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Abstract.  In ion traps, entangling gate operations can be realized by a
bichromatic pair of laser beams that collectively interact with the ions. In this
paper, a new method of modelling the laser—ion interaction is introduced that
turns out to be superior to standard techniques for the description of gate
operations on optical qubits. The treatment allows for a comparison of the
performance of gates based en® o, and o, ® o interactions on optical
transitions where the bichromatic laser field can be realized by an amplitude-
modulated laser resonant with the qubit transition. Shaping the amplitude of
the bichromatic laser pulse is shown to make the gates more robust against
experimental imperfections.
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1. Introduction

The processing of information based on the laws of quantum physjchas become a

very active field of research during the last decade. For the experimental demonstration of
fundamental key results of quantum information theory, ion-trap based systems have played
a major role. The success of ion trap experiments can be attributed to the fact that encoding
guantum information in either hyperfine ground or meta-stable excited atomic states provides
well-defined quantum bits (qubits) with long coherence times. The use of lasers for manipulating
the qubit state allows for precisely switchable interactions with low decoherence rates. The
fundamental operations of qubit initialization, arbitrary single qubit manipulation and quantum
state-detection have already been used in atomic clocks with single ions for many years.
Contrary to other realizationdl] of quantum information processing, the most demanding
operation in ion traps consists of the realization of an entangling gate operation. Because of
the repulsive Coulomb force, the inter-ion distance is orders of magnitude bigger than the
characteristic length scale of any state-dependent interaction between ions in ground or low-
lying excited states. In all current experiments creating entangled 2H$], gate operations

rely on interactions that are mediated by the vibrational degrees of freedom of the ion string.
These gate operations fall into two categories:

1. Quantum gates induced by a laser beam that interacts with a single ion at a time as
originally proposed in the seminal paper by Cirac and Zol@ragnd later realized by
the Innsbruck ion trapping grou]f In these gates, a single ion is entangled with a
vibrational mode T] of the ion string and the entanglement is subsequently transferred
from the vibrational mode to the internal state of a second ion.
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2. Quantum gates induced by a bichromatic laser that collectively interacts with two or more
ions. Here, a vibrational mode becomes transiently entangled with the qubits before getting
disentangled at the end of the gate operation, resulting in an effective interactions between
the qubits capable of entangling them. Gates of this type were first proposed by Milburn
et al[8, 9], Sarensen and Mglmet(, 11] and Solancet al[12], and subsequently realized
by ion trapping groups in Boulder, Ann Arbor and OxfoBH[5].

Even though both classes of gates are applicable to hyperfine qubits as well as optical qubits
(i.e. qubits encoded in hyperfine states or in states linked by a dipole-forbidden transition with
an optical wavelength), current experiments with optical qubits have relied on the former and
experiments with hyperfine qubits on the latter type of interaction. In any case, the main goal
consists of demonstrating fast operations creating entanglement with high fidelity.

The purpose of the present paper is to discuss bichromatic gate operations with a focus
on implementations using an optical transition. It turns out that for optical transitions, gate
operations are achievable by illuminating the ions with an amplitude-modulated laser beam
that is resonant with the qubit transition. The paper is organized as follows: s@aeiews
different methods of realizing bichromatic quantum gates and discusses properties that are
specific to their application to optical qubits. In secti®dnan effective Hamiltonian for the
laser—ion interaction will be derived by going into a reference frame rotating at non-uniform
speed in order to eliminate non-resonant excitations of the qubit transition that do not couple to
the vibrational mode. In this way, it will be shown that for a single ion qubit the interaction is
well described by a HamiltoniaH = ih(y (t)a" — y (t)*a)a,,, where the coupling strengshis
proportional to the laser intensity in the limit of low intensities but starts to saturate at higher
intensities and where,, = o - i, is a component of the Pauli spin operagorcoupling to a
vibrational mode of the ion described by creation and annihilation opealftcaisFurthermore,
it will be shown thatii,, depends not only on the particular type of gate operation but also on
the laser intensity and the relative phase between the two frequencies of the bichromatic field.
Equations {0), (17) and €7) describing the action of the gates basedo® o, and ono, ® o,
(Mglmer—Sgrensen) interactions are the key results of the paper. For the Mglmer-Sgrensen
gate, the result will be compared to the analysis presentedljnlp addition, the performance
of 0, ® 0, ando, ® o, gates will be compared. Sectidrshows how to use pulse-shaping of the
laser intensity as well as spin echo techniques to make the gates more robust against fluctuations
of the control parameters.

2. Quantum gate operations based on bichromatic laser fields

2.1. Driven quantum harmonic oscillator

The HamiltonianH = hva'a+hQi(a’é*t — ae '»t) describes a harmonic oscillator oscillating

at frequency and driven by a force with frequeney and coupling strengti2. Going into

an interaction picture defined o = hva'a yields the HamiltoniartH = hQi(a'é® — ae %),

wheres = w — v. Under the action of the driving force, an oscillator that is initially in a coherent
state remains in a coherent state. For a force that is slightly detuned from resonance, the coherent
state maps out a circle in phase space and returns to the initial state after arperidd/s.

This operation multiplies the oscillator state by a phase factor whose magnitude is given by the
ratio of the strength of the force and the detuning as showa]in [
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In order to allow for variations of the driving field’s strength, we generalize the
Hamiltonian toH = ih(y (t)a' — Y (t)a) and calculate its propagator(t) by using the Baker—
Campbell Hausdorff relatlorD(oe)D(ﬁ)_ D(oe+ﬂ) exp(ilm(apB*)) for the displacement
operatorD (a) = e@'—"a_For the propagator, we find

U@ = lim Hexp(—%H(t@At) = D(a(t)) expid(t)), (1)
k=1

whereAt =t/n, ty = kAt and

t t t’
oz(t):f dt'y (), d)(t):lmf dt’y(t’)f dt”y*(t").
0 0 0

In the case of a driving force with constant amplitudet) = Q€®, one obtainsu(t) =
i(%)1—-€") and = (%)2(& —sindt). After a time ty =27N/|8|, N=1,2,..., the
coherent state returns to its initial state in phase space with its phase changed by an amount

d(y) =27 N (%)Zsign((S). By making this phase change depend on the internal states of a
pair of ions, an entangling gate operation can be achieved. For

=ih(y®a' —y* (a0, (2)
whereQ is an operator acting on the qubit states, the propagalas (eplaced by
U, (t) = D(a(t)O) expli® (1) 0?). (3)

Choosing the interaction time such thatx(r) = 0 thus realizes a propagator that depends
nonlinearly on® and does not alter the vibrational state.

2.2. Laser—ion interaction

The interaction of a single ion qubit resonantly excited by a monochromatic laser field with
frequencyw, is usually described by performing a rotating-wave approximation with respect to
the optical frequency to obtain the Hamiltonian

H = hQo,e dtgn@e+a'e 4 ¢ (4)

here,§ = w. — wg Iis the detuning from the qubit transition frequengy, v is the frequency

of the ion’s vibrational mode of interest, aid = (oy +ioy)/2 with the Pauli matrices, .

The strength of the laser—ion coupling is characterized by the Rabi frequeneynd the
strength of processes involving changes in the vibrational state is determined by the value of
the Lamb-Dicke parameter Equation 4) represents a Hamiltonian in an interaction picture
that is defined with respect to the Hamiltoniéfy = hva'a+ (hwo/2)o, describing the ion
qubit in the absence of any laser—ion interactions; & 1, the Lamb—Dicke approximation
gn@e+ale) o 1 +in(ae M +ale™) is used to simplify equationt). The resulting three terms
describe excitations on the carrier, the lower and the upper motional sideband, respectively. The
generalization of the Hamiltonian to the case of two and more ions is straightforward. For the
sake of simplicity, calculations in secti@will be limited to the case of the laser coupling to

the centre-of-mass mode along the axis of the ion string where all ions experience the same
coupling strength. A detailed account of laser—ion interactions is givel$jn |
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Figure 1. Raman coupling of motional states for a hyperfine or Zeeman qubit.
(@) The stategt, n=0) and |1, n=1) are coupled via the excited stat.

A similar coupling not shown in the figure exists for the qubit stigte The

laser detuningg\; and A, from the mediating states are large compared with
trap frequency and the qubit level spacing, to avoid spontaneous emission
from statele). Constructive interference of paths 1 and 2 is achieved for counter-
propagating laser beams. (b) The coupling is maximized for counter-propagating
laser beams with frequencieg andw, forming a moving standing wave along
the axis of vibration of the motional mode of interest.

2.3.0,® 0, gate

A Hamiltonian as described by equatio) (was employed for the first time in an
experiment 14] creating a Schrédinger cat state with a single ion uging o, i.e. a coupling

to the motional mode that depended on the internal energy eigenstate of the ion. Later, it was
realized that the same type of coupling could be used to entangle a pair of ions by performing
a conditional phase gat&,[9]. In the experimental realization8,[5], spin-dependent forces
acting on a pair of hyperfine or Zeeman ground states have been realized by near resonant
driving of Raman transitions between vibrational states (see figuF®r this purpose, two non-
copropagating laser beams with frequeneigsy, form a moving standing wave with difference
frequencywy, — w; close to the frequenayof a vibrational mode. The ac-Stark shift of the qubit
states||), |1) results from a non-resonant coupling to another atomic $&téhat is made

qubit state-dependent by properly chosen polarizations. Since the laser field exhibits a strong
spatiotemporal modulation, the resulting potential gradients induce a force acting on the qubits
that is state-dependent and that couples to the vibrational mode by displacing the qubit along
a circle in phase space. When the ions couple to the centre-of-mass mode (stretch mode), the
coupling to the mode can be made to disappear when both qubits are in the same quantum state
by choosing an ion spacing that is an odd (even) integer multiple of half the wavelength of the
moving standing wave. Disregarding unimportant global and single qubit phases, this coupling
is then described by an operator= S, whereS, = oV + o/? is a collective spin component of

the qubits.

The situation is different for qubits encoded in atomic states connected by a narrow
optical transition. For coupling motional statgds n=0) < ||, n = 1), here, the other qubit
state|1) serves to mediate the coupling. Similarly, a coupling between the $tates= 0) <
|1, n=1) is mediated by the statd ). To achieve a strong coupling, a detuning from
the intermediate states can be chosen that is smaller than the transition frequency between
vibrational states provided that the decay rate of the metastable state is small compared
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Figure 2. Raman coupling of motional states for an optical qubit. (a) The
coupling for state$t, n = 0) and|1, n = 1) is mediated by the statég, n = 0)
and||, n = 1) and vice versa on the narrow qubit transition. Since spontaneous
scattering from the mediating state is small, the detuning can be made small
compared to the trap frequency. Far =v/2 and A, = —v/2, the coupling

is maximized by choosing a copropagating beam geometry. (b) Optimum
coupling is achieved for co-propagating laser beams with frequengiesd

w, propagating along the axis of vibration of the motional mode of interest.
As the bichromatic laser field could also be described by a monochromatic
laser field that is amplitude-modulated with a frequeagy— w, close to the
vibrational frequency, no spatially varying ac-Stark shifts are involved in the
coupling.

to v. For wp; = wp £ v/2, the two interfering paths shown in figug€a) connecting levels

I}, n=0) < ||,n=1) have equal strength. Since the detunings from the mediating states
now have opposite signs, destructive interference is achieved for counter-propagating beams
whereas the coupling is maximized for co-propagating bealis [n the limit of small
excitation 2 < v), the coupling strengtkg o on the Raman transition betwegn n = 0) and

14, n=1) is given byQr o= 2nQ?/v. The statest, n=0) and |}, n=1) are coupled with

equal strength but opposite sign. For stronger excitation, the carrier transition is non-resonantly
excited which leads to a saturation@k . As long as the intensities of the bichromatic beams

are equal, there is no overall ac-Stark shift due to excitation of the carrier transition and the
first motional sidebands because ac-Stark shifts caused by the two laser fields exactly cancel
each other.

In the case of two ions excited on the centre-of-mass mode, a driven quantum mechanical
oscillator is realized with collective atomic oscillatér= S,. In addition to the coupling of
vibrational states, there is another small Mglmer—Sgrensen cougldhdhlat does not exist
for the case of hyperfine or Zeeman qubits: collective spin flips between the |§tates and
|14, n) occur by processes involving a blue and a red photon that are mediated by the states
IJ4,n£1) and|1],n+1) (see figure3). A similar process involving either two blue or two
red photons couples the stat¢g, n) and|| 1, n).

2.4.04 @ 0, gate

In contrast tos, ® o, gates that do not change the internal states of the ionstiter, gate
operations first investigated by Sgrensen and Mglh@rdnd others 12] relies on collective

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)
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[t1,n)

[11,n+1)% % 111,n+1)
[L1,n) - [1l,n)
[11,n=1) - < 110D

[Li,n)

Figure 3. Mglmer—Sgrensen gate. A bichromatic laser field with frequencies
wy, w; satisfying 2oy = wy, + w; Is tuned close to the upper and lower motional
sideband of the qubit transition. The field couples the qubit statgs< |11)

via the four interfering paths shown in the figure. Similar processes couple the
stateg1) < [l 1) with the same strength provided that the Rabi frequencies of
the light fieldsw, andw, are equal.

spin flips|{{) < [11), 11) < [11) by processes coupling to the lower and upper motional
sidebands as illustrated in figuBe It can be seen that the Hamiltonian governing the action
of the gate is described by settifg = cos¢S, +singS, [15, 16]. For a properly chosen
coupling strength, the gate operations maps the product state{dasis|1 ), [{1), [1 |} on
to a basis of entangled states. For hyperfine qubits, a detailed discussion of advantageous beam
geometries is presented ig. In the case of optical qubits, it is again possible to choose
a pair of co-propagating beams for performing the gate operation. The only difference to the
0, ® o, gate consists of the choice of laser frequeneigs= wo £ v required for achieving
a resonant coupling. Formally, the gate operation is equivalentdpxao, interaction in a
rotated basis. To stress this analogy, the Mglmer—Sgrensen gate operation is often also called a
U¢ ® U¢ gate

The possibility of choosing co-propagating laser beams for performing eitl®w, or
o, ® 0, gates is attractive from an experimental point of view. The light field could be generated
by passing a laser beam through an acousto—optical modulator driven by two radio-frequency
fields and subsequently coupling the first-order diffracted beams into a single-mode optical
fibre, thus realizing a simple and stable set:upthe Rabi frequencie, and, of the blue
and the red detuned laser beam are equal, light shifts due to the non-resonant excitation of the
carrier transition and the first-order sidebands are exactly cancelled. Light shifts arising from
coupling to other Zeeman transitions or far-detuned dipole transitions could be cancelled by
suitably balancing the rati@y/ €2;.

3 In principle, o, ® o4 gate operations could also be achieved by phase-modulating a laser with a modulation
frequency close to by choosing a modulation index where the carrier strength vanishes. However, this approach
has the strong disadvantage that even small changes of the modulation index from the desired value give rise to
light resonant with the transition which is having disastrous effects on the gate performance. Similarly, modulating
at frequency close to2and using the carrier and one of the first sidebands is problematic because of light shifts
induced by the other sidebands.

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)
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3. Effective Hamiltonians for o, ® o, and o4 ® o gates

We are interested in deriving an effective Hamiltonian that accurately describes the dynamics
on a pair of optical qubits induced by a co-propagating bichromatic laser field with frequencies
wp,r = wo £ §, where the detuning is either close to half the vibrational frequency or close to the
vibrational frequency, i.e8 = (v —€)/2 or§ = v — € with € < v. As optical qubits interacting
with lasers typically have smaller Lamb—Dicke parameters than hyperfine qubits coupled by
Raman transitions, transient non-resonant excitation of the carrier transition is expected to play
an important role fo2 < v. Whereas usually non-resonant interactions are taken into account
only qualitatively after having derived an effective Hamiltonian, in the following calculation
they will be eliminated right at the beginning by going into a reference frame rotating at non-
uniform speed.

The Hamiltonian for the bichromatic laser field we are interested in, is given by

H = hQe ¢S, (€710 4 g0t gntae e 4 jy ¢ (5)

The laser is assumed to interact collectively witipns on the axial centre-of-mass mode. Here,

S = Zi”llai'), anda, a' denote operators annihilating and creating phonons. It is also possible
to interpret this interaction as being due to a single resonant laser beam that is amplitude-
modulated with modulation frequenéyThe optical phase of the laser field is denapednd the
phase; accounts for a time difference between the start of the gate operation and the maximum
of the amplitude modulation on the laser beam. Using the picture of an amplitude-modulated
resonant beam, it is obvious that there are fast dynamical processes on the carrier transition
with a periodicity given byt = 27r/§ that excite the ions to the other state in the first half of the
period and transfer it back to the original state in the second half. We are not really interested in
exactly calculating the dynamical evolution of the quantum state on this fast timescale. Rather,
we would like to know the time evolution at the instanee&r, 3z, ..., t = 27/4. It is useful

to rewrite 6) as

H=hft)(e?S.D(ine")+e?S D(—ine"))
=h f(t)((S cosp+S, sing)(D, + D_) + i(S, cosp—S, sing) (D, — D_))
= hft)(§”(D++D_)+i§”(D:— D)),

where we used the displacement operafte) = e@'-aa and the definitionsD, =
D(&ine")/2, §» = S cosp + S sing, §» = S, cosp — Ssing and f (t) = 2Q cosst +¢).

Foré =v/2 oré =v as required by either, ® o, or o, ® o, interactions, the Hamiltonian is
periodic in time, i.e.H (t +t) = H(t) with periodt = 27 /5. Note that we assume the two-
photon couplings to be strictly resonant for the moment. In the next step, we will get rid of
the fast non-resonant carrier oscillation by going into another interaction picture defined by
Ho = h f(t)S?. Writing

H=hf@t)S”+H,,
with

Hy=hf®)(§”(D:+D_—-1)+i§»(Ds—D.)),

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)
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we obtain the interaction Hamiltonian
H () : (p)
H, = dFOS" H g IFOS

=hf(t)S”(D++D_—1) +h f(t) (cos2F (1)) §” —sin(2F (t))S,) i(D.—D_),
where

F) =279(sin(3t+§)—sin§). (6)

Now, we can approximate the time evolution over the course of an oscillation period by a
Magnus expansion of the propagat®]in order to obtain

H t i t t/
U@ = exp{—lﬁ (/0 dt/H|(t/) — 2I—h /0 dt//o dt//[H|(t/), H|(t//)] +.. > } (7)

From now on, the phase will be set to zero to simplify the notation. The formulae in
the remainder of sectio8 are easily generalized to the case of arbitrarypy making the
replacements, — S% andS, — %‘f’).

In the following two subsections, effective Hamiltonians for #e® o, gate and the
o, @0, gate will be derived starting from equatio)( We are interested in obtaining
Hamiltonians of the form given in equatioB)(that are valid in the regim2 « v. In addition,
the calculation is going to yield correction terms for the case wleg v no longer strictly
holds and additional terms that do not commute with the atomic opetatarequation ).
Towards this aim, terms proportional to higher orders of the expansion paraifgrwill
be dropped. In the calculation, Bessel functiahgx) will be evaluated ak = 42/5. These
functions will be kept till the end of the calculation and expande®js only for the final
analysis.

3.1.0,® 0, gate
For thes, ® o, gate, we sef = v/2. We start by calculating the first teri” = 1 [ dt’Hi (t")

appearing in the exponent of)( Here, it is important to note that the infegrahﬁi(t) =

Y e Hw€® is a periodic function of time with period = 27 /§ so that all its Fourier
components except the constant télg, will average to zero when they are integrated over one
period. The only non-zero Fourier components of the functign = Q(€¢*9 + g 100y —
Yoo fne™are fi; = Q€ and f_; = Qe . Since all non-zero Fourier components of
(D++ D_—1) are even integer multiples &f the S,-term of H, averages to zero. Therefore,

we obtain
Hei” = 2 / Lt 1(1) (OS2 (1), ~ SIN2F (1)S,)i(D, — D).
0
In the Lamb-Dicke limit,

|(D+ _ D_) ~ n(ae—iZSt +aTei28t) = Z dneinz?t ’

N=—00

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)
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and the components, = —pa' andd_, = —na are the only relevant ones. Finally, we have

COS2F (1)), — sin(2F (1)) S, = 1 [€2FO (S, +iS) +e2F (S, - iS)]
Aé'(4§2/8) sin(§t+¢) + ATe—i(4Q/8)sin(5t+;)
_ - 4_9 T _4_9 ing Aindt __. - inst
_n;oo<A4q< g ) AJn< ; ))e‘ é _.n;ooané ,

whereJ, is a Bessel functionA = (S, +iS,)e " with

V= 4—9 sing, (8)

and a, = (AJn("'Q) + AT (—%))e = (A+(=D"AN J, (&)™, In the following, the
argument /5 of the Bessel functlons]n will often be dropped to keep the notation simple. It
is convenient to express + A" as

S,y :=Scosy +Ssingy =A+Al, S, =S cosy — S siny = —i(A— A", (9)
Note that the linear transformatiof)(preserves the usual Lie algebra commutation relations
for the operators,, S, , andS, ;. The four termsf,,d_»a.,, f_1d:a_1, and to a lesser degree
f.1dio8 s, f_1d_sa.s, contribute toH.. Evaluating

fiad san = (Q€)(—na)(A— AH (4 )éf =-—nQyeias .,

as well as the other terms, we arrive at the effective Hamiltonian
HGY =ihnQ (3 + B)(e%a" — a)S,

wherenQ (J; + J3) &~ (2nQ?/8)(1 — 4Q2/(382)). This Hamiltonian describes a spin-dependent
force that starts to saturate when the Rabi frequency goes up. While the atomic operator
O = §,, coincides in the limit of weak excitation with the opera®robtained from second-
order perturbation theory, it depends on the pliaketween the blue- and the red-detuned laser
beams in the limit of strong excitation. For the periodic Hamiltonkt) = > 2 Hy &,

the second-order contribution to the effective Hamiltorﬁg(# is given by
12_ 1y
He ™ = — Z —[H(m), Hem]-
" hé
After evaluating the commutatorsi[y), H_y], [H 3, H_3], the effective Hamiltonian

4hn?Q?
Hif = i3+ ) S, (@'e ™ —ae) - =3’}

is obtained (the contribution of the commutatét f, H_2)] o« (n2)2(£2/8)® is insignificant).
If the detunings = (v —€)/2 slightly deviates from half the oscillation frequeney the
Hamiltonian

Hef =imQ(d+ ) S,y (@e 20 —ae 20y - —— = 328 | (10)

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)


http://www.njp.org/

11 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

is obtained. The second-order tenﬂi'ﬁ’z) accounts for collective spin flip processes caused
by a Mglmer—Sgrensen interaction. If this interaction did not exist, the propagator could be
calculated in the same way as for the driven harmonic oscillator describet).ldn (he limit

Q < v, wherenQ (J+ J) = 2nQ?/8 + O(Q%), the time evolution from 4 0 to t* = 27/|¢|

would create a mapping of quantum stap&®) — ¢ (t*) described by the operator

U (t") = expiot*s; ),
with

w (4nQ? 2 .
ot* = — si .
> () sionce)
Form = 2 ions, the operatdd, (t*) performs a conditional phase gat&tf = 7 /8. For; =0

and weak excitationg < v), this requires setting the coupling stren@th= Q. with

€15
Q2=—.
Cc 877
In the limit whereQ2 < v no longer holds, saturation effects reduce the geometric piase
picked up in the gate operation. F@r= 2., we would now have

T 2
t* ~ —(1— , 12
8 ( 377Nt) ( )

where N; = v/|e| counts the number of trap cycles during the gate operation.nFe0.1

and a gate time of 100 trap cycles,is reduced by about 7%. The smaller the Lamb-Dicke
factor gets, the more important saturation effects become for a given gate time. The Mglmer—
Sgrensen interaction contributes a term to the propaghtor) which is now approximately
described by

(11)

Ui(t") ~ expiot* S ) explint™S] ). (13)
with
7 (4nQ2\° |e|s
t=— —. 14
“ 2( €s ) 302 (14)

For the ratiac /6,

‘-

If » < 1, the contribution from the second termsf’lp is comparatively small.

Up to now, we have disregarded the fact that the effective Hamiltonian is valid only for
timesT = 2N, whereN =1,2,... and§ = (v —¢) . Therefore, the gate tim& needs to
fulfil |€|T =27 as well assT = 27 N, with integerN. Combining both conditions, we find

. V
CTON+T

In writing equation {3), terms arising from the non-vanishing commutatsy [, S«iw]
were neglected. Using the abbreviatioRs, = nQ2(J; + J3) and Qus = 4n°Q2J2/(35), it is

N e N.
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convenient to rewrittdy = Ha + Hg with

_ : . hQ
Ha = hQmi S, , (a7 %) —ae =20y - — 52+ ),
hQ
He MS(S( Sy
sinceH, andHg commute. The time evolution induced b, is given by the propagator

A . Q2
UA<t):D(Mt)sz,l,,)exp(@(t)sil,,)exp(l = S§,¢>), (16)

with A(t) = — |e"25(£2m/e)(eIet 1) and®(t) = (Qm/€)?(et — sin(et)), and for the interaction
HamiltonianH, g = —u! AHgUa oOne finds

hQ
His=

Here, the displacement operatbr(+a) = C(x) +£iS(r) was expressed by the real-valued
operatorC andS. For the special case= 0 this is equivalent to

hQ R
Hig = — 2+ D(4L(1)S).

The last expression shows that the interaction Hamiltoilag describes collective spin flips
between the levels||) and|t1) that go along with displacements of the vibrational state.
For a phase gate operation, mi@t(t)|) ~ 2. Minimum uncertainty states of motion are not
conserved by the interaction.

3.2. Mglmer—Sgrensen gate operation

The formalism developed so far can be employed to study the Mglmer—Sgrensen gate as
Hamiltonian ) also describes the bichromatic laser field of the Mglmer-Sgrensen gate. Since
the laser frequencies are set close to the blue and red sideband resonance, the only difference is
thats = v — e instead off = (1/2)(v — €), thus changing the values of the Fourier components

d, used to expresB.. Taking into account the leading terms in first and second order for the
calculation of ), one finds the effective Hamiltonian

H 21%Q?
ef WS (17)

o= 12(J* 1S, (@€ +ae ) - T e, +
instead of L0). Integrating front =0 tot* = % and neglectlng commutators involvirgy , in

the Magnus expansion, yields the propagator

: 2Q? 20)2 2 292
U|(t*)mexp{|t*(<n€ ((J0+J2)2+n28 302>> 2’1# 7) 2 )}

=expirt*§ ) exp(—iut* S ), (18)
with
202
A =7 Zzlj ((Jo+ B)?+(e/28) 1), (19)
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16n2Q*
3lelsd

The contributionox 1/(25) comes from the counter-rotating term, the red laser coupling to the
blue sideband and vice versa. For weak excitation, we have

(20)

ut* ~

2n°Q

€le]

5.}

Form = 2 ions, an entangling gate operation is achieved by seftirig= § which amounts to
setting the coupling strength to

U (t") = exp{in

_ el

4y’
In the limit whereQ2 <« v is no longer valid but wherg:/n| <« v still holds, we find for the
correction terms inX9) when keeping2 = Q.

Qe (21)

T 1 sign(e)
M l~—=|1- — ) 22
- 8 ( A(nNp)? 2N ) #2)
and for the ratio
7 1
AT — 23

Forn = 0.1 and a gate operation that is performed within 100 trap cycles, the correction terms
to At* have a relative strength ofZb and 05%, respectively, and thﬁiw interaction is less

than 10“ of the Sﬂiw term. Therefore, the interaction is quite well approximated by using the
propagator 18) with ut* set to zero. Then, one obtains for arbitrary

Ui(t) = D(@(t)S.y) exp(i(Ait — x sinet) S} ,).

where

a(t) = @<Jo+ et (@t -1, (24)

€

202

R 2, € 42

A= <(J0+ 2+ o ) (25)

292
X = 7762 (Jo+ I)>. (26)

In the reference frame of the original Hamiltonid), ¢the laser—ion interaction is therefore well
described by the propagator

U(t) = exp(—iF(1)S)D@@®)S,,) exp(i(rt — x sin(et))Si,w). (27)

This propagator can be used to calculate the dynamics of expectation values of interest

for the qubits. It is possible to derive simple expressions by tracing over the motional states
if the vibrational mode is in a thermal state. For this, it is useful to note En@at(t)S, ) =

> D(a(t)2) P, where P, denotes the projector on to the subspace spanned by eigenvectors
of S, with eigenvaluer. Moreover, the diagonal elements of the displacement operator in
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the number-state representation are given(rhjf)(oe)m) = exp(—|a|?/2) Ly (Ja]?) where L,
denotes a Laguerre polynomi&l(]. Since the generating function &f,(8) is given by R1]

= 1 Bx
gx,B) =) Lyf)x"=-— exp(— ) ,
HXZ; 1—x 1—x

summation over a thermal state with number state populgtjea ﬁ—il(ﬁiﬂ)“ and mean phonon
numbem simply yields

> pa(nID(@)In) = exp(—le (A +3)).

In the case of two iong; = 0, and an initial qubit state, = || {)({ ||, the expectation value
O(t) = Tro(Op(t)) of the observabl® is given by

o) = 1—16TYQ(OV{(SZZ + S%) _ 4SZe—4\a|2(ﬁ+(l/2)) + (SZZ _ s%)e—lﬁla\z(m(l/Z))})’

where Tg refers to the trace of the qubit state space @d=VOV' with V(t) =
exp(—iF (1) S) exp(iy(t)sf) andy (t) = At — xsin(et). As an example, the time evolution of
(LI [p®] 41) is explicitly given by

Py (1) = 2(2+Co8(2F)) + 3 coS2F) cogdy)e 4l ™ 1/2) + 1 cog(2F g 10l (n+(1/2)

with «(t), y (t) andF (t) containing the time-dependent terms. Other quantities of interest could
be calculated in the same way.

A propagator similar tod7) was calculated in][1] for the case; = 0. The authors argued
that the non-resonant excitation of the carrier transition could be neglected in a first step
and obtained in this way a Hamiltonian of the type described2pyh@at could be integrated
exactly. In a second step, they considered the influence of the previously neglected non-
resonant excitations. While this treatment yields correct results 00, it fails to predict the
dependence of the gate operation;ona the angle) as given by 27). Figure4 shows the time
evolution of matrix elements for the same parameters as uséddjirior the caseg = 0 and
¢ = /2. Inthe latter case, the amplitude of the non-resonant carrier oscillations is considerable
and the input statg| | ) is never perfectly mapped to a maximally entangled state;E60,
the effect of a non-zero value @f is fairly small for current gate realizations using hyperfine
gubits where the Lamb—-Dicke parame#es considerable. However, it becomes crucial for the
realization of fast gates on optical qubits with smgdiince in this case the gate requires a larger
value of2 to achieve the same gate speed.

Figure 5 shows a comparison of the different propagators for the gate operation with
n = 0.05 taking place in 25 trap cycle8 £ 0.96v). For the prediction of the required coupling
strengthQ2 for a gate operation realizinGig , = exp(i%&f,w), equation 25) was iteratively
solved to yieldit* = /8. The propagatoU., was obtained from a numerical integration of
(5). Then,Ue was compared tdJiq 4, to the propagator of2(7), to Uiy = exp(i%Sé) and to
the predictioryen = exp(i2n n°Q?/€2S)) of second-order perturbation theory. Since the exact
propagator does not perfectly return the motional state to the initial state at the end of the
gate, the following procedure was applied for the calculation of the distdroetween the
propagators: we assume that the ions are initially in the motional ground state and that a cooling
mechanisms returns the motional state to the ground state at the end of the gate operation without
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Figure 4. (a) Time evolution of the density matrix elements of two ions in
a thermal state witih=2 undergoing a Mglmer-Sgrensen interaction with
Q =0.0885v,n=0.1,¢ =0.05v and ¢ =0. The calculations are based on
(27). The values chosen reproduce the curves shown in figure 3(b)1pf [
Counting from above att = 60, the curves represent the populatigns |,
p11.11 and the coherences (m, ;1) and Ré&p ; ++). At vt ~ 250 ¢ = 4r/€),

the ions are in a maximally entangled state. (b) Same as (a) but with /2. If

the gate operation starts in an intensity minimum of the amplitude-modulated
laser beam, the non-resonant carrier oscillations are much stronget.=At
250, the quantum state is no longer maximally entangled. (c) FidElity
(Vmaxl o (1) |¥max) Of creating the maximally entangled stdigna) = (|4 1) —
i|11))/+/2 near the optimum calculated fro®7). The upper curve corresponds
to ¢ =0, the lower one ta; = /2. The points on top of the upper curve
represent the fidelity for = 0 and were obtained by a numerical integration of
the Hamiltonian ) after applying the Lamb—Dicke approximation. (d) Infidelity
1 — F of the gate att = 250 for¢ = 0 and a state with= 0. The solid line is a
numerical integration off) in the Lamb—Dicke approximation, the dash-dotted
line is based on the full Hamiltonian. The arrow labelletddenotes the optimum
Rabi frequency predicted bg ), ‘ 8’ the value of2 chosen in11], ‘¥’ the Rabi
frequency predicted by2f).

affecting the qubit states. This turns the unitary evolution into a quantum process acting only on
the internal states of the ions. For the comparison of two quantum procssethe processes

are mapped using the Jamiolkowski isomorphism on to density majicasd p, for which

the distancel (o1, p2) = 1—Tr(,/\/p1p2./p1) is calculated 22, 23]. The results show that the
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Figure 5. Performance of the, ® o, gate as a function of the phagefor

a gate operation taking place in 25 trap cycles wijta 0.05, § = 0.96v and

Q2 =0.221v. The figure shows the distan@iUey, Uig,,) between the exact
propagatoiU, obtained by numerical integration db)(and the gate operation
Uigp = exp(i%af) (solid line). The points on top of the line denat@Jey, U 27)
whereU ;7 is the propagator given b {), thus demonstrating that this equation
is a very good approximation to the exact solution. The dashed-dotted line
showsd (Uey, Uig 4) With Uig 4 = exp(i%Sﬁ) and the dotted line(Uex, Uper) With
Uper = exp(i2n n°Q?/€*S)) as predicted by simple second-order perturbation
theory. More details regarding the distance measdreare given in
the text.

propagator given by27) correctly predicts the coupling strength as well as the operator realized
by the gate operation. It also becomes obviouslthatonsiderably deviates from the operation
generated by the HamiltoniaB)(unless; = 0.

3.3. Comparison of, ® o, ando, ® o, gates

The main advantage of the ® o, interaction on optical qubits appears to be its insensitivity
to changes in the optical path length. In the limit of weak excitation, the gate operation
tolerates changes that occur within the gate operation as in each elementary process a photon
is absorbed and another one emitted into the same laser beam (this property does not hold
for hyperfine qubits since here Raman beams in a counter-propagating configuration are used).
If higher Rabi frequencies are used, the interaction rather becomes® o, , which make it
susceptible to path-length fluctuations within the gate time. Still, if amplitude-shaped pulses
are applied (see sectial), the gate operation tolerates changes of the path length that occur
between consecutive applications of the gate. This is not the case for the Mglmer—Sgrensen
gate which becomes robust against changes between gate operations but remains susceptible to
changes occurring within the gate when the gate is sandwiched betw/@quulses applied to
both qubits.

Theo, ® o, gate, however, seems to be much less favourable with respect to the following
criteria: (i) the Rabi frequency that is required for performing the gate operation in a given time,
(ii) the strength of saturation effects reducing the coupling for the Rabi frequency needed for
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Table 1. Comparison ob;, ® o, ando, ® o, gates. The first row gives the Rabi
frequency<2 required to perform an entangling gate operation as a function of
n and the gate duration. The latter is expressed as the number of trap oscillation
periodsN;. The second row lists the reduction in coupling strength for this kind
of gate due to saturation effects. The third row compares the unwanted to the
desired coupling strength.

Gate type o, R0, 0y ® 0y

Rabi frequency Q/v=1/4J/nN) Q/v=1/(4nNy)
Saturation strength y = 2/(3nNy) y = 1/(4n°N?)
Coupling ratio k/0 =8/(3n) w/x=1/(6n*N3)

the gate operation, and (iii) the ratio between the desired and the unwanted spin—spin couplings.
Table 1 shows a comparison of the gates with respect to these criteria, thus summarizing the
results (1), (12) and (5) for theo, ® o, gate and21), (22) and @3) for theo, ® o4 gate. For

all three criteria, the Mglmer—Sgrensen performs better. Having a low Rabi frequency is also
of interest when it comes to non-resonant excitation of other vibrational modes or light shifts
induced by excitation of far-detuned dipole transitions.

4. Amplitude-shaped pulses and spin echos

4.1. Amplitude-shaped laser pulses

In the limit of fast gate operations, the Hamiltoniad®)(and (L7) become sensitive to the
phase; which is related to the intensity of the bichromatic laser field at the start of the gate
operation. It is therefore interesting to shape the intensity of the bichromatic laser field during
the gate operation so that the atomic oper@dn = S; ,,«), with ¥ (t) = @ sin¢g, appearing

in the Hamiltonians becomes time-dependent but independenabthe beginning and at the

end of the gate when the intensity is low. In this way, the gate could be made insensitive to
¢ by an adiabatic process whetKt) evolves fromS; at the start of the gate operations to a
¢-dependent operatds; , ) and back toS;. However, the state(t) of the vibrational mode
generally does not return to its original state at the end of the gate under the action of the
propagator ) when the coupling/(t) is made time-dependent. There is, however, a class of
shaped pulses with the propeyr) = 0 that can be constructed in the following way: by
applying an amplitude-shaped pulse twice with a sign change in the coupling between the two
pulses, i.ey,(t) = —y4(t), one obtains the propagator

U=U_(27,1)U,(r,0) = expi2d(1)0?),

because the first and the second pulse displace the motional state into opposite directions but
by an equal amount (se8)]. A quantum state that is displaced along a circle in phase space
by an off-resonant force of constant magnitugdé,) = Q€< t € [0, 27/¢], can be viewed as a
special case of this pulse form with= 7 /€. For the bichromatic gates based on the interactions
(10) and (17), the sign change can be accomplished by either shifting the ghdseng the

action of the second pulse by an amouii® (ir), respectively, or by changing the overall phase

of the laser byr during the second pulse (i.2. — —Q).
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Figure 6. Mglmer—Sgrensen gate operation with two amplitude-shaped laser
pulses based on the full Hamiltoniah) (without Lamb—-Dicke approximation.

For parametersQmax= max(|2|) =0.167v, n = 0.05, the gate takes place
during 50 trap oscillation periods. The pulses are switched on and off during
eight trap cycles using a ceprofile. During the second pulse, the phase of the
blue- and the red-detuned beam is shiftedrbowith respect to the first pulse.

(a) Time evolution of the populations;,, p,,, p,;+ + pP1,, when starting from
state|t1,n=0) at timet =0. The dotted line shows the coupling strength
|2(1)]/(22max), the dashed line is the average number of vibrational quanta. (b)
Infidelity of the final state as a function of the phgs&he upper curve shows the
strong influence of the phase for a gate operation with constant coupling strength
Q =0.147v where a high-fidelity operation is achieved only fpe=0. For

the amplitude-shaped gate, the fidelity is practically independett Similar
results are also obtained for other input states. For a realistic calculatien of
decoherence caused by spontaneous decay of the metastable state would have to
be taken into account.

Figure6 illustrates the use of amplitude-shaping in order to make the Mglmer—Sgrensen
gate operation robust against fluctuations in the phdsetween the blue- and the red-detuned
laser beam. In this example, an entangling gate is accomplished Wtkirb0 trap oscillation
periods by a pair of laser pulses wigh(t + t) = —Q(t), for t < t with t = N/v. As shown
in figure 6(a), the pulses are switched on and off within eight trap cycles. After the first pulse,
the vibrational state has not returned to its initial state. It is only after the second pulse that
the correlations between the vibrational state and the qubit states vanish again. Using this
technique, the initial state* 1, n = 0) is mapped to the target sta%qﬁ) +ill{))|n = 0) with

an infidelity of below 10° (see figures(b)). This is in sharp contrast to the case of an excitation
of the same duration with constant amplitude where the infidelity depends on theghade
varies between 1@ and Q2. Similar results are also obtained for other input states.

4.2. Spin echos

Spin echo pulses can be combined with amplitude-shaped laser pulses to maketihe
gate more robust against imperfections. It is possible to implement the conditional phase gate
operation by having the motional state perform two circles in phase space so that the gate pulse
can be split up into two separate pulses. Since the quantum $tdtes| |) as well as the
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states|t), [{1) pick up the same phas@s,, = ®,, &;, = d 4, it is possible to exchange

the state$t 1) < |1 1), 1 1) < |1]) by a collectiver -pulse sandwiched between the two gate
pulses and to exchange the populations at the end of the gate sequence again. The first spin-echo
m-pulse inverts the direction of the force on the motional state so that the motional state returns
to the initial state after the second spin-dependent pulse. In contrast to the case of shaped pulses
without spin-echo, there is no need to change the phade¢he second pulse or the sign of the
coupling strengtlf2. The spin echo procedure is advantageous for the following reasons:

1. The gate becomes more robust against unequal light intensities on the ions.

2. Single qubit phases arising from light shifts are transformed into an unimportant global
phase. In the context of this gate, light shifts will mainly be due to an imbalance in the
power of the blue- and the red-detuned laser beams and also due to very off-resonant
excitation of dipole transitions. In addition, a light shift occurs if the average frequency
w_ of the bichromatic light field does not exactly coincide with the atomic transition
frequencywy. However, this light shift will be fairly small adis o< (2/8)%(w, — wo).

3. Collective spin flips arising from the terrﬁy2 in (10) can be cancelled to first order by
choosing rotation axes for the-pulses on ion 1 and ion 2 that differ by 9(x-rotation
on ion 1 andy-rotation on ion 2). This effectively changes the sign of the rotation angle
x occurring in 3) for the second pulse and eliminates the spin flip contribution of
the interaction. To perform different-pulses on both ions requires, however, either a
different trap frequency that changes the distance between the ionglmy an additional
laser beam.

In the limit of short gate operations, spin echos become somewhat less efficient in cancelling
perturbations described b, interactions as the gate interactionsﬁw no longer commutes
with S, for v # 0.

For the Mglmer—Sgrensen gate operation, Wh@@gﬁ[sl] is not a small quantity, spin
echos seem to be of limited use. If, however, the gate interaction is sandwiched between a pair
of collectiverr /2 pulses to turn it into a, ® o interaction, spin echos are helpful for cancelling
perturbations occurring between consecutive gates. Also, it should be noted that a spin-echo like
technique was already proposed i in order to cope with number-state dependent ac-Stark
shifts that arise if the gate is implemented by illuminating ion 1 with a red-detuned laser beam
and ion 2 with a blue-detuned laser beam instead of using a bichromatic light field for both ions.

5. Conclusions

Collective laser—ion interactions with bichromatic laser beams are capable of performing both
0, ® o, gates as well as Mglmer-Sgrensen gate operations. The analysis shows that it is
important to include non-resonant excitation of the carrier transition for the precise calculation

of the gate operation. While the paper was focused on the case of qubit states linked by
a weak optical transition, the discussion of the Mglmer—Sgrensen gate interaction applies
also to hyperfine qubits where non-resonant carrier excitation also occurs in the limit of fast
gate operations. For optical qubits, the required laser beams are chosen to be co-propagating
which allows for a robust and experimentally easily realizable set-up where an acousto—optical
modulator is used in single-pass configuration to create the bichromatic light field. In a direct
comparison of the gates, the Mglmer—Sgrensen interaction seems to be advantageous in terms
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of required laser power and gate accuracy whiledh@ o, interaction has the advantage of
being robust even against certain path length fluctuations occurring during the gate operation
in the limit of weak driving wheres, , ~ S,. For gate durations coming closeTo= 27 /(nv),

control of the phase between the red- and the blue-detuned laser beams is of vital importance
unless the gate is performed using amplitude-shaped laser pulses. In this case, the requirements
are strongly relaxed and the gates appear to be very promising for experimental realization. The
possibility of using a single laser beam for global single qubit and entangling operations also
opens interesting perspectives for creating multi-particle entangled states with more than two
ions. The operations using this beam could be combined with an off-resonant strongly focused
beam capable of inducing, operations on individual qubits in order to create a larger variety

of complex entangled states.
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