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Abstract 

Objective: When developing approaches for automatic 

preprocessing of electroencephalogram (EEG) signals in non-isolated 

demanding environment such as intensive care unit (ICU) or even 

outdoor environment, one of the major concerns is varying nature of 

characteristics of different artifacts in time, frequency and spatial 

domains, which in turn causes a simple approach to be not enough for 

reliable artifact removal. Considering this, current study aims to use 

correlation-driven mapping to improve artifact detection performance. 

Approach: A framework is proposed here for mapping signals from 

multichannel space (regardless of the number of EEG channels) into 

two-dimensional RGB space, in which the correlation of all EEG 

channels is simultaneously taken into account, and a deep 

convolutional neural network (CNN) model can then learn specific 

patterns in generated 2D representation related to specific artifact. 

Main results: The method with a classification accuracy of 92.30% 

(AUC=0.96) in a leave-three-subjects-out cross-validation procedure 

was evaluated using data including 2310 EEG sequences contaminated 

by artifacts and 2285 artifact-free EEG sequences collected with 

BrainStatus self-adhesive electrode and wireless amplifier from 15 

intensive care patients. For further assessment, several scenarios were 

also tested including performance variation of proposed method under 

different segment lengths, different numbers of isoline and different 

numbers of channel. The results showed outperformance of CNN fed 

by correlation coefficients data over both spectrogram-based CNN and 

EEGNet on the same dataset. 

Significance: This study showed the feasibility of utilizing 

correlation image of EEG channels coupled with deep learning as a 

promising tool for dimensionality reduction, channels fusion and 

capturing various artifacts patterns in temporal-spatial domains. A 

simplified version of proposed approach was also shown to be feasible 

in real-time application with latency of 0.0181 s for making real-time 

decision. 
 

Keywords— Deep Learning, Multichannel Data Fusion, 

Dimensionality Reduction, CNN, Correlation Map, EEG, Artifact, 

Real-Time Application. 

I. INTRODUCTION 

Electroencephalogram (EEG) is a measure of the electrical 

activity of the brain mainly arising from the cortical synaptic 

action. However, these signals are usually contaminated with 

different unwanted artifacts during the recording, seriously 

affecting the interpretation of the signal and require to be 

eliminated before further analysis. The artifacts are 
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substantially present in the recordings of critically ill patients 

due to the long duration of the measurement and challenges 

related to the environment such as the presence of 

electromechanical devices as well as motion artifacts arising 

from both staff and patient [1-4]. 

Detecting artifacts automatically from EEG recordings has 

proven to be a challenging task. Simple amplitude- or 

frequency-based methods have not succeeded in this due to the 

varying characteristics of both, the artifacts themselves as well 

as the background EEG activity. Consequently, several more 

advanced methods have been proposed in literature. These 

methods have, however, limitations such as requirements 

related to  specific features of the artifacts (such as spike shapes, 

number of spikes, peak-to-peak amplitude, relative amplitude, 

peak location in channels, signal power in the entire window, 

maximum power difference between adjacent segments etc.) or 

using of a reference signals like separate channel for ECG or 

EOG [5-11]. 

Recent advances in machine learning methods have 

increasingly captured the attention for distinguishing artifact-

free EEG sequences from contaminated ones [12-17]. So far, 

there has been a limited number of studies focusing on a fully 

automatic removal method based on deep learning and the 

proposed approaches only focus on specific types of artifacts 

which leads to limited generalization of the method to the 

artifacts resulting from various sources [18, 19]. Moreover, 

most of the studies have been using recordings made with a full 

EEG cap which is challenging in the intensive care environment 

where securely maintaining electrode contacts and easy long-

term high-quality signal acquisition is beneficial.  

Current work presents a quantitative technique for artifact 

detection by integrating information from different channels of 

EEG based on correlation coefficient and needing no auxiliary 

reference signal. In this method, correlation coefficient matrix 

of all channels is formed as contour map and fed to a deep 

network to classify if an EEG sequence includes artifact or not. 

The proposed method enables detection of various types of 

artifact with different patterns in both amplitude and frequency. 

Additionally, this study explores and validates the performance 
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of the proposed deep learning-based method for artifact 

detection from recordings made with an easy-to-use forehead 

EEG electrode and wireless device suitable for demanding 

clinical environment such as intensive care unit (ICU).  

II. DATA COLLECTION 

The EEG dataset used in this study was collected from 15 

patients treated in the ICU of Oulu University Hospital. The 

patients had no history of serious neurological disease and were 

18-85 years in age. During the recording, the patients were not 

mechanically ventilated and were recently diagnosed with 

hyperactive delirium. Delirium was treated with administration 

of dexmedetomidine following the ICUs standard protocol to 

keep the patients moderately sedated. The study was approved 

by local ethics committee. Written informed consent for 

participation was obtained either from the patient or his/her 

relative.  

The EEG data was recorded with the BrainStatus self-

adhesive electrode (Figure 1) and BrainStatus wireless 

amplifier [23] with a sampling frequency of 250 Hz. The EEG 

recordings contained 10 channels (Sp2, T10, Af8, F8, Fp2, Fp1, 

T9, F7, Sp1, AF7). From the recordings, 4595 non-overlapping 

30-s segments were extracted offline. Segments were picked so 

that 2310 of them contained artifacts and others were artifact-

free. The segments were manually inspected and labeled based 

on visual inspection. 

The sequences containing high amplitude and sharply 

contoured transients distinguishable from background activity 

were classified to contain EMG artifact. Those sequences 

having high amplitude and low frequency activity with 

morphology of steep fall followed by the slower rise were 

classified to contain EOG artifact. High amplitude sharp waves 

were also considered as transient artifact. Sequences with 

nonlinear curved pattern which leads to continuous decrease or 

increase in amplitude over time was categorized to have trend 

artifact. Relatively high amplitude single-frequency harmonic 

noise was also considered as powerline interference artifact. 

Figure 2 shows sample sequences in the dataset with the above-

mentioned different artifacts in all channels.  
 

 
Fig. 1.  EEG electrode set and device used for 

data collection  

 
Fig. 2.  Different types of artifact within studied dataset 

 

III. METHOD 

3.1. Proposed Method 

As already discussed, not only the EEG amplitude may 

change a lot especially in the ICU environment under varying 

conditions, but also the artifact characteristics including the 

amplitude vary a lot as well, and this issue causes a simple 

approach (e.g. based on thresholding) to be not enough for 

reliable artifact detection. Therefore, a more sophisticated 

technique is required for precisely detecting the artifacts. To 

address this issue by taking advantage of deep learning, the 

current study introduced a computationally efficient artifact 

detection method using interpreting the multidimensional 

information and extracting a meaningful knowledge of the raw 

data coming from multiple channels. This proposed information 

fusion automatically transforms data from different channels in 

time into a single 2D representation that provides fast effective 

support for discriminating artifact-contaminated segments from 

others. The idea of this method is on the hypothesis that data 

driven by different channels has correlation with each other and 

correlation matrix of all these measurements has a unique 

distribution associated with each type of artifact which can be 

visualized as a contour plot. Generating these contour images is 

the preprocessing phase of proposed method shown in figure 3. 

Given with 2D correlation contour as input data sets, a deep 

convolutional neural network (CNN) model can learn specific 

patterns in 2D correlation representation related to specific 

artifact. As shown in figure 3, In second phase, the training set 

of input-label pairs is utilized to train the CNN model based on 

initial parameters and then update them via minimizing the loss 

function. In validation phase, a validation set is used to evaluate 

the predictor. Below is the summary of the steps followed in the 

method: 
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Step 1- Computing the correlation coefficient of two 

channels of i and j according to Equation (1).  

ρ(Si, Sj) =
1

n − 1
∑(

Sk − μi
σi

) (
Sk − μj

σj
)

n

k=1

 
(1) 

ρ(Si, Sj) =
cov(Si, Sj)

σiσj
 

 

where μi and σi are the mean and standard deviation of Si, 

respectively, and μj and σj are the mean and standard deviation 

of Sj. 

Step 2- Obtaining the correlation coefficient matrix of all 

channels according to Equation (2). 

R = (
ρ(S1, S1) ⋯ ρ(S1, Sn)

⋮ ⋱ ⋮
ρ(Sn, S1) ⋯ ρ(S𝑛 , Sn)

) 

(2) 

Step 3- Creating a filled contour plot containing the isolines 

of obtained matrix of R. 

Step 4- Feeding contour plot to the deep network to classify 

the sequences with artifact. 

Figure 4 and 5 show the preprocessing steps performed on 

the raw EEG data in order to prepare input data for 2D 

convolutional neural network (CCN). As shown in figure 4, 

correlation coefficients between channels was first derived and 

presented in the form of contour map. For comparison phase, 

the spectrogram of the EEG sequence was also generated for 

each channel (figure 5), and mean value of obtained images of 

whole channels was then calculated. The obtained images were 

separately fed to a deep network as input image. While this 

correlation contour image summarizes what occurs in temporal-

spatial domain, the mean spectrogram represents what happens 

in time-frequency domain. 
 

 
Fig. 3.  Block diagram of the proposed method 

 

 
Fig. 4. Generating correlation coefficients contour 

 
Fig. 5. Generating mean spectogram 
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The proposed deep learning architecture for image-to-label 

classification is presented in figure 6 and consisted of a CNN 

with three two-dimensional convolution layers, followed by 

batch normalization, Relu, max pooling and fully connected 

layers. The 2D convolutional layer applied sliding 

convolutional filters to the input contour image. The output of 

this network is a categorical response and therefore a Softmax 

and classification layers was also added as last layers of each 

CNN. All layers in each CNN were connected sequentially. 

Final layer of the whole network is decision layer of this CNN 

classifiers.  

 
Fig. 6. CNN architecture 

 

The training parameters of deep learning model are given in 

Table 1. The mini-batch size and the maximum number of 

epochs were respectively set to 32 and 5. These small mini-

batches with short sequences were used to make it more suitable 

for training on the CPU. Leave-three-subjects-out cross-

validation was also used to check the performance of model in 

which three subjects were chosen for testing while the other 12 

subjects were applied for training. These steps were repeated 

until all the subjects have been used as test group. 

TABLE I.  THE MODEL TRAINING PARAMETERS 

Parameter Value Parameter Value 

Initial Learn Rate 0.001 Mini Batch Size 32 

Learn Rate Drop Factor 0.05 Max Epochs 5 

Learn Rate Drop Period 2 Learn Rate Schedule Piecewise 

 

3.2. Summary of the Analysis Conducted 

The above-described analysis provides us with the following 

results:  

1- Correlation coefficient contour comparison for sequences 

with and without artifacts: This analysis was designed to 

visualize difference in distribution of correlation maps and 

their color patterns across the subjects for artifact-free and 

artifact-contaminated sequences. 

2- The effect of parameter selection on correlation coefficients 

contour: This analysis determines whether the patterns in 

correlation maps are independent of involved parameters. 

3- Performance comparison between correlation-based CNN 

and spectogram-based CNN: This analysis tests whether CNN 

fed by correlation map outperforms the CNN fed by 

spectrogram. 

4- Performance comparison between correlation-based CNN 

and EEGNet: This analysis was designed to test whether CNN 

fed by correlation map outperforms EEGNet fed by raw EEG 

signals. 

5- The effect of parameter selection on the results of 

correlation-based CNN: This analysis was designed to see if 

the changes in parameter values affect classification 

performance. 

6- Real-time application: This analysis was conducted to 

determine whether using a simplified CNN fed by low-

resolution version of correlation map could make this 

approach applicable for real-time computing. 

IV. RESULTS 

4.1. CORRELATION COEFFICIENTS CONTOUR 

COMPARISON FOR SEQUENCES WITH AND WITHOUT 

ARTIFACTS. 

From the color histograms of correlation maps in all subjects 

(figure 7), normal sequences have roughly different distribution 

of colors from sequences contaminated by artifacts. Figure 8 

and 9 show examples of correlation coefficients contour 

generated from corresponding EEG sequences including 10 

channels.  The horizontal and vertical axis represents channel 

number. The value of correlation coefficients is represented by 

the color, with dark colors corresponding to low values and 

bright colors corresponding to high values. As seen in figures, 

there is a visible difference in the color patterns of correlation 

coefficients contour for EEG sequences with and without 

artifacts. 
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Fig. 7. Distribution of colors in correlation maps of all subjects 

 
    

    
    

    
Fig.8.1. Sequence 1 Fig.8.2. Sequence 2 Fig.8.3. Sequence 3 Fig.8.4. Sequence 4 

Fig.8. Examples of correlation coefficients contour for artifact-free EEG sequences 

    
    

    
Fig.9.1. Sequence 1 Fig.9.2. Sequence 2 Fig.9.3. Sequence 3 Fig.9.4. Sequence 4 
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Fig.9.5. Sequence 5 Fig.9.6. Sequence 6 Fig.9.7. Sequence 7 Fig.9.8. Sequence 8 

Fig.9. Examples of correlation coefficients contour for EEG sequences including artifacts 

4.2. THE EFFECT OF PARAMETER SELECTION ON 

CORRELATION COEFFICIENTS CONTOUR  

There are several important parameters considered in 

evaluating performance including segment length, number of 

isolines and number of channels where their corresponding 

correlation coefficients contour are respectively shown in figure 

10 to 12. From these figures, it could be concluded that most 

patterns in correlation coefficients contour are somehow 

independent of both segment length and the number of isoline. 

However, applying few numbers of channel leads to slightly 

different patterns in correlation coefficients contour. 

 

  

Fig.10.1. Segments length of 10 s 

  

Fig.10.2. Segments length of 15 s 
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Fig.10.3. Segments length of 30 s 

Fig.10. The effect of different segments lengths in patterns of correlation coefficient contour plot 

   

Fig.11.1. Isoline number of 3 Fig.11.2. Isoline number of 5 Fig.11.3. Isoline number of 7 

   

Fig.11.4. Isoline number of 10 Fig.11.5. Isoline number of 12 Fig.11.6. Isoline number of 14 

Fig.11. The effect of different isoline numbers in patterns of correlation coefficient contour plot 
 

 
 

Fig.12.1. Channel number of 5 
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Fig.12.2. Channel number of 7 

 
 

Fig.12.3. Channel number of 10 
Fig.12. The effect of different channel numbers in patterns of correlation coefficient contour plot 

 

4.3. PERFORMANCE COMPARISON BETWEEN 

CORRELATION-BASED CNN AND SPECTOGRAM-

BASED CNN 

The performance metrics comparison with hyperparameter 

details of CNN with two different inputs of correlation 

coefficient contour and spectogram are given in table 2. These 

results include epoch number, iteration number, time elapsed, 

mini-batch accuracy, validation accuracy, and loss function 

value for the validation data. The number of epochs was chosen 

to be 5 over 500 iterations. The training data were shuffled 

before every epoch. Learning rate was reduced over epochs and 

its speed was updated the by decreasing the learning rate, 

multiplying it by a fractional learn-rate drop factor over a 

specific number of epochs. According to the table 2, the 

validation loss at 0.2813 for correlation-based CNN allows to 

conclude that this method has more generalization capability 

compared to the spectogram-based CNN [20, 21] with 

validation loss of 0.5143. 

TABLE II.  DEEP LEARNING MODEL PERFORMANCE OVER OBSERVATIONS IN THE MINI-BATCH 
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1 1 00:00:37 00:00:29 65.62% 62.50% 49.71% 49.19% 0.7275 0.8091 8.0175 8.1011 0.0010 

1 50 00:03:48 00:03:22 93.75% 75.00% 79.25% 78.37% 0.9964 3.9856 3.2380 3.2711 0.0010 

1 100 00:06:38 00:06:19 93.75% 87.50% 88.46% 81.93% 0.6425 1.3046 0.9722 2.0516 0.0010 
2 150 00:09:25 00:09:15 87.50% 78.12% 90.49% 73.04% 0.3596 0.3719 0.5752 1.6082 0.0010 

2 200 00:12:13 00:12:14 93.75% 87.50% 90.57% 79.63% 0.1605 0.2122 0.3972 0.7889 0.0010 

3 250 00:15:01 00:15:12 96.88% 90.62% 91.65% 82.52% 0.1191 0.2856 0.3504 0.6083 1.0000e-05 
3 300 00:17:47 00:18:11 93.75% 78.12% 92.16% 82.81% 0.1189 0.5239 0.3241 0.5469 1.0000e-05 

4 350 00:20:33 00:21:17 100.00% 96.88% 92.31% 82.81% 0.0228 0.0713 0.2988 0.5370 1.0000e-05 

4 400 00:23:20 00:24:18 93.75% 87.50% 92.09% 82.52% 0.1246 0.2218 0.2888 0.5294 1.0000e-05 
5 450 00:26:10 00:27:18 93.75% 90.62% 91.65% 83.04% 0.1153 0.2856 0.2814 0.5130 1.0000e-07 

5 500 00:28:58 00:29:47 93.75% 87.50% 92.30% 83.33% 0.0227 0.3385 0.2813 0.5143 1.0000e-07 

Final Accuracy of CNN with input images of correlation coefficient contour 92.30 % 

Final Accuracy of CNN with input images of spectogram 82.81 % 
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Fig.13. Accuracy and loss function variation in each epoch of correlation-

based CNN (Validation accuarcy of 92.30 %, AUC of 0.96) 
 

 

 
Fig.14. Accuracy and loss function variation in each epoch of spectogram-

based CNN (Validation accuarcy of 82.81 %, AUC of 0.86) 

Convergence of average accuracy and loss function during 

training and validation for 5 epochs in both correlation-based 

and spectogram-based CNN were plotted in Figure 13 and 14. 

According to these results, the performance on the validation 

set for the case of CNN with input images of correlation 

coefficient contour is better than that of the validation set for 

the CNN with input images of spectogram. The result of the 

correlation-based model has rapidly converged to a stable value 

with no sign of overfitting.  
 
 

 

4.4. PERFORMANCE COMPARISON BETWEEN 

CORRELATION-BASED CNN AND EEGNet 

For more evaluation, the performance of correlation-based 

and spectrogram-based CNN methods were compared against a 

compact convolutional neural network for EEG-based 

applications called EEGNet [22]. The EEGNet architecture 

given in figure 15 consists of a combination of temporal and 

special convolutions to learn special-frequency features and 

optimally mix them together. This EEGNet was fed by 

multichannel EEG data matrix of size 10×7500 and yielded to 

a validation accuracy of 81.25 % with loss of 0.4400 after the 

elapsed time of 93 min and 48 s for the training process using 

single CPU (figure 16).  
 

 
Fig. 15. EEGNet architecture 

 

 
Fig. 16. EEGNet (Validation accuracy of 81.25 %, AUC of 0.90) 

 

In order to analyze the validation phase of trained model, 

four metrics of accuracy, area under a ROC curve (AUC), 

sensitivity and specificity were compared with those achieved 

by two other control methods (Table 3).  
 

TABLE III.  EVALUATION METRICS OF TWO CONTROL METHODS 

COMPARED WITH CORRELATION_BASED CNN 

Method Accuracy AUC Sensitivity Specificity 

Correlation_based CNN 92.30 0.95 100 91.7 

Spectogram-based CNN 82.81 0.86 69.80 89.70 
EEGNet 81.25 0.90 98.11 77.3 

4.5. THE EFFECT OF PARAMETER SELECTION ON THE 

RESULTS OF CORRELATION-BASED CNN  

Different scenarios were performed to evaluate the effect of 

parameters selection on the method performance. The results of 

some of these scenarios are summarized in following figures of 

17 to 19. The obtained results show that the validation accuracy 

slightly decreases when the number of isolines and number of 

channels are getting smaller. 

 

4.6. REAL-TIME APPLICATION  

In a different scenario, we aimed at investigating whether 

an accurate high-resolution image of correlation coefficient 

isoline map can be inferred from only correlation coefficient 

matrix at a far lower image resolution of 10×10 pixels (Figure 

20). Isoline mapping is only an easy way of 2D upsampling, 

providing more resolution and thus more robust pattern to be 

learned. However, it doesn’t provide more information. This 

can be explained by an increase in the complexity which results 

in higher computational burden, but at the same time greater 

accuracy as well. Therefore, it is only the matter of trade-off 

between size, computation and accuracy.  

Figure 21 shows simplified CNN architecture which was 

trained to infer 10×10 images generated directly from 

correlation coefficient matrix. As illustrated in figure 22 and 

table 4, an acceptable accuracy was achieved for the low-
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resolution inputs, but with drastically reduced computation 

time. 

In conclusion, although using 2D isoline map of correlation 

coefficient matrix yields lower validation loss, considering the 

proposed approach without extracting isoline map-based 

features reduces dramatically the complexity of the algorithm 

without losing almost relevant information and makes the 

approach feasible in real-time application by significantly 

getting faster. 

 

 

 
Fig.17. Accuracy and loss function variation in each epoch for isoline 

numbers of 5 (Validation accuracy of 91.36 %, AUC of 0.94) 
 

 

 
Fig.18. Accuracy and loss function variation in each epoch for isoline 

numbers of 3 (Validation accuracy of 89.57 %, AUC of 0.97) 
 

 

 

 
Fig.19. Loss function variation in each epoch for channel numbers of 7 3 

(Validation accuracy of 86.31 %, AUC of 0.95) 
 

 
Fig. 20. 10×10 images of correlation coefficient 

 

 
Fig. 21. Simplified CNN architecture for real-time application 

 

 

 
Fig. 22. Simplified CNN architecture performance in each epoch (Validation 

accuracy of 89.33 %) 

 
TABLE IV.  COMPUTATION TIME WITH SIMPLIFIED MODEL 

Validation accuracy  89.33 % 
Elapsed time for model training 58 s 

Hardware resource Multiple CPUs 

Iteration number 500 
Latency for making real-time decision 0.0181 s 

 

V. CONCLUSION AND DISCUSSION 

We are facing upcoming transition from isolated 

environments and laboratories with minimum level of 

movement and noise to non-isolated environment with massive 

movements and external interferences likes ICU or even daily-

life outdoor environment. This became possible with 

emergence of portable-wearable wireless EEG acquisition 
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systems and headsets with few dry electrodes in recent years, 

replacing the large-sized heavy-weighted traditional acquisition 

systems with lots of electrodes attached to the whole scalp.  In 

the ICU environment, there are a lot of external sources 

potentially causing artifacts to the EEG recordings. The ICU 

room is usually filled with electronic devices including 

motorized beds, blood pressure cuffs, pulse oximeters, 

catheters, pacemakers, extracorporeal membrane oxygenation 

devices, tissue oximetry monitors, intracranial pressure 

monitors, cooling/warming blankets, IV pumps and ventilators. 

Besides these electronic devices, the EEG in ICU environment 

is quite often contaminated by a wide range of physiological 

artifacts coming from voluntary body movement of facial 

expressions and eye blinks or involuntary movement like 

respiration, tremor as well as rigor and myoclonus. Most 

importantly, long duration of the EEG measurements in ICU 

makes the problem more challenging. Apart from continuous 

appearance of massive complex artifacts arising from non-

isolated environments during recordings, dry electrodes may 

not provide the quality of recorded signals by traditional wet 

EEG electrodes because of electrode-skin impedance [24]. 

Considering above concerns, this paper presented an EEG 

artifact detection technique using the spatial correlation 

information in which the degree of spatial dependence among 

all EEG channels were simultaneously considered. The 

proposed method requires no auxiliary reference signal and no 

specific feature extraction. The method was shown to be 

suitable in detecting artifacts from recordings collected with an 

easy-to-use electrode and device suitable for demanding 

clinical environment such as ICU where electrode attachment 

with minimum preparation is highly appreciated [25].  

 

 
Fig. 23. Percentage comparison among commonly used artifact removal 

solutions 

 

Figure 23 provides the bar chart comparing the percentage 

of works based on the artifact elimination techniques in the 

recent years. The figure is created using the results of [26, 27]. 

According to the figure, independent component analysis (ICA) 

is the most commonly used technique among all the approaches 

and also among most of EEG processing toolboxes which 

already been developed. One drawback of ICA-based artifact 

removal techniques is that they assume that sources should be 

statistically separated. Furthermore, extraction of some 

components based on the local optimization during the ICA 

procedure on EEG recordings may results in the artificial 

polarity indeterminacy on the projected component at some 

electrodes [28]. Adaptive filtering or regression methods also 

require the reference signals. Wavelet transform (WT) is not 

accurate in the case of overlapping with spectral properties. 

Mode-mixing may also cause empirical mode decomposition 

(EMD) to be not precise for artifact removal. Apart from these, 

none of these studies have offered a solution covering all types 

of artifacts. Therefore, there is a trend towards replacing 

traditional approaches with machine/deep learning algorithms 

for not only effectively removing the artifacts but also 

identifying numerous types of artifacts in the different 

scenarios. 

Summary of some previous studies and comparison with the 

proposed method has been listed in Table 5. Even though the 

accuracies of these techniques are not comparable as they are 

not tested on the same dataset, these approaches are limited to 

the type of artifacts, and in this regards the proposed method 

could be said to be more effective compared to others. The 

obtained results also showed a classification accuracy of 

92.30% (AUC=0.96) in a leave-three-subjects-out cross-

validation procedure, representing high reliability of introduced 

method in detecting various types of artifacts, and being 

comparable to the approaches proposed earlier in the literature. 

The previous methods introduced in literature enable to detect 

only particular types of artifact while the proposed method can 

detect artifacts regardless of its type. 

There are also some other differences between this study and 

previous ones. In [18], a deep learning-based artifact detection 

method has been introduced to automatically label 1-second 

segment of EEG signal which performs prediction faster and 

needs less computation time. However, the mentioned model 

was fit for more training epochs than proposed technique. In 

[29], 1-second sequence of EEG was used as well, which again 

made its method relatively fast. In [30] and [29], because of 

dividing a data set into shorter segments, more training samples 

were used compared to current study. In [31], noise with 

different powers was added to raw EEG signal to verify the 

effectiveness of artifact removal. 

For more performance assessment, the findings were 

compared by applying EEGNet on the same dataset. The impact 

of input change to spectrogram on CNN performance was also 

explored. The results showed that the performance of CNN fed 

by correlation coefficient contour is better than that of CNN 

with spectogram as input as well as EEGNet fed by raw EEG 

sequence. Moreover, the result of CNN fed by spectogram get 

stagnant and even overfitted as the number of epochs increases. 

In general, the advantages of current study are as follow: 

o Visual representation of signal in temporal-spatial domain  

o Visible difference in the correlation coefficient contour of 

two groups with and without artifact 

o Simple network architecture 

o Outperforming in accuracy in compare to EEGNet and 

spectrogram-based CNN 

o No need for choosing spectral bands and channels 

o No need for hand-picked features 

o Automatically picking up the discriminative features 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

without any need for tuning the network 

o No need for using GPU 

o Using the snapshot of EEG signals with different lengths 

o Using only the forehead EEG signals 

o No need for auxiliary reference signal 

o Reducing dimension by fusing data in all channels 

A major limitation of current work is the relatively small size 

of the dataset. Lack of interpretability of outcome obtained 

from deep learning network as a black box system is another 

limitation of this study. 

Future research direction will includes classifying various 

types of artifacts based on their unique patterns in their 

correlation coefficient contour map, increasing the achieved 

accuracy by improving the architecture of deep network, using 

different regularization methods, using data augmentation 

techniques to increase dataset, normalizing input data and 

finally using larger dataset. 

TABLE V.   COMPARISON OF PREVIOUS STUDIES IN THE TOPIC OF ARTIFACT DETECTION WITH THE PROPOSED METHOD 

Literatures Artifact Method Number of 

channels 

Accuracy Need for additional 

recording 

[18] Eye movements, Chewing, Shivering, 
Electrode pop, Muscle artifacts 

Combination of CNN, RNN and 
DCNN deep learning networks 

22 67.59 % - 

[30] EOG Sparse autoencoder training 

algorithm 

3 ≃ 90 % No 

[30] EOG Sparse autoencoder training 

algorithm 

1 ≃ 70 % No 

[31] EOG Convolution Neural Network - 80 % - 
[32] Ocular artifact Multi-layer perceptrons (MLP) 

neural networks 

2 72.92 % - 

[32] Ocular artifact Stacked sparse autoencoder training 
algorithm 

59 79.8 % No 

Current 

study 

Different types of artifact Correlation-based Convolution 

Neural Network 

10 92.24 % No 
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