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Abstract
There are many processes in cell biology that can be modelled in terms of an
actively switching particle. The continuous degrees of freedom of the particle
evolve according to a hybrid stochastic differential equation whose drift term
depends on a discrete internal or environmental state that switches according
to a continuous time Markov chain. Examples include Brownian motion in
a randomly switching environment, membrane voltage fluctuations in neur-
ons, protein synthesis in gene networks, bacterial run-and-tumble motion, and
motor-driven intracellular transport. In this paper we derive generalized Dean–
Kawasaki (DK) equations for a population of actively switching particles,
either independently switching or subject to a common randomly switching
environment. In the case of a random environment, we show that the global
particle density evolves according to a hybrid DK equation. Averaging with
respect to the Gaussian noise processes in the absence of particle interactions
yields a hybrid partial differential equation for the one-particle density. We
use this to show how a randomly switching environment induces statistical
correlations between the particles. We also discuss methods for handling the
moment closure problem for interacting particles, including dynamical dens-
ity functional theory and mean field theory. We then develop the analogous
constructions for independently switching particles. In order to derive a DK
equation, we introduce a discrete set of global densities that are indexed by the
single-particle internal states, and take expectations with respect to the switch-
ing process. However, the resulting DK equation is no longer closed when
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particle interactions are included. We conclude by deriving Martin–Siggia–
Rose–Janssen–de Dominicis path integrals for the global density equations in
the absence of interactions, and relate this to recent field theoretic studies of
Brownian gases and run-and-tumble particles.

Keywords: hybrid stochastic differential equations, active switching,
statistical field theory, path integrals, Dean–Kawasaki equation

1. Introduction

There are a diverse range of processes in cell biology that can be modelled as an actively
switching particle [1]. The continuous degrees of freedom of the particle evolve according to
a hybrid stochastic differential equation (hSDE), whose drift term depends on a discrete state
that switches according to a continuous time Markov chain. Let (X(t),N(t)) denote the state
of the system at time t with X(t) ∈ Rd and N(t) ∈ Γ, where Γ is a discrete set. If N(t) = n ∈ Γ
then X(t) evolves according to the SDE dX= An(X)dt+

√
2DdW(t), where W(t) is a vector

of independent Wiener processes and An is an n-dependent drift term. (For simplicity, we take
the diffusivity to be independent of n.) Finally, the matrix generator Q of the continuous time
Markov chain N(t) may itself depend on X(t). In the limit D→ 0, the dynamics reduces to a
so-called piecewise deterministic Markov process [2].

One well-known example of an hSDE arises within the context of membrane voltage fluc-
tuations in a single neuron that are driven by the stochastic opening and closing of ion channels
[3–10], see figure 1(a). The continuous variable X(t) ∈ R is the membrane voltage, whereas the
discrete state N(t) specifies the conformational states of the ion channels (and hence the ionic
membrane currents). The ion channels evolve according to a continuous-time Markov process
with voltage-dependent transition rates. Applying the law of large numbers in the thermody-
namic limit recovers deterministic Hodgkin-Huxley type equations. On the other hand, in the
case of a finite number of channels, noise-induced spontaneous firing of a neuron can occur
due to channel fluctuations. Another example of an hSDE is a gene regulatory network, where
X(t) is the concentration of a protein product and the discrete variable represents the activation
state of the gene [11–16], see figure 1(b). Stochastically switching between active and inactive
gene states can result in translational/transcriptional bursting. Moreover, if switching persists
at the phenotypic level then this provides certain advantages to cell populations growing in
a changing environment, as exemplified by bacterial persistence in response to antibiotics.
Yet another example is active intracellular transport on microtubular networks, where motor-
cargo complexes randomly switch between different velocity states according to a special type
of hSDE known as a velocity jump process [17–21], see figure 1(c). Velocity jump processes
have also been used to model the ‘run-and-tumble’ swimming motion of bacteria such as E.
coli [22–24]. This is characterized by periods of almost constant ballistic motion (runs), inter-
rupted by sudden random changes in the direction of motion (tumbling), see figure 1(d). For
velocity jump processes, X(t) represents the particle position and N(t) specifies the velocity
state.

In the above examples the stochastic variable N(t) represents an internal or intrinsic state
of the system. Another class of hybrid system is overdamped Brownian motion in a randomly
switching environment, in which X(t) represents the spatial position of the particle at time t
andN(t) is the current environmental state. In particular, suppose thatAn(X) =−γ−1∇Vn(X),
where γ is a friction coefficient with γD= kBT and Vn(X) is an external potential. Switching
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Figure 1. Examples of systems in cell biology modelled using hSDEs. (a) Ion channels.
(b) Genetic switches. (c) Bidirectional motor transport. (d) Bacterial run-and-tumble.

between different environmental states results in the particle being driven by different external
potentials. It is also possible to have a combination of environmental and intrinsic states.
Examples include an external chemical gradient regulating the tumbling rate of a run-and-
tumble particle (RTP) during chemotaxis [25, 26], an external electric field regulating the
opening and closing of a neuron’s ion channels, and phenotypic switching of bacterial popula-
tions in randomly switching environments [1]. Conversely, an overdamped Brownian particle
can intrinsically switch between different conformational states. This may modify its effective
diffusivity (possibly by temporarily binding to some some chemical substrate [27–29]) or how
it interacts with other particles (as in the case of soft colloids [30, 31]). Mathematically speak-
ing, at the single particle level, the analysis of an hSDE holds irrespective of whether N(t) is
interpreted as a discrete internal state (intrinsic switching) or an external environmental state
(extrinsic switching). However, for a population of actively switching particles, the two scen-
arios differ significantly, even in the absence of particle-particle interactions.

In this paper, we explore the differences between intrinsic and extrinsic switching by con-
sidering a population of particles that either independently switch or are subject to a com-
mon randomly switching environment. (For simplicity, we assume throughout that the mat-
rix generator Q is independent of X(t).) In both cases we derive ‘hydrodynamic’ evolution
equations for the global particle density by extending the classical derivation of Dean [32],
see also [33]. The Dean–Kawasaki (DK) equation for non-switching systems is a stochastic
partial differential equation (SPDE) that describes fluctuations in the global density ρ(x, t) =
N−1∑N

j=1 δ(x−Xj(t)) of N over-damped Brownian particles (Brownian gas) with positions
Xj(t) ∈ Rd at time t [32, 33]. It is an exact equation for the global density in the distribu-
tional sense, and is of considerable current interest within the context of stochastic and numer-
ical analysis [34–40]. The DK equation is also used extensively in non-equilibrium statistical
physics, where it is combined with dynamical density functional theory (DDFT) in order to
derive hydrodynamical models of interacting particle systems [41–44]. Such models arise in a
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Figure 2. Hierarchy of model equations for the density function of a population of
non-interacting particles in a randomly switching environment. (For the sake of illustra-
tion, we assume that there are two environmental states labelled n= 0,1.) The hybrid
DK equation has two sources of noise—Gaussian noise and environmental switching.
Averaging with respect to the former results in a hybrid PDE for u(x, t) = ⟨ρ(x, t)⟩ that
still depends on the random environmental state. This results in statistical correlations
between the particles even in the absence of particle interactions, which can be shown
by taking moments of the corresponding functional CK equation of the hybrid PDE.
Particle interactions can be incorporated into the hybrid DK equation, but result in a
moment closure problem when averaging with respect to the white noise.

variety of studies of active matter [45–49]. These focus on models of motile actively switch-
ing particles whose velocity state either randomly switches between different discrete states
(run-and-tumble motion) or undergoes rotational diffusion (active Brownian motion). In the
former case, a coarse-graining procedure is used to approximate the single-particle dynamics
by a drift-diffusion process, which is then extended to multiple interacting particles. A major
application of these studies is to motility-based phase separation [50].

We begin by briefly reviewing the case of a single actively switching particle, whose state
X(t) evolves according to an hSDE with drift term An(X(t)) that depends on the current
discrete state N(t) (section 2). We also write down the differential Chapman–Kolomogorov
(CK) equation for the corresponding probability density pn(x, t), where pn(x, t)dx= P[X(t) ∈
[x,x+ dx],N(t) = n]. In section 3, we consider a population of identical, non-interacting
particles subject to a common randomly switching environment. We first derive a hybrid DK
equation for the global density ρ(x, t) =

∑
j δ(Xj(t)− x), where Xj(t) ∈ Rd is the position of

the jth particle at time t. The hybrid DK equation has both Gaussian noise and discrete noise
due to environmental switching. Averaging with respect to the former yields a hybrid PDE
for u(x, t) = ⟨ρ(x, t)⟩ that still depends on the random environmental state. We use the corres-
ponding functional CK equation to derive moment equations for the one-particle density, and
thus show how a randomly switching environment induces statistical correlations. The various
versions of the model equations for non-interacting particles with environmental switching
are summarized in figure 2. We conclude section 3 by discussing methods for handling the
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Figure 3. Corresponding hierarchy of model equations for the global density functions
of a population of non-interacting particles that independently switch between different
internal states. We now have a system of DK equations for the indexed global densit-
ies µn(x, t) that only has Gaussian noise. Averaging with respect to the latter results in
a deterministic PDE, and hence there are no statistical correlations in the absence of
particle interactions. Particle interactions can no longer be incorporated into the sys-
tem of DK equations, since taking expectations with respect to the switching processes
results in a moment closure problem.

moment closure problem due to particle interactions, including hybrid versions of dynamical
density functional theory and mean field theory. In section 4, we develop the analogous the-
ory for a population of independently switching particles. We now introduce an indexed set of
global densities defined according to µn(x, t) =

∑
j δ(Xj(t)− x)E[δNj(t)=n], where Nj(t) is the

discrete state of the jth particle at time t and expectation is taken with respect to the continuous
time Markov chain. This allows us to derive a closed system of DK equations for the densities
µn(x, t) in the absence of particle interactions. The various versions of the model equations for
non-interacting particles with intrinsic switching are summarized in figure 3. However, it is no
longer possible to obtain closed DK equations when particle interactions are included, since
averaging with respect to the switching process results in a moment closure problem. One way
to handle the latter is to take expectations with respect to the switching and Gaussian noise
processes and applying a mean field ansatz. Finally, in section 5 we derive Martin–Siggia–
Rose–Janssen–de Dominicis (MSRJD) functional path integrals for the DK equations in the
case of non-interacting particles. Again, we emphasize the differences between environmental
and intrinsic switching.

2. Single actively switching particle

Consider a particle whose states are described by a pair of stochastic variables (X(t),N(t)) ∈
Rd×{0, . . . ,K− 1}. When the discrete state is N(t) = n, the particle evolves according to
the SDE

dX(t) = An (X(t))dt+
√
2DdW(t) , (2.1)
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where W is a vector of d independent Wiener processes. The discrete stochastic variable N(t)
evolves according to a K-state continuous-time Markov chain with a K×K matrix generator
Q that is taken to be independent of X(t). It is related to the corresponding transition matrix T
according to

Qnm = Tnm− δn,m

K−1∑
k=0

Tkm. (2.2)

We also assume that the generator is irreducible so that there exists a stationary density σ for
which

∑
mQnmσm = 0. Given the initial conditions X(0) = x0,N(0) = n0, we introduce the

probability density pn(x, t|x0,n0,0) with

P [X(t) ∈ [x,x+ dx] , N(t) = n|x0,n0] = pn (x, t|x0,n0,0)dx.

It can be shown that p evolves according to the forward differential CK equation [1, 51]

∂pn
∂t

=−∇ · [An (x)pn (x, t)]+D∇2pn (x, t)+
K−1∑
m=0

Qnmpm (x, t) . (2.3)

(For notational convenience we have dropped the explicit dependence on initial conditions.)
The first two terms on the right-hand side represent the probability flow associated with the
SDE for a given n, whereas the third term represents jumps in the discrete state n.

In the case of the hSDE (2.1) for the pair (X(t),N(t)), the stochastic dynamics is the same
whether N(t) is interpreted as a discrete internal state or an external environmental state.
However, for a population of non-interacting actively switching particles, the two scenarios
differ significantly. First, suppose that there are N particles with continuous states Xj(t),
j = 1, . . . ,N , and subject to independent white noise processes Wj(t). If each particle has
its own internal state Nj(t), then the population version of equation (2.1) is

dXj (t) = Anj (Xj (t))dt+
√
2DdWj (t) , Nj (t) = nj. (2.4)

We can treat the full system as the product of N independent hSDEs (Xj(t),Nj(t)) (assuming
that the initial conditions are also independent). On the other hand, if each particle is subject
to the same discrete environmental state N(t) then

dXj (t) = An (Xj (t))dt+
√
2DdWj (t) , N(t) = n. (2.5)

Since N(t) is a global variable that is experienced by all members of the population, it follows
that the particles are statistically correlated, even in the absence of particle-particle interac-
tions. One way to interpret equation (2.5) is as a single hSDE for the high-dimensional system
(Z(t),N(t)) with Z(t) = (X1(t), . . . ,XN (t)). The corresponding CK equation for the probab-
ility density Pn(z, t) takes the form

∂Pn

∂t
=−

N∑
j=1

∇j · [An (xj)Pn (z, t)]+D
N∑
j=1

∇2
jPn (z, t)+

K−1∑
m=0

QnmPm (z, t) , (2.6)

where z= (x1, . . . ,xN ), ∇j =∇xj and N(t) = n. The presence of the final term on the right-

hand side means that we cannot factorize the solution according to Pn(z, t) =
∏N

j=1Pn(xj, t),
where Pn(x, t) satisfies the CK equation (2.3). This reflects the existence of statistical cor-
relations. In the following sections we explore these differences in terms of hydrodynamical
equations for the global particle density.

6
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3. Population of particles with environmental switching

3.1. Global density (non-interacting particles)

Consider a population of non-interacting particles in the presence of a randomly switching
environment. A typical example would be a population of overdamped Brownian particles
subject to a common randomly switching external potential. A more compact description of
the population dynamics of equation (2.5) can be obtained by considering a ‘hydrodynamic’
formulation that involves the global density

ρ(x, t) =
N∑
j=1

ρj (x, t) , ρj (x, t) = δ (Xj (t)− x) . (3.1)

In particular, following along identical lines to Dean [32], we can derive an Itô SPDE for ρ(x, t)
that depends on the environmental state via the drift vectorAN(t). For completeness, we sketch
the basic steps. Suppose that at time t the environmental state is N(t). Consider an arbitrary
smooth function f : Rd → R. Using Itô’s lemma to Taylor expand f(Xi(t+ dt)) about Xi(t) and
setting f(Xi(t)) =

´
Rd ρi(x, t)f(x)dx, we find that

df(Xi)

dt
=

ˆ
Rd

dx f(x)
∂ρi (x, t)
∂t

=

ˆ
Rd

dxρi (x, t)
[√

2D∇f(x) · ξi (t)+D∇2f(x)+∇f(x) ·AN(t) (x)
]
. (3.2)

We have formally set dWi(t) = ξi(t)dtwhere ξi is a d-dimensional white noise term such that

⟨ξi (t)⟩= 0, ⟨ξσi (t)ξσ
′

j (t ′)⟩= δ (t− t ′)δi,jδσ,σ ′ . (3.3)

Integrating by parts the various terms on the second line and using the fact that f is arbitrary
yields a PDE for ρi:

∂ρi (x, t)
∂t

=−
√
2D∇ · [ρi (x, t)ξi (t)]+D∇2ρi (x, t)−∇ ·

[
ρi (x, t)AN(t) (x)

]
. (3.4)

Summing over the particle index i and using the definition of the global density then gives

∂ρ(x, t)
∂t

=−
√
2D

N∑
i=1

∇ · [ρi (x, t)ξi (t)]+D∇2ρ(x, t)−∇ ·
[
ρ(x, t)AN(t) (x)

]
. (3.5)

As it stands, equation (3.5) is not a closed equation for ρ due to the noise terms. Following
[32], we introduce the space-dependent Gaussian noise term

ξ (x, t) =−
N∑
i=1

∇ · [ρi (x, t)ξi (t)] (3.6)

with zero mean and the correlation function

⟨ξ (x, t)ξ (y, t ′)⟩= δ (t− t ′)
N∑
i=1

∇x ·∇y (ρi (x, t)ρi (y, t)) . (3.7)

7
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Since ρi(x, t)ρi(y, t) = δ(x− y)ρi(y, t), it follows that

⟨ξ (x, t)ξ (y, t ′)⟩= δ (t− t ′)∇x ·∇y (δ (x− y)ρ(x, t)) . (3.8)

Finally, we introduce the global density-dependent noise field

ξ̂ (x, t) =∇ · (η (x, t)√ρ(x, t)) , (3.9)

where η(x, t) is a global white noise field whose components satisfy

⟨ησ (x, t)ησ
′
(y, t ′)⟩= δ (t− t ′)δ (x− y)δσ,σ ′ . (3.10)

It can be checked that the Gaussian noises ξ and ξ̂ have the same correlation functions and are
thus statistically identical. We thus obtain a closed hSPDE for the global density that couples
to the environmental state N(t):

∂ρ(x, t)
∂t

=
√
2D∇ ·

[√
ρ(x, t)η (x, t)

]
+D∇2ρ(x, t)−∇ ·

[
ρ(x, t)AN(t) (x)

]
. (3.11)

Note that theN(t)-dependence of the drift vectorAN(t) introduces another level of stochasticity
due to the randomly switching environment. As we show below, this introduces statistical
correlations between the particles. On the other hand, if the drift term is independent of the
environmental state, then statistical correlations will only occur if there are particle-particle
interactions [32], see also section 3.3. We refer to equation (3.11) as a hybrid DK equation for
the global density ρ(x, t).

3.2. Statistical correlations and moment equations for the one-body density

In order to investigate statistical correlations induced by the random environment, we average
the hSPDE (3.11) with respect to the independent Gaussian noise terms to obtain a closed
hPDE for the one-body density

u(x, t) = ⟨ρ(x, t)⟩. (3.12)

(If pairwise particle interactions were included then ⟨ρ(x, t)⟩would couple to the second order
moment ⟨ρ(x, t)ρ(y, t)⟩ etc. Hence, moment closure would no longer hold [32], see below.)
Between jumps in the environmental state, the density u(x, t) evolves according to the drift-
diffusion equation

∂u(x, t)
∂t

= D∇2u(x, t)−∇ ·
(
u(x, t)AN(t) (x)

)
. (3.13)

This type of stochastic hybrid model can be analyzed along similar lines to reaction-diffusion
equations with randomly switching boundaries [52–54]. We proceed by spatially discretizing
equation (3.13) in terms of a d-dimensional regular latticewith nodes ℓ ∈ Zd and lattice spacing
h. Let Γℓ denote the set of nearest neighbours of ℓ:

Γℓ = {ℓ± eσ,σ = 1, . . .d} , (3.14)

8
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where eσ is the unit vector along the σ-axis. Setting uℓ(t) = u(ℓh, t) andAσn,ℓ = Aσn (ℓh), ℓ ∈ Zd,
we obtain the piecewise deterministic ODE

duℓ
dt

= D [∆(u)]ℓ −
1
h

d∑
σ=1

[
uℓ+eσA

σ
n,ℓ+eσ − uℓA

σ
n,ℓ

]
, (3.15)

where N(t) = n and ∆ is the discrete Laplacian

[∆(u)]ℓ =
1
h2
∑
ℓ ′∈Γℓ

[uℓ ′ − uℓ] . (3.16)

Introducing the infinite-dimensional vector U= (uℓ, ℓ ∈ Zd) and the corresponding probabil-
ity density

Pn (u, t)du= P{U(t) ∈ [u,u+ du] ,N(t) = n} , (3.17)

we write down the following CK equation for the spatially discretized system:

∂Pn

∂t
=−

∑
ℓ∈Zd

∂

∂uℓ

[(
D [∆(u)]ℓ −

1
h

d∑
σ=1

[
uℓ+eσA

σ
n,ℓ+eσ − uℓA

σ
n,ℓ

])
Pn (u, t)

]
+
∑
m

QnmPm (u, t) . (3.18)

Finally, we take the continuum limit h→ 0 of equation (3.18). This yields a functional CK
equation for the many-body probability functional Pn[u, t] with

Pn [u, t]
∏
x

du(x) = lim
h→0

Pn (u, t)du. (3.19)

That is,

∂Pn [u, t]
∂t

=−
ˆ
Rd

dx
δ

δu(x)

[(
D∇2u(x)−∇ · [u(x)An (x)]

)
Pn [u, t]

]
+
∑
m

QnmPm [u, t] . (3.20)

Equation (3.20) can now be used to derive various moment equations. For example, the first
moment is defined as

Un (x1, t)≡ E
[
u(x1, t)1N(t)=n

]
=

ˆ
D [u] u(x1)Pn [u, t] . (3.21)

We take E[·] to denote expectation with respect to the switching process in order to contrast it
with ⟨·⟩, which denotes averaging with respect to the Gaussian noise, that is, u(x, t) = ⟨ρ(x, t)⟩
etc. Also note that in the final functional integral the time-dependence is specified by the many-
body probability functional Pn[u, t]. Multiplying both sides of equation (3.20) by u(x1) and
functionally integrating with respect to u gives

9
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∂

∂t

ˆ
D [u]u(x1)Pn [u, t] =−

ˆ
D [u]u(x1)

{ˆ
Rd

dx
δ

δu(x)

[(
D∇2u(x)

−∇ · [u(x)An (x)])Pn [u, t]] +
∑
m

QnmPm [u, t]

}
. (3.22)

Functionally integrating by parts and using the functional derivative identity δu(x1)/δu(x) =
δ(x− x1), we have

∂

∂t

ˆ
D [u]u(x1)Pn [u, t] =

ˆ
D [u]

{[(
D∇2

1u(x1)−∇1 · [u(x1)An (x1)]
)
Pn [u, t]

]
+
∑
m

QnmPm [u, t]

}
, (3.23)

which is equivalent to the first moment equation

∂Un
∂t

= D∇2
1Un (x1, t)−∇1 · [Un (x1, t)An (x1)]+

∑
m

QnmUm (x1, t) . (3.24)

Note that equation (3.24) is identical to the CK equation (2.3) for the single particle hSDE (2.1)
under the mapping Pn(x, t)→Un(x, t) =NPn(x, t). On the other hand, the second-order
moments

Cn (x1,x2, t) = E
[
u(x1, t)u(x2, t)1N(t)=n

]
. (3.25)

evolve according to the equation

∂Cn
∂t

= D∇2
1Cn (x1,x2, t)+D∇2

2Cn (x1,x2, t)−∇1 · [Cn (x1,x2, t)An (x1)]

−∇2 · [Cn (x1,x2, t)An (x2)]+
∑
m

QnmCm (x1,x2, t) . (3.26)

The latter can be derived from equation (3.20) after multiplying both sides by the product
u(x1)u(x2) and functionally integrating by parts along similar lines to the first moments.
Interestingly, the secondmoment equation (3.26) takes the form of a CK equation for an effect-
ive single particle hSDE with 2d continuous coordinates (X(t),Y(t)): if N(t) = n then

dX(t) = An (X(t))dt+
√
2DdW1 (t) , (3.27a)

dY(t) = An (Y(t))dt+
√
2DdW2 (t) , (3.27b)

where (W1,W2)
⊤ is a vector of 2d independent Wiener processes.

One of the major implications of the moment equations is that the common randomly
switching environment introduces statistical correlations between the particles, even in the
absence of particle interactions. For example, the two-point correlation function is non-
zero since Cn(x1,x2, t) ̸= Un(x1, t)Un(x2, t). We establish the latter using proof by contra-
diction. Suppose that Cn(x1,x2, t) = Un(x1, t)Un(x2, t). Substituting this trial solution into
equation (3.26) gives

10
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Un (x2, t)
∂Un (x1, t)

∂t
+Un (x1, t)

∂Un (x2, t)
∂t

= DUn (x2, t)∇2
1Un (x1, t)+DUn (x1, t)∇2

2Un (x2, t)−Un (x2, t)∇1 · [Un (x1, t)An (x1)]

−Un (x1, t)∇2 · [Un (x2, t)An (x2)]+
∑
m

QnmUm (x1, t)Um (x2, t) .

Applying the first moment equation (3.24) then implies that

0= Un (x2, t)
∑
m

QnmUm (x1, t)+Un (x1, t)
∑
m

QnmUm (x2, t)

+
∑
m

QnmUm (x1, t)Um (x2, t) ,

which is clearly false. Hence, Cn(x1,x2, t) ̸= Un(x1, t)Un(x2, t). Similar results hold for higher-
order moments.

3.3. Interacting Brownian particles and mean field theory

So far we have ignored the effects of particle interactions. In the case of overdamped Brownian
particles, such interactions are typically taken to be pairwise so that equation (2.5) becomes

dXj (t) =

[
AN(t) (Xj (t))+

N∑
k=1

F(Xj (t)−Xk (t))

]
dt+

√
2DdWj (t) . (3.28)

If the forces are conservative, then An(x) =−βD∇Vn(x) and F(x) =−βD∇K(x), β =
1/kBT, where Vn is an environment-dependent potential and K is an interaction potential. The
latter could also depend on the environmental state N(t). The derivation of equation (3.11) can
be extended to include particle interactions along analogous lines to [32]. The global density
now evolves according to the hybrid DK equation

∂ρ(x, t)
∂t

=
√
2D∇ ·

[√
ρ(x, t)η (x, t)

]
+D∇2ρ(x, t)

−∇ · ρ(x, t)
(
AN(t) (x)+

ˆ
Rd

ρ(y, t)F(x− y)dy
)
. (3.29)

When particle interactions are included, averaging equation (3.29) with respect to the Gaussian
noise no longer generates a closed equation for u(x, t) = ⟨ρ(x, t)⟩:

∂u(x, t)
∂t

= D∇2u(x, t)−∇ ·
[
u(x, t)AN(t) (x)

]
−∇ ·

ˆ
Rd

⟨ρ(x, t)ρ(y, t)⟩F(x− y)dy. (3.30)

That is, u(x, t) couples to the two-point correlation function

u(2) (x,y, t) = ⟨ρ(x, t)ρ(y, t)⟩, (3.31)

which, in turn, depends on the three-point correlation function etc.
One way to achieve moment closure for the one-body density is to use DDFT [41–44]. A

crucial assumption of DDFT is that the relaxation of the system is sufficiently slow such that

11
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the pair correlation can be equated with that of a corresponding equilibrium system at each
point in time [44]. This allows one to approximate equation (3.30) by the closed hPDE

∂u(x, t)
∂t

=−∇ · Jn (x, t) , N(t) = n (3.32)

where

Jn (x, t) =−D{∇u(x, t)+βu(x, t)∇ [Vn (x)+µex (x, t)]} . (3.33)

Here

µex (x, t) =
δFex [u(x, t)]
δu(x, t)

, (3.34)

andFex[u] is the equilibrium excess free energy functional with the equilibrium density profiles
replaced by non-equilibrium ones. One of the features of DDFT is that Fex[u] is independent
of the actual external potential, and is thus independent of the environmental state. In order to
apply DDFT, it is necessary to take account of the fact that there is another time-scale, namely,
the rate of environmental switching. How this affects the validity of the adiabatic approxima-
tion remains to be determined, and is the subject of future work. Intuitively speaking, in the fast
switching limit one could first average with respect to the switching process along analogous
lines to previous studies of single particle hSDEs, and then apply DDFT. More specifically,
suppose that there is a separation of time scales between the discrete and continuous processes,
so that if t is the characteristic time-scale of the relaxation dynamics then ϵt is the characteristic
time-scale of the Markov chain for some small positive parameter ϵ. We define the averaged
vector field A : Rd → Rd by

A(x) =
K−1∑
m=0

σmAm (x) , (3.35)

where σm is the stationary distribution of theMarkov chain, that is,
∑

mQnmσm = 0. Intuitively
speaking, one would expect the hSDE (3.28) to reduce to the non-hybrid SDE

dXj (t) = A(Xj (t))dt+
N∑
k=1

F(Xj (t)−Xk (t))+
√
2DdWj (t) , (3.36)

in the fast switching limit ε→ 0. This can be made precise in terms of a law of large numbers
for stochastic hybrid systems [55–58]. On the other hand, in the slow switching limit one
could apply DDFT for fixed N(t) = n and then consider switching between the n-dependent
1-particle density equations. However, since the hPDE (3.32) for fixed n takes the form of a
nonlinear Fokker–Planck equation, it is no longer possible to obtain closed moment equations
using the corresponding functional CK equation for Pn[u, t]. Even assuming that both limiting
cases are well-posed, it is unclear what happens at intermediate switching rates.

An alternative way of deriving a closed hPDE for an effective one-particle density is to use
mean field theory. In the case of non-switching, weakly-interacting Brownian particles, there is
an extensive mathematical literature on the mean field limit (or propagation of chaos), see for
example [59–62]. More specifically, suppose that both the external and interaction potentials

12



J. Phys. A: Math. Theor. 57 (2024) 085001 P C Bressloff

are independent of the environmental state, and takeK= K0/N whereK0 is a smooth function.
Equation (3.28) then takes the form

dXj (t) =−Dβ∇V(Xj (t))dt−
Dβ
N

N∑
k=1

∇K0 (Xj (t)−Xk (t))+
√
2DdWj (t) . (3.37)

Introducing the normalized global density (or empirical measure)

ρN (x, t) =
1
N

N∑
j=1

δ (x−Xj (t)) , (3.38)

the classical DK equation becomes

∂ρN (x, t)
∂t

=

√
2D
N

∇ ·
[√

ρN (x, t)η (x, t)
]
+D∇2ρN (x, t)

+Dβ∇ · ρN (x, t)
(
∇V(x)+

ˆ
Rd

ρN (y, t)∇K0 (x− y)dy
)
. (3.39)

Furthermore, suppose that the joint probability density at t= 0 takes the product form

p(x1, . . . ,xN ,0) =
N∏
j=1

ρ0 (xj) . (3.40)

It can then be proven that, as N →∞, ρN converges in distribution to the solution ρ of the
so-called McKean–Vlasov equation [63]

∂ρ(x, t)
∂t

= D∇2ρ(x, t)+Dβ∇ · ρ(x, t)
(
∇V(x)+

ˆ
Rd

ρ(y, t)∇K0 (x− y)dy
)
, (3.41)

with ρ(x,0) = ρ0(x). Recently, this classical result has been extended to the case of weakly-
interacting Brownian particles in a common randomly switching environment [64].

4. Population of particles with intrinsic switching

4.1. Global density (non-interacting particles)

The derivation of an evolution equation for the global density differs significantly for a pop-
ulation of particles that independently switch between a set of internal states along the lines
of equation (2.4). Examples include regulatory gene networks, run-and-tumble particles, soft
colloids, and molecular motors. In contrast to the case of a randomly switching environment,
it is necessary to keep track of the pair (Xj(t),Nj(t)) for each particle. The appropriate global
or empirical measure is now

µ̂n (x, t) =
N∑
j=1

ρ̂j (x,n, t)≡
N∑
j=1

δ (Xj (t)− x)δNj(t),n. (4.1)
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In order to derive an equation for µ̂n, we introduce an arbitrary set of smooth functions fn(x)
such that

fNj(t) (Xj (t)) =
K−1∑
n=0

ˆ
Rd

ρ̂j (x,n, t) fn (x)dx. (4.2)

We then note that

fNi(t+∆t) (Xi (t+∆t)) =
K−1∑
n=0

fn (Xi (t+∆t))δn,Ni(t+∆t)

=
K−1∑
n=0

[
fn (Xi (t))+∇fn (Xi (t)) ·∆Xi (t)+O

(
∆Xi (t)

2
)]
δn,Ni(t+∆t).

(4.3)

Applying Itô’s lemma and setting ρj(x, t) = δ(Xj(t)− x), we have

fNi(t+∆t) (Xi (t+∆t))

≈
K−1∑
n=0

δn,Ni(t+∆t)

ˆ
Rd

dxρi (x, t)
{
fn (x)+∆t

[√
2D∇fn (x) · ξi (t)+D∇2fn (x)

+∇fn (x) ·An (x)
]
+O

(
∆t2
)}

= fNi(t) (Xi (t))

+∆t
K−1∑
n=0

ˆ
Rd

dx ρ̂i (x,n, t)
[√

2D∇fn (x) · ξi (t)+D∇2fn (x)+∇fn (x) ·An (x)
]

+
K−1∑
n=0

[
δn,Ni(t+∆t) − δn,Ni(t)

]ˆ
Rd

dxρi (x, t){fn(x)+O(∆t)} . (4.4)

Rearranging this equation, dividing through by ∆t and taking the limit ∆t→ 0 gives

dfNi(t) (Xi (t))

dt
=

K−1∑
n=0

ˆ
Rd

dx ρ̂i (x,n, t)
[√

2D∇fn (x) · ξi (t)+D∇2fn (x)

+∇fn (x) ·An (x)]+ lim
∆t→0

K−1∑
n=0

δn,Ni(t+∆t) − δn,Ni(t)

∆t

ˆ
Rd

dxρi (x, t) fn (x) .

(4.5)

(Note that in order to average with respect to the switching process (see below), we do not
simply write down the continuous time Itô formula.)
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Substituting for fNi(t)(Xi(t)) using equation (4.2), we then take expectations with respect to
the Markov chain. Setting ρj(x,n, t) = E[ρ̂j(x,n, t)], and using the fact that1

E
[
lim
∆t→0

δn,Ni(t+∆t) − δn,Ni(t)

∆t

]
=

K−1∑
m=0

QnmE
[
δm,Ni(t)

]
, (4.6)

where Q is the matrix generator, we find that

K−1∑
n=0

ˆ
Rd

dx fn (x)
∂ρi (x,n, t)

∂t
=

K−1∑
n=0

ˆ
Rd

dxρi (x,n, t)
[√

2D∇fn (x) · ξi (t)+D∇2fn (x)

+∇fn (x) ·An (x)
]
+

K−1∑
m=0

Qmn

ˆ
Rd

dxρi (x,m, t) fn (x) . (4.7)

Integrating by parts the various terms on the right-hand side, and exploiting the arbitrariness
of the functions fn yields the following hSPDE:

∂ρi (x,n, t)
∂t

=

ˆ
Rd

dx
{
−
√
2D∇ · [ρi (x,n, t)ξi (t)]+D∇2ρi (x,n, t)

−∇ · [ρi (x,n, t)An (x)]
}
+

K−1∑
m=0

Qnmρi (x,m, t) . (4.8)

Finally, summing over the particle index i and defining µn(x, t) = E[µ̂n(x, t)] =
∑N

j=1 ρj(x,n, t)
gives

∂µn (x, t)
∂t

=−
√
2D

N∑
i=1

∇ · [ρi (x,n, t)ξi (t)]+D∇2µn (x, t)−∇ · [µn (x, t)An (x)]

+
K−1∑
m=0

Qnmµm (x, t) . (4.9)

As in the analysis of environmental switching, see equation (3.5), we do not have a closed
equation for µn. However, we can generalize the construction of [32] by explicitly taking into
account the discrete index n. More specifically, we introduce the space-dependent Gaussian
noise terms

ξn (x, t) =−
N∑
i=1

∇ · [ρi (x,n, t)ξi (t)] (4.10)

with zero mean and the correlation function

⟨ξn (x, t)ξm (y, t ′)⟩= δ (t− t ′)
N∑
i=1

∇x ·∇y (ρi (x,n, t)ρi (y,m, t)) . (4.11)

1 The numerator in equation (4.6) is equal to 1 if Ni(t) ̸= n and Ni(t+∆t) = n, that is, there is a transition m→ n
for some m ̸= n in the time interval [t, t+∆t], which occurs with probability Tnm∆t. Similarly, it is equal to −1 if
Ni(t) = n and Ni(t+∆t) ̸= n, that is, there is a transition n→ m for some m ̸= n with probability Tmn∆t.
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Since

ρi (x,n, t)ρi (y,m, t) = δ (x−Xi (t))δ (y−Xi (t))E
[
δNi(t),n

]
E
[
δNi(t),m

]
= δ (x− y)δn,mρi (y,n, t) , (4.12)

it follows that

⟨ξn (x, t)ξm (y, t ′)⟩= δn,mδ (t− t ′)
N∑
i=1

∇x ·∇y (δ (x− y)ρi (x,n, t)) . (4.13)

Finally, we introduce the global density-dependent noise fields

ξ̂ n (x, t) =∇ ·
(
ηn (x, t)

√
µn (x, t)

)
, (4.14)

where ηn(x, t) is a global white noise field whose components satisfy

⟨ησn (x, t)ησ
′

m (y, t ′)⟩= δn,mδ (t− t ′)δ (x− y)δσ,σ ′ . (4.15)

It can be checked that the Gaussian noises ξn and ξ̂n have the same correlation functions
and are thus statistically identical. We thus obtain a system of DK equations for the global
densities µn:

∂µn (x, t)
∂t

=
√
2D∇ ·

[√
µn (x, t)ηn (x, t)

]
+D∇2µn (x, t)−∇ · [µn (x, t)An (x)]

+
K−1∑
m=0

Qnmµm (x, t) . (4.16)

There are a number of significant differences between equation (4.16) and the correspond-
ing DK equation (3.11) for a randomly switching environment. First, equation (4.16) involves
an indexed set of global densities µn(x, t) rather than a single global density ρ(x, t). Second,
the only source of noise in equation (4.16) is the spatiotemporal Gaussian noise, whereas
equation (3.11) also depends on the stochastic environmental state N(t). The latter depend-
ence explains why there are statistical correlations between non-interacting particles in the
case of environmental switching but not intrinsic switching—equation (4.16) has already been
averaged with respect to the intrinsic switching. Third, taking expectations of equation (4.16)
with respect to the Gaussian noise and setting un(x, t) = ⟨µn(x, t)⟩ yields a deterministic PDE
rather than the hPDE (3.13):

∂un (x, t)
∂t

= D∇2un (x, t)−∇ · [un (x, t)An (x)]+
K−1∑
m=0

Qnmum (x, t) . (4.17)

Equation (4.17) is identical in form to the CK equation (2.3) for a single actively switching pro-
cess, whereas equation (4.16) is a stochastic version of the CK equationwith density-dependent
multiplicative noise.
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4.2. Interacting Brownian particles and mean field theory

Further differences between environmental and particle switching arise when particle interac-
tions are included. Let us return to the example of interacting overdamped Brownian particles
considered in section 3.3, but now assume that each particle independently switches between
different conformational states. Moreover, suppose that the pairwise interaction between the
particles (Xj(t),Nj(t)) and (Xk(t),Nk(t)) is given by−Dβ∇KNj(t)Nk(t)(Xj(t)−Xk(t)). That is,
the interaction potential depends on the internal conformational states of the particle pair. (For
simplicity, we assume that the effective external potential V(x) seen by a particle is independ-
ent of its internal state.) The hybrid SDE of an individual particle takes the form

dXj (t) =−Dβ

[
∇V(Xj (t))+

N∑
k=1

∇KNj(t)Nk(t) (Xj (t)−Xk (t))

]
dt+

√
2DdWj (t) . (4.18)

As before, we introduce the global densities (4.1) and follow the various steps used in the
derivation of the density equation (4.8):

∂ρi (x,n, t)
∂t

=−
√
2D∇ · [ρi (x,n, t)ξi (t)]+D∇2ρi (x,n, t)+Dβ∇ · ρi (x,n, t)∇V(x)

+DβE

∇ · ρ̂i (x,n, t)
ˆ
Rd

N∑
j=1

K−1∑
m=0

ρ̂j (y,m, t)∇Knm (x− y)dy


+

K−1∑
m=0

Qnmρi (x,m, t) , (4.19)

where expectation is taken with respect to the discrete Markov process. Summing over the
particle index i along identical lines to the non-interacting case then gives

∂µn (x, t)
∂t

=
√
2D∇ ·

[√
µn (x, t)ηn (x, t)

]
+D∇2µn (x, t)+

∑
m

Qnmµm (x, t)

+DβE

[
∇ · µ̂n (x, t)

(
∇V(x)+

ˆ
Rd

∑
m

µ̂m (y, t)∇Knm (x− y)dy

)]
. (4.20)

In contrast to the non-interacting case, we no longer obtain a closed DK equation for µn(x, t)
when taking expectations with respect to the discrete stochastic process. Consequently, aver-
aging with respect to the white noise process yields a PDE for the one-particle density

un (x, t) = ⟨µn (x, t)⟩=

〈
E

[∑
j

δ (x−Xj (t))δNj(t),n

]〉
, (4.21)

which couples to the two-point correlation function

u(2)nm (x,y, t) =

〈
E

[∑
j,k

δ (x−Xj (t))δ (y−Xk (t))δNj(t),nδNk(t),m

]〉
. (4.22)
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That is,

∂un (x, t)
∂t

= D∇2un (x, t)+
∑
m

Qnmum (x, t)

+Dβ

[
∇ ·

(
un (x, t)∇V(x)+

ˆ
Rd

∑
m

u(2)nm (x,y, t)∇Knm (x− y)dy

)]
. (4.23)

This has a completely different structure compared to the corresponding hPDE for and
interaction potential Kn that depends on the state of a randomly switching environment. In
particular, replacing An(x) and F(x− y) in equation (3.30) by the terms −Dβ∇V(x) and
−Dβ∇Kn(x− y), respectively, we have

∂u(x, t)
∂t

= D∇2u(x, t)+βD∇ · [u(x, t)∇V(x)]

+βD∇ ·
ˆ
Rd

⟨ρ(x, t)ρ(y, t)⟩∇Kn (x− y)dy. (4.24)

One recent example of an active binary switching system of interacting particles involves
a one-component soft colloidal system in which every particle can individually stochastically
switch between two interaction states [30, 31]. The two states correspond to a ‘small’ (n= 0)
and ‘big’ (n= 1) conformational state, respectively, such that the interaction potential is given
by an indexed Gaussian:

Knm (x) = anme
−x2/σ2

nm , n,m= 0,1. (4.25)

The discrete state N(t) ∈ {0,1} evolves according to a two-state Markov chain with matrix
generator

Q=

(
−γ α
γ −α

)
. (4.26)

In [30, 31] it is assumed that the mean field limit holds in the case of weakly interacting
switching particles, which then leads to a closed system of equations for un(x, t):

∂u0 (x, t)
∂t

=−∇ · J0 (x, t)− γu0 (x, t)+αu1 (x, t) , (4.27a)

∂u1 (x, t)
∂t

=−∇ · J1 (x, t)+ γu0 (x, t)−αu1 (x, t) , (4.27b)

where

Jn (x, t) =−D∇un (x, t)−βDun (x, t)∇
[
V(x)+

K−1∑
m=0

ˆ
Rd

Knm (x− y)um (y, t)dy

]
.

(4.28)

Finally, as also shown by these authors, substituting equation (4.28) into the CK
equations (4.27a) and (4.27b), and taking the fast switching limit yields a single
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equation for the scalar density u(x, t) = σ0u0(x, t)+σ1u1(x, t), where σ0 = α/(α+ γ) and
σ1 = γ/(α+ γ):

∂u(x, t)
∂t

= D∇2u(x, t)+Dβ∇ · u(x, t)
(
∇V(x)+

ˆ
Rd

∇K(x− y)u(y, t)dy
)
, (4.29)

where

K(x− y) =
∑
n,m

σnσmKnm (x− y) . (4.30)

5. Nonequilibrium statistical field theory (non-interacting particles)

The analysis of the stochastic global density equations derived in this paper is nontrivial even
in the absence of pairwise interactions. In the case of a randomly switching environment, the
density equation is given by the hybrid DK equation (3.11), whereas for particle switching
it takes the form of the system of DK equation (4.16). One approach is to recast the dens-
ity equations into a field theory. This provides a framework for performing perturbative series
expansions and, in certain cases, yields non-perturbative approximations to various correlation
functions. As a first step in this direction, a field theory for a non-interacting, non-switching
Brownian gas has recently been constructed for the global density [65]. The basic idea is to
apply a MSRJD path integral construction [66–68] to the DK equation obtained by setting
An(x) = 0 in equation (3.11). (For a complementary approach based on a Doi-Peliti path integ-
ral formulation [69–71], see [72]. Note, however, that care has to be taken when comparing
Doi-Peliti and MSRJD field theories since the actual fields have different physical interpreta-
tions.) One of the interesting features of the MSRJD path integral representation is that, even
though the particles do not interact, the resulting field theory contains an interaction term. The
presence of a 3-vertex reflects the original particle nature of the gas, and ensures that the dens-
ity field is strictly positive, in contrast to a Gaussian free field. In this final section, we indicate
how to extend theMSRJD path integral to the more general DK equations obtained in previous
sections for non-interacting particle systems.

5.1. MSRJD path integral: particle switching

In order to simplify our derivation, we consider a 1D model with two internal states n= 0,1.
Equation (4.16) reduces to the form

∂µn (x, t)
∂t

=
√
2D∂x

[√
µn (x, t)ηn (x, t)

]
+D∂2

xµn (x, t)− ∂x [µn (x, t)An (x)]

+
∑
m=0,1

Qnmµm (x, t) , (5.1)

with the matrix generator given by equation (4.26). The first step in the MSRJD procedure is
to discretize equation (5.1) by dividing the time interval [0, t] intoM equal subintervals of size
∆t and setting

ϕℓ (x) = µ0 (x, ℓ∆t) , ψℓ (x) = µ1 (x, ℓ∆t) . (5.2)
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with fixed initial densities ϕ0(x) and ψ0(x). Equation (5.1) becomes

ϕℓ+1 (x) = ϕℓ (x)+ [L0ϕℓ (x)+αψℓ (x)− γϕℓ (x)]∆t+
√
2D

d
√
ϕℓ (x)∆W0,ℓ (x)

dx
, (5.3a)

ψℓ+1 (x) = ψℓ (x)+ [L1ψℓ (x)−αψℓ (x)+ γϕℓ (x)]∆t+
√
2D

d
√
ψℓ (x)∆W1,ℓ (x)

dx
, (5.3b)

with ℓ= 0, . . . ,M− 1, and Ln are the linear operators

Ln f(x) =−d [An (x) f(x)]
dx

+D
d2f(x)
dx2

. (5.4)

Moreover ∆Wn,ℓ(x) is a Gaussian random variable with zero mean and two-point correlation

⟨∆Wn,ℓ (x)∆Wn ′,ℓ ′ (y)⟩= δℓ,ℓ ′δn,n ′δ (x− y)∆t. (5.5)

Consider a particular realization of the spatiotemporal Gaussian noise processes, which we
represent by the symbol Ω. Defining the vectors Φ= (ϕ1, . . . ,ϕM) and Ψ = (ψ1, . . . ,ψM), we
introduce the conditional probability density functional

P [Φ,Ψ|ϕ0,ψ0,Ω]

=
M−1∏
ℓ=0

∏
x

δ
(
ϕℓ+1 (x)−ϕℓ (x)− [L0ϕℓ (x)+αψℓ (x)− γϕℓ (x)]∆t−

√
2D∆Ŵ0,ℓ (x)

)
×

M−1∏
ℓ=0

∏
x

δ
(
ψℓ+1 (x)−ψℓ (x)− [L1ψℓ (x)−αψℓ (x)+ γϕℓ (x)]∆t−

√
2D∆Ŵ1,ℓ (x)

)
.

(5.6)

We have used the compact notation

∆Ŵ0,ℓ (x) =
d
√
ϕℓ (x)∆W0,ℓ (x)

dx
, ∆Ŵ1,ℓ (x) =

d
√
ψℓ (x)∆W1,ℓ (x)

dx
. (5.7)

Introducing Fourier representations of the Dirac delta functions gives

P [Φ,Ψ|ϕ0,ψ0,Ω] =

ˆ
D
[
Φ̃,Ψ̃

]
(5.8)

× exp

{
i
M−1∑
ℓ=0

ˆ
dx ϕ̃ℓ+1 (x) [ϕℓ+1 (x)−ϕℓ (x)− (L0ϕℓ (x)+αψℓ (x)− γϕℓ (x))∆t]

}

× exp

{
i
M−1∑
ℓ=0

ˆ
dx ψ̃ℓ+1 (x) [ψℓ+1 (x)−ψℓ (x)− (L1ψℓ (x)−αψℓ (x)+ γϕℓ (x))∆t]

}

× exp

{
√
2D

M−1∑
ℓ=0

ˆ
dx
[
∂x

[
iϕ̃ℓ (x)

]√
ϕℓ (x)∆W0,ℓ (x)

+∂x

[
iψ̃ℓ+1 (x)

]√
ψℓ+1 (x)∆W1,ℓ (x)

]}
, (5.9)
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whereD[Φ̃,Ψ̃] =
∏M−1
ℓ=0

∏
x dϕ̃ℓ(x)dψ̃ℓ(x). We have integrated by parts in the final exponential

factor. The final steps are to integrate with respect to the Gaussian processes and then to take
the continuum limit ∆t→ 0 and M→∞ with M∆t= t and ϕ̃(x, ℓ∆t) = ϕ̃ℓ(x) etc. After per-
forming the Wick rotation (ϕ̃, ψ̃)→ (iϕ̃, iψ̃)we obtain a formal path integral representation of
the probability density functional

P [ϕ,ψ] =

ˆ
D
[
ϕ̃, ψ̃

]
exp
(
−S
[
ϕ, ϕ̃,ψ, ψ̃

])
(5.10)

where

S
[
ϕ, ϕ̃,ψ, ψ̃

]
=

ˆ t

0
dτ
ˆ ∞

−∞
dx

{
ϕ̃(x, τ) [∂τϕ(x, τ)+ γϕ(x, τ)+ ∂x [A0 (x)ϕ(x, τ)]−D∂xxϕ(x, τ)]

+ ψ̃ (x, τ) [∂τψ (x, τ)+αψ (x, τ)+ ∂x [A1 (x)ψ (x, τ)]−D∂xxψ (x, τ)]

−
[
αϕ̃(x, τ)ψ (x, τ)+ γψ̃ (x, τ)ϕ(x, τ)

]
−D

[
ϕ(x, τ)

(
∂xϕ̃(x, τ)

)2

+ψ (x, τ)
(
∂xψ̃ (x, τ)

)2
]}

+ SIC
[
ϕ, ϕ̃,ψ, ψ̃

]
. (5.11)

We have incorporated the initial conditions into the path integral by adding the following terms
to the action (5.11):

SIC =

ˆ t

0
dτ
ˆ ∞

−∞
dx
{
ϕ̃(x, τ)δ (τ) [ϕ(x, τ)− ρ0 (x)]+ ψ̃ (x, τ)δ (τ) [ψ (x, τ)− ρ1 (x)]

}
.

(5.12)

5.2. Moment generating functional

One typically uses path integrals to calculate expectations of the various fields and their com-
posites. In particular, important quantities such as two-point correlations can be obtained by
taking functional derivatives of the moment generating functional

Z
[
h, h̃
]

=

ˆ
D
[
ϕ, ϕ̃,ψ, ψ̃

]
exp
(
−S
[
ϕ, ϕ̃,ψ, ψ̃

]
+
{
ϕ̃,h0

}
+
{
ψ̃,h1

}
+
{
ϕ, h̃0

}
+
{
ψ, h̃1

})
,

(5.13)

where h= (h0,h1), h̃= (h̃0, h̃1) and

{a,b} :=
ˆ t

0
dτ
ˆ ∞

−∞
dxa(x, τ)b(x, τ) . (5.14)

For example,

⟨ϕ(x, t)ϕ(y, t0)⟩=
1
Z

δ2Z
[
h, h̃
]

δh̃0 (x, t)δh̃0 (y, t0)

∣∣∣∣∣∣
h=0=h̃

(5.15)
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etc (Note that the normalization of the path integral measure cancels in the definition of expect-
ations such as ⟨ϕ(x, t)ϕ(y, t0)⟩.) Suppose that we decompose the action (5.11) according to

S
[
ϕ, ϕ̃,ψ, ψ̃

]
= S0

[
ϕ, ϕ̃,ψ, ψ̃

]
− SI

[
ϕ, ϕ̃,ψ, ψ̃

]
, (5.16)

where

S0
[
ϕ, ϕ̃,ψ, ψ̃

]
=
{
ϕ̃,(∂τ + γ−L0)ϕ

}
+
{
ψ̃,(∂τ +α−L1)ψ

}
, (5.17)

with Ln given by equation (5.4), and

SI
[
ϕ, ϕ̃,ψ, ψ̃

]
= α

{
ϕ̃,ψ

}
+ γ

{
ψ̃,ϕ

}
+D

[{
ϕ,
(
∂xϕ̃
)2
}
+

{
ψ ,
(
∂xψ̃
)2
}]

− SIC
[
ϕ, ϕ̃,ψ, ψ̃

]
. (5.18)

The generating functional (5.13) can then be rewritten as

Z
[
h, h̃
]
= exp

(
SI
(
δ/δh̃0, δ/δh0, δ/δh̃1, δ/δh1

))
Z0

[
h0, h̃0

]
Z1

[
h1, h̃1

]
, (5.19)

where

Z0

[
h0, h̃0

]
=

ˆ
D
[
ϕ, ϕ̃
]
exp
(
−
{
ϕ̃,(∂τ + γ−L0)ϕ

}
+
{
ϕ̃,h0

}
+
{
ϕ, h̃0

})
, (5.20a)

Z1

[
h1, h̃1

]
=

ˆ
D
[
ψ,ψ̃

]
exp
(
−
{
ψ̃,(∂τ +α−L1)ψ

}
+
{
ψ̃,h1

}
+
{
ψ, h̃1

})
. (5.20b)

We have used the standard field theoretic trick of taking the interacting part of the action
outside the path integral by replacing each field by its dual functional operator. For example,{

ϕ̃,ψ
}
→
{
δ/δh0, δ/δh̃1

}
=

ˆ t

0
dτ
ˆ ∞

−∞
dx

δ

δh0 (x, τ)
δ

δh̃1 (x, τ)
, (5.21)

and

{
δ/δh0, δ/δh̃1

}
Z0

[
h0, h̃0

]
Z1

[
h1, h̃1

]
=

ˆ t

0
dτ
ˆ ∞

−∞
dx
δZ0

[
h0, h̃0

]
δh0 (x, τ)

δZ1

[
h1, h̃1

]
δh̃1 (x, τ)

=

ˆ t

0
dτ
ˆ ∞

−∞
dx

[ˆ
D
[
ϕ, ϕ̃
]
ϕ̃(x, τ)e−{ϕ̃,(∂τ+γ−L0)ϕ}+{ϕ̃,h0}+{ϕ,̃h0}

]
×
[ˆ

D
[
ψ,ψ̃

]
ψ (x, τ)e−{ψ̃,(∂τ+α−L1)ψ}+{ψ̃,h1}+{ψ,̃h1}

]
. (5.22)

Assuming that we can reverse the order of the functional and ordinary integrals, we have{
δ/δh0, δ/δh̃1

}
Z0

[
h0, h̃0

]
Z1

[
h1, h̃1

]
=

ˆ
D
[
ϕ, ϕ̃,ψ, ψ̃

][ˆ t

0
dτ
ˆ ∞

−∞
dx ϕ̃(x, τ)ψ (x, τ)

]
× exp

(
−S0

[
ϕ, ϕ̃,ψ, ψ̃

]
+
{
ϕ̃,h0

}
+
{
ψ̃,h1

}
+
{
ϕ, h̃0

}
+
{
ψ, h̃1

})
. (5.23)
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It immediately follows that

eα{δ/δh0,δ/δh̃1}Z0

[
h0, h̃0

]
Z1

[
h1, h̃1

]
=

ˆ
D
[
ϕ, ϕ̃,ψ, ψ̃

]
exp
(
α
{
ϕ̃,ψ

})
× exp

(
−S0

[
ϕ, ϕ̃,ψ, ψ̃

]
+
{
ϕ̃,h0

}
+
{
ψ̃,h1

}
+
{
ϕ, h̃0

}
+
{
ψ, h̃1

})
. (5.24)

The other terms in the action SI can be treated along analogous lines, and thus we establish the
validity of equation (5.19).

Evaluating the Gaussian integrals (5.20a) and (5.20b) gives

Zn
[
hn, h̃n

]
= exp

(ˆ
dτdτ ′dxdx ′ h̃n (x, τ)Gn (x, τ |x ′, τ ′)hn (x

′, τ ′)

)
, (5.25)

where Gn(x, t|x0, t0) are casual Green’s functions. That is,

G0 (x, t|x0, t0) = e−γ(t−t0)p0 (x, t|x0, t0)Θ(t− t0) , (5.26a)

G1 (x, t|x0, t0) = e−α(t−t0)p1 (x, t|x0, t0)Θ(t− t0) , (5.26b)

where Θ(t) is the Heaviside function, and pn(x, t|x0, t0) is the solution to the Fokker-Planck
equation

∂pn
∂t

= Lnpn ≡−∂ [An (x)pn]
∂x

+D
∂2pn
∂x2

, (5.27)

under the initial condition pn(x, t0|x0, t0) = δ(x− x0). The exponential factors e−γ(t−t0) and
e−α(t−t0) appearing in equations (5.26a) and (5.26b) are the probabilities that there are no
transitions 0→ 1 and 1→ 0, respectively, over the time interval [t0, t]. One non-trivial example
for which pn can be calculated explicitly is an Ornstein–Uhlenbeck (OU) process with ran-
dom drift. This particular hSDE has been used to model an RTP with diffusion in a harmonic
potential [73, 74] and protein synthesis in a gene network [12, 13]. In the former case, X(t) ∈ R
represents the position of the RTP at time t whereas N(t) = n ∈ {0,1} specifies the current
velocity state vn of the particle. If v0 = v and v1 =−v then the motion becomes unbiased
when the mean time spent in each velocity state is the same (α= γ). On the other hand, in
the case of the gene network, X(t) represents the current concentration of synthesized protein
and N(t) specifies whether the gene is active or inactive. That is, vn is the rate of synthesis with
v0 > v1 ⩾ 0. In both examples, the variable X(t) evolves according to the hSDE

dX(t) = [−κ0X(t)+ vn]dt+
√
2DdW(t) , N(t) = n, (5.28)

where κ0 represents an effective ‘spring constant’ for an RTP in a harmonic potential, whereas
it corresponds to a protein degradation rate in the case of a gene network. Comparison with
equation (2.1) implies that An(x) =−κ0x+ vn. One major difference between an RTP and a
gene network is that the continuous variable X(t) has to be positive in the latter case. However,
one often assumes that the effective ‘harmonic potential’ for v0 > v1 ⩾ 0 restricts X(t) to pos-
itive values with high probability so that the condition X(t)⩾ 0 does not have to be imposed
explicitly. (If D= 0 then X(t) ∈ Σ= [v0/κ0,v1/κ0] and the CK equation can be restricted to
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the finite interval Σ with reflecting boundary conditions at the ends. In this case, the steady-
state CK equation can be solved explicitly [11–13].) In the case of an OU process with random
drift, one finds that

pn (x, t|x0,0) =
1√

2πΣ(t)
exp

(
− [x− x0e−κ0t− vn (1− e−κ0t)/κ0]

2

2Σ(t)

)
, (5.29)

with

Σ(t) =
D
κ0

(
1− e−2κ0t

)
. (5.30)

Equation (5.19) is the starting point for performing various diagrammatic expansions by
Taylor expanding the functional operator eSI . This has been carried out elsewhere for a non-
switching Brownian gas [65, 72] whose MSRJD action is of the form

S
[
ϕ, ϕ̃
]
=
{
ϕ̃,
(
∂τ −D∂2

x

)
ϕ
}
−D

{
ϕ,
(
∂xϕ̃
)2
}
+ SIC

[
ϕ, ϕ̃
]
. (5.31)

The cubic term on the right-hand side generates 3-vertices in any diagrammatic expansion of
the path integral, and these play a key role in ensuring positivity of the global density. On the
other hand, suppose that we first average the global density equation (5.1) with respect to the
spatiotemporal white noise. This yields a deterministic PDE for the first moments un(x, t) =
⟨µn(x, t)⟩ given by the CK equation

∂u0
∂t

= L0u0 (x, t)− γu0 (x, t)+αu1 (x, t) , (5.32a)

∂u1
∂t

= L1u1 (x, t)+ γu0 (x, t)−αu1 (x, t) . (5.32b)

Although this is a deterministic system, it is still possible to carry out the MSRJD con-
struction to obtain the generating functional (5.13) with the action functional (5.16) such that
SI = α{ϕ̃,ψ}+ γ{ψ̃,ϕ}− SIC. An expansion of eSI now generates contributions involving a
fixed number of switching events. (Note that a Doi–Peliti version of this path integral con-
struction has recently been applied to the particular example of a single RTP with diffusion in
a 1D harmonic potential [74]. Analogous path integrals have also been developed for RTPs in
higher dimensions [75] and active OU particles [76].)

5.3. MSRJD path integral: environmental switching

Developing a corresponding MSRJD field theory for environmental switching is more
involved. For the sake of illustration, consider a 1D, 2-state version of the hybrid DK
equation (3.11). As a further simplification, we average with respect to the white noise to
obtain the hPDE

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2

−
∂
[
u(x, t)AN(t) (x)

]
∂x

, (5.33)

where N(t) switches according to a 2-state Markov chain with matrix generator (4.26).
Following along analogous lines to the construction of section 5.1, we discretize
equation (5.33) by dividing the time interval [0, t] into M equal subintervals of size ∆t
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and setting uℓ(x) = u(x, ℓ∆t) with a fixed initial density u0(x) that is twice differentiable.
Equation (5.33) becomes

uℓ+1 (x) = uℓ (x)+Lnuℓ (x)∆t, N(t) = n (5.34)

with ℓ= 0, . . . ,M− 1, and Ln defined in equation (5.4). Consider a particular realization
of the discrete stochastic process N(ℓ∆t) = nℓ and set n= (n0, . . . ,nM−1). Defining U=
(u1, . . . ,uM), we introduce the conditional probability density functional

P [U|u0,n] =
M−1∏
ℓ=0

∏
x

δ (uℓ+1 (x)− uℓ (x)−Lnℓuℓ (x)∆t) . (5.35)

Inserting the Fourier representation of the Dirac delta function gives

P [U|u0,n] =
ˆ

D
[
Ũ
]
exp

{
i
M−1∑
ℓ=0

ˆ
dx ũℓ+1 (x) [uℓ+1 (x)− uℓ (x)−Lnℓuℓ (x)∆t]

}
.

(5.36)

If we now average over the intermediate discrete states nℓ, ℓ= 1,M− 1 then

P[U,nM|u0,n0] =
ˆ

D[Ũ]exp

{
i
M−1∑
ℓ=0

ˆ
dx ũℓ+1 (x) [uℓ+1 (x)− uℓ (x)]

}
× [e[Q+K[̃uM,uM−1]∆t · · ·e[Q+K[̃u1,u0]∆t]nMn0 , (5.37)

where Q is the matrix generator of the Markov process, nM and n0 are the initial and final
discrete states, and

K [ũℓ+1,uℓ] =

(
−i
´
dx ũℓ+1 (x)L0uℓ (x) 0

0 −i
´
dx ũℓ+1 (x)L1uℓ (x)

)
. (5.38)

In order to obtain a meaningful action functional in the continuum limit, it is necessary to
diagonalize the matrix products on the second line of equation (5.37). One method is to use
coherent spin states along analogous lines to the study of hSDEs for gene networks [77–80].
This requires the introduction of auxiliary variables for the path integral action. For a two-state
hybrid systems, we first decompose the matrix H=K+Q using the Pauli spin matrices

σx =
1
2

(
0 1
1 0

)
, σy =

1
2

(
0 −i
i 0

)
, σz =

1
2

(
1 0
0 −1

)
. (5.39)

That is

H=

(
1
2
1+σz

)
K0 +

(
1
2
1−σz

)
K1 − γ

(
1
2
1+σz

)
−α

(
1
2
1−σz

)
+ασ+ + γσ−,

where σ± = σx± iσy and Kn[ũ,u] =−i
´
dx ũ(x)Lnu(x). Next we define the coherent spin-1/2

state [81]

|s⟩=
(

eiϕ/2 cos2 θ/2
e−iϕ/2 sin2 θ/2

)
, 0⩽ θ ⩽ π, 0⩽ ϕ < 2π, (5.40)
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together with the adjoint

⟨s|=
(
e−iϕ/2, eiϕ/2

)
. (5.41)

Note that

⟨s ′|s⟩= ei(ϕ−ϕ
′)/2 cos2 θ/2+ e−i(ϕ−ϕ ′)/2 sin2 θ/2, (5.42)

so that ⟨s|s⟩= 1 and

⟨s+∆s|s⟩= 1− 1
2
i∆ϕ cosθ+O

(
∆ϕ2

)
. (5.43)

We also have the completeness relation

1
2π

ˆ π

0
sinθdθ

ˆ 2π

0
dϕ |s⟩⟨s|= 1. (5.44)

It can checked that the following identities hold:

⟨s|σz|s⟩=
1
2
cosθ, ⟨s|σ+|s⟩=

1
2
eiϕ sinθ, ⟨s|σ−|s⟩=

1
2
e−iϕ sinθ. (5.45)

Hence,

⟨s|H|s⟩= H [θ,ϕ,u, ũ]

≡−
(
γ
[
1− eiϕ

]
−K0 [ũ,u]

) 1+ cosθ
2

−
(
α
[
1− e−iϕ

]
−K1 [ũ,u]

) 1− cosθ
2

.

(5.46)

We can now diagonalize the matrix product on the second line of equation (5.37) by inserting
multiple copies of the completeness relations (5.44). Introducing the solid angle integral

ˆ
Ω

ds=
1
2π

ˆ π

0
sinθdθ

ˆ 2π

0
dϕ, (5.47)

we have
ˆ
Ω

ds0 · · ·
ˆ
Ω

dsM|sM⟩⟨sM|eH[̃uM,uM−1]∆t|sN−1⟩⟨sN−1|eH[̃uM−1,uM−2]∆t|sN−2⟩

· · · × ⟨s1|eH[̃u1,u0]∆t|s0⟩⟨s0|ψ (0)⟩. (5.48)

In the limit M→∞ and ∆t→ 0 with M∆t= t fixed, we can make the approximation

⟨sℓ+1|eH∆t|sℓ⟩= ⟨sℓ+1|sℓ⟩{1+H [θℓ,ϕℓ,uℓ, ũℓ+1]∆t}+O
(
∆t2
)
, (5.49)

withH defined in equation (5.46). In addition, equation (5.43) and the restriction to continuous
paths in the continuum limit implies that

⟨sℓ+1|sℓ⟩= 1− 1
2
i(ϕℓ+1 −ϕℓ)cosθℓ+O

(
∆ϕ2

)
= 1− 1

2
i∆t

dϕℓ
dt

cosθℓ+O
(
∆t2
)
.

(5.50)
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Hence,

⟨sℓ+1|eH∆t|sℓ⟩ ≈ exp

([
H [θℓ,ϕℓ,uℓ, ũℓ+1]−

i
2
dϕℓ
dt

cosθℓ

]
∆t

)
. (5.51)

We can now take the continuum limit. After Wick ordering, integrating by parts the term
involving dϕ/dt, and performing the change of coordinates z= (1+ cosθ)/2, we obtain the
following functional path integral:

Pnn0 [u] =
ˆ

D [θ]D [z]D [ũ]exp(−S [u, ũ,z,θ]) (5.52)

where

S [u, ũ,z,θ] =
ˆ t

0
dτ

{ˆ ∞

−∞
dx ũ(x, τ)∂τu(x, τ)− iϕ

dz
dτ

+ z(τ)

[
−γ
(
1− eiϕ(τ)

)
+

ˆ
dx ũ(x, τ)L0u(x, τ)

]
+(1− z(τ))

[
−α
(
1− e−iϕ(τ)

)
+

ˆ
dx ũ(x, τ)L1u(x, τ)

]}
. (5.53)

6. Discussion

In this paper we derived global density equations for a population of actively switching
particles by generalizing the classical formulation of Dean [32]. In the case of a randomly
switching environment (extrinsic switching), we showed that the global density ρ(x, t) =∑

j δ(Xj(t)− x) evolves according to a hybrid DK equation. Averaging with respect to the spa-
tiotemporal white noise process (and using mean-field theory or DDFT in the case of pairwise
interactions), resulted in a hybrid PDE for the 1-particle density u(x, t) = ⟨ρ(x, t)⟩. We then
derived moment equations from the corresponding functional CK equation (3.20), and used
this to highlight how statistical correlations are induced by the randomly switching environ-
ment, even in the absence of particle-particle interactions. Such correlations are absent when
the individual particles independently switch (intrinsic switching). In the latter case we derived
a system of DK equations for the indexed set of global densities µn(x, t) =

∑
j δ(Xj(t)−

x)E[δNj(t)=n]. However, the inclusion of particle interactions resulted in a moment closure
problem for the global densities with respect to the switching process. Finally, we construc-
ted MSRJD field theoretic formulations of the global density equations in the case of non-
interacting particles.

For simplicity, we took the matrix generator Q of the switching process to be independ-
ent of the continuous process X(t), whereas many of the applications in cell biology involve
state-dependent switching. For example, in the case of membrane voltage fluctuations, the
opening and closing of the ion channels depends on the membrane voltage. Another important
example is a gene network with regulatory feedback [11]. The simplest type of a feedback
circuit involves a gene that is regulated by its own protein product (auroregulation), as shown
in figure 4. Suppose that the promoter has a single operator siteOS1 for binding protein X. The
gene is assumed to be OFF when X is bound to the promoter and ON otherwise. If O0 and O1

denote the unbound and bound promoter states, then the corresponding reaction scheme is

O0
βx
⇌
α
O1,
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Figure 4. An autoregulatory gene network with single operator site OS1. A gene is
repressed (or activated) by its own protein product X.

where x is the concentration of X. The concentration evolves according to the piecewise
deterministic equation

dx
dt

= An (x) , for N(t) = n, (6.1)

where A0(x) = γ0 −κ0x, A1(x) =−κ0x and discrete state transitions are generated by the
matrix

Q(x) =

(
−γx α
γx −α

)
. (6.2)

A third example involves switching diffusivities. Advances in single-particle tracking (SPT)
and statistical methods suggest that particles within the plasmamembrane, for example, switch
between different discrete conformational states with different diffusivities [27–29]. Such
switching could be due to interactions between proteins and the actin cytoskeleton or due
to protein-lipid interactions. Interestingly, the switching rates between the different conforma-
tional states can also depend on the spatial location of a particle. For example, an experimental
and computational study of C. elegans zygotes showed that protein concentration formation
during cell polarization relies on a space-dependent switching mechanism [82]. This was inde-
pendently predicted in a general theoretical study of protein gradient formation in switching
systems [83, 84]. Note that state-dependent switching and switching diffusivities can be incor-
porated into the system of DK equation (4.16) as follows:

∂µn (x, t)
∂t

=
√

2Dn∇ ·
[√

µn (x, t)ηn (x, t)
]
+Dn∇2µn (x, t)−∇ · [µn (x, t)An (x)]

+
K−1∑
m=0

Qnm (x)ρm (x, t) . (6.3)

Finally, in this paper we focused on the derivation and general mathematical structure of
global density equations for actively switching systems, highlighting the differences between
environmental and intrinsic switching. At least two theoretical issues are worth exploring when
considering specific applications.

(A) DDFT and meean field theory for actively switching particles. There has been signific-
ant progress in the rigorous mathematical analysis of mean-field limits and McKean–Vlasov
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equations for weakly-interacting particle systems without switching [59–62]. An extension to
a randomly switching environment has also been developed [64]. However, as far as we are
aware, analogous results for the mean-field limit in the case of intrinsically switching particles
has not been considered. As we showed in section 4.2, the inclusion of particle interactions
leads to a moment closure problem at the level of the generalized DK equation for the global
densities µn, see for example equation (4.20). The effects of environmental switching on the
validity of the adiabatic approximation for DDFT also needs to be investigated. As highlighted
in section 3.3, in the fast switching limit one could average with respect to switching and then
apply DDFT, and vice versa in the slow switching limit. The difficulty arises at switching rates
comparable to the rate of relaxation to thermodynamic equilibrium.

(B) Weak noise limit. One important application of statistical field theory is to the derivation
of least action principles in the weak noise limit. For the given population model, there are two
distinct sources of noise at the single particle level: (i) the stochastic switching between differ-
ent internal states; (ii) external white noise with diffusivity D. The weak noise limit involves
taking D→ 0 and Qnm →∞. A typical feature of a stochastic path integral is that the sum-
over-paths has support over the set of paths that are continuous but non-differentiable with
respect to τ . In particular, any time derivative in the action functional is a formal symbol for
the appropriate difference term in the time-discretized path integral. Nevertheless, in the weak
noise limit, the path integral is dominated by paths that are arbitrarily close to the classical
least action paths, which are differentiable.
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