
 

  

Objective. Electroencephalogram (EEG) recordings often contain 

large segments with missing signals due to poor electrode contact or 

other artifact contamination. Recovering missing values, 

contaminated segments and lost channels could be highly beneficial, 

especially for automatic classification algorithms, such as 

machine/deep learning models, whose performance relies heavily on 

high-quality data. The current study proposes a new method for 

recovering missing segments in EEG. Approach. In the proposed 

method, the reconstructed segment is estimated by substitution of the 

missing part of the signal with the normalized weighted sum of other 

channels. The weighting process is based on inter-channel 

correlation of the non-missing preceding and proceeding temporal 

windows. The algorithm was designed to be computationally 

efficient. Experimental data from patients (N = 20) undergoing 

general anesthesia due to elective surgery were used for the 

validation of the algorithm. The data were recorded using a portable 

EEG device with ten channels and a self-adhesive frontal electrode 

during induction of anesthesia with propofol from waking state until 

burst suppression level, containing lots of variation in both 

amplitude and frequency properties. The proposed imputation 

technique was compared with another simple-structure technique. 

Distance correlation (DC) was used as a measure of comparison 

evaluation. Main results.: The proposed method with average 

distance correlation of 82.48±10.01 (µ ± σ)% outperformed its 

competitor with average distance correlation of 67.89±14.12 (µ ± 

σ)% . This algorithm also showed better performance for an 

increasing number of missing channels. Significance. the proposed 

technique provides an easy-to-implement and computationally 

efficient approach for the reliable reconstruction of missing or 

contaminated EEG segments. 

 
Index Terms— neural time series, reconstruction, imputation, 

missing channel, correlation-based averaging, 

electroencephalography. 

 

I. INTRODUCTION 

HEN it comes to electroencephalography (EEG) 

recordings as one of the major modalities, widely used 

for neural systems and rehabilitation applications, there are 

many sources of variabilities including impedance change, 

shifts in electrode position, electrode popping and electrode 

shortcuts [1-3]. These faulty recordings lead to missing 

channels. Beside faulty electrodes, indigenous sources may also 

cause contamination, being spatially distributed around their 

neighboring electrodes. These artifacts with their particular 

distribution on specific channels create bad data in neighboring 
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channels [4, 5] and may have spectral overlap with neurological 

activity of interest [6]. Therefore, these contaminated epochs 

are considered as bad epochs and totally removed from dataset. 

This may lead to missing large adjacent segments which reduce 

the amount of useable data and decrease the efficiency of 

monitoring systems.  

Most of the machine learning and deep learning techniques 

require all channels to be available to the classifier in the 

decision-making process. If a channel is missing, those methods 

have no procedure available for exploiting information from 

remaining non-missing channels. This could lead to wasting 

potentially complementary information in non-missing 

channels. It could also happen that in training sets, all channels 

are available, but in test set, some samples may have one 

channel missing [7, 8]. To enhance the reliability of monitoring 

systems and to expand the dataset, estimation of missing values 

was focus of many researches in recent years. These range from 

different regression techniques to cluster-based imputation [9-

13]. The main problem with these techniques is that their 

performance is significantly degraded by increasing the missing 

ratio. Therefore, they cannot be considered as a feasible remedy 

for the cases in which large adjacent sequences are lost for 

specific reason, in particular during long-duration artifacts. 

Furthermore, there has not been an in-depth study on the use of 

imputation methods for estimating missing channels or missing 

large segments in neural time series. 

So far, there are few studies investigating the reconstruction 

of missing channel in physiological time series [14-20]. These 

can be categorized into two major groups of simple and 

complex techniques. The former group aimed to impute missing 

channel by taking average of other observed channels. The 

latter group makes use of machine/deep learning algorithms to 

impute missing channel based on the most similar features in 

other observed channels. Although. there is now a growing 

trend to more sophisticated imputation algorithms, 

sophisticated approaches may bring more accuracy, they come 

with other challenges like requirement for a large amount of 

data and computational resources. In this sense, the methods 

with simple structure can outperform sophisticated ones. 

Despite the importance of this issue, there is only a single study 

in the literature that addressed the imputation problem of 

missing channels in bio-signals using a simple method [14]. 

This method is based on weighted summation of other channels 
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considering their distance from missing channel. Although the 

method is simple, it still has some limitations: 1- The technique 

only focused on location of electrodes. 2- The study explored 

one scenario including 64 channels in which only a single 

channel was missed and the performance of method in presence 

of more missing channels was not investigated.  

To this end, this paper aims to develop a simple imputation 

technique and explore more detailed analysis considering the 

inter-individual variations as well as the effect of increasing the 

number of missing channels. The method is based on the 

concept of statistical dependency structure in multimodal, 

multivariate and multisensory data with dynamically changing 

characteristics, the significance of which has been already 

proven in a wide range of practical applications [21-40].  

II. MATERIALS AND METHODS 

A. Data collection and preprocessing 

The study was approved by the Northern Ostrobothnia 

Hospital district local ethics committee (82/2018). Twenty 

adult patients (table 1) scheduled for an elective surgical 

operation gave an informed written consent to participate. 

Patients with cardiovascular or neurological diseases or a body 

mass index over 30 were excluded. No premedication was used. 

During the study, the patients were monitored according the 

standard procedure of the operating room. In addition, EEG was 

recorded using the BrainStatus self-adhesive electrode and 

wireless device (Bittium, Oulu, Finland) and a tablet computer 

on which the signals were observed online. The EEG channels 

included were Fp1, Fp2, F7, F8, Af7, Af8, Sp1, Sp2, T9, and 

T10. Reference electrode location was in the middle of 

forehead. Sampling frequency was 250 Hz. The signals used in 

the analysis were recorded during the induction of anesthesia 

with propofol. The procedure included the following steps: 1) 

Base-line recording of at least 2 min. 2) Beginning of propofol 

infusion with a fixed rate of 30 mg/kg/h. 3) Observation of the 

moment for loss of obeying verbal command (LVC) i.e. the 

time at which the patient stops squeezing anesthesiologist’s 

hand after command (“squeeze my hand”). 4) Observation of 

the moment for occurrence of burst suppression pattern i.e. the 

time at which clear suppression periods occur in the EEG. 5) 

Ending of the recording after at least 2 min of BSP.  

The analysis was preceded by high-pass filtering at 0.1 Hz 

and low-pass filtering at 32 Hz. The 30-second sequences were 

visually inspected and those sequences including major artifacts 

were excluded from further analysis. 

B. Method 

The proposed algorithm for reconstruction of missing 

channel is based on the weighted summation of signals from 

observed channels. The weighting process is done considering 

average temporal-spatial correlation of both preceding and 

proceeding temporal windows. The correlation is calculated 

between each channel across all samples within the window. 

Detailed equations for the proposed method are given in (1) to 

(3). Figure 1 shows different steps of proposed algorithm. 

Algorithm 1 presents the steps of reconstructing missing 

channel using correlation-dependent averaging. 
 

TABLE 1 

Patient and data characteristics 

Characteristic Value 

Gender (F/M) 12/8 
Age, year (Mean±SD) 50.6 ± 15.8 

Weight, kg (Mean±SD) 71.9 ± 14.3 

Height, cm (Mean±SD) 170.6 ± 9.5 

BL* Starting time, min (Mean±SD) 2.9 ± 4.1 

Infusion Starting time, min (Mean±SD) 5.5 ± 4.1 

LVC* Starting minute, (Mean±SD) 8.9 ± 4.5 

BSP* Starting minute, (Mean±SD) 11.5 ± 5.1 

SWA* Starting minute, (Mean±SD) 11.3 ± 4.9 

SWA Ending minute, (Mean±SD) 12.6 ± 5.0 

* BL: baseline, LVC: loss of obeying verbal command, SWA: slow-wave 

activity, BSP: burst suppression pattern 

 

ALGORITHM I 

Algorithm for missing channel reconstruction using correlation-dependent averaging 

Input: len= Window Length, S= Signal, N= Number of windows, j=Missing Channel Index, m=Number of Channels 

Output: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

1: Initialization:  

Correlation Matrix of preceding window=[], Correlation Matrix of proceeding window=[] weight=[],  𝑆̂=[] 

2: for n=2 to N-1 do 

3: Correlation Matrix of preceding window=Correlation{𝑆(: ,1 + 𝑙𝑒𝑛 × (𝑛 − 1): 𝑙𝑒𝑛 × (𝑛))} 

4: Correlation Matrix of proceeding window=Correlation{𝑆(: ,1 + 𝑙𝑒𝑛 × (𝑛 + 1): 𝑙𝑒𝑛 × (𝑛 + 2))} 

5: Average Correlation Matrix= 

{𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 +  𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤}
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6: weight= Average Correlation Matrix(j,{𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 –  𝑗𝑡ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙}) 

7: 𝑆′ = 𝑆({𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 –  𝑗𝑡ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙}, 1 + 𝑙𝑒𝑛 × (𝑛): 𝑙𝑒𝑛 × (𝑛 + 1)) 

8: for k=1:m-1  

9: 𝑆̂(𝑘, : ) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘) × 𝑆′(𝑘, : ) 

10: end for 

11: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 =  𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛(𝑆̂, 1) 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡)⁄  

12: end for 

13: return 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 



 

 

 
Fig. 1. Proposed algorithm for recovering missing channel 

of number one (S1); Employing weighted average of the 

signals from other channels (S2, …, Sm) associated with the 

nth window. The weighting is done considering average 

spatial correlation of (n-1)th and (n+1)th windows 

 
Weight matrix can be formed based on pairwise 

correlation coefficient of channels according to (1). 

𝜔

= [

𝜌11 𝜌12 𝜌13

⋮ ⋮ ⋮
𝜌𝑚1 𝜌𝑚2 𝜌𝑚3

    

… 𝜌1(𝑚−1) 𝜌1𝑚

⋮ ⋮ ⋮
… 𝜌𝑚(𝑚−1) 𝜌𝑚𝑚

]   

(1) 

 

 

which m is total number of channels,  

and 𝜌𝑖𝑗 =
𝑐𝑜𝑣(𝑆𝑖,𝑆𝑗)

𝜎𝑆𝑖
×𝜎𝑆𝑗

. 

 

𝑆𝑖  and 𝑆𝑗 are respectively signals of ith and jth channels. 

 

By taking average and normalizing weight matrices of 

preceding and proceeding windows according to equations 

of (2) and (3), the synthetic version of signal is reconstructed. 

 

𝜔̅ =
𝜔𝑛−1 + 𝜔𝑛+1

2
= 0.5 × 

[
𝜌11

𝑛−1 + 𝜌11
𝑛+1 … 𝜌1𝑚

𝑛−1 + 𝜌1𝑚
𝑛+1

⋮ ⋱ ⋮
𝜌𝑚1

𝑛−1 + 𝜌𝑚1
𝑛+1 … 𝜌𝑚𝑚

𝑛−1 + 𝜌𝑚𝑚
𝑛+1

] 

 (2) 

 

𝑆̂1 =
∑ 𝜔̅𝑘 × 𝑆𝑘𝑘

∑ 𝜔̅𝑘𝑘

=
(𝜔̅2 × 𝑆2) + ⋯ + (𝜔̅𝑚 × 𝑆𝑚)

𝜔̅2 + ⋯ + 𝜔̅𝑚

 

(3) 

 

The matrix ω̅ includes k rows and k columns which 

correspond to the k channels. This matrix is a symmetric 

matrix, therefore only first row of this matrix is considered, 

and each element within this row is multiplied by its 

corresponding channel. 

The proposed weighting was inspired by general 

expression used for weighted average formula in the 

literature [13, 14, 18, 41-43]. 

C. Comparison to a Previous Method 

A commonly used approach for reconstructing a missing 

EEG channel is weighted averaged of neighboring 

electrodes. The weighting process in this method is 

performed based on Euclidian distance of neighboring 

channels from the one which is missing. The hypothesis in 

this technique is that closer electrodes provides more 

information regarding the variations in missing channel in 

compared to those which are farther away. The mathematical 

expression for this method is expressed as follow [14]:  

 

𝑆̂ =
∑ 𝑤𝑖𝑗 × 𝑆𝑗𝑖≠𝑗

∑ 𝑤𝑖𝑗𝑖≠𝑗

 
(4) 

𝑤𝑖𝑗 =
1

𝐿𝑖𝑗

 
 

𝐿𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2
 

 

 

where 𝑤𝑖𝑗 refers to the inverse Euclidean distance 

between two electrode positions of i and j, being calculated 

from the cartesian coordinate of each electrode position. 

i≠j means that only off-diagonal elements of distance 

matrix are used which represent distance between pairs of 

channels. 

Algorithm 2 presents the steps of reconstructing missing 

channel using weighted averaged of neighboring electrodes. 

A comparison study was conducted to evaluate the 

performance of this method and compare it with proposed 

algorithm. This comparison study was performed under 

different scenarios of increasing number of missing 

channels. The metric used for performance evaluation was 

distance correlation. The within-subject and between-subject 

variability of these distance correlations was also 

characterized as a function of the number of missing 

channels. 

D. Performance metric 

Distance correlation (DC), being used as performance 

metric in this study, measures both linear and nonlinear 

association between two signals and can be computed 

according to the following steps. 

1- Computing Euclidean distance (Ed) for all pairwise 

distances: 



 

 𝐸𝑑𝑖𝑗 = 𝐸𝑑(𝑥𝑖 , 𝑥𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

 

(5) 

2- Taking double centered distance: 

 𝐸𝑑̅̅ ̅̅
𝑖𝑗(∙) =  𝐸𝑑𝑖𝑗(∙) −  𝐸𝑑̅̅̅̅

𝑖∙(∙) −  𝐸𝑑̅̅̅̅
∙𝑗(∙) +  𝐸𝑑̅̅̅̅

∙∙(∙) (6) 

3- Computing arithmetic average of products of 𝑆1 and 𝑆2 

as follow: 

𝑑𝐶𝑜𝑣(𝑆1, 𝑆2) =
1

𝑛2
∑  𝐸𝑑̅̅̅̅

𝑖𝑗(𝑆1) ∙  𝐸𝑑̅̅ ̅̅
𝑖𝑗(𝑆2)

𝑖𝑗

 
(7) 

4- Computing distance variances: 

𝑑𝑉𝑎𝑟(𝑆1) =
1

𝑛2
∑  𝐸𝑑̅̅̅̅

𝑖𝑗(𝑆1)2

𝑖𝑗

  

 𝑑𝑉𝑎𝑟(𝑆2) =
1

𝑛2
∑  𝐸𝑑̅̅̅̅

𝑖𝑗(𝑆2)2

𝑖𝑗

 

(8) 

5- Computing distance correlation: 

𝑑𝐶𝑜𝑟(𝑆1, 𝑆2) =
𝑑𝐶𝑜𝑣(𝑆1, 𝑆2)

√𝑑𝑉𝑎𝑟(𝑆1) ∙ 𝑑𝑉𝑎𝑟(𝑆2)
 

(9) 

 

III. RESULT 

A. Results of implementing method 

The average and standard deviation values of distance 

correlation was calculated per subject, and then the 

distribution of these values across all subjects was computed 

based on average, median, minimum and maximum values 

(Table 2). 

For illustration, figure 2 shows the original signal of one 

EEG channel and its recovered version based on proposed 

technique. The computed corresponding distance correlation 

for this example was 95.14 %, suggesting a strong statistical 

relationship between original and recovered signals. 

 
TABLE 2 

Distribution of distance correlation across all subjects 

Parameters  Proposed 

Method 

 Euclidean distance-based 

method 

Mean Std  Mean Std 

Mean 82.48 10.01  67.89 14.12 
Median 84.07 10.09  71.47 13.02 

Maximum 92.87 21.0  80.78 23.37 

Minimum 40.02 3.3  31.57 6.96 

 

Comparing the visual inspection of spectrogram plots for 

both original signal and its recovered version indicates a 

good performance of the proposed reconstruction method in 

recovering temporal-spectral progression patterns within the 

original EEG signal. 

The distribution of the amplitude and its variability in 

both original signal and its recovered version are respectively 

given in figure 4 and 5. According to these figures, the 

recovered signal follows almost the same distribution as 

original one. It should be noted that uniform amplitude 

scaling seen in the results has no effect on the correlation 

measures [44]. However, using normalization, the uniform 

amplitude scaling can be eliminated.

 

ALGORITHM 2 

Algorithm for missing channel reconstruction using weighted averaged of neighboring electrodes 

Input: len= Window Length, S= Signal, N=Number of windows, j=Missing Channel Index, m=Number of Channels 

Output: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

1: Initialization:  

XY=Electrode positions 

Distance Matrix = Computes a matrix of pair-wise distances between XY points using Euclidean method 

weight=[],  𝑆̂=[] 

2: for n=1 to N do 

3: weight= Distance Matrix  

4: 𝑆′ = 𝑆({𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 –  𝑗𝑡ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙}, 1 + 𝑙𝑒𝑛 × (𝑛): 𝑙𝑒𝑛 × (𝑛 + 1)) 

5: for k=1:m-1  

6: 𝑆̂(𝑘, : ) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘) × 𝑆′(𝑘, : ) 

7: end for 

8: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 =  𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛(𝑆̂, 1) 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡)⁄  

9: end for 

10: return 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 



 

 
Fig. 2. Comparison between original signal of one EEG channel with its recovered version for distance correlation of 95.14 % 

(Second plot is enlarged version of first plot) 
 

 
Fig. 3. Temporal-spectral progression patterns within original signal of one EEG channel and its recovered version for 

distance correlation of 95.14 % 
 

  
Fig. 4. Distribution of original signal and its recovered 

version for distance correlation of 95.14 % 

Fig. 5. Variability within original signal and its recovered 

version for distance correlation of 95.14 % 



 

B. Results of increasing number of missing channels 

To further analyze the effectiveness of proposed method, 

different scenarios of increasing number of missing channels 

were implemented. The electrodes being removed in each 

scenario according to table 3 (Scenario 1-5). 

According to the figures of 6 to 9, although the 

degradation rate of reconstruction accuracy increases with 

growing number of missing channels, the recovered version 

of signal still follows the temporal-spectral progression 

patterns within the original EEG signal. 

 

 

 

 
Fig. 6. Changes in temporal patterns of recovered signal with increasing number of lost channels (Second plot is enlarged 

version of first plot) 

 

 
Fig. 7. Changes in temporal-spectral progression patterns of recovered signal with increasing number of lost channels 



 

 

 

 
Fig. 8. Changes in temporal patterns of recovered signal with increasing number of lost channels (Second plot is enlarged 

version of first plot) 

 

 
Fig. 9. Changes in temporal-spectral progression patterns of recovered signal with increasing number of lost channels 

 

C. Inter-subject and intra-subject variation  

Chart 10 shows inter-subject and intra-subject variation 

of average correlation coefficient across all channels. Chart 

11 illustrates the inter-subject variation in distance 

correlation of reconstructed channel. 

D. Statistical analysis of within subject variability 

The performance of proposed technique was evaluated 

and compared with that of presented in [11]. The electrodes 

being removed in each scenario are given in table 3. 

According to the statistical analysis of within subject 

variability (Table 4 and Figures of 12), there was a difference 

between the Coefficient of Variability of DC obtained by 

proposed method and Coefficient of Variability of DC 

obtained by Euclidean distance-based method. A t-test 

showed this difference was statistically significant, t(7) = -

5.1, p = 0.001, 95% confidence interval (-10.98, -4.02). The 

within subject variability of distance correlation for proposed 



 

method had lower values (M = 19.65, SD = 4.5) than the 

within subject variability of distance correlation for 

Euclidean distance-based method (M = 27.15, SD = 5.9). 

 
Fig. 10. Inter-subject and Intra-subject variation of average correlation 

coefficient between channels of each temporal window 

 
 

 

Fig. 11. Inter-subject variation in DC obtained for different numbers of 
missing channel 

 

TABLE 3 

Lost channels in each scenario 

1 2 3 4 5 6 7 8 

'T10' 'T10' 'T10' 'T10' 'T10' 'T10' 'T10' 'T10' 

 'Af8' 'Af8' 'Af8' 'Af8' 'Af8' 'Af8' 'Af8' 

  'F8' 'F8' 'F8' 'F8' 'F8' 'F8' 
   'Fp2' 'Fp2' 'Fp2' 'Fp2' 'Fp2' 

    'Fp1' 'Fp1' 'Fp1' 'Fp1' 

     'T9' 'T9' 'T9' 
      'F7' 'F7' 

       'Sp1' 
 

 

E. Statistical analysis of between subject variability 

According to the statistical analysis of between subject 

variability (Table 4 and Figures of 13), there was a difference 

between Coefficient of Variability of DC obtained by 

proposed method and Coefficient of Variability of DC 

obtained by Euclidean distance-based method (Considering 

distance correlation as performance metric). A t-test showed 

this difference was statistically significant, t(7) = -5.58, p = 

0.001, 95% confidence interval (-5.42, -2.19). The between 

subject variability of distance correlation for proposed 

method had lower values (M = 16.32, SD = 1.51) than the 

between subject variability of distance correlation for 

Euclidean distance-based method (M = 20.12, SD = 1.86). 

 
 

TABLE 4  

Statistical analysis 

Statistics 

 N 

Mean  Std. Deviation  Std. Error Mean 

within  

subject CV 

data 

between  
subject CV 

data 

 

Overall  
DC data 

 

 
within  

subject CV 

data 

between  
subject CV 

data 

 

Overall  
DC data 

 

 
within  

subject CV 

data 

between  
subject CV 

data 

 

Overall  
DC data 

 

Proposed method 8 19.65 16.32 71.87     4.5 1.51 7.08     1.59 0.53 2.5    

Euclidean distance-based method 8 27.15 20.12 60.84     5.9 1.86 7.71     2.09 0.66 2.73    

t-Test for paired samples 

    

t  df  p-value (2-tailed) 

within  

subject CV 
data 

between  

subject CV 

data 
 

Overall  

DC data 
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subject CV 
data 

between  

subject CV 

data 
 

Overall  

DC 

data 
 

 

within  

subject CV 
data 

between  

subject CV 

data 
 

Overall  

DC data 

 

Proposed method - Euclidean 

distance-based method 

-5.1    -5.58 4.59     7 7 7  0.001 0.001 0.003    

            

95% Confidence interval of the difference 

    Mean    Std. Deviation    Std. Error Mean    Lower    Upper    
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Proposed method-
Euclidean distance-based 

method 

-7.5    -3.8    11.03    4.16    1.93 6.8    1.47    0.68 2.4    -10.98    -5.42    5.35    -4.02    -2.19    16.71    

 

 

 



 

   
Fig. 12. Distribution of within subject variability 

of Coefficient of Variability  

Fig. 13. Distribution of between subject 

variability of Coefficient of Variability  

Fig. 14. Distribution of distance correlation  

 

F. Statistical analysis of performance 

According to the statistical analysis of performance 

(Table 4 and Figures of 14), there was a difference between 

the DC obtained by proposed method and DC obtained by 

Euclidean distance-based method (Considering distance 

correlation as performance metric). A t-test showed this 

difference was statistically significant, t(7) = 4.59, p = 0.003, 

95% confidence interval [5.35, 16.71]. The distance 

correlation for proposed method had higher values (M = 

71.87, SD = 7.08) than the distance correlation for Euclidean 

distance-based method (M = 60.84, SD = 7.71). 
 

G. Investigating the effect of window length on the results 

According to figure 15, difference between average 

distance correlation obtained from proposed method and 

average distance correlation obtained from Euclidean 

distance-based method is higher for windows with shorter 

length. In general, the difference is significant for different 

window lengths. 

 

 
Fig. 15. Difference between average distance correlation obtained by 

proposed method from DC obtained by Ed method for different window 

lengths and different numbers of missing channel (difference between two 

DC values in %-units) 

 

IV. DISCUSSION 

There are a limited number of studies exploring the 

imputation of missing channel in physiological signals, being 

categorized into two major groups of simple and complex 

techniques according to Table 5. Although the simplest 

approaches can outperform the more sophisticated ones in 

practical applications due to their fast speed, easy 

implementation and lower memory requirement, there is 

only one study in the literature, focusing on simple channel 

reconstruction in physiological signals [14]. This study 

imputed one missing channel based on a weighted average of 

observed channels, placing greater weight for spatially closer 

EEG channels. Despite the straightforward structure of this 

method, its performance degradation by increasing the 

number of missing channels was not investigated. 

Furthermore, this study has not taken into account subject-

dependency of bio-signals. These signals can be highly 

subjective, and the performance of algorithm can change 

with different study subjects. 

Considering the issue with earlier approach, current paper 

aimed to develop a simple correlation-based averaging 

approach for missing data imputation and provided an in-

depth analysis by considering the inter-individual variations 

in bio-signal patterns as well as the effect of increasing the 

number of missing channels. The idea behind proposed 

reconstruction method was taking statistical dependency of 

multisensory data into consideration.  This statistical 

dependency including spatio-temporal correlation patterns is 

captured through moving window and then integrated by 

local averaging to reconstruct missing EEG channel. The 

importance of considering statistical dependencies has been 

already proven in a wide range of practical applications 

summarized in table 6 [21-40]. Most of these techniques 

focused on reconstructing data based on correlation between 

patterns, correlation between envelopes and similarity 

between shapes and trajectories of data [24-29]. Some also 

emphasized on local correlation and similarity between 

neighboring sensors [38-39]. Furthermore, the EEG signals 

are result of brain activity and different channels monitor the 

same activity from different locations. Since, the source for 

all the signals is the same, it is likely that the EEG signals 

from different channels are correlated. Different cortical 

locations have also different degrees of correlation [15-17]. 

Therefore, considering the important role of correlation 

concept in neural signal reconstruction, this study tried to 

create a decaying weighting function which place more 

emphasis on highly correlated channels than those that are 

less correlated. Moreover, since the proposed method is not 

based on electrodes position, it does not need to adopt for 

different set of electrodes and different scalp maps as every 

single subject has unique geometry and shape of the head 

[14]. 

The major contributions in this study are summarized as 

follows: 1- The proposed reconstruction technique 

considered heterogonous nature of physiological time series 

due to the variability in time-frequency characteristic over 

long-duration monitoring by embedding information within 

both preceding and proceeding temporal windows. 2- The 



 

proposed method embedded inter-channel dependency of 

neural time series by considering temporal-spatial 

correlation. 3- The current study investigated the 

performance degradation of reconstruction with increase in 

the number of missing channels. 4- The current study 

explored the performance of imputation for inter-individual 

variability by analyzing different subjects. 4- Reconstruction 

of missing channels was performed on a dataset captured by 

10-channel forehead self-adhesive electrodes. 5- 

Reconstruction technique performance was evaluated on 

dataset associated with measurements during different stages 

of anesthesia induction in which the EEG time-frequency 

characteristic varies a lot. 

 Considering the results of current study, distance 

correlation of reconstructed signals using proposed 

algorithm was 21.5% higher, on average, than those of being 

reconstructed by the earlier approach (82.5% vs. 67.7%, see 

Table 2). The proposed technique also showed more 

robustness for loosing several channels. This easy-to-

implement approach would be computationally efficient due 

to its simple structure. It also requires no learning process 

and hyperparameter optimization. The limitation of this 

technique is that it could be only applicable for multichannel 

recordings. 

 
TABLE 5  

Literature review of reconstruction techniques for missing channel in physiological time series 

Type of Method Details Modality 

Simple Approaches Normalized weighted summation of other channels considering inverse distance [14] EEG 

 

 

 

 

Complex 

Approaches 

Methods Based on 

Optimization 

Row-sparse recovery by exploiting the transform domain sparsity considering inter-channel 

correlation in which sparse transform domain coefficients are reconstructed by solving an 
optimization problem [15, 16] 

EEG 

Applying Karhunen Loeve transform and solving an optimization problem with sparsity 

constraint to learn the inter-channel correlation, and then using learnt correlation to 
reconstruct missing channel [45] 

EEG 

 

 

 

Methods Based on Deep 

Learning 

Recovering missing channel by feeding raw signals of other channels to a Long Short-Term 
Memory (LSTM) Recurrent Neural Network (RNN) [17] 

EEG 

Mapping channels into a tensor that reflects the special locations of electrode and then feeding 
it into a deep encoder-decoder network [18] 

EEG 

Recovering missing channel by feeding other channels into a deep neural network [19] EMG 

Predicting missing channel by feeding other channels into a focused time-delayed neural 
network, distributed time-delayed neural network, and nonlinear autoregressive network [20] 

ECG 

 
TABLE 6  

Literature review of reconstruction techniques considering statistical dependencies 

Method Details Application 

✓ Hierarchical correlation reconstruction 

[21] 

Local averaging over past values considering probability distribution 

and applying exponentially decaying weights 

Non-stationary time series 

✓ Spearman's rank correlation coefficient 

[22] 

Monotonically quantifying correlation between two time-series in 

high-dimensional data 
High dimensional chemical data 

✓ Pairwise 

✓ correlations [23]  

Considering n-dimensional joint probability distribution Biological data 

✓ Cross-modal interaction [24] Correlation coefficient between envelopes Speech signals 

✓ Correlation patterns [25] Correlation patterns as a function of time Climatic signal 

✓ Correlation caused by 

✓ the underlying trend in the time-series 

[26] 

Based on Pearson correlation coefficient 

Based on producing moment correlation coefficient 

Climatic time-series 

✓ Correlations between different 

modalities [27] 

Inter-series correlation based on average Pearson correlation 

coefficient 
Temperature signal 

✓ Locally adaptive linear interpolation 

[28] 

Maintaining the essential shape 

of the time-series trajectory 

Remote sensing time series data 

✓ Global correlation information [29]  Based on Pearson correlation coefficient Synthetic Time 

Series 



 

✓ Spatio-temporal correlation patterns 

[30] 

Based on Pearson correlation coefficient and search neighborhood Hydrological flow rate time-series 

✓ Spatiotemporal context dependencies 

[31] 

Based on linear state transition matrix Network traffic traces 

✓ Spatiotemporal covariance in order to 

take both temporal and spatial 

correlations [32] 

Based on decomposing a spatiotemporal covariance into different 

modes and then selects the optimal set of modes for reconstruction  
Remote sensing data 

✓ Temporal covariance [33] Based on solving the eigenvalue problem, and choosing an optimal 

number of empirical orthogonal functions for reconstruction 
Remote sensing data 

✓ Similarity between two temporal 

patterns [34] 

Using binary space partitioning trees Time series of multispectral images 

✓ Joint probability distribution over the 

variables [35] 

Considering the mean and covariance matrix Industrial time series 

✓ Spatial-temporal correlation [36]  Based on low-rank matrix factorization Traffic network data 

✓ Phase Space Reconstruction based on 

extracting linear correlation between 

sequences [37]  

Using autocorrelation function method for finding the delay time Vegetation Temperature Condition 

Index time series data 

✓ Correlation between different 

neighboring sensors [38] 

Using linear regression models on spatially correlated measurements Distribution water network flowmeters 

data 

✓ Spatial-spectral-temporal strategy [39]  Using a local patch-based similarity Satellite image time series 

✓ Spatio-temporal correlation [40] Considering binary regression Time traffic flow data 

 

V. CONCLUSION 

This study presented a simple method for implementing 

missing channel imputation on neural time series based on 

temporal-spatial correlation. The result showed that the 

proposed algorithm outperforms the Euclidean distance-

based weighted reconstruction [14]. This method has the 

benefit of simple structure and no requirement for any 

training or hyper parameter tuning. Considering only 

preceding windows, this algorithm with its low 

computational complexity can be also adapted for real-time 

reconstruction. The proposed method has also potential to 

use in data augmentation and generating synthetic time series 

from the existing ones which could be highly beneficial in 

enhancing machine/deep learning algorithms. Regarding 

these, a further investigation will be conducted in future. 
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