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Abstract

Virus capsids are polymeric protein shells that protect the viral cargo. About half of known virus 

families have icosahedral capsids that self-assemble from tens to thousands of subunits. Capsid 

disassembly is critical to the lifecycles of many viruses yet is poorly understood. Here, we apply a 

graph- and percolation theory to examine the effect of removing capsid subunits on capsid stability 

and fragmentation. Based on the structure of the icosahedral capsid of Hepatitis B Virus (HBV), 

we constructed a graph of rhombic subunits arranged with icosahedral symmetry. Though our 

approach neglects dependence on energetics, time, and molecular detail, it quantitatively predicts a 

percolation phase transition consistent with recent in vitro studies of HBV capsid dissociation. 

While the stability of the capsid graph followed a gradual quadratic decay, the rhombic tiling 

abruptly fragmented when we removed more than 25% of the subunits, near the percolation 

threshold observed experimentally. This threshold may also affect results of capsid assembly, 

which also experimentally produces a preponderance of 90mer intermediates, as the intermediate 

steps in these reactions are reversible and can thus resemble dissociation. Application of 

percolation theory to understanding capsid association and dissociation may prove a general 

approach to relating virus biology to the underlying biophysics of the virus particle.

1. Introduction

In the game of Jenga, one must remove pieces from a tower of wooden blocks without 

causing the tower to collapse. In percolation theory, the definition of the percolation 

threshold is the point where removed elements break a connected lattice into disconnected 

fragments, analogous to the collapse of the blocks in Jenga, or in a wooden block 

mechanical demonstration of the percolation threshold [1]. Here we are interested in 

modeling removal of subunits from a viral capsid, the protein shell of a virus, anticipating its 

collapse. In about half of known virus families, the capsid is arranged with icosahedral 

symmetry and thus has 60 equivalent asymmetric units, where an asymmetric unit may be 

comprised of one or more proteins. The role of the capsid in the virus life cycle is to protect, 

deliver, and release the viral cargo. To perform this function in vivo, capsids must readily 
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assemble and, for many viruses, readily disassemble. Computational models have been used 

to understand the process of assembly. Models can generally be grouped as master equations 

and coarse-grained molecular dynamics [2]. Robust assembly can be accomplished by 

addition of one subunit at a time even when intersubunit association energy is weak because 

subunits are multivalent. To minimize kinetic trapping, assembly may depend on a 

nucleation step or be subject to allosteric regulation [3–10]. Irreversible assembly or strong 

association energy can lead to trapped errors [11–13].

For example, the icosahedral capsid of Hepatitis B Virus (HBV) has become an important 

model system for studying capsid biophysics. HBV is also an important pathogen as 

approximately 240 million people have chronic HBV and it contributes to 780,000 deaths 

each year. In vivo, HBV assembles in the cytoplasm and disassembles prior to or during 

nuclear entry [14, 15]. The HBV capsid is composed of 120 copies of the homodimeric core 

protein (Figure 1); a small fraction of capsids are built of 90 dimers. In the 120-dimer 

capsid, subunits are arranged with T=4 icosahedral symmetry (Figure 1A), while the 90-

dimer capsid has T=3 symmetry. Following the Caspar-Klug theory of quasiequivalence, a 

T=4 icosahedron has twelve pentameric vertices and thirty hexameric vertices [16]. The 

dimeric subunits make four intersubunit connections and either extend from a pentamer to a 

hexamer or between two hexamers. Experimental estimates place dimer-dimer interaction 

energy at about 6 kBT (−3.6 kcal/mol), which favors assembly under near physiological 

conditions only because dimers are tetravalent. Thus, in vivo and in vitro, conditions can be 

found where assembly is the lowest energy state. In spite of the relative fragility of 

association, even when the capsid form is not the thermodynamically favored state, HBV 

capsids are remarkably stable, persisting for months without substantial exchange of 

subunits and surviving solution conditions where they are expected to dissociate [17, 18]. As 

one might expect, assembly models can be run in reverse to model capsid disassembly, with 

successful replication of hysteresis observed in vitro [17,18]. Recently, the HBV core 

protein has become a target for development of antiviral therapeutics; of note, these antiviral 

molecules favor capsid assembly [19–22].

Our understanding of disassembly remains limited. Our interest in the mechanism of 

dissociation was piqued by recent work where we studied dissociation of subunits from in 

vitro assembled HBV capsids [23]. In these solution experiments, subunits were removed 

from intact capsids by gentle treatment with a denaturant, leaving behind incomplete 

capsids. In some experiments, a specified fraction of the subunits within a capsid were 

chemically crosslinked so that only uncrosslinked subunits could be removed. With both 

uncrosslinked capsids and partially crosslinked capsids, using single particle mass 

spectrometry and nanofluidic approaches, we observed complexes between intact 120-mers 

and partially complete 90-dimer fragments. We observed essentially no species with fewer 

than 90 subunits [23]. It is possible that any smaller intermediates are insufficiently stable 

and/or too rare to be detected. Cryo-electron microscopy showed that incomplete particles, 

crosslinked or uncrosslinked, had no obvious features, e.g. a single hole, that distinguished 

them from T=4 particles. However, the incomplete particles were “live polymers” as free 

dimer, fluorescently labeled, and could be added to partially complete capsids to rebuild T=4 

particles. The array of incomplete capsids seen during disassembly closely matches those 

seen in assembly reactions [24–26], at least in terms of the masses of the observed particles. 
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This result leads us to question what features there might be in a T=4 120-mer capsid that 

leads to accumulation of a species missing 30 subunits.

To mimic disassembly reactions and investigate the underlying physics, we have developed a 

simplified graph representation of the capsid and randomly removed subunits from it in 

Monte Carlo simulations (Figure 1B, C). The graph description of capsid disassembly has 

important similarities to examination of percolation in regular lattices. For a very large 

lattice, subtraction of random subunits results in an abrupt phase transition or percolation 

threshold, between a single connected graph and many small disconnected subgraphs [27–

32]. Three important peculiarities distinguish a capsid from most general models of regular 

graphs. First, a capsid is a thin-walled sphere whose surface can be considered two-

dimensional. Second, capsids are assembled from a relatively small number of subunits, 

usually tens to hundreds, leading to a more gradual phase transition than is seen for large 

graphs. Third, comparison of models and data may not be straightforward as the simplified 

graph vertices represent actual proteins, which may change conformation during assembly, 

have complex interactions with one or more subunits, and may have different interactions at 

different interfaces.

We first applied percolation theory to explain experimental observations of dissociation [23]; 

here we examine the implications of percolation theory in greater depth. The character of a 

virus-like graph – the small number of subunits arranged in a two dimensional array – 

impact its fragmentation. To examine disassembly, we have adopted a coarse-grained 

simplification of subunits. We observed that capsid-like graphs break into fragments over a 

relatively narrow range of removed subunits, but not at the precise transition of an infinitely 

large graph given the small number of subunits composing the virus. The predicted 

percolation threshold of about 25% for HBV tiling (i.e. fragmentation if missing more than 

30 of 120 “dimers” in a capsid) agreed well with experimental observations. We found that 

as we randomly remove subunits, the stability of the capsid, proportional to the number of 

intersubunit contacts, falls quadratically. The two-dimensional nature of the graph, that is the 

lack of three-dimensional connections between subunits, makes it particularly susceptible to 

fragmentation. From a biological perspective, these results imply that dissociation will 

require removal of several subunits for a capsid to release its cargo – a single deleted subunit 

may be insufficient to induce particle collapse. Interaction with the viral cargo, such as 

nucleic acid, will further impede dissociation. The ability to predict capsid fragmentation 

while neglecting energetics and time-dependence demonstrates utility of a simplified 

percolation theoretical modeling technique. Discrepancies between the model and in vitro 
observations may provide insight into the underlying capsid biophysics.

2. Definitions and Methods

A graph G is comprised of vertex and edge sets V (G) and E(G). The order of a graph G is 

the number of vertices V0. For comparison of the capsid graph to viruses, each vertex is 

equivalent to a subunit. The number of edges between vertices in G is E(0). A graph G is k-

regular if the number of adjacent vertices to each vertex vj is k for all vertices in the graph. 

The graph of the HBV capsid in Figure 1 has V0 = 120 and is 4-regular. In Figure 1, the 

Brunk et al. Page 3

Phys Biol. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



graph and capsid are dual to one another; by definition, vertices represent subunits and edges 

represent interstitial bonds or contacts.

We define G(i) to be the subgraph that results from deleting i vertices and their associated 

edges. The fraction of deleted vertices is thus f V
d i ≡ i

V0
 and the fraction of vertices 

remaining in G(i) is ρV i ≡ (i − f V
d (i)). Vertex fraction remaining ρV(i) corresponds to the 

“lattice site” occupation probability pV(i) in percolation theory [30, 32]. We implemented 

disassembly and analysis in Mathematica 10.3.0 (Wolfram Research).

In section 3.1 we concern ourselves with quantities associated with G(i). The number of 

remaining edges constituting G(i), denoted E(i), corresponds to the number of intersubunit 

contacts in the system (equation 2.1). Note that bars indicate the number of elements within 

the set.

E i ≡ E G i 2.1)

In section 3.2 we investigate a more consequential quantity of interest for partially 

disassembled viruses: b0(i) is the mean number of connected components, i.e. the number of 

polymeric fragments or clusters. The number of fragments b0(i) from a given Monte Carlo 

simulation of disassembly is the 0th Betti number in topology: the number of connected 

components for each specific instance of G(i) [33]. Because G(i) may be any one of an 

ensemble of graphs, we estimate b0 i  as the arithmetic mean from many simulations for a 

given value of i. If b0(i) = 1, a partially disassembled graph G(i) is connected. In section 3.3 

we use b0 i  to determine the percolation threshold numerically via Monte Carlo. When 

b0 i ≥ 2, fragmentation has occurred.

In section 3.4 we use Equation 2.2 to characterize partially disassembled graphs G(i) by 

their local clustering coefficients, C(vj) [34]. C(vj) is the per vertex vj, that is the actual 

number of edges ∈j between vertex vj and its k(vj) neighbors divided by the maximum 

possible number of edges for all adjacent vertices:

C v j =
v j, vk ∈ E G v j, vk ∈ N vi

v j, vk v j, vk ∈ N vi
=

ε j

k v j ∗ k v j − 1
2

2.2)

For an isolated vertex and pairs of vertices lacking other neighbors, the numerator, 

denominator, or both equal zero. We follow the convention of setting C(vj) for these vertices 

to zero [34]. In partially isolated vertices C(vj) is 1. For vertices in intact particles, or where 

the local environment resembles an intact particle, the C(vj) is 1/3 (Table 1).
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3. Results

3.1 Graph edge count (capsid stability) decays quadratically with the number of vertices 
removed

To mimic the experiment with partially crosslinked capsids [23], we model removal of i 
subunits from a capsid by removing random vertices from a graph. While this approach to 

dissociation does not preferentially remove subunits based on Boltzmann weighting of 

stability, it does not require that we make assumptions that any particular set of subunits are 

more labile. As the number of removed vertices increases, the edge count, or number of 

contacts between subunits, E(i), decreases gradually (Figure 2). The number of intersubunit 

contacts in a capsid is essentially a measure of the association energy of the capsid, thus the 

edge count is an index of capsid stability. Empirically, the edge count of partially 

disassembled graph G(i) decays quadratically with i, the number of vertices removed. For all 

graphs, k-regular and random, that we have tested:

E i ≈ E i =
k0

2 V(G)| i
2 − k0i + |E(G) | = E(0) − k0i +

k0
2V0

i2 3.1)

Recall, V0 and E(0) are the initial number of vertices and edges, respectively, and k0 is the 

initial number of edges per vertex (vertex degree or subunit valency). For a k0-regular graph 

such as HBV (Figure 1) and small values of i, there is a low probability any two deleted 

vertices are adjacent, in which case the linear term dominates. The quadratic coefficient 

accounts for deleted vertices that are adjacent to one another, decrementing edges removed 

per unit vertex removed at greater values of i. Surprisingly, we find that Equation 3.1 applies 

to all graphs by substituting the mean vertex degree k0, it is not necessary for G(0) to be k0-

regular. Using a number of test graphs, including metabolic networks we observe that not all 

subunits need to have the same valency in order for the equation to apply (Figure 2).

Equation 3.1 may be simplified in terms of the vertex set where V(i) = |V(G)| − i = V0 − i:

E i =
k0

2 |V(G)| (i − |V(G) | )2 =
k0

2V0
V i 2 3.2)

Normalization of Equation 3.2 by E0 =
k0V0

2  and rearrangement suggests that the fraction of 

remaining edges pE(i) is scale invariant, in both E(0) and V0, equal to the fraction of 

remaining vertices pV (i) squared:

E i
E 0 = V i 2

V0
2 or pE i = pV i 2 3.3)
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The decrease in edge count agrees well with the empirical equation, even for a single 

random subset of removed vertices per point (Figure 2). After a sufficient number of Monte 

Carlo replicates, the average converges to the predicted value (inset Figure 2A). Note that 

this predicts a fairly gradual decrease in the stability of the partially disassembled 

fragment(s) (i). This gradual decrease in ensemble stability is not expected given the abrupt 

fragmentation observed in vitro and indicates energetics are not the factor determining 

fragmentation.

We considered several alternative strategies for removing subunits. With an energy of 6kBT, 

typical for interaction energy between virus subunits, there is a strong bias for removing 

subunits from a single defect. The effect is to favor a single growing hole in the capsid, 

where loss of each subunit leads to on average a loss of two intersubunit contacts (Figure 

2A). This so-called pacman approach seems like the intuitively the obvious way for a virus 

to lose subunits, however, experimentally this prediction is not borne out [23]. Microscopy 

shows that most do not have one contiguous hole during disassembly.

3.2 Fragmentation: statistically expected value of the cluster count, b0 i

An assessment of fragmentation, the mean number of distinct fragments b0 i , is an 

informative property of the partially disassembled graph G(i) (Figure 3). This is known as 

the zeroth Betti number in topology. For a small number of vertices i deleted randomly from 

the graph, the graph remains intact. For HBV, as i approaches 30, the average number of 

fragments as a function of deleted vertices, b0 i , rapidly increases, signifying a breakdown 

in the integrity of the capsid. Empirically, the fragmentation curve b0 i , resembles the 

probability density function of the β-distribution, the so-called ‘β-curve’ ℬ α, β . b0 i  can be 

approximated as ℬ α, β  with shape parameters α, β, and normalization constant cn, which 

can be fit to b0(i) in terms of the fraction of vertices deleted f V
d i ≡ i

V0
, and the fraction of 

vertices remaining pV i ≡ 1 − f V
d i :

b0 i ≈ ℬ i, b0 0 , cn, α, β ≡ b0 0 − cn f V
d i αpV i β 3.4)

where b0(0) = 1 is the fraction of clusters in the initial graph.

Even for a 4-regular graph modeled on HBV, the breakdown of the graph in any given 

Monte Carlo simulation is highly variable. The standard deviations for b0 i  show that – 

while abrupt –there is not a step-wise phase transition when subunits are removed randomly; 

this is due to the small size, it has relatively few subunits. Due to a significant standard 

deviation, observation of the β-curve requires multiple replicates.

3.3 Application of percolation theory to capsid disassembly

In a given partially disassembled graph G(i), b0(i) is the number of fragments. We define 

Pcon i  as the probability that a partially disassembled graph will be connected. The 
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percolation threshold of the graph, pVc
, is the fraction of sites that are filled pv at the 

maximum of the first derivative of Pcon i  with respect to i (Figure 4) [30]. In practical terms, 

this definition of the percolation threshold occurs when about half of the graphs in a series of 

simulations have broken into two or more fragments b0 i ≥ 2.

For the 120 vertex HBV-based graph the percolation threshold of pv ≈ 0.74 occurs at ic ≈ 31 

missing subunits. This value agrees well with solution experiments where we observed 

intermediates with up to, but no more than, 30 missing dimers. This threhsold is also 

observed in assembly experiments. An interesting divergence from experimental observation 

is that Monte Carlo simulations do show the presence of some intact graphs missing more 

than 30 subunits (Figure 4).

Graph topology determines resistance to fragmentation [32]. The HBV graph is planar, a 2-

dimensional tiling over a spherical surface, in general a random graph is non-planar. As seen 

in Figure 4, because HBV is restricted to 2-dimensional contacts between neighboring 

subunits, it fragments more readily than a typical random graph. The percolation threshold 

for HBV is pVc
≈ 0.74, higher than the average for multiple non-planar random, 4-regular 

graphs for which pVc
= 120 − 36

120 ≈ .70. This observation leads us to propose that planar 

graphs, and by analogy empty capsids, will fragment with fewer vertices removed. Similarly, 

figure 5 shows that for a given number of elem ents removed (i), HBV fragments more than 

the corresponding random non-planar graph (b0
HBV(i) > b0

r(i)). The susceptibility of planar 

graphs to fragmentation resembles the “extreme vulnerability of interdependent, spatially 

embedded” geographic networks [35].

Monte Carlo disassembly was also used to predict the size distribution of components when 

a graph fragmented. P j i  is defined as the probability of a connected graph of size j occuring 

in G(i). For example, when a population of capsids are each missing i = 10 subunits, all of 

the capsids are perforated but intact and Pcon = P110 10 ≈ 1 (Figure 6a). When i = 20, 85% 

of the capsids remain intact. For i= 30 ≈ ic, close to the percolation threshold, 35% of 

capsids remain intact. For i =40, only 5% of capsids remain intact. Over a population of 

capsids there will be a distribution of values of missing subunits so that when i is 

considerably above the percolation threshold we observe a binomial distribution of graph 

sizes(Figure 6b, see the magenta distribution for mean i =10). When i is above the 

percolation threshold i ≥ ic, the number of intact graphs drops, but there may still be intact 

particles. We also observe in Figure 6 that the HBV-like graph, like most graphs, rarely 

fragments into two large clusters such that the probability intermediate values of j are very 

low, a hallmark of percolation theory consistent with solution studies.

3.4 Clustering coefficients, C(n)

To analyze the distribution of dissociation products, we consider the local stability of the 

HBV lattice as we remove subunits (Equation 2.3). In the partially disassembled HBV 

capsid, there exist three possible local subunit arrangements (Figure 1C). While useful as a 
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classification scheme indicating local stability, the value of the clustering coefficient itself is 

not proportional to stability. The local clustering coefficient for all vertices in the fully 

assembled capsid G(0) is C v j = 1
3 . Deviation from this indicates the local integrity of the 

cluster a vertex belongs to. Missing neighbors produce either a locally stable C(vj) = 1 

triangular arrangement (with each dimer bound to one another) or a C(vj) = 0 arrangement 

with the subunits either in a weak, linear chain or isolated with no neighbors at all. Removal 

of a single subunit often fragments a linear chain (Figure 1C in red) but does not fragment a 

triangular arrangement (in green). The local clustering coefficient does not differentiate 

between local geometry as both fivefold and sixfold vertices are tetravalent (with the same 

topology). Figure 7 shows the fraction of subunits in capsid-like arrangements falls and the 

fraction of subunits in the easily fragmented linear configuration increases dramatically as 

vertices are removed. The C(vj) = 0 pool of isolated subunits and linear chain arrangements 

becomes increasingly dominant as many vertices are removed, indicating the lack of any 

appreciable clusters. Near the percolation threshold, the number of vertices in the triangular 

configuration increases. By analogy, capsids held together by weak linear chains when i ≥ 30 

will be more prone to proceed with dissociation, which suggests why fragmentation is more 

abrupt in solution than in a static model.

4. Discussion

Dissociation of the capsid has biological, biochemical, and physical implications. In the 

lifecycle of many viruses, the dissociation and release of the viral genome is every bit as 

important as the assembly and packaging of the genome. So how does a virus capsid fall 

apart? Our initial hypothesis was that removal of a first subunit, or cluster of subunits, would 

lead to a catostrophic collapse [18]. The basis of this idea was in energetics and their effect 

on kinetics, that removing a subunit fully surrounded by neighbors would lead to a hole 

surrounded by many subunits held in by fewer contacts, leading the capsid to unravel. 

However, experimental studies showed that removing subunits from partially crosslinked 

and uncrosslinked HBV capsids resulted in accumulation of intermediates between 100% 

and about 75% of a complete capsid and very few smaller intermediates [23]. Microscopy 

suggests removal of subunits may not occur in one growing hole, but may be more random.

Remarkably, the same distribution of intermediates seen during idsassembly is also seen 

during assembly [24,25,36]. The study described in this paper suggests that there is a 

physical basis for the (meta)stability of a partially complete particle. We observe that 

removing more than the percolation threshold of ic ≈ 31 subunits will result in fragmentation 

of the intermediate into smaller, and presumably more labile, species. We suggest that the 

percolation threshold concept will be common to other spherical viruses, although the value 

of the threshold will change with the geometry of the lattice. We can not exclude the 

possibility of a biochemical basis peculiar to the T=4 HBV capsid for the stability of an 

incomplete particle, but it is not necessary to recapitulate the observed behavior.

We did not fully explore the mechanisms for dissociation. In this study, for simplicity, we 

considered the HBV-like graph to be built of 120 dimer-like rhombic subunits where all 

intersubunit interactions are equivalent. In HBV this seems a fair first approximation as 
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symmetrical intermediates such as trimers, pentamers, and hexamers do not accumulate 

during assembly [37,38]. Energetically, the difference between removing subunits randomly 

or preferentially from a growing hole described a relatively narrow envelope (Figure 2). Of 

course, in some viruses there are clearly stronger interactions between subunits observed 

experimentally (e.g. cowpea chlorotic mottle virus [39], Phi 29 [40], or minute virus of mice 

[41]) or predicted computationally [42,43]. A variegated pattern of stronger and weaker 

interactions is likely to generate a pattern of dissociation specific to a given virus that may 

affect stability and fragmentation. Antiviral compounds that modify the strength of 

intersubunit interactions [44] can also be predicted to modify dissociation.

Application of Monte Carlo simulations to dissociation of a capsid by removing one subunit 

at a time is a practical realization of percolation theory. Such simulations are used to 

determine percolation thresholds, the points at which the graphs fall apart, for the 

disassembly of arbitrary graphs. There are features of a virus capsid that impact percolation 

and stability:

(i) Capsids are small, often less than a few hundred subunits. Small graphs are 

expected to have relatively broad percolation transitions, as shown for both a capsid 

and random 120-subunit graphs in Figure 4. An examination of percolation in larger 

icosahedra saw a similar effect [45]. For very large graphs, one expects a more abrupt 

phase transition. Observation of “drilling percolation,” where the experimentalist 

literally drilled a series of holes through wooden blocks and characterized these 

observations with simulations that showed a similar effect as the relative size of the 

block increased [1].

(ii) Capsid lattices are two dimensional lattices stretched over a three dimensional 

solid, which limits the number of subunits and intersubunit interactions, making the 

graph more prone to fragmentation (Figure 5). Atomic force microscopy experiments 

investigating capsid indentation are consistent with this prediction. A prediction of 

this hypothesis, supported by experiment, is that a particle with nucleic acid 

crosslinking its inner surface would be expected to be far more resilient due to its 

non-planar topology [46–50].

(iii) Caspar-Klug quasi-equivalence dictates that interactions between subunits are not 

identical. In most cases, capsids have twelve fivefold vertices with a Caspar-Klug 

arrangement of surrounding sixfold vertices [51]. A more advanced model may 

consider different weighting factors for removal of subunits and stability of the 

remaining graph. Indeed, kinetics could also be factored into a more sophisticated 

model of dissociation.

(iv) Capsid subunits are made of protein(s), which have complex geometry. 

Interactions between subunits may be based on contact between two relatively 

featureless surfaces, require detailed complementarity, or require extended peptide 

chains to wrap around one another.

This study addresses the first two of these points.
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The predicted percolation threshold for T=4 HBV capsids (120 dimers) was in agreement 

with solution experiments, except we do not experimentally observe the predicted 

continuum of large intermediates with fewer than 90 subunits [23,25,37]. For this purpose, 

we will define a large intermediate as having more than 60 subunits, which should be easily 

detected by single particle methods. Experimental observations of HBV dissociatiom 

intermediates were dominated by complexes of ≥90 dimers. Curiously, in assembly 

experiments we also observed a substantial pool of intermediates of ≥ 90 dimers [24,25]. 

These convergent experimental observations suggest that intermediates consisting of less 

than 90 dimers are particularly labile during disassembly or are consumed to make large 

species during assembly. We suggest the basis for the absence of 60- to 90-subunit 

intermediates arises from their lability, a kinetic effect. We note that throughout the 

dissociation simulation that the stability of the remaining graph continuously falls with i 
(Figure 2), which would be expected to progressively destabilize intermediates [8,52]. 

Furthermore, as i approaches and exceeds the percolation threshold, graphs of many 

intermediates are held together by a single intersubunit contact (Figure 7); such 

intermediates are unlikely to persist for long in solution.

Another surprise was that in experiments, we observed that the fraction of intact capsids was 

greater than our model predicted for a normal distribution of removed subunits [23]. We 

suspect this arose because we removed random subunits without regard to their neighbors; a 

pacman approach [53] of removing contiguous subunits and the requirement that two or 

more subnits be removed together partially addresses this discrepancy. The effects of 

different dissociation paths will be systematically investigated in the future. We will also 

need to take into account that intersubunit contacts are not necessarily equal. A T=4 HBV 

capsid has four quasi-equivalent environments with non-equivalent interactions; the fivefold 

interactions seem notably weaker than others which may also effect the rate of dissociation 

and thus preference of removal of these subunits. [22]

Correlation between experimentally observed and predicted percolation thresholds indicates 

the applicability of percoalation theory to the study of capsid assembly and disassembly. 

During HBV disassembly, species missing more than 30 (~25%) subunits appear likely to 

break into multiple fragments (this work and reference [23]). This result is immediately 

applicable to assembly reactions. During assembly the intermediate reactions are generally 

modeled as reversible [2,4,13,54,55]; this implies that dissociation of a subunit from HBV 

complexes of ≤ 90 dimers may lead to a catastrophic collapse. As icosahedral capsids can be 

described in terms of relatively few classes of lattices, we suggest that there may be few and 

generalizable disassembly models, at least some of which will resemble our results based on 

HBV [56,57]. Furthermore, the implications of these studies relate to the biology and 

nanotechnology of capsid-like particles uncoating to release cargo, which may include 

genetic material and therapeutic small molecules [58,59].
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Figure 1. The T = 4 HBV capsid and corresponding graph representations of a fully assembled 
and partially disassembled capsid
A) A T = 4 HBV structure (PDB accession code 2G33) overlaid with its dual graph. The 

capsid is built of 120 homodimeric protein subunits. The dual vertices are represented as 

blue spheres. Interstitial lines on the surface of the capsid correspond to the 240 chemical 

contacts between dimers. The physical diameter of the T = 4 HBV capsid is 36 nm. (B) A 

simpler polyhedral model of the T = 4 HBV capsid, using interstitial lines to demarcate 

subunits, and its dual graph. C) The HBV graph missing i = 30 random subunits. The vertex 

color indicates the local clustering coefficient, C(vj). Weak, linear-chain subunits have C(vj) 

= 0 (red). Partially isolated vertices that are members of trimeric clusters have C(vi) = 1 

(green). The remaining subunits have an environment that is closer to that of a subunit in an 

intact particle with C vi = 1
3 (blue). See the Definitions section for the equation determining a 

vertex’s local clustering coefficient.
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Figure 2. Graph stability decays quadratically as vertices are removed
Stability is proportional to the number of edges between vertices, or equivalently, to the 

number of inter-subunits contacts remaining after removing i subunits. (A) Using the 4-

regular HBV graph, data were collected using a single Monte Carlo replicate for each value 

of i. Agreement with the fit to Equation 3.3 (black line) is unambiguous. In a biased reaction 

interactions between subunits favor expansion of a single hole, resulting in a linear decrease 

in the number of intersubunit contacts. After several replicates, points converge to the line 

(inset panel). (B) All tested data graphs follow the same curve, they do not have to be 

regular. Graphs used in this figure include 1173 Erdos-Renyi random graphs of low but non-

zero variance from k=4 (purple), and the highly variant metabolic network of C. elegans 

(blue) [29]. The goodness of fit to the quadratic curve of Equation 3.3 (black line) is related 

to the degree distributions and replication; the HBV data fall very close to the calculated 

curve after 100 replications (inset)
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Figure 3. The number of fragmented clusters b0 i  increases abruptly as vertices are removed 

from the HBV graph
Blue data points are the averages of b0(i) over 100,000 Monte Carlo replicates for each value 

of i. The red bars indicate the standard deviations. The extent of fragmentation increases 

rapidly in the range 30 ≤ i ≤ 40. The data for the dashed line were described previously [23]. 

The solid blue line is approximated well by a β-curve with parameterization α ≈ 3.73, β ≈ 
1.45, and cn ≈ 343 (Equation 3.1).
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Figure 4. For a graph modeled on the HBV capsid, the percolation threshold occurs more 
abruptly than for non-planar topologies
Shown is the probability the perforated capsid remains intact Pcon(i) for both HBV and an 

array of 120 subunit 4-regular – but otherwise random – graphs. The leftmost vertical 

gridline at ic
HBV = 31 corresponds to the percolation threshold of HBV, pVc

. This threshold 

has been confirmed in vitro: we see few large fragments missing ic
HBV or more subunits. 

HBV is more fragile than non-planar systems, fragmenting more abruptly than comparable 

random graphs due to the difference in planar (2D) and non-planar topologies: ic
HBV < ic

rand.
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Figure 5. The graph corresponding to HBV capsid, a planar tiling, fragments with fewer 
subunits removed and into more fragments than non-planar graphs
The number of fragmented clusters b0 i  was determined as a function of the number of 

vertices removed for the HBV-like graph (blue, data from Figure 3) and an ensemble of 4-

regular random graphs (red). The HBV lattice is more susceptible to fragmentation because 

vertices connect only with nearest neighbors in two dimensions.

Brunk et al. Page 18

Phys Biol. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Fragment size distributions Pj(i) at various i
As subunits are removed, fragmentation causes a rapid decrease in the probability of intact, 

perforated capsids. (A) Monte Carlo disassembly of HBV produces a mean number of 

fragmented clusters, b0 i , data and standard deviations for which are shown. The probability 

of intact clusters missing i subunits are shown as histogram bins; color denotes the value of i 
= (0, 10,…, 40) at which each distribution was produced. At any given deterministic i, the 

largest cluster possible occurs with probability Pcon = P120−i, the leftmost bin of each color. 

The probability of one large, intact cluster P120−i remains substantial until reaching the 

percolation threshold corresponding to ic = 31 subunits removed, at which P90 (30) ≈ .35 or 

35%. Note that when i = 40 > ic, there exist as many fully isolated subunits as there are 

intact wholes when i = 30 < ic: P90 (30) ≈ P1(40). We have detected this percolation 

threshold in vitro [23]. Panel A was described previously and is used by permission [23]. (B) 

The same for a more realistic case in which the number of subunits removed per capsid is 

normally distributed about a mean i. Such stochasticity further reduces Pj(i), explaining lack 

of detection of many clusters of size j < 90.
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Figure 7. Evolution of the local subunit stability in a dissociation reaction
The clustering coefficient indicates the local integrity and stability of products. The same 

color scheme is used in the left panel of figure 1. The fraction of capsid-like subunits (blue, 

C v j = 1
3 ) falls monotonically. The proportion of subunits in easily fragmented, linear chains 

(red, C(vj) = 0) increases rapidly. It is likely these will further dissociate in solution. The 

fraction of subunits in small, trimeric clusters (green, C(vj) = 1) is maximal at about the 

point when half of the subunits are removed. The probability of even small, trimeric clusters 

begins decreasing after i ≈ 60 in favor of completely isolated subunits.
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Table 1

A glossary of variables used in this paper.

Symbol Relation Definition

G The initial graph (prior to disassembly)

V0 Initial number of vertices (prior to disassembly)

E0 Initial number of edges

k0, k0 =
E0
V0

Initial valence (number of edges per vertex). The bar indicates the mean valence.

G(i) A graph missing (i) vertices

V(i) = V0 − i Number of vertices remaining in G(i)

pV(i)

= V i
V0

Fraction of vertices remaining in G(i)

f V
d i = i

V0
= 1 – ρV(i)

Fraction of vertices removed from G to produce G(i)

E(i)
E i

Number of edges remaining in G(i).
The bar indicates the mean of multiple Monte Carlo replicates.

pE(i)

= E i
E0

Fraction of edges remaining in G(i)

b0(0) Initial number of components

b0(i)
b0 i

Number of fragments resulting from removing i vertices to make G(i). The bar indicates the mean of multiple 
Monte Carlo replicates.

α, β, cn Fit parameters characterizing the tendency to fragment.

P j i
Mean probability that a fragment of size (j) exists in a given G(i)

ic Percolation threshold, number of vertices removed to induce a disconnection phase transition.

pVc =
V0 − ic

V0

Percolation threshold in terms of fractional vertices remaining.

C(vj) Clustering index indicates the class of local connectivity for a vertex. Classes, not the value of C(vj), are indicative 
of local stability.
 C(vj) = 0 − locally unstable
 C(vj) = 1 − locally stable
 C(vj) =1/3 − capsid-like environment, stable
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