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Abstract. In ion traps, entangling gate operations can be realized by a
bichromatic pair of laser beams that collectively interact with the ions. In this
paper, a new method of modelling the laser–ion interaction is introduced that
turns out to be superior to standard techniques for the description of gate
operations on optical qubits. The treatment allows for a comparison of the
performance of gates based onσz ⊗ σz and σφ ⊗ σφ interactions on optical
transitions where the bichromatic laser field can be realized by an amplitude-
modulated laser resonant with the qubit transition. Shaping the amplitude of
the bichromatic laser pulse is shown to make the gates more robust against
experimental imperfections.
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1. Introduction

The processing of information based on the laws of quantum physics [1] has become a
very active field of research during the last decade. For the experimental demonstration of
fundamental key results of quantum information theory, ion-trap based systems have played
a major role. The success of ion trap experiments can be attributed to the fact that encoding
quantum information in either hyperfine ground or meta-stable excited atomic states provides
well-defined quantum bits (qubits) with long coherence times. The use of lasers for manipulating
the qubit state allows for precisely switchable interactions with low decoherence rates. The
fundamental operations of qubit initialization, arbitrary single qubit manipulation and quantum
state-detection have already been used in atomic clocks with single ions for many years.
Contrary to other realizations [1] of quantum information processing, the most demanding
operation in ion traps consists of the realization of an entangling gate operation. Because of
the repulsive Coulomb force, the inter-ion distance is orders of magnitude bigger than the
characteristic length scale of any state-dependent interaction between ions in ground or low-
lying excited states. In all current experiments creating entangled ions [2]–[5], gate operations
rely on interactions that are mediated by the vibrational degrees of freedom of the ion string.
These gate operations fall into two categories:

1. Quantum gates induced by a laser beam that interacts with a single ion at a time as
originally proposed in the seminal paper by Cirac and Zoller [6] and later realized by
the Innsbruck ion trapping group [2]. In these gates, a single ion is entangled with a
vibrational mode [7] of the ion string and the entanglement is subsequently transferred
from the vibrational mode to the internal state of a second ion.
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2. Quantum gates induced by a bichromatic laser that collectively interacts with two or more
ions. Here, a vibrational mode becomes transiently entangled with the qubits before getting
disentangled at the end of the gate operation, resulting in an effective interactions between
the qubits capable of entangling them. Gates of this type were first proposed by Milburn
et al [8, 9], Sørensen and Mølmer [10, 11] and Solanoet al [12], and subsequently realized
by ion trapping groups in Boulder, Ann Arbor and Oxford [3]–[5].

Even though both classes of gates are applicable to hyperfine qubits as well as optical qubits
(i.e. qubits encoded in hyperfine states or in states linked by a dipole-forbidden transition with
an optical wavelength), current experiments with optical qubits have relied on the former and
experiments with hyperfine qubits on the latter type of interaction. In any case, the main goal
consists of demonstrating fast operations creating entanglement with high fidelity.

The purpose of the present paper is to discuss bichromatic gate operations with a focus
on implementations using an optical transition. It turns out that for optical transitions, gate
operations are achievable by illuminating the ions with an amplitude-modulated laser beam
that is resonant with the qubit transition. The paper is organized as follows: section2 reviews
different methods of realizing bichromatic quantum gates and discusses properties that are
specific to their application to optical qubits. In section3, an effective Hamiltonian for the
laser–ion interaction will be derived by going into a reference frame rotating at non-uniform
speed in order to eliminate non-resonant excitations of the qubit transition that do not couple to
the vibrational mode. In this way, it will be shown that for a single ion qubit the interaction is
well described by a HamiltonianH = ih̄(γ (t)a†

− γ (t)∗a)σψ , where the coupling strengthγ is
proportional to the laser intensity in the limit of low intensities but starts to saturate at higher
intensities and whereσψ = Eσ · Enψ is a component of the Pauli spin operatorEσ coupling to a
vibrational mode of the ion described by creation and annihilation operatorsa†, a. Furthermore,
it will be shown thatEnψ depends not only on the particular type of gate operation but also on
the laser intensity and the relative phase between the two frequencies of the bichromatic field.
Equations (10), (17) and (27) describing the action of the gates based onσz ⊗ σz and onσφ ⊗ σφ
(Mølmer–Sørensen) interactions are the key results of the paper. For the Mølmer–Sørensen
gate, the result will be compared to the analysis presented in [11]. In addition, the performance
of σz ⊗ σz andσφ ⊗ σφ gates will be compared. Section4 shows how to use pulse-shaping of the
laser intensity as well as spin echo techniques to make the gates more robust against fluctuations
of the control parameters.

2. Quantum gate operations based on bichromatic laser fields

2.1. Driven quantum harmonic oscillator

The HamiltonianH̃ = h̄νa†a + h̄�i(a†eiωt
− ae−iωt) describes a harmonic oscillator oscillating

at frequencyν and driven by a force with frequencyω and coupling strength�. Going into
an interaction picture defined byH0 = h̄νa†a yields the HamiltonianH = h̄�i(a†eiδt

− ae−iδt),

whereδ = ω− ν. Under the action of the driving force, an oscillator that is initially in a coherent
state remains in a coherent state. For a force that is slightly detuned from resonance, the coherent
state maps out a circle in phase space and returns to the initial state after a periodτ = 2π/δ.
This operation multiplies the oscillator state by a phase factor whose magnitude is given by the
ratio of the strength of the force and the detuning as shown in [3].
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In order to allow for variations of the driving field’s strength, we generalize the
Hamiltonian toH = ih̄(γ (t)a†

− γ ∗(t)a) and calculate its propagatorU (t) by using the Baker–
Campbell–Hausdorff relationD̂(α)D̂(β)= D̂(α +β)exp(i Im(αβ∗)) for the displacement
operatorD̂(α)= eαa†

−α∗a. For the propagator, we find

U (t)= lim
n→∞

n∏
k=1

exp

(
−

i

h̄
H(tk)1t

)
= D̂(α(t))exp(i8(t)), (1)

where1t = t/n, tk = k1t and

α(t)=

∫ t

0
dt ′γ (t ′), 8(t)= Im

∫ t

0
dt ′γ (t ′)

∫ t ′

0
dt ′′γ ∗(t ′′).

In the case of a driving force with constant amplitude,γ (t)=�eiδt , one obtainsα(t)=

i
(
�

δ

)
(1− eiδt) and 8=

(
�

δ

)2
(δt − sinδt). After a time τN = 2πN/|δ|, N = 1,2, . . ., the

coherent state returns to its initial state in phase space with its phase changed by an amount
8(τN)= 2πN

(
�

δ

)2
sign(δ). By making this phase change depend on the internal states of a

pair of ions, an entangling gate operation can be achieved. For

H = ih̄(γ (t)a†
− γ ∗(t)a)O, (2)

whereO is an operator acting on the qubit states, the propagator (1) is replaced by

Uγ (t)= D̂(α(t)O)exp(i8(t)O2). (3)

Choosing the interaction timeτ such thatα(τ)= 0 thus realizes a propagator that depends
nonlinearly onO and does not alter the vibrational state.

2.2. Laser–ion interaction

The interaction of a single ion qubit resonantly excited by a monochromatic laser field with
frequencyωL is usually described by performing a rotating-wave approximation with respect to
the optical frequency to obtain the Hamiltonian

H = h̄�σ+e−iδteiη(ae−iνt +a†eiνt ) + h.c., (4)

here,δ = ωL −ω0 is the detuning from the qubit transition frequencyω0, ν is the frequency
of the ion’s vibrational mode of interest, andσ+ = (σx + iσy)/2 with the Pauli matricesσx,y.
The strength of the laser–ion coupling is characterized by the Rabi frequency�, and the
strength of processes involving changes in the vibrational state is determined by the value of
the Lamb–Dicke parameterη. Equation (4) represents a Hamiltonian in an interaction picture
that is defined with respect to the HamiltonianH0 = h̄νa†a + (h̄ω0/2)σz describing the ion
qubit in the absence of any laser–ion interactions. Ifη� 1, the Lamb–Dicke approximation
eiη(ae−iνt +a†eiνt )

≈ 1 + iη(ae−iνt + a†eiνt) is used to simplify equation (4). The resulting three terms
describe excitations on the carrier, the lower and the upper motional sideband, respectively. The
generalization of the Hamiltonian to the case of two and more ions is straightforward. For the
sake of simplicity, calculations in section3 will be limited to the case of the laser coupling to
the centre-of-mass mode along the axis of the ion string where all ions experience the same
coupling strength. A detailed account of laser–ion interactions is given in [13].
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Figure 1. Raman coupling of motional states for a hyperfine or Zeeman qubit.
(a) The states|↑,n = 0〉 and |↑,n = 1〉 are coupled via the excited state|e〉.
A similar coupling not shown in the figure exists for the qubit state|↓〉. The
laser detunings11 and12 from the mediating states are large compared with
trap frequencyν and the qubit level spacingω0 to avoid spontaneous emission
from state|e〉. Constructive interference of paths 1 and 2 is achieved for counter-
propagating laser beams. (b) The coupling is maximized for counter-propagating
laser beams with frequenciesωb andωr forming a moving standing wave along
the axis of vibration of the motional mode of interest.

2.3. σz ⊗ σz gate

A Hamiltonian as described by equation (2) was employed for the first time in an
experiment [14] creating a Schrödinger cat state with a single ion usingO = σz, i.e. a coupling
to the motional mode that depended on the internal energy eigenstate of the ion. Later, it was
realized that the same type of coupling could be used to entangle a pair of ions by performing
a conditional phase gate [3, 9]. In the experimental realizations [3, 5], spin-dependent forces
acting on a pair of hyperfine or Zeeman ground states have been realized by near resonant
driving of Raman transitions between vibrational states (see figure1). For this purpose, two non-
copropagating laser beams with frequenciesωb, ωr form a moving standing wave with difference
frequencyωb −ωr close to the frequencyν of a vibrational mode. The ac-Stark shift of the qubit
states|↓〉, |↑〉 results from a non-resonant coupling to another atomic state|e〉 that is made
qubit state-dependent by properly chosen polarizations. Since the laser field exhibits a strong
spatiotemporal modulation, the resulting potential gradients induce a force acting on the qubits
that is state-dependent and that couples to the vibrational mode by displacing the qubit along
a circle in phase space. When the ions couple to the centre-of-mass mode (stretch mode), the
coupling to the mode can be made to disappear when both qubits are in the same quantum state
by choosing an ion spacing that is an odd (even) integer multiple of half the wavelength of the
moving standing wave. Disregarding unimportant global and single qubit phases, this coupling
is then described by an operatorO = Sz whereSz = σ (1)z +σ (2)z is a collective spin component of
the qubits.

The situation is different for qubits encoded in atomic states connected by a narrow
optical transition. For coupling motional states|↓,n = 0〉 ↔ |↓,n = 1〉, here, the other qubit
state|↑〉 serves to mediate the coupling. Similarly, a coupling between the states|↑,n = 0〉 ↔

|↑,n = 1〉 is mediated by the state|↓〉. To achieve a strong coupling, a detuning1i from
the intermediate states can be chosen that is smaller than the transition frequency between
vibrational states provided that the decay rate of the metastable state is small compared
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Figure 2. Raman coupling of motional states for an optical qubit. (a) The
coupling for states|↑,n = 0〉 and|↑,n = 1〉 is mediated by the states|↓,n = 0〉

and|↓,n = 1〉 and vice versa on the narrow qubit transition. Since spontaneous
scattering from the mediating state is small, the detuning can be made small
compared to the trap frequency. For11 = ν/2 and12 = −ν/2, the coupling
is maximized by choosing a copropagating beam geometry. (b) Optimum
coupling is achieved for co-propagating laser beams with frequenciesωb and
ωr propagating along the axis of vibration of the motional mode of interest.
As the bichromatic laser field could also be described by a monochromatic
laser field that is amplitude-modulated with a frequencyωb −ωr close to the
vibrational frequency, no spatially varying ac-Stark shifts are involved in the
coupling.

to ν. For ωb,r = ω0 ± ν/2, the two interfering paths shown in figure2(a) connecting levels
|↓,n = 0〉 ↔ |↓,n = 1〉 have equal strength. Since the detunings from the mediating states
now have opposite signs, destructive interference is achieved for counter-propagating beams
whereas the coupling is maximized for co-propagating beams [17]. In the limit of small
excitation (�� ν), the coupling strength�R,0 on the Raman transition between|↓,n = 0〉 and
|↓,n = 1〉 is given by�R,0 = 2η�2/ν. The states|↑,n = 0〉 and |↑,n = 1〉 are coupled with
equal strength but opposite sign. For stronger excitation, the carrier transition is non-resonantly
excited which leads to a saturation of�R,0. As long as the intensities of the bichromatic beams
are equal, there is no overall ac-Stark shift due to excitation of the carrier transition and the
first motional sidebands because ac-Stark shifts caused by the two laser fields exactly cancel
each other.

In the case of two ions excited on the centre-of-mass mode, a driven quantum mechanical
oscillator is realized with collective atomic oscillatorO = Sz. In addition to the coupling of
vibrational states, there is another small Mølmer–Sørensen coupling [10] that does not exist
for the case of hyperfine or Zeeman qubits: collective spin flips between the states|↓↓,n〉 and
|↑↑,n〉 occur by processes involving a blue and a red photon that are mediated by the states
|↓↑,n ± 1〉 and |↑↓,n ± 1〉 (see figure3). A similar process involving either two blue or two
red photons couples the states|↑↓,n〉 and|↓↑,n〉.

2.4. σφ ⊗ σφ gate

In contrast toσz ⊗ σz gates that do not change the internal states of the ions, theσφ ⊗ σφ gate
operations first investigated by Sørensen and Mølmer [10] and others [12] relies on collective
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Figure 3. Mølmer–Sørensen gate. A bichromatic laser field with frequencies
ωb, ωr satisfying 2ω0 = ωb +ωr is tuned close to the upper and lower motional
sideband of the qubit transition. The field couples the qubit states|↓↓〉 ↔ |↑↑〉

via the four interfering paths shown in the figure. Similar processes couple the
states|↑↓〉 ↔ |↓↑〉 with the same strength provided that the Rabi frequencies of
the light fieldsωb andωr are equal.

spin flips |↓↓〉 ↔ |↑↑〉, |↓↑〉 ↔ |↓↑〉 by processes coupling to the lower and upper motional
sidebands as illustrated in figure3. It can be seen that the Hamiltonian governing the action
of the gate is described by settingO = cosφSx + sinφSy [15, 16]. For a properly chosen
coupling strength, the gate operations maps the product state basis{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓} on
to a basis of entangled states. For hyperfine qubits, a detailed discussion of advantageous beam
geometries is presented in [18]. In the case of optical qubits, it is again possible to choose
a pair of co-propagating beams for performing the gate operation. The only difference to the
σz ⊗ σz gate consists of the choice of laser frequenciesωb,r = ω0 ± ν required for achieving
a resonant coupling. Formally, the gate operation is equivalent to aσz ⊗ σz interaction in a
rotated basis. To stress this analogy, the Mølmer–Sørensen gate operation is often also called a
σφ ⊗ σφ gate.

The possibility of choosing co-propagating laser beams for performing eitherσz ⊗ σz or
σφ ⊗ σφ gates is attractive from an experimental point of view. The light field could be generated
by passing a laser beam through an acousto–optical modulator driven by two radio-frequency
fields and subsequently coupling the first-order diffracted beams into a single-mode optical
fibre, thus realizing a simple and stable set-up3. If the Rabi frequencies�b and�r of the blue
and the red detuned laser beam are equal, light shifts due to the non-resonant excitation of the
carrier transition and the first-order sidebands are exactly cancelled. Light shifts arising from
coupling to other Zeeman transitions or far-detuned dipole transitions could be cancelled by
suitably balancing the ratio�b/�r.

3 In principle, σφ ⊗ σφ gate operations could also be achieved by phase-modulating a laser with a modulation
frequency close toν by choosing a modulation index where the carrier strength vanishes. However, this approach
has the strong disadvantage that even small changes of the modulation index from the desired value give rise to
light resonant with the transition which is having disastrous effects on the gate performance. Similarly, modulating
at frequency close to 2ν and using the carrier and one of the first sidebands is problematic because of light shifts
induced by the other sidebands.
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3. Effective Hamiltonians for σz⊗σz and σφ⊗σφ gates

We are interested in deriving an effective Hamiltonian that accurately describes the dynamics
on a pair of optical qubits induced by a co-propagating bichromatic laser field with frequencies
ωb,r = ω0 ± δ, where the detuning is either close to half the vibrational frequency or close to the
vibrational frequency, i.e.δ = (ν− ε)/2 or δ = ν− ε with ε � ν. As optical qubits interacting
with lasers typically have smaller Lamb–Dicke parameters than hyperfine qubits coupled by
Raman transitions, transient non-resonant excitation of the carrier transition is expected to play
an important role for�. ν. Whereas usually non-resonant interactions are taken into account
only qualitatively after having derived an effective Hamiltonian, in the following calculation
they will be eliminated right at the beginning by going into a reference frame rotating at non-
uniform speed.

The Hamiltonian for the bichromatic laser field we are interested in, is given by

H = h̄�e−iφS+(e
−i(δt+ζ ) + ei(δt+ζ ))eiη(ae−iνt +a†eiνt ) + h.c. (5)

The laser is assumed to interact collectively withm ions on the axial centre-of-mass mode. Here,
S+ =

∑m
i =1 σ

(i )
+ , anda,a† denote operators annihilating and creating phonons. It is also possible

to interpret this interaction as being due to a single resonant laser beam that is amplitude-
modulated with modulation frequencyδ. The optical phase of the laser field is denotedφ, and the
phaseζ accounts for a time difference between the start of the gate operation and the maximum
of the amplitude modulation on the laser beam. Using the picture of an amplitude-modulated
resonant beam, it is obvious that there are fast dynamical processes on the carrier transition
with a periodicity given byτ = 2π/δ that excite the ions to the other state in the first half of the
period and transfer it back to the original state in the second half. We are not really interested in
exactly calculating the dynamical evolution of the quantum state on this fast timescale. Rather,
we would like to know the time evolution at the instancesτ,2τ,3τ, . . . , τ = 2π/δ. It is useful
to rewrite (5) as

H = h̄ f (t)(e−iφS+D̂(iηeiνt)+ eiφS− D̂(−iηeiνt))

= h̄ f (t)((Sx cosφ+Sy sinφ)(D+ + D−)+ i(Sy cosφ−Sx sinφ)(D+ − D−))

=: h̄ f (t)(S(φ)x (D+ + D−)+ iS(φ)y (D+ − D−)),

where we used the displacement operatorD̂(α)= eαa†
−a∗a and the definitionsD± =

D̂(±iηeiνt)/2, S(φ)x = Sx cosφ + Sy sinφ, S(φ)y = Sy cosφ− Sx sinφ and f (t)= 2� cos(δt + ζ ).
For δ = ν/2 or δ = ν as required by eitherσz ⊗ σz or σφ ⊗ σφ interactions, the Hamiltonian is
periodic in time, i.e.H(t + τ)= H(t) with period τ = 2π/δ. Note that we assume the two-
photon couplings to be strictly resonant for the moment. In the next step, we will get rid of
the fast non-resonant carrier oscillation by going into another interaction picture defined by
H0 = h̄ f (t)S(φ)x . Writing

H = h̄ f (t)S(φ)x + H1,

with

H1 = h̄ f (t)(S(φ)x (D+ + D− − 1)+ iS(φ)y (D+ − D−)),
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we obtain the interaction Hamiltonian

HI = eiF(t)S(φ)x H1e
−iF(t)S(φ)x

= h̄ f (t)S(φ)x (D++D−−1)+ h̄ f (t)
(
cos(2F(t))S(φ)y − sin(2F(t))Sz

)
i(D+−D−),

where

F(t)=
2�

δ
(sin(δt + ζ )− sinζ ). (6)

Now, we can approximate the time evolution over the course of an oscillation period by a
Magnus expansion of the propagator [19] in order to obtain

UI(t)= exp

{
−

i

h̄

(∫ t

0
dt ′HI(t

′)−
i

2h̄

∫ t

0
dt ′

∫ t ′

0
dt ′′[HI(t

′), HI(t
′′)] + · · ·

)}
. (7)

From now on, the phaseφ will be set to zero to simplify the notation. The formulae in
the remainder of section3 are easily generalized to the case of arbitraryφ by making the
replacementsSx → S(φ)x andSy → S(φ)y .

In the following two subsections, effective Hamiltonians for theσz ⊗ σz gate and the
σφ ⊗ σφ gate will be derived starting from equation (7). We are interested in obtaining
Hamiltonians of the form given in equation (2) that are valid in the regime�� ν. In addition,
the calculation is going to yield correction terms for the case when�� ν no longer strictly
holds and additional terms that do not commute with the atomic operatorO in equation (2).
Towards this aim, terms proportional to higher orders of the expansion parameter(�/δ) will
be dropped. In the calculation, Bessel functionsJn(x) will be evaluated atx = 4�/δ. These
functions will be kept till the end of the calculation and expanded in�/δ only for the final
analysis.

3.1. σz ⊗ σz gate

For theσz ⊗ σz gate, we setδ = ν/2. We start by calculating the first termH (I,1)
eff =

1
τ

∫ τ
0 dt ′HI(t ′)

appearing in the exponent of (7). Here, it is important to note that the integrandHI(t)=∑
∞

k=−∞
H(k)eikδt is a periodic function of time with periodτ = 2π/δ so that all its Fourier

components except the constant termH(0) will average to zero when they are integrated over one
period. The only non-zero Fourier components of the functionf (t)=�(ei(δt+ζ ) + e−i(δt+ζ ))=∑

∞

n=−∞
fneinδt are f+1 =�eiζ and f−1 =�e−iζ . Since all non-zero Fourier components of

(D+ + D− − 1) are even integer multiples ofδ, the Sx-term of HI averages to zero. Therefore,
we obtain

H (I,1)
eff =

h̄

τ

∫ τ

0
dt f (t)

(
cos(2F(t))Sy − sin(2F(t))Sz

)
i(D+ − D−).

In the Lamb–Dicke limit,

i(D+ − D−)≈ − η(ae−i2δt + a†ei2δt)=:
∞∑

n=−∞

dneinδt ,
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and the componentsd+2 = −ηa† andd−2 = −ηa are the only relevant ones. Finally, we have

cos(2F(t))Sy − sin(2F(t))Sz =
1
2

[
ei2F(t)(Sy + iSz)+ e−i2F(t)(Sy − iSz)

]
= Aei(4�/δ) sin(δt+ζ ) + A†e−i(4�/δ) sin(δt+ζ )

=

∞∑
n=−∞

(
AJn

(
4�

δ

)
+ A†Jn

(
−

4�

δ

))
einζeinδt

=:
∞∑

n=−∞

aneinδt ,

whereJn is a Bessel function,A =
1
2(Sy + iSz)e−iψ with

ψ =
4�

δ
sinζ, (8)

and an = (AJn(
4�
δ
)+ A†Jn(−

4�
δ
))einζ

= (A+ (−1)n A†)Jn(
4�
δ
)einζ . In the following, the

argument 4�/δ of the Bessel functionsJn will often be dropped to keep the notation simple. It
is convenient to expressA± A† as

Sy,ψ := Sy cosψ + Sz sinψ = A+ A†, Sz,ψ := Sz cosψ − Sy sinψ = −i(A− A†). (9)

Note that the linear transformation (9) preserves the usual Lie algebra commutation relations
for the operatorsSx, Sy, ψ andSz,ψ . The four termsf+1d−2a+1, f−1d+2a−1, and to a lesser degree
f+1d+2a−3, f−1d−2a+3, contribute toH (I)

eff . Evaluating

f+1d−2a+1 = (�eiζ )(−ηa)(A− A†)J1

(
4�

δ

)
eiζ

= −η�J1e
2iζ iaSz,ψ ,

as well as the other terms, we arrive at the effective Hamiltonian

H (I,1)
eff = ih̄η�(J1 + J3)(e

−2iζa†
− e2iζa)Sz,ψ ,

whereη�(J1 + J3)≈ (2η�2/δ)(1− 4�2/(3δ2)). This Hamiltonian describes a spin-dependent
force that starts to saturate when the Rabi frequency goes up. While the atomic operator
O = Sz,ψ coincides in the limit of weak excitation with the operatorSz obtained from second-
order perturbation theory, it depends on the phaseζ between the blue- and the red-detuned laser
beams in the limit of strong excitation. For the periodic HamiltonianHI(t)=

∑
∞

k=−∞
Hk eikδt ,

the second-order contribution to the effective HamiltonianH (I)
eff is given by

H (I,2)
eff =

1

h̄δ

∞∑
m=1

1

m
[H(m), H(−m)].

After evaluating the commutators [H (1), H(−1)], [H (3), H(−3)], the effective Hamiltonian

H (I)
eff = ih̄η�(J1 + J3)Sz,ψ(a

†e−2iζ
− ae2iζ )−

4h̄η2�2

3δ
J0

2S2
y,ψ

is obtained (the contribution of the commutator [H (2), H(−2)] ∝ (η�)2(�/δ)6 is insignificant).
If the detuningδ = (ν− ε)/2 slightly deviates from half the oscillation frequencyν, the
Hamiltonian

H (I)
eff = ih̄η�(J1 + J3)Sz,ψ(a

†ei(εt−2ζ )
− ae−i(εt−2ζ ))−

4h̄η2�2

3δ
J0

2S2
y,ψ (10)

New Journal of Physics 10 (2008) 013002 (http://www.njp.org/)

http://www.njp.org/


11

is obtained. The second-order termH (I,2)
eff accounts for collective spin flip processes caused

by a Mølmer–Sørensen interaction. If this interaction did not exist, the propagator could be
calculated in the same way as for the driven harmonic oscillator described by (2). In the limit
�� ν, whereη�(J1 + J3)= 2η�2/δ + O(�4), the time evolution from t= 0 to t∗

= 2π/|ε|
would create a mapping of quantum statesφ(0)→ φ(t∗) described by the operator

UI(t
∗)= exp(iθ t∗S2

z,ψ),

with

θ t∗
=
π

2

(
4η�2

εδ

)2

sign(ε).

For m = 2 ions, the operatorUI(t∗) performs a conditional phase gate ifθ t∗
= π/8. Forζ = 0

and weak excitation (�� ν), this requires setting the coupling strength�=�c with

�2
c =

|ε|δ

8η
. (11)

In the limit where�� ν no longer holds, saturation effects reduce the geometric phase8

picked up in the gate operation. For�=�c, we would now have

θ t∗
≈
π

8

(
1−

2

3ηNt

)
, (12)

where Nt = ν/|ε| counts the number of trap cycles during the gate operation. Forη = 0.1
and a gate time of 100 trap cycles,8 is reduced by about 7%. The smaller the Lamb–Dicke
factor gets, the more important saturation effects become for a given gate time. The Mølmer–
Sørensen interaction contributes a term to the propagatorUI(t∗) which is now approximately
described by

UI(t
∗)≈ exp(iθ t∗S2

z,ψ)exp(iκt∗S2
y,ψ), (13)

with

κt∗
=
π

2

(
4η�2

εδ

)2
|ε|δ

3�2
. (14)

For the ratioκ/θ ,∣∣∣κ
θ

∣∣∣= 8

3
η. (15)

If η� 1, the contribution from the second term∝ S2
y,ψ is comparatively small.

Up to now, we have disregarded the fact that the effective Hamiltonian is valid only for
times T =

2π
δ

N, where N = 1,2, . . . and δ =
1
2(ν− ε) . Therefore, the gate timeT needs to

fulfil |ε|T = 2π as well asδT = 2πN, with integerN. Combining both conditions, we find

ε =
ν

2N + 1
, N ∈ N.

In writing equation (13), terms arising from the non-vanishing commutator [Sz,ψ , S2
y,ψ ]

were neglected. Using the abbreviations�m = η�(J1 + J3) and�MS = 4η2�2J2
0 /(3δ), it is
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convenient to rewriteH (I)
eff = HA + HB with

HA = h̄�miSz,ψ(a
†ei(εt−2ζ )

− ae−i(εt−2ζ ))−
h̄�MS

2
(S2

x + S2
y,ψ),

HB =
h̄�MS

2
(S2

x − S2
y,ψ),

sinceHA andHB commute. The time evolution induced byHA is given by the propagator

UA(t)= D̂(λ(t)Sz,ψ)exp(i8(t)S2
z,ψ)exp

(
i
�MSt

2
(S2

x + S2
y,ψ)

)
, (16)

with λ(t)= −ie−i2ζ (�m/ε)(eiεt
− 1) and8(t)= (�m/ε)

2(εt − sin(εt)), and for the interaction
HamiltonianHI,B = U †

AHBUA one finds

HI,B =
h̄�MS

2
(Ĉ(4λ(t))(S2

x − S2
y,ψ)+ Ŝ(4λ(t)){Sx, Sy,ψ}).

Here, the displacement operatorD̂(±α)= Ĉ(α)± i Ŝ(α) was expressed by the real-valued
operatorsĈ andŜ. For the special caseζ = 0 this is equivalent to

HI,B =
h̄�MS

4
(D̂(−4λ(t))S2

+ + D̂(4λ(t))S2
−
).

The last expression shows that the interaction HamiltonianHI,B describes collective spin flips
between the levels|↓↓〉 and |↑↑〉 that go along with displacements of the vibrational state.
For a phase gate operation, max(|4λ(t)|)≈ 2. Minimum uncertainty states of motion are not
conserved by the interaction.

3.2. Mølmer–Sørensen gate operation

The formalism developed so far can be employed to study the Mølmer–Sørensen gate as
Hamiltonian (5) also describes the bichromatic laser field of the Mølmer–Sørensen gate. Since
the laser frequencies are set close to the blue and red sideband resonance, the only difference is
thatδ = ν− ε instead ofδ = (1/2)(ν− ε), thus changing the values of the Fourier components
dn used to expressD±. Taking into account the leading terms in first and second order for the
calculation of (7), one finds the effective Hamiltonian

H (I)
eff

h̄
= −η�(J0 + J2)Sy,ψ(a

†ei(εt−ζ ) + ae−i(εt−ζ ))−
η2�2

2δ
J0

2S2
y,ψ +

2η2�2

3δ
J1

2S2
z,ψ , (17)

instead of (10). Integrating fromt = 0 to t∗
=

2π
|ε|

and neglecting commutators involvingSz,ψ in
the Magnus expansion, yields the propagator

UI(t
∗)≈ exp

{
it∗

((
η2�2

ε

(
(J0 + J2)

2 +
η2�2

2δ
J2

0

))
S2

y,ψ −
2η2�2

3δ
J2

1 S2
z,ψ

)}
= exp(iλt∗S2

y,ψ)exp(−iµt∗S2
z,ψ), (18)

with

λt∗
= π

2η2�2

ε|ε|

(
(J0 + J2)

2 + (ε/2δ)J0
2
)
, (19)
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µt∗
≈ π

16η2�4

3|ε|δ3
. (20)

The contribution∝ 1/(2δ) comes from the counter-rotating term, the red laser coupling to the
blue sideband and vice versa. For weak excitation, we have

UI(t
∗)= exp

{
iπ

2η2�2

ε|ε|
S2

y,ψ

}
.

Form = 2 ions, an entangling gate operation is achieved by setting|λt∗
| =

π

8 which amounts to
setting the coupling strength� to

�c =
|ε|

4η
. (21)

In the limit where�� ν is no longer valid but where|ε/η| � ν still holds, we find for the
correction terms in (19) when keeping�=�c

|λt∗
| ≈

π

8

(
1−

1

4(ηNt)2
−

sign(ε)

2Nt

)
. (22)

and for the ratio∣∣∣µ
λ

∣∣∣≈ 1

6(ηNt)2Nt
. (23)

For η = 0.1 and a gate operation that is performed within 100 trap cycles, the correction terms
to λt∗ have a relative strength of 0.25 and 0.5%, respectively, and theS2

z,ψ interaction is less
than 10−4 of the S2

y,ψ term. Therefore, the interaction is quite well approximated by using the
propagator (18) with µt∗ set to zero. Then, one obtains for arbitraryt

UI(t)= D̂(α(t)Sy,ψ)exp
(
i(λt −χ sin(εt))S2

y,ψ

)
,

where

α(t)=
η�

ε
(J0 + J2)e

−iζ (eiεt
− 1), (24)

λ=
η2�2

ε

(
(J0 + J2)

2 +
ε

2δ
J0

2
)
, (25)

χ =
η2�2

ε2
(J0 + J2)

2. (26)

In the reference frame of the original Hamiltonian (5), the laser–ion interaction is therefore well
described by the propagator

U (t)= exp(−iF(t)Sx)D̂(α(t)Sy,ψ)exp
(
i(λt −χ sin(εt))S2

y,ψ

)
. (27)

This propagator can be used to calculate the dynamics of expectation values of interest
for the qubits. It is possible to derive simple expressions by tracing over the motional states
if the vibrational mode is in a thermal state. For this, it is useful to note thatD̂(α(t)Sy,ψ)=∑

λ D̂(α(t)λ)Pλ where Pλ denotes the projector on to the subspace spanned by eigenvectors
of Sy,ψ with eigenvalueλ. Moreover, the diagonal elements of the displacement operator in
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the number-state representation are given by〈n|D̂(α)|n〉 = exp(−|α|
2/2)Ln(|α|

2) whereLn

denotes a Laguerre polynomial [20]. Since the generating function ofLn(β) is given by [21]

g(x, β)=

∞∑
n=0

Ln(β)x
n
=

1

1− x
exp

(
−
βx

1− x

)
,

summation over a thermal state with number state populationpn =
1

n̄+1(
n̄

n̄+1)
n and mean phonon

numbern̄ simply yields∑
n

pn〈n|D̂(α)|n〉 = exp
(
−|α|

2(n̄ + 1
2)
)
.

In the case of two ions,ζ = 0, and an initial qubit stateρA = |↓↓〉〈↓↓|, the expectation value
O(t)= TrQ(Oρ(t)) of the observableO is given by

O(t)=
1
16TrQ(OV{(S2

z + S2
x)− 4Sze−4|α|

2(n̄+(1/2)) + (S2
z − S2

x)e
−16|α|

2(n̄+(1/2))
}),

where TrQ refers to the trace of the qubit state space andOV = VOV† with V(t) =

exp(−iF(t)Sx)exp(iγ (t)S2
y) andγ (t)= λt −χsin(εt). As an example, the time evolution of

〈↓↓ |ρ(t)| ↓↓〉 is explicitly given by

p↓↓(t)=
1
8(2 + cos2(2F))+ 1

2 cos(2F) cos(4γ )e−4|α|
2(n̄+(1/2)) + 1

8 cos2(2F)e−16|α|
2(n̄+(1/2)),

with α(t), γ (t) andF(t) containing the time-dependent terms. Other quantities of interest could
be calculated in the same way.

A propagator similar to (27) was calculated in [11] for the caseζ = 0. The authors argued
that the non-resonant excitation of the carrier transition could be neglected in a first step
and obtained in this way a Hamiltonian of the type described by (2) that could be integrated
exactly. In a second step, they considered the influence of the previously neglected non-
resonant excitations. While this treatment yields correct results forζ = 0, it fails to predict the
dependence of the gate operation onζ via the angleψ as given by (27). Figure4 shows the time
evolution of matrix elements for the same parameters as used in [11] for the casesζ = 0 and
ζ = π/2. In the latter case, the amplitude of the non-resonant carrier oscillations is considerable
and the input state|↓↓〉 is never perfectly mapped to a maximally entangled state. Forζ 6= 0,
the effect of a non-zero value ofψ is fairly small for current gate realizations using hyperfine
qubits where the Lamb–Dicke parameterη is considerable. However, it becomes crucial for the
realization of fast gates on optical qubits with smallη since in this case the gate requires a larger
value of� to achieve the same gate speed.

Figure 5 shows a comparison of the different propagators for the gate operation with
η = 0.05 taking place in 25 trap cycles (δ = 0.96ν). For the prediction of the required coupling
strength� for a gate operation realizingUid,φ = exp(i π8 S2

y,ψ), equation (25) was iteratively
solved to yieldλt∗

= π/8. The propagatorUex was obtained from a numerical integration of
(5). Then,Uex was compared toUid,φ, to the propagator of (27), to Uid = exp(i π8 S2

y) and to
the predictionUpert = exp(i2πη2�2/ε2S2

y) of second-order perturbation theory. Since the exact
propagator does not perfectly return the motional state to the initial state at the end of the
gate, the following procedure was applied for the calculation of the distanced between the
propagators: we assume that the ions are initially in the motional ground state and that a cooling
mechanisms returns the motional state to the ground state at the end of the gate operation without
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Figure 4. (a) Time evolution of the density matrix elements of two ions in
a thermal state withn= 2 undergoing a Mølmer–Sørensen interaction with
�= 0.0885ν, η = 0.1, ε = 0.05ν and ζ = 0. The calculations are based on
(27). The values chosen reproduce the curves shown in figure 3(b) of [11].
Counting from above atνt = 60, the curves represent the populationsρ↓↓,↓↓,
ρ↑↑,↑↑ and the coherences Im(ρ↓↓,↑↑) and Re(ρ↓↓,↑↑). At νt ≈ 250 (t = 4π/ε),
the ions are in a maximally entangled state. (b) Same as (a) but withζ = π/2. If
the gate operation starts in an intensity minimum of the amplitude-modulated
laser beam, the non-resonant carrier oscillations are much stronger. Atνt =

250, the quantum state is no longer maximally entangled. (c) FidelityF =

〈ψmax|ρ(t)|ψmax〉 of creating the maximally entangled state|ψmax〉 = (|↓↓〉 −

i|↑↑〉)/
√

2 near the optimum calculated from (27). The upper curve corresponds
to ζ = 0, the lower one toζ = π/2. The points on top of the upper curve
represent the fidelity forζ = 0 and were obtained by a numerical integration of
the Hamiltonian (5) after applying the Lamb–Dicke approximation. (d) Infidelity
1− F of the gate atνt = 250 forζ = 0 and a state withn= 0. The solid line is a
numerical integration of (5) in the Lamb–Dicke approximation, the dash-dotted
line is based on the full Hamiltonian. The arrow labelled ‘α’ denotes the optimum
Rabi frequency predicted by (21), ‘β ’ the value of� chosen in [11], ‘γ ’ the Rabi
frequency predicted by (25).

affecting the qubit states. This turns the unitary evolution into a quantum process acting only on
the internal states of the ions. For the comparison of two quantum processesE1E2, the processes
are mapped using the Jamiolkowski isomorphism on to density matricesρ1 andρ2 for which
the distanced(ρ1, ρ2)= 1− Tr(

√√
ρ1ρ2

√
ρ1) is calculated [22, 23]. The results show that the
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Figure 5. Performance of theσφ ⊗ σφ gate as a function of the phaseζ for
a gate operation taking place in 25 trap cycles withη = 0.05, δ = 0.96ν and
�= 0.221ν. The figure shows the distanced(Uex,Uid,φ) between the exact
propagatorUex obtained by numerical integration of (5) and the gate operation
Uid,φ = exp(i π8 S2

y) (solid line). The points on top of the line denoted(Uex,U(27))

whereU(27) is the propagator given by (27), thus demonstrating that this equation
is a very good approximation to the exact solution. The dashed-dotted line
showsd(Uex,Uid,φ) with Uid,φ = exp(i π8 S2

y) and the dotted lined(Uex,Upert) with
Upert = exp(i2πη2�2/ε2S2

y) as predicted by simple second-order perturbation
theory. More details regarding the distance measured are given in
the text.

propagator given by (27) correctly predicts the coupling strength as well as the operator realized
by the gate operation. It also becomes obvious thatUid considerably deviates from the operation
generated by the Hamiltonian (5) unlessζ = 0.

3.3. Comparison ofσz ⊗ σz andσφ ⊗ σφ gates

The main advantage of theσz ⊗ σz interaction on optical qubits appears to be its insensitivity
to changes in the optical path length. In the limit of weak excitation, the gate operation
tolerates changes that occur within the gate operation as in each elementary process a photon
is absorbed and another one emitted into the same laser beam (this property does not hold
for hyperfine qubits since here Raman beams in a counter-propagating configuration are used).
If higher Rabi frequencies are used, the interaction rather becomesσz,ψ ⊗ σz,ψ which make it
susceptible to path-length fluctuations within the gate time. Still, if amplitude-shaped pulses
are applied (see section4), the gate operation tolerates changes of the path length that occur
between consecutive applications of the gate. This is not the case for the Mølmer–Sørensen
gate which becomes robust against changes between gate operations but remains susceptible to
changes occurring within the gate when the gate is sandwiched betweenπ/2 pulses applied to
both qubits.

Theσz ⊗ σz gate, however, seems to be much less favourable with respect to the following
criteria: (i) the Rabi frequency that is required for performing the gate operation in a given time,
(ii) the strength of saturation effects reducing the coupling for the Rabi frequency needed for
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Table 1. Comparison ofσz ⊗ σz andσφ ⊗ σφ gates. The first row gives the Rabi
frequency� required to perform an entangling gate operation as a function of
η and the gate duration. The latter is expressed as the number of trap oscillation
periodsNt. The second row lists the reduction in coupling strength for this kind
of gate due to saturation effects. The third row compares the unwanted to the
desired coupling strength.

Gate type σz ⊗ σz σφ ⊗ σφ

Rabi frequency �/ν = 1/(4
√
ηNt) �/ν = 1/(4ηNt)

Saturation strength γ = 2/(3ηNt) γ = 1/(4η2N2
t )

Coupling ratio κ/θ = 8/(3η) µ/λ= 1/(6η2N3
t )

the gate operation, and (iii) the ratio between the desired and the unwanted spin–spin couplings.
Table1 shows a comparison of the gates with respect to these criteria, thus summarizing the
results (11), (12) and (15) for theσz ⊗ σz gate and (21), (22) and (23) for theσφ ⊗ σφ gate. For
all three criteria, the Mølmer–Sørensen performs better. Having a low Rabi frequency is also
of interest when it comes to non-resonant excitation of other vibrational modes or light shifts
induced by excitation of far-detuned dipole transitions.

4. Amplitude-shaped pulses and spin echos

4.1. Amplitude-shaped laser pulses

In the limit of fast gate operations, the Hamiltonians (10) and (17) become sensitive to the
phaseζ which is related to the intensity of the bichromatic laser field at the start of the gate
operation. It is therefore interesting to shape the intensity of the bichromatic laser field during
the gate operation so that the atomic operatorO(t)= Sj,ψ(t), with ψ(t)=

4�(t)
δ

sinζ , appearing
in the Hamiltonians becomes time-dependent but independent ofζ at the beginning and at the
end of the gate when the intensity is low. In this way, the gate could be made insensitive to
ζ by an adiabatic process whereO(t) evolves fromSj at the start of the gate operations to a
ζ -dependent operatorSj,ψ(t) and back toSj . However, the stateα(t) of the vibrational mode
generally does not return to its original state at the end of the gate under the action of the
propagator (3) when the couplingγ (t) is made time-dependent. There is, however, a class of
shaped pulses with the propertyα(τ)= 0 that can be constructed in the following way: by
applying an amplitude-shaped pulse twice with a sign change in the coupling between the two
pulses, i.e.γ2(t)= −γ1(t), one obtains the propagator

U = U−γ (2τ, τ )Uγ (τ,0)= exp(i28(τ)O2),

because the first and the second pulse displace the motional state into opposite directions but
by an equal amount (see (3)). A quantum state that is displaced along a circle in phase space
by an off-resonant force of constant magnitude,γ (t)=�eiεt , t ∈ [0,2π/ε], can be viewed as a
special case of this pulse form withτ = π/ε. For the bichromatic gates based on the interactions
(10) and (17), the sign change can be accomplished by either shifting the phaseζ during the
action of the second pulse by an amountπ/2 (π ), respectively, or by changing the overall phase
of the laser byπ during the second pulse (i.e.�→ −�).
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Figure 6. Mølmer–Sørensen gate operation with two amplitude-shaped laser
pulses based on the full Hamiltonian (5) without Lamb–Dicke approximation.
For parameters�max = max(|�|)= 0.167ν, η = 0.05, the gate takes place
during 50 trap oscillation periods. The pulses are switched on and off during
eight trap cycles using a cos2-profile. During the second pulse, the phase of the
blue- and the red-detuned beam is shifted byπ with respect to the first pulse.
(a) Time evolution of the populationsp↑↑, p↓↓, p↓↑ + p↑↓, when starting from
state |↑↑,n = 0〉 at time t = 0. The dotted line shows the coupling strength
|�(t)|/(2�max), the dashed line is the average number of vibrational quanta. (b)
Infidelity of the final state as a function of the phaseζ . The upper curve shows the
strong influence of the phase for a gate operation with constant coupling strength
�= 0.147ν where a high-fidelity operation is achieved only forζ = 0. For
the amplitude-shaped gate, the fidelity is practically independent ofζ . Similar
results are also obtained for other input states. For a realistic calculation ofF ,
decoherence caused by spontaneous decay of the metastable state would have to
be taken into account.

Figure6 illustrates the use of amplitude-shaping in order to make the Mølmer–Sørensen
gate operation robust against fluctuations in the phaseζ between the blue- and the red-detuned
laser beam. In this example, an entangling gate is accomplished withinN = 50 trap oscillation
periods by a pair of laser pulses with�(t + τ)= −�(t), for t 6 τ with τ = πN/ν. As shown
in figure6(a), the pulses are switched on and off within eight trap cycles. After the first pulse,
the vibrational state has not returned to its initial state. It is only after the second pulse that
the correlations between the vibrational state and the qubit states vanish again. Using this
technique, the initial state|↑↑,n = 0〉 is mapped to the target state1√

2
(|↑↑〉 + i|↓↓〉)|n = 0〉 with

an infidelity of below 10−5 (see figure6(b)). This is in sharp contrast to the case of an excitation
of the same duration with constant amplitude where the infidelity depends on the phaseζ and
varies between 10−4 and 0.2. Similar results are also obtained for other input states.

4.2. Spin echos

Spin echo pulses can be combined with amplitude-shaped laser pulses to make theσz ⊗ σz

gate more robust against imperfections. It is possible to implement the conditional phase gate
operation by having the motional state perform two circles in phase space so that the gate pulse
can be split up into two separate pulses. Since the quantum states|↑↑〉, |↓↓〉 as well as the
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states|↑↓〉, |↓↑〉 pick up the same phases8↑↑ =8↓↓, 8↑↓ =8↓↑, it is possible to exchange
the states|↑↑〉 ↔ |↓↓〉, |↓↑〉 ↔ |↑↓〉 by a collectiveπ -pulse sandwiched between the two gate
pulses and to exchange the populations at the end of the gate sequence again. The first spin-echo
π -pulse inverts the direction of the force on the motional state so that the motional state returns
to the initial state after the second spin-dependent pulse. In contrast to the case of shaped pulses
without spin-echo, there is no need to change the phaseζ of the second pulse or the sign of the
coupling strength�. The spin echo procedure is advantageous for the following reasons:

1. The gate becomes more robust against unequal light intensities on the ions.

2. Single qubit phases arising from light shifts are transformed into an unimportant global
phase. In the context of this gate, light shifts will mainly be due to an imbalance in the
power of the blue- and the red-detuned laser beams and also due to very off-resonant
excitation of dipole transitions. In addition, a light shiftδls occurs if the average frequency
ωL of the bichromatic light field does not exactly coincide with the atomic transition
frequencyω0. However, this light shift will be fairly small asδls ∝ (�/δ)2(ωL −ω0).

3. Collective spin flips arising from the termS2
y in (10) can be cancelled to first order by

choosing rotation axes for theπ -pulses on ion 1 and ion 2 that differ by 90◦ (x-rotation
on ion 1 andy-rotation on ion 2). This effectively changes the sign of the rotation angle
κ occurring in (13) for the second pulse and eliminates the spin flip contribution of
the interaction. To perform differentπ -pulses on both ions requires, however, either a
different trap frequency that changes the distance between the ions byλ/4 or an additional
laser beam.

In the limit of short gate operations, spin echos become somewhat less efficient in cancelling
perturbations described bySz interactions as the gate interaction∝ S2

z,ψ no longer commutes
with Sz for ψ 6= 0.

For the Mølmer–Sørensen gate operation, where [S2
y,ψ , Sz] is not a small quantity, spin

echos seem to be of limited use. If, however, the gate interaction is sandwiched between a pair
of collectiveπ/2 pulses to turn it into aσz ⊗ σz interaction, spin echos are helpful for cancelling
perturbations occurring between consecutive gates. Also, it should be noted that a spin-echo like
technique was already proposed in [10] in order to cope with number-state dependent ac-Stark
shifts that arise if the gate is implemented by illuminating ion 1 with a red-detuned laser beam
and ion 2 with a blue-detuned laser beam instead of using a bichromatic light field for both ions.

5. Conclusions

Collective laser–ion interactions with bichromatic laser beams are capable of performing both
σz ⊗ σz gates as well as Mølmer–Sørensen gate operations. The analysis shows that it is
important to include non-resonant excitation of the carrier transition for the precise calculation
of the gate operation. While the paper was focused on the case of qubit states linked by
a weak optical transition, the discussion of the Mølmer–Sørensen gate interaction applies
also to hyperfine qubits where non-resonant carrier excitation also occurs in the limit of fast
gate operations. For optical qubits, the required laser beams are chosen to be co-propagating
which allows for a robust and experimentally easily realizable set-up where an acousto–optical
modulator is used in single-pass configuration to create the bichromatic light field. In a direct
comparison of the gates, the Mølmer–Sørensen interaction seems to be advantageous in terms
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of required laser power and gate accuracy while theσz ⊗ σz interaction has the advantage of
being robust even against certain path length fluctuations occurring during the gate operation
in the limit of weak driving whereSz,ψ ≈ Sz. For gate durations coming close toT = 2π/(ην),
control of the phaseζ between the red- and the blue-detuned laser beams is of vital importance
unless the gate is performed using amplitude-shaped laser pulses. In this case, the requirements
are strongly relaxed and the gates appear to be very promising for experimental realization. The
possibility of using a single laser beam for global single qubit and entangling operations also
opens interesting perspectives for creating multi-particle entangled states with more than two
ions. The operations using this beam could be combined with an off-resonant strongly focused
beam capable of inducingσz operations on individual qubits in order to create a larger variety
of complex entangled states.
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