterative GPU-based Reconstruction (TIGRE)
Toolbox, a MATLAB/GPU toolbox featuring a wide
range of iterative algorithms. It uses the higher level
abstraction of MATLAB with the lower (hardware-
specific) performance of CUDA in order to make it
fast and easy to use. In an attempt to bring the different
fields together, we addressed the computation-time
problem using the latest technologies in GPU comput-
ing with massive parallelization and memory manage-
ment efficiency. Only the main computationally
expensive blocks have been parallelized, with a mod-
ular design, allowing algorithm researchers easily to
plug new methods together with the GPU blocks pro-
vided. Additionally, the algorithms can be used as
single-line functions, giving total abstraction to
researchers who are only interested in the resultant
images, rather than in algorithm development.

Before explaining the specifics of the TIGRE tool-
box, it is worth mentioning some other toolboxes that
are also available. There are several commercial and
free software packages for FDK reconstruction,
including (but not exhaustively) CoBRA [15] , Ultra-
fast CB CT reconstruction [16] , OSCaR [17], Accel-
erating ConebeamCT [18]. Additionally, some more
advanced toolboxes that include one or two iterative
reconstruction algorithms (SIRT and/or CGLS) are

Code Snippet 1. Geometry definition in TIGRE.

A Bigurietal

also available, such as ASTRA [19], RTK [20] and 3D
CB CT MATLAB [21]. Of these, ASTRA and RTK are
the toolboxes that are most complete, however their
infrastructure in low-level programming languages
make them less suitable to work with when developing
new algorithms.

In this paper we briefly describe the CBCT image
reconstruction problem and some of the many ways to
solve it. Thereafter, we give an overview of the struc-
ture of the TIGRE Toolbox and show some perfor-
mance results and some reconstructed images. Finally,
we discuss the future vision of the toolbox.

2.Methods

2.1. CBCT geometry

The geometry of CBCT can be represented as in
figure 1. An x-ray source, S, is located at distance DSO
from a centre of rotation O, where the origin of a
cartesian coordinate system is located. The x-ray
source irradiates a cone-shaped region containing the
image volume I and a detector ID measures the
intensity of the photons impinging on it, photons that
have been attenuated following the Beer-Lamber law.
The image is centred at position O’, which is displaced
by ﬁg from the coordinate system origin. The
detector, located at distance DSD from the source and
centred at D’, has an offset of E from D, whichis a
point lying in the xy-plane at distance DSD — DSO
from the origin. A projection coordinate system uv is
defined centred at the lower left corner of the detector.
During the measurement acquisition, the source and
the detector rotate around the z-axis at an angle of «
from their initial position.

The geometric variables described above are used
in the TIGRE Toolbox to perform the necessary opera-
tions for image reconstruction, as shown in code snip-

—_— —
pet 1. It is worth mentioning that both Vgeiand Vg
are vectors that define a single offset per projection.

%% Geometry structure definition.
% Distances

geo.DSD=1536;

geo.DSO=1000;

% Detector parameters
geo.nDetector = [512; 512];
geo.dDetector = [0.8;0.8];

geo.sDetector = geo.nDetector. geo.dDetector;

% Image parameters

geo.nVoxel = [512;512;512];
[256;256;256];
geo.dVoxel = geo.sVoxel./geo.nVoxel;
% Offsets

geo.offOrigin= [0; 0;0];

geo.sVoxel

geo.offDetector = [0; 0];

% Distance Source Detector
% Distance SourceOrigin

% number of pixels
% sizeinmmof eachpixel

% total sizeof thedetector inmm

% number of voxels in the image
% total sizeof the image inmm

% sizeinmmof eachvoxel

%V_orig
% V_det

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

Figure 1. Geometry of CBCT.

2.2.Image reconstruction problem

For a given geometry, image reconstruction can be
described by two different approaches. The first one is
by solving the inverse Radon transform, a mathema-
tical tool to describe the integral of a function over
straight lines. The solution of the inverse Radon
transform is well known in tomography and Feld-
kamp, Davis, and Kress modified it for CB geometries.
Their solution is known as the FDK algorithm [22].
While the FDK algorithm will produce good quality
images in an ideal scenario, it copes poorly with
common unaccounted sources of error, such as beam
hardening or photon scattering [23].

Alternatively, the image reconstruction problem
has been described as a minimization one as in
equation (1), where b are the projection data, x is the
image and A is a matrix describing the intersections of
x-rays and voxels in the image. In this equation, G(x) is
an optional term that describes a regularization func-
tional G (). This functional can be used to introduce
additional constraints to the image reconstruction
algorithm

£ = argmin_ ||b — Ax|* + G(x).)

While the minimization formulation allows the
use of advanced linear algebra techniques, there is a
significant complication: the size of the matrix A. This
is especially important as most, if not all, iterative tech-
niques to solve equation (1) use one Ax and one A"b
matrix-vector multiplication. As an example, matrix A
for the geometry described in code snippet 1 for 360
projections has 94371840 x 134217728 elements
with a sparsity index of 0.0017%. This requires 320 Gb
of memory even using optimized sparse memory
methods.

In order to cope with a problem of this scale, the
most common approach is to substitute the matrix-
vector multiplications Ax and A”b by operators A(x)
and AT (b), recomputing the relevant matrix values
whenever necessary. While computationally very
expensive to perform, the operators have an

advantage: the values are completely independent of
each other, making them suitable for parallel comput-
ing. In the TIGRE Toolbox, these two operators have
been implemented using CUDA in a GPU capable of
computing over 60K floating-point operations simul-
taneously’. This has resulted in speed-ups of up to
1400 times compared to matrix-based methods.

2.3. Toolbox structure

In this section an overview of the structure of the
toolbox is given (see figure 2). As mentioned in the
previous section, the main building blocks of any
iterative algorithm are the so-called projection (A(x))
and back projection (AT (b)) operators. In the TIGRE
Toolbox, these two blocks have been optimized for
GPU computing using CUDA. They lie in the lowest
layer of the toolbox design and are constantly used by
the other layers. The algorithms themselves lie in the
topmost layer and are all coded in MATLAB, which
provides the power and flexibility of a high-level
language. To be able to communicate between the
low-level, hardware-oriented CUDA and the high-
level, design-oriented MATLAB, a set of the so-called
MEX functions are needed. The toolbox has been
designed not to have any specific data types or classes.
Instead, it comprises only the basic MATLAB types,
such as matrices and structures.

2.3.1. Projection and back projection

As already mentioned, the main building blocks of the
toolbox are the CUDA/C++ implementations of the
projection and back projection operators. Concep-
tually, the matrix A is a linearization of the model that
describes the x-ray attenuation measured over a given
domain and several different approaches to compute
this may be found in the literature. Similarly, back
projection is a ‘smearing’ over the domain with a
weighting applied. Without explaining in detail all the

In specific GPU models.

3

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

CPU
2 | User scripts | User layer
= o EEEEETTTTEEEEEEEEEE T
s | Algorithms |<—>| Tools | Layer 3
___________ IEdtconmoomocootmoonoosoosoomoos0om00d
i | MEX files | Layer2
© I Lo T
— A(z) — AT (b)
< Layer 1
g Projection Back projection Other tools er
o
GPU
Figure 2. Structure of the TIGRE Toolbox.

methods available, we briefly describe those used in
the toolbox.

For the projection, two approaches have been
implemented: the voxel-ray intersection approach and
the interpolation approach. The first of these uses the
Siddon ray-tracing algorithm [24] with optimized
operations [25]. This algorithm computes the distance
between a given voxel and an infinitesimally narrow
x-ray beam and multiplies that by the voxel intensity.
This approach is the fastest way of computing the pro-
jector. However, it is known to introduce discretiza-
tion square-block artefacts due to the finite size of the
voxels, artefacts which become more significant the
bigger the voxel size. To avoid this problem, a trilinear
interpolation approach has been implemented where
the path integral is evaluated every fixed Al and image
values are interpolated using advanced texture mem-
ory. To implement this an additional variable is added
to the geometric definition of the problem:
geo.accuracy = 0.5, which defines Al as a fraction of
the voxel size. This fraction is best chosen to be 0.5 or
lower, as Jia et al [26] demonstrated.

For the back projection, two different approaches
based on the same concept are used. Initially a ray is
linked from the source location to the desired voxel,
and extended to the detector. There, using bilinear
interpolation, a value is read and added to that voxel
with a weight. The difference between the two back
projections is in this weight. One of them implements
the FDK weight. However, this makes the back projec-
tion unmatched, i.e., it makes the back projection
operator not equivalent to the transpose of the pro-
jector. While not important for most algorithms, this
is crucial for Krylov subspace methods. In order to
change that, a matched weight as described by Jia et al
[27]is used. While not completely matched, they claim
that it is above 99% similar to the transpose of matrix
A. Both back projectors perform similarly.

2.4. Algorithms

One of the key features that we wish to introduce with
the TIGRE Toolbox is algorithm variety. The field of
image reconstruction has seen the development of a
wide variety of methods to solve equation (1) using

different solvers and regularization techniques. There
are four main families of reconstruction algorithms
present in the current implementation of the toolbox:
the filtered back projection family, the SART-type
family, the Krylov subspace method family and the
total variation regularization family. A brief descrip-
tion of each algorithm subgroup follows, together with
which algorithms are included in the toolbox.

The filtered back projection family is a set of algo-
rithms based on solving the inverse of the Radon
transform. Different variations of the algorithm have
been proposed in the literature, but the toolbox con-
tains just the standard FDK implementation with a
small choice of filtering kernels”.

The SART-type family [28] is set of algorithms that
derives originally from the Kaczmarz method and is
adapted to work projection by projection instead of
row by row. This family of algorithms follows
equation

Xkl = xk -+)\kVATW(b - Axk)) 2

where V and W are weight matrices based on ray
length. The algorithms of this family mainly differ by
the number of projections used simultaneously. In the
TIGRE Toolbox, SIRT, OS-SART [29] and SART are
implemented, where the image is updated using all
projections, subsets of projections or projection by
projection, respectively. Additionally, the toolbox
provides different options for tuning the algorithms.
For example different initialization techniques are
implemented, such as FDK, multi-grid, or user-
specified image. The main difference between the
performance of the algorithms in this family is in
convergence versus speed. The more data used in one
update, the faster the algorithm will be per iteration,
but slower (in number of iterations) to converge. For a
more accurate solution, SART is suggested, while a
faster result is obtained using SIRT, and with OS-
SART somewhere in between.

Krylov subspace methods consitute a set of faster
algorithms for solving linear equations. They iterate
through Krylov subspaces, minimizing the eigenvec-
tors of the residuals in descending order and so have

> EDK adapted from 3D CB CT MATLAB [21], with permission.

4

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

Projection with Interpolation

0.1ms

512°
256"
64°

1024%
512%

256°

1287 128°

Detector size Image size

interpolated mode (a) and ray-voxel intersection mode (b).

Figure 3. Projection operator performance (logarithmic scale) in GPU for a single projection and different image and detector sizes for

Projection with ray-voxel intersection

10242
512% g
256°

128% 128°

Detector size Image size

increased convergence rates compared to the SART
family. From this family, the conjugate gradient least
squares (CGLS) [30] has been added to the TIGRE
Toolbox. This family of algorithms will get to a similar
result compared to, for example SIRT, in approxi-
mately a tenth of the iterations while still having prac-
tically the same computational cost per iteration.
These methods rely on iterating over the so-called
‘Krylov subspaces’, which are generated by the linear
combination of the k first powers of A acting on b as in

K, (A, b) = span{b, Ab, A, ...,A*"1b}. 3)

Finally, the total variation regularization family is
included. The total variation norm is a common con-
straint in image denoising as it constrains the image to
be piecewise smooth. It was introduced in CT with the
advent of the ASD-POCS algorithm [31]. This set of
algorithms is particularly good when the data are very
noisy or the number of projections is reduced as the
piecewise smoothness constraint forces the image into
the least noisy state. From this family, the ASD-POCS
(or POCS-TV), OSC-TV [32], B-POCS-TV-3[33] and
SART-TV [34] (minimizing the Rudin—Osher—Fatemi
model) are implemented. The total variation mini-
mization has been partially GPU-accelerated. One of
the limitations of this family of algorithms is that they
require the tuning of more parameters than the other
families, often needing to be tested several times until
the optimal behaviour is found. The particularity of
this family of algorithms resides in the double optim-
ization of the problem. They minimize data first, using
some of the algorithms from the previously men-
tioned families and after they minimize the ‘total var-
iation’, essentially the noise in the image. The main
difference between them is in the tools used in each of
these minimization steps. ASD-POCS, OSC-TV and

B-POCS-TV-f generally perform better with a limited
amount of data, while SART-TV has an important role
in reconstructing data from noisy projections. The
minimization problem can be mathematically expres-
sed asin

£ = argmin_ ||b — Ax[? + ||x||rv. 4)

In addition to image reconstruction algorithms,
some basic tools for image denoising, plotting, loading
data and quality measurement are included in TIGRE.
These include projection and image plotting utilities,
an image denoising function, a CBCT cropping tool
and a projection noise simulator among others. The
toolbox contains demos to illustrate the usage of all
algorithms, with extensive explanations of each of the
parameters that they may require. There are also help
pages for each of the functions that are included.

3. Results

In this section we demonstrate how the toolbox works
by giving some performance figures and by showing
some examples of image reconstructions. Before
getting to the results, it is worth mentioning the
specifications of the computer on which the toolbox
has been developed and tested. The computer is a
64 bit Windows 7, with an Intel® Core™ i7-4930K
3.40GHz CPU, and 32Gb of RAM, running
MATLAB® (R2014b, The Mathworks, Cambridge,
UK) on a NVIDIA Tesla K40 GPU.

3.1. Performance
The performance of the GPU-accelerated projection
and back projection is shown in figures 3 and 4,

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

Time

100ms

10ms

B

Detector size

Backprojection

S
‘ — 256°
e

~— 64°

Figure 4. Back projection operator performance (logarithmic scale) in GPU.

//<
s

<

Image size

respectively. In all these tests memory allocation time
has been ignored.

The code has been run for a single projection with
varying image and detector sizes for both projection
types, interpolated and ray-voxel intersected. The
resultant times go up to a second per projection for a
1024° image size and a 1024 detector size, which is
considerably larger than a standard medical device.
The interpolation test has been performed taking a
sample every half voxel and, with this sampling rate,
the ray-voxel intersection algorithm is about 4 times
faster than the interpolation one. For the geometry in
code snippet 1 (taken from a medical device), the ray-
voxel intersection algorithm computes the projection
every 10 ms.

A single back projection test is shown as both back
projections perform similarly. Note also that, as
expected, back projection performance is independent
of the detector size.

3.2.Sample code

To illustrate the use and functionality of the toolbox
we present two examples, one with phantom data
and the other with data obtained from the RANDO
head phantom at the Christie Hospital, Manche-
ster, UK.

3.2.1. RANDO head reconstruction

We will first demonstrate the reconstruction of the
RANDO head phantom using three different algo-
rithms with the geometry defined in code snippet 1.
The data set contains 360 equidistant projections.
Once the data have been loaded using the code of
snippet 2, the results of figure 5 can be obtained
without the need for any more code. Information

about total computation time and computation time
per iteration are shown. Only some of the possible
options are shown in the snippet, but more customiza-
tion is possible. We refer the reader to the published
documentation for advanced options and for insight
into their numerical ranges.

Code Snippet 2. RANDO head data reconstruction.

% Define Geometry & loaddata

% Fromthedata, theprojectionangles (in

% radians) must havebeen read

alpha = ...

%% Reconstruct imagewithdifferentalgorithms
% FDK

imgFDK = FDK (data, geo,alpha) ;

% CGLS

iterCGLS = 15;

imgCGLS = CGLS (data, geo, alpha, iterCGLS) ;
%0S-SARTwithmulti-gridinitialization
iterOSSART = 70;

imgOSSART = OS_SART (data,geo, alpha, iterOSSART, ..

’BlockSize’,20,’Init’, 'multigrid’);

3.2.2. Reconstructions with few projections

The second test uses the 3D Shepp—Logan phantom to
demonstrate the difference in image quality created by
different algorithms in the case of few projections.
Using just 20 projections, an image is reconstructed
using FDK, OS-SART and ASD-POCS. The code
snippet 3 demonstrates how to load data, set up
parameters and reconstruct a limited amount of
projection data. The results are shown in figure 6 and
emphasize the distinct behaviour of these algorithms
in certain scenarios.

6

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

FDK
20s total

most artefacts and having a clearer separation between tissues.

(b)
OS-SART
46min30s total
40s per iteration

Figure 5. Cross-section of the image reconstructed from data from the RANDO head phantom by three different algorithms. FDK has
noise across the entire image and significant strike artefacts (see top image). OS-SART and CGLS create a smoother image, removing

CGLS
4min4ls total
20s per iteration

Code Snippet 3. Limited data reconstruction.

% Define Geometry

% Loadphantomdata

img = sheppLogan3D;

% Define angles

alpha = [0:18:360]%pi/180;

% Createprojections

proj = Ax (img, geo,alpha) ;

%% Reconstruct images

imgFDK = FDK (proj, geo,alpha) ;

imgOSSART = OS_SART (proj,geo, alpha, 50, ..
"BlockSize’,5);

imgASDPOCS = ASD_POCS (proj,geo,alpha, 50,12);

3.3.Implementation of an algorithm using TIGRE
To demonstrate the facility with which anyone can
develop new algorithms using the TIGRE toolbox, we
present in this section a side-by-side comparison of an
algorithm definition and its TIGRE equivalent code,
using the GPU accelerated features. For the sake of
brevity, the CGLS algorithm has been chosen.

In table 1 the definition of the CGLS iterations and
the implementation in TIGRE are shown. From the
code snippet, we would like to highlight the limited
use of library-related functions, as one of the strengths
of TIGRE for the developer point of view is the

easy-to-use application programming interface. The
only difference in the code from a completely standard
MATLAB script is the use of the function Ax() and Atb
(), the main building blocks of the toolbox, as descri-
bed in section 2.3. This allows anyone with MATLAB
code for solving image reconstruction to easily modify
their code by just changing the matrix-vector opera-
tions by TIGRE GPU functions.

Note that the functions inside TIGRE do generally
have more code than the one shown here, as several
options and performance enhancing MATLAB tools
are used.

4, Discussion

In this paper we have presented a MATLAB/CUDA
toolbox for fast 3D x-ray image reconstruction. While
the toolbox has reasonably good performance—redu-
cing to minutes an image reconstruction with complex
iterative algorithms—and a wide variety of tools,
improvements are possible.

The projection and back projection operators have
been fully implemented in the GPU, but the algo-
rithms are fully in CPU so a memory management
overhead exists because the data need to be introduced
and extracted from the GPU twice per iteration. This
design has been proposed in order to have the

7

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

A Bigurietal

(a) FDK

limited-projection example are all below a minute.

(b) OS-SART

Figure 6. Cross-section of the image reconstructed from data from 20 projections of the 3D Shepp—Logan phantom. While an extreme
case, the increased performance of the minimization algorithms over FDK is evident, especially for ASD-POCS. Times for this

(c) ASD-POCS

algorithms in a high-level language, as an algorithm
implementation cycle in a low-level language like C+
+ is significantly longer than in MATLAB. We esti-
mate that if the algorithms were written in C+
+/CUDA directly, an improvement in computation
time of up to 50% could be achieved in some cases.
However, this would increase the difficulty of adding
new algorithms to the toolbox. We consider that the
advantages of a high-level programming language for
new algorithms are better than the possible benefits of
doubling the speed, which is already reasonably good.
Comparing the forward and back projection speeds to
the ASTRA toolbox, TIGRE is 2.4 times slower. This
can be easily explained by two factors. Firstly, the geo-
metric options for CBCT are more flexible in TIGRE
than in ASTRA, thus requiring more floating-point
operations. Secondly, ASTRA implements an
advanced ray splitting that increases memory latency
in the GPU and that makes use of overlaps between
x-ray paths at different angles [35]. However, due to
the use of algorithms that do not compute adjacent
angles together (such as SART or OS-SART), such an
exploit has not been used in TIGRE, increasing the
memory read time in GPUs. The same thing applies to
back projection. Adding all the discussed effects that
would decrease the time performance, all algorithms
run about 5 times more slowly in TIGRE than in
ASTRA, which constitutes the state of the art. Numeri-
cally, the differences between ASTRA and TIGRE are
in absolute value of the order of 102, which is about

0.01% in relative terms. This difference can be attrib-
uted to accumulated floating point errors due to dif-
ferent numerical approaches in the GPU code.

To speed up further the projection and back pro-
jection operators, a multi-GPU approach [36] could
also be taken. Currently, TIGRE does not support
multi-GPU architectures. A further weakness of the
toolbox is the small number of functions for data load-
ing and post-processing. However, we are presenting a
first release and work will be continued, hopefully fill-
ing this gap in the near future. Another limitation of
TIGRE comes from the current limitations in GPU
technology. Currently, 12GB is the maximum
amount of memory on a GPU board, thus limiting the
possible size of the images that can be reconstructed.
Nevertheless, there is no problem to reconstruct a
1024° image with most algorithms so the maximum
image size is still big.

The TIGRE Toolbox has been designed with the
objective of reducing the gap between image recon-
struction research and the end users of tomographic
images. While research in reconstruction creates new
algorithms every year, end users only have access to
FDK implementations. With these two groups in
mind, the toolbox:

+ has easy-to-use ‘black box’ algorithms, making it
extremely straightforward for researchers who are
only interested in the quality of the images to test

10P Publishing

Biomed. Phys. Eng. Express2(2016) 055010

Table 1. CGLS algorithm as definition, and implemented in TIGRE.

xo=0; dy=b; 1= ATb; py = 155
to=Am; v, = llnll
for k = 1 to k = maxiter

= Yo/l

Xk = Xg—1 + Qitk—1

dy = dp 1 — gty
n = Ald,
Y = llndP?
B = 'Yk/"/kq
P = 1+ Bkpr_,
ik = Apy

end

%Initializevariables

x = zeros (geo.nVoxel’) ;

d=Db;
r = Atb (b, geo,angles, "matched’) ; %TIGRE
p=r;

t =Ax(r,geo,angles) ; %TIGRE
gamma_1l = norm(r(:));
% Loopuntil userdefinedmaxiter
fork = 1l:maxiter
alpha = gamma_1/norm(t (:));
x =x + alpha * t;
d=d - alpha * t;
r = Atb (d, geo, angles, 'matched’) ; %TIGRE
gamma = norm(r(:));
beta = gamma/gamma_1;
gamma_1l = gamma;
p=r + beta * p;
t = Ax (p,geo,angles) ; %TIGRE
end
% xisthesolution.

different algorithms without them requiring any
knowledge of how the algorithms work;

+ has easy-to-use building blocks (projection and
back projection operators) that allow algorithm
developers to test new methods using a high-level
programming language but with the performance of
the lowest level, GPU languages.

The code is released as open source, allowing any-
one to download, test, modify and improve it. We
enthusiastically encourage the submission of improve-
ments, bug-fixes, demos, data and whatever else might
help the community. Likewise, we encourage algo-
rithm developers to submit their new algorithms to
the toolbox, giving them visibility. Finally, we would
like to encourage x-ray image end users to include data
or descriptions of specific challenges they may have,
allowing dialogue and hopefully leading to better ways
of creating enhanced tomographic images.

While the toolbox was originally designed for
CBCT image reconstruction, an option for 3D paral-
lel-beam CT reconstruction has also been included
allowing for more geometries, e.g., synchrotron data.
Further tweaking the geometry structure of the

A Bigurietal

toolbox would also permit 2D fan- and parallel-beam
reconstructions.

The minimum requirements to run the toolbox
are strongly dependent on the image size desired, as
memory is the strongest limiting factor both on the
CPU and GPU side. Generally speaking, any NVIDIA
GPU with a compute capability higher than 3.5 would
be sufficient to reconstruct arbitrarily large images.
We recommend having at least 3 times the desired
image size in GPU memory and 8 times in RAM in the
computer. As an example, for a 5123 image, 2 GB of
GPU memory and 6 GB of computer RAM is the sug-
gested minimum. The computing power (number of
processors in the GPU and processor performance of
the CPU) will have a strong effect on the speed of
image reconstruction. Thus we recommend a state of
the art CPU and a computing oriented GPU, such as
from the Tesla family.

5. Conclusions

A 3D tomographic reconstruction toolbox has been
developed with fast GPU-based algorithms and a wide
variety of tools and image reconstruction algorithms.
While TIGRE has been created for CBCT imaging, it
can be used for any geometry, especially 3D geome-
tries. With this toolbox we hope to make advanced
algorithms more accessible to researchers and to
provide a platform on which applied mathematicians
and image users can work and collaborate. It will thus
facilitate the comparison of such advanced algorithms
with those in more common usage and so demonstrate
the potential to achieve the same image quality with
fewer projections and hence less dose. Future develop-
ments will include possible performance optim-
ization, more algorithms, additional support for file
formats and post-processing algorithms. With the
TIGRE Toolbox, we hope to build a bridge between
imaging communities and provide a platform where
they can interact via software. The entire package is
available at https://github.com/CERN/TIGRE.

Acknowledgments

The authors would like to acknowledge CERN Knowl-
edge Transfer and EPSRC grant 1431573 for the
funding, and NVIDIA for the hardware donation
(Tesla k40c GPU) for research purposes that made it
possible to achieve this work.

References

[1] Machin Kand Webb S 1994 Cone-beam x-ray
microtomography of small specimens Phys. Med. Biol. 39 1639

[2] Vos W De, Jan Casselman and Swennen G R J 2009 Cone-
beam computerized tomography (cbct) imaging of the oral and
maxillofacial region: a systematic review of the literature Int. J.
Oral Maxillofacial Surg. 38 609-25

https://github.com/CERN/TIGRE
http://dx.doi.org/10.1088/0031-9155/39/10/009
http://dx.doi.org/10.1016/j.ijom.2009.02.028
http://dx.doi.org/10.1016/j.ijom.2009.02.028
http://dx.doi.org/10.1016/j.ijom.2009.02.028

Biomed. Phys. Eng. Express2(2016) 055010

[3] Boda-Heggemann J, Lohr F, Wenz F, Flentje M and
Guckenberger M 2011 kv cone-beam ct-based igrt
Strahlentherapie Und Onkologie 187 284-91

[4] Garwood R, Ross A, Sotty D, Chabard D, Charbonnier S,
Sutton M and Withers P] 2012 Tomographic reconstruction
of neopterous carboniferous insect nymphs PLoS One 7 1-10

[5] Atwood RC,Jones] R, Lee P D and Hench L L2004 Analysis of
pore interconnectivity in bioactive glass foams using x-ray
microtomography Scr. Mater. 51 1029-33

[6] TuyH A 1983 Aninversion formula for cone-beam
reconstruction SIAM J. Appl. Math. 43 54652

[7] Smith B D 1985 Image reconstruction from cone-beam
projections: necessary and sufficient conditions and
reconstruction methods IEEE Trans. Med. Imaging 4 14-25

[8] PanX, Sidky E'Y and Vannier M 2009 Why do commercial ct
scanners still employ traditional, filtered back-projection for
image reconstruction? Inverse Problems 25 123009

[9] Soleimani M and Pengpen T 2015 Introduction: a brief
overview of iterative algorithms in x-ray computed
tomography Phil. Trans. R. Soc. London A 37320140399

[10] Beister M, Kolditz D and Kalender W A 2012 Iterative
reconstruction methods in x-ray CT Phys. Med. 28 94-108

[11] PontanaF, Pagniez], Flohr T, Faivre J, Duhamel A, Remy J and
Remy-Jardin M 2010 Chest computed tomography using
iterative reconstruction vs filtered back projection: I.
Evaluation of image noise reduction in 32 patients Eur. Radiol.
21627-35

[12] Pontana F, Pagniez], Flohr T, Faivre J, Duhamel A, RemyJ and
Remy-Jardin M 2010 Chest computed tomography using iterative
reconstruction vs filtered back projection: II. Image quality of
low-dose ct examinations in 80 patients Eur. Radiol. 21 63643

[13] Coban S B, Withers P J, Lionheart W R Band McDonald S A
2015 When do the iterative reconstruction methods become
worth the effort? 13th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear
Medicine (Fully3D 2015), 31 May - 04 June 2015, Newport,
Rhode Island, USA

[14] YanH, Cervino L, Jia X and Jiang S B 2012 A comprehensive
study on the relationship between the image quality and
imaging dose in low-dose cone beam CT Phys. Med. Biol.
572063

[15] Sheats M] and Stupin D M 1998 Cobra: cone beam computed
tomography (CT) reconstruction code in interactive data
language (idl) Review of Progress in Quantitative Nondestructive
Evaluation (Berlin: Springer) pp 395401

[16] Bronnikov A V Ultra-fast cone-beam CT reconstruction
software http://bronnikov-algorithms.com/Products.htm

[17] RezvaniN et al OSCaR: open source cone-beam reconstructor
(www.cs.toronto.edu/~nrezvani/OSCaR.html)

[18] Leeser M, Mukherjee S and Brock J 2014 Fast reconstruction of
3d volumes from 2d CT projection data with GPUs BMC Res.
Notes7 582

[19] van Aarle W, Jan Palenstijn W, De Beenhouwer J, Altantzis T,
Bals S, Batenburg KJ and Sijbers J 2015 The { ASTRA } toolbox:
A platform for advanced algorithm development in electron
tomography Ultramicroscopy 157 35—47

A Bigurietal

[20] RitS, Vila Oliva M, Brousmiche S, Labarbe R, Sarrut D and
Sharp G C 2014 The reconstruction toolkit (RTK), an open-
source cone-beam CT reconstruction toolkit based on the
insight toolkit (ITK) J. Phys.: Conf. Ser. 489 012079

[21] Kyungsang K 3D cone beam CT (CBCT) projection
backprojection FDK, iterative reconstruction MATLAB
examples https://mathworks.com/ matlabcentral /
fileexchange/35548 Version 1.14

[22] Feldkamp L A, Davis L C and Kress] W 1984 Practical cone-
beam algorithm J. Opt. Soc. Am. A1612-9

[23] BoasF Eand Fleischmann D 2012 Ctartifacts: causes and
reduction techniques Imaging Med. 4 229-40

[24] Siddon R L 1985 Fast calculation of the exact radiological path
for a three-dimensional ct array Med. Phys. 12 252-5

[25] Han G, Liang Zand You J 1999 A fast ray-tracing technique for
TCT and ECT studies 1999 IEEE Nuclear Science Symp. 1999.
Conf. Recordvol 3, pp 1515-8

[26] JiaX, Yan H, Cervifio L, Folkerts M and Jiang S B A GPU tool
for efficient, accurate, and realistic simulation of cone beam
CT projections 12 7368-78

[27] JiaX, Dong B, LouY and Jiang S B 2011 Gpu-based iterative
cone-beam CT reconstruction using tight frame regularization
Phys. Med. Biol. 56 3787

[28] Andersen A Hand Kak A C 1984 Simultaneous algebraic
reconstruction technique (sart): a superior implementation of
the artalgorithm Ultrason. Imaging 6 81-94

[29] Censor Y and Elfving T 2002 Block-iterative algorithms with
diagonally scaled oblique projections for the linear feasibility
problem SIAM J. Matrix Anal. Appl. 24 40-58

[30] QiuW, Titley-Peloquin D and Soleimani M 2012 Blockwise
conjugate gradient methods for image reconstruction in
volumetric CT Comput. Methods Programs Biomed. 108
669-78

[31] Sidky EY and Pan X 2008 Image reconstruction in circular
cone-beam computed tomography by constrained, total-
variation minimization Phys. Med. Biol. 53 4777

[32] Matenine D, Goussard Y s and Després P 2015 GPU-
accelerated regularized iterative reconstruction for few-view
cone beam CT Med. Phys. 42 1506

[33] XueH, Zhang L, Cheng Z, Xing Y and Xiao Y 2010 An
improved TV minimization algorithm for incomplete data
problem in computer tomography 2010 IEEE Nuclear Science
Symp. Conf. Record (NSS/MIC) pp 2621-4

[34] JiaX,LouY, LewisJ,LiR, GuX, Men C, Song WY and
Jiang S B 2011 GPU-based fast low-dose cone beam CT
reconstruction via total variation J. X-Ray Sci. Technol. 19
139-54

[35] Palenstijn W], Batenburg K J and Sijbers] 2011 Performance
improvements for iterative electron tomography
reconstruction using graphics processing units (gpus) J. Struct.
Biol. 176 250-253

[36] YanH, WangX, Shi F, Bai T, Folkerts M, Cervino L,

Jiang S B and Jia X 2014 Towards the clinical implementation
ofiterative low-dose cone-beam CT reconstruction in image-
guided radiation therapy: cone/ring artifact correction and
multiple GPU implementation Med. Phys. 41 111912

10

http://dx.doi.org/10.1007/s00066-011-2236-4
http://dx.doi.org/10.1007/s00066-011-2236-4
http://dx.doi.org/10.1007/s00066-011-2236-4
http://dx.doi.org/10.1371/journal.pone.0045779
http://dx.doi.org/10.1371/journal.pone.0045779
http://dx.doi.org/10.1371/journal.pone.0045779
http://dx.doi.org/10.1016/j.scriptamat.2004.08.014
http://dx.doi.org/10.1016/j.scriptamat.2004.08.014
http://dx.doi.org/10.1016/j.scriptamat.2004.08.014
http://dx.doi.org/10.1137/0143035
http://dx.doi.org/10.1137/0143035
http://dx.doi.org/10.1137/0143035
http://dx.doi.org/10.1109/TMI.1985.4307689
http://dx.doi.org/10.1109/TMI.1985.4307689
http://dx.doi.org/10.1109/TMI.1985.4307689
http://dx.doi.org/10.1088/0266-5611/25/12/123009
http://dx.doi.org/10.1098/rsta.2014.0399
http://dx.doi.org/10.1016/j.ejmp.2012.01.003
http://dx.doi.org/10.1016/j.ejmp.2012.01.003
http://dx.doi.org/10.1016/j.ejmp.2012.01.003
http://dx.doi.org/10.1007/s00330-010-1990-5
http://dx.doi.org/10.1007/s00330-010-1990-5
http://dx.doi.org/10.1007/s00330-010-1990-5
http://dx.doi.org/10.1007/s00330-010-1991-4
http://dx.doi.org/10.1007/s00330-010-1991-4
http://dx.doi.org/10.1007/s00330-010-1991-4
http://dx.doi.org/10.1088/0031-9155/57/7/2063
http://bronnikov-algorithms.com/Products.htm
http://(/www.cs.toronto.edu/~nrezvani/OSCaR.html)
http://dx.doi.org/10.1186/1756-0500-7-582
http://dx.doi.org/10.1016/j.ultramic.2015.05.002
http://dx.doi.org/10.1088/1742-6596/489/1/012079
http://arXiv.org/abs/https://mathworks.com/matlabcentral/fileexchange/35548
http://arXiv.org/abs/https://mathworks.com/matlabcentral/fileexchange/35548
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.2217/iim.12.13
http://dx.doi.org/10.2217/iim.12.13
http://dx.doi.org/10.2217/iim.12.13
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1118/1.4766436
http://dx.doi.org/10.1088/0031-9155/56/13/004
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1137/S089547980138705X
http://dx.doi.org/10.1137/S089547980138705X
http://dx.doi.org/10.1137/S089547980138705X
http://dx.doi.org/10.1016/j.cmpb.2011.12.002
http://dx.doi.org/10.1016/j.cmpb.2011.12.002
http://dx.doi.org/10.1016/j.cmpb.2011.12.002
http://dx.doi.org/10.1016/j.cmpb.2011.12.002
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1118/1.4914143
http://dx.doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/10.1118/1.4898324

	1. Introduction
	2. Methods
	2.1. CBCT geometry
	2.2. Image reconstruction problem
	2.3. Toolbox structure
	2.3.1. Projection and back projection

	2.4. Algorithms

	3. Results
	3.1. Performance
	3.2. Sample code
	3.2.1. RANDO head reconstruction
	3.2.2. Reconstructions with few projections

	3.3. Implementation of an algorithm using TIGRE

	4. Discussion
	5. Conclusions
	Acknowledgments
	References

