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Abstract. The electronic structure and dielectric properties of the diamond,
body centered cubic diamond (bc8), and hexagonal diamond (lonsdaleite)
phases of carbon are computed using density functional theory and many-body
perturbation theory with the emphasis on the excitonic picture of the solid phases
relevant in the regimes of high-pressure physics and warm dense matter. We also
discuss the capabilities of reproducing the inelastic x-ray scattering spectra in
comparison with the existing models in light of recent x-ray scattering experiments
on carbon and carbon bearing materials in the Megabar range.

Keywords: high pressure effects, dielectric functions, warm dense matter

ar
X

iv
:1

80
9.

06
76

8v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
3 

Ju
l 2

01
9



Ab-initio dielectric response function of diamond 2

1. Introduction

As one of the most abundant elements in the universe, carbon plays a unique role with
its ability to form hybrid bonds leading to a wide range of allotropes and compounds.
Carbon, subjected to extreme pressure and temperature conditions inside the earth
and other planets experiences drastic changes in its material properties. Diamond rain
is theorized to occur deep inside the layers of Neptune and Uranus due to the demixing
of the carbon and hydrogen atoms of methane under conditions of high pressure and
temperatures [1]. Such conditions can be recreated in the laboratory using compression
methods like laser driven shock waves to such an effect that nano-diamonds in a
high pressure fluid of carbo-hydrates can indeed be observed [2, 3]. Meanwhile
computer simulations need to provide significant information prior to the design of
such experiments and are essential for the evaluation of the measurements [3, 4].

For inertial confinement fusion applications (ICF), the design of targets is crucial
for the feasibility. Diamond is a promising candidate for the ablator material due to
it’s high atomic density, yield strength and chemical inertness. The understanding
of the high pressure solid phase bc8 is important in ICF with a diamond ablator
as the shock sequences are needed to be performed avoiding the bc8 phase. Plastic
ablator materials are also of interest for ICF and the phase separation of carbon and
hydrogen during the implosion could lead to hydrodynamic instabilities with reduced
performance in the implosion [5, 6, 7].

Under meteorite impacts, a variety of new high pressure phases of carbon have
been reported. Theoretically, these phases are found to be metastable under ambient
conditions [8]. Lonsdaleite or hexagonal diamond is one such phase discovered for the
first time in 1967 in the remains of a meteorite and later synthesized under laboratory
conditions [9]. The formation is reported in a wide variety of experiments with the
veracity of the recovery under ambient conditions ambiguous [10, 11, 12, 13, 14, 15].

The allotropes of carbon feature a wide range of properties such as contrasting
hardness from graphite to diamond [16]. The potential application of graphene
is already widely known and diamond is one of the most studied wide-band
semiconducting material [17]. Theoretically, lonsdaleite and bc8 are harder than
diamond and the knowledge of electronic and optical properties is important for
characterizing their potential applications [18]. The stable bc8 and lonsdaleite phases
of silicon and germanium have already been synthesized using diamond anvil cells and
laser ablation [19, 20, 21, 22, 23]. The bc8 phase of silicon is a narrow direct band
gap semiconductor at room temperature and the lonsdaleite phase is the stabler form
for synthesizing nanowires under certain dimensions [24, 25].

The description of the electronic and ionic properties of carbon, of the equation
of state (EOS), and the corresponding phase boundaries requires state of the art
ab initio methods such as density functional theory (DFT) with molecular dynamics
(MD) or path integral Monte Carlo. A combination of DFT and many-body quantum
statistics allows to include higher order correlations and describe new physics such
that the accuracy and predictive power of theoretical methods is enhanced. We are
particularly interested in the dynamic structure factor (DSF) as it is an important
quantity to determine properties of high pressure solids and fluids and warm dense
matter states. The DSF can be accessed, e.g., using energetic x-ray free-electron
(XFEL) radiation or electron beams. Enhanced DSF models include in particular
electron-hole interactions in semiconductors and insulators. This provides improved
predictions for dielectric functions and conductivities, especially when it is combined
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with higher rungs of xc-functionals for a better description of the band gaps. From
these, better EOS may be derived based on the DSF or dielectric function. As a
practical application, the determination of the temperature based on x-ray Thompson
scattering (XRTS) data will be improved [26].

2. Theory of inelastic x-ray scattering

The density fluctuations off which x-rays scatter can be described by the DSF S(q, ω)
using the density response function χ(q, ω) with the inverse of the dielectric function
ε−1(q, ω) = 1 + V (q)χ(q, ω) where V (q) is the Coulomb potential via the fluctuation-
dissipation theorem

S(q, ω) =
~
πne

1

1− e~ω/kBTe
Im[χ(q, ω)]. (1)

Here, ne is the number of free electrons and q = ||~q|| the magnitude of
the scattering vector. This also obeys the detailed balance relation, S(q, ω) =
S(−q,−ω)e−β~ω and the asymmetry with respect to q and ω is used to infer
the electron temperature off the plasmons in experiments [26, 27]. The resonance
frequency ω used in the detailed balance equation is up (down)-shifted ω → |ωX ± ω|
based on the energy gain or loss of the x-rays where ωX is the frequency of the x-ray
source. The extended Mermin ansatz (MA) by Fortmann et al provides the state
of the art description of the free electron feature of the scattering signal in warm
dense matter (WDM) [28, 29]. It allows to consider electron-electron correlations
and also the influence of electron-ion collisions by the inclusion of dynamical collision
frequency and local field corrections (LFC). This approach also allows the application
to XRTS for degenerate plasmas at temperatures far below the Fermi temperature.
The electron-electron response function under MA is given by

χM (q, ω) = (2)(
1− iω

ν(ω)

)
χLFC (q, ω + iν(ω))χLFC(q, 0)

χLFC (q, ω + iν(ω))− iω
ν(ω)χ

LFC(q, 0)
,

where χLFC(q, ω) is the single component response function with the inclusion of
dynamical local field correction G(q, ω) and ν(ω) is the collision frequency. χLFC(q, ω)
is given by

χLFC(q, ω) =
χ0(q, ω)

1− V (q) [1−G(q, ω)]χ0(q, ω))
, (3)

and setting G(q, ω) = 0 leads to the level of RPA [30, 31]. The free density
response functions χ0 has usually been calculated using free electron states (and the
density of free electrons) for applications in plasma and warm dense matter physics.
The complex collision frequency ν(ω) needed for the Mermin approach of Eq. (2) may
in WDM be taken in Born approximation [32]. Recently, it was suggested to extract it
directly from DFT using εM (q → 0, ω) = εDFT (q → 0, ω) and the Kubo-Greenwood
(KG) formula [33, 34]. We use this approach as well in order to extend KG-DFT
results via MA to finite wavenumbers.
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However, using single particle Kohn-Sham states ψ(r) as computed via DFT in
the free density response function [35]

χ0
KS(r, r′, ω) = lim

η→0+

∑
jk

(fk − fj)
ψj(r)ψ∗j (r′)ψk(r′)ψ∗k(r′)

ω − (εj − εk) + iη
, (4)

allows to obtain the density response function within linear response based on time-
dependent DFT (TDDFT)

χTDDFT (q, ω) =
χ0
KS(q, ω)

1− [V (q)− fxc(q, ω)]χ0
KS(q, ω))

. (5)

Here, the kernel fxc describes higher order exchange and correlation and is, similarly
to the local field corrections, subject of active research [36]. We can compare these
TDDFT calculations that can provide q-dependent response functions to the MA
based on Kubo-Greenwood-DFT collision frequencies discussed in section 3. Recently,
TDDFT was first used for modeling experimental XRTS spectra of metals. The DSF
for warm dense beryllium without the Chihara formalism was computed with the aid
of real-time TDDFT and Mermin’s formalism for finite-temperature DFT [37]. Mo et
al have used TDDFT to infer the electronic temperature based on the XRTS spectrum
of the experiments on aluminium by Sperling et al [38, 27].

Further, more systematic approximations for the structure factor may be derived
on the basis of the Bethe-Salpeter equation (BSE) [39]

L(12, 1′2′) = L0(12, 1′2′) +

∫
C
d3d3′d4d4′ L0(13, 1′3′) (6)

×
[
δ(3− 3′)δ(4− 4′)V (3′ − 4′) +

δΣ̄(3′, 3)

δg(4, 4′)

]
L(42, 4′2′) .

Here, 1 = {r1, t1, σ1} is a full set of observables and L(12, 1′2′) is the correlation
function of density fluctuations which simplifies to the density response function
χ(1, 2) = L(12, 1+2+) upon setting the times t′1 = t+1 and t′2 = t+2 . Σ̄(3′, 3) is the
screened self-energy and g(4, 4′) is the single-particle Green’s function. L0 denotes
the free correlation function akin to the function given in Eq. (4) once the particle-
hole channel is selected. Within this paper, the screened self-energy is taken in GW
approximation and only the contribution of the screened potential is considered in the
functional derivative. Further, only static screening is taken into account to simplify
the time structure of the BSE.

3. Computational methods

The density functional theory (DFT) calculations along with the random phase
approximation (RPA), the TDDFT and BSE computations were primarily performed
using a full-potential linearized augmented-plane wave code implemented in elk [40].
While DFT has been successful in describing ground state properties, the excited state
properties are not well described by Kohn-Sham eigenvalues especially in the realm
of linear response functions and band gaps for insulators and semiconductors [41].
Within the framework of DFT, higher order correlations and exchange contributions
leading to e.g., more accurate band gaps, can be accounted for by using xc
functionals in various higher rungs of Jacob’s ladder [42]. Beyond pure DFT,
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the GW approximation is available. The GW approximation leads to a frequency
dependency on the GW (Montroll-Ward) self-energy terms thus including medium
effects on the electronic states providing improved band gaps [42, 43]. For GW or
single-shot GW0 corrections to the band gap, we use the inbuilt GW routines in
VASP [44, 45, 46, 47] and yambo [48] with the Kohn-Sham wavefunctions generated
using Quantum ESPRESSO [49, 50].

The Kubo-Greenwood (KG) formula used ubiquitously under WDM conditions
for linear response calculations of the dielectric function and conductivity in the
optical limit (q → 0) generally provides results of unknown accuracy only, especially
for (partially) bound state systems due to the combination of single state DFT
wavefunctions along with the lack of many-body physics in the formula itself. The KG
expression for the frequency dependent conductivity tensor depends on the transition
matrix elements 〈i| ∇ |j〉 and is given by

σ(ω) = i
2~e2

m2
eV

∑
i,j

〈i| ∇ |j〉 〈j| ∇ |i〉
Ei − Ej − ~ω + iδ/2

Fi − Fj
Ei − Ej

, (7)

where Fi are the Fermi-Dirac occupations and Ei the corresponding single-particle
eigenvalues calculated using DFT [51, 52, 53]. The dielectric function is then calculated
using

ε(ω) = 1 +
i

ε0ω
σ(ω). (8)

To calculate response functions beyond the level of the KG formula, we employ
various many-body methods that take wavefunctions from DFT as input. The TDDFT
calculations under adiabatic local density approximation (ALDA) for the xc kernel
are performed using Bootstrap, a long range xc kernel implemented in elk, which is
reasonably good for reproducing excitonic effects and computationally fast for ab-initio
calculation of absorption spectra [35, 36, 54]. RPA uses electron states from DFT, but
lacks the xc kernel as used in TDDFT. RPA provides the next best approximation
to the Hartree-Fock approximation, representing a change in electron’s self-energy
due to dynamical screening [55, 56, 57]. The solution of the BSE provides the
most systematic description of electron-hole correlations including excitons within the
gap [58]. The solution encompasses a two-step process where the quasiparticle electron
states and wavefunctions calculated under the GW approximation are used to solve
the BSE using a four-point polarization propagator in a Dyson-like equation [59].
In contrast, TDDFT uses two-point propagators and is much easier to solve [60].
The interaction between the electron-hole pair is approximated by a Coulomb kernel
along with a screened interaction term. BSE needs more k -points and empty
bands than GW to obtain convergence and scales as O(n5), it is therefore the most
computationally demanding method of all used here [61]. Diagonalization scaling is
given by (Nc×Nv ×Nk)3 where Nc, Nv and Nk stands for the number of conduction
bands, valence bands, and k -points respectively [62, 63, 64]. The BSE calculations are
performed using the method of diagonalization in elk. The code exciting was used for
the finite wavenumber BSE calculations [62, 63].
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4. Electronic structure and optical response of different carbon phases

4.1. Diamond

Diamond has a face-centered cubic structure with the spacegroup Fd3̄m consisting of 2
atoms per primitive unit cell. The lattice parameters are a = b = c, α = β = γ = 900.
The DFT calculations were performed using elk on a 20×20×20 k -point mesh and 16
bands using a PBE-GGA functional with Broyden mixing [65, 66]. The choice of the
xc functionals under extreme pressures is important as the system’s energy depends
on the spatially varying electronic charge densities and the PBE functional has been
well tested up to 1000 TPa for the allotropes of carbon [67]. The total energy obtained
from DFT for various lattice parameters are fit to the Vinet equation to obtain the
equilibrium volume [68, 69], see Appendix A. The obtained lattice constant a0=3.569 Å
agrees nicely with the experimental measurement 3.567 Å [70]. The electronic density
of states at various pressures are shown in Fig. 1. There is pressure broadening of
the valence band, but the most striking property of the diamond electronic structure
is the opening of the band gap with increasing pressure.
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Figure 1: The density of states for diamond as function of pressure obtained from DFT
using the all-electron full potential elk code. The pressures are in GPa and the valence band
maximum is adjusted to zero.

It is well known that standard DFT using the LDA or GGA underestimates the
band gap. To correct the DFT band gap, we use the GW approximation implemented
in VASP with 64 bands on a 16× 16× 16 k -point mesh centered around the Gamma
point using the PBE-GGA functional with the hard carbon PAW pseudopotential and
the energy cutoff set to 10 Ha. The GW0 calculations are performed using the RPA
results with the inclusion of local-field effects.

Both the direct and the indirect band gaps widen almost linearly with increasing
pressures, see Fig. 2, corroborating the experimental evidence of the band gap
opening in diamond under hydrostatic compression by Gamboa et al [71, 72]. As
expected, the PBE band gap is smallest and improved approximations, either by
advanced functionals or due to many body theory, increase the band gap. Our
result for the band gap at zero pressure within the GW0 approximation is in the
range obtained by other simulations [16, 73, 74] and shows good agreement with
experiment [75]. Moving beyond LDA/GGA functionals, especially hybrid functionals
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Figure 2: The band gap of diamond calculated using various xc-functionals as function of
pressure in DFT and within the GW approximation. We also show the direct band gap
calculated using PBE. Gao [73]; Li [74]; Experiment [75].

for semiconductors and insulators for elements of group-IV have been shown to
provide reliable bandgaps [76, 77]. Across the pressure ranges considered, HSE06
seems consistently best among the functionals tested for DFT and the GW band gap
corrections [78, 76]. Interestingly, the GW0 results for the band gap do not seem to
depend on the choice of xc-functional. While the zero-point energy renormalization is
important for finite-temperature electronic effects for carbon materials due to electron-
phonon contributions, it can be neglected for the high pressures considered in this
work [79, 80, 81, 82, 83].

The response function for diamond evaluated using various approaches is shown
in Fig. 3. Due to the large band gap, excitonic effects are important and therefore
BSE is among the methods used to calculate the absorption spectra. For the BSE
calculations, we use a 12 × 12 × 12 k -point mesh with 8 empty states. The optical
band gap can be deduced from the first peak of the absorption curve (imaginary
part of the dielectric function). In some cases there can be a dark state with small
oscillator intensities. In general, it is apparent that the onset of absorption happens
softer and earlier for KG, RPA, and our TDDFT result than for the BSE model or
for the experimental result. The maximum in absorption ranges from 0.407 Ha for
the KG model to 0.465 Ha in RPA. The experimental maximum is located at 0.427
Ha and is best reproduced by TDDFT closely followed by BSE. Though the BSE
spectra matches the location of the absorption maxima reasonably well, the oscillator
intensity is quite large compared to the experimental result. Such an overestimation is
also reported in other calculations [84, 54, 85]. The overall match to the experimental
result seems best for the TDDFT method. The deviation of RPA is understandable
as it misses the long range fxc kernel and therefore cannot capture bound excitons.
Thus, the effective result of taking into account the electron-hole interaction in the
xc-kernel is a shift of oscillator intensity to lower energies, this effect is prominent for
insulators and less for narrow-gap semiconductors [85].

At higher pressures, the lower edge of the imaginary part of the dielectric function
shifts to higher energies due to the opening of the band gap as shown in Fig. 4. The
maximum of the imaginary part of the dielectric function shifts to higher energies even
faster than the edge. This is due to the number of occupied and unoccupied states on
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Figure 3: The imaginary part of the dielectric function of diamond in the optical limit at the
equilibrium volume (ρ = 3.509 g/cm3) using various approaches. The inset plot shows the
imaginary part of the inverse of the dielectric function including the plasmon peaks. In the
inset, the curves obtained using TDDFT/RPA and KG are scaled twentyfold and tenfold,
respectively, for the purpose of visualization. The Botti result is taken from Ref. [36]; the
experimental data stems from Ref. [86].

both sides of the band gap, respectively, declining with an increase in pressure. One
observes a similar behaviour of different theories for higher pressures as for the zero
pressure case of Fig. 3. RPA shows the absorption peak at the highest energies, BSE
shows the highest absorption strength. TDDFT produces similar absorption spectra
as BSE with lower oscillator strengths near the right exciton energies in Fig. 4.

In addition, it is of interest to calculate the dielectric function for other
wavenumbers than just in the optical limit q → 0. Figure 5 shows the result of
three different theories for finite wavenumbers. To choose the complementary k and
q points we use the relation nki × qi = N where nki is the number of k -points along
~x, qi is the number of q-points along ~x, N is an integer which is also a factor of nki
explained by the Monkhorst-Pack k -sampling [87]. The calculations are performed
using an uniform 20×20×20 k -point mesh with 8 empty bands. The TDDFT results
were obtained using elk, the BSE results stem from exciting.

In general, an increase in momentum leads to a reduction of the peak height and
a shift of the peak to higher energies in the imaginary part of the dielectric function.
It can be observed that the reduction in peak height as predicted by BSE is much
more drastic in the considered q-range as the change in the TDDFT result. Further,
the BSE peaks change their location more than the TDDFT peaks.

TDDFT and BSE derive the wavenumber dependence via differences between k -
points within the approach. In contrast, a wavenumber dependency of the dielectric
function can also be obtained if a dynamic collision frequency is calculated from optical
data (here from KG results) and then used in a Mermin dielectric function [33, 34]. As
can be seen in Fig. 5, such a procedure leads to results different from both BSE and
TDDFT, partly due to the different shape of KG in the optical limit and partly due
to a different damping behaviour of the Mermin dielectric function with an increase
in wavenumber. A difficulty that always arises when using the Mermin approach is
the need to choose a charge state Z i.e. the charge state of the ion, a choice that will
have significant impact on the final result as the two curves for q = 0.76 Å−1 show.
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Figure 4: The imaginary part of the dielectric function of diamond in the optical limit for
various pressures using BSE (solid), TDDFT (dashed) and RPA (dotted). The inset plot
shows the imaginary part of the inverse of the dielectric function including the plasmon
peaks. In the inset, the curves obtained using TDDFT and RPA are scaled tenfold for the
purpose of visualization. All the pressures indicated are in GPa. The densities for these
pressures are 3.51 g/cc, 5.50 g/cc, 6.00 g/cc and 7.00 g/cc respectively.

There is no generally valid procedure to extract the average charge state of an ion in
the warm dense matter or high pressure solid range. As most models for ionization
states work for hot, low density plasmas, the most promising seems to be the use of
conductivity sum rule, ∫ +∞

−∞

dω

π
ω Im[ε(q, ω)] = ω2

p (9)

where wp is the plasma frequency and a split of the conductivity into Drude like
free part and core part [33].

Of paramount importance is also the imaginary part of the inverse dielectric
function as it can be used to compute further quantities like the dynamic structure
factor or the stopping power that are directly experimentally accessible. In figures 3
& 4, the predictions of different models for different densities in the optical limit are
shown. The main focus is on the plasmon peak, given by the zero of the real part
of the dielectric function that lies in the energy range of weak damping, describing
the collective excitation of valence electrons across the band gap. The variations
in the location, height and width of the plasmon peak are far greater than in the
imaginary part of the dielectric function. This is due to nonlinear effects introduced
by the Kramers-Kronig relation between the real and imaginary parts of the dielectric
function. Thus, the imaginary part of the inverse dielectric function is a necessary
quantity in order to assess the quality of a theory in addition to the imaginary part of
the dielectric function, i.e. the absorption. This holds in particular, as it is sensitive
to different physics in a different energy range.

Similarly to the situation with the imaginary part, the plasmon peaks are located
at the lowest energies in the BSE approximation. RPA and TDDFT predict similar
plasmon locations at higher energies. Further, the width of the plasmon is smallest
for the BSE and a lot greater for TDDFT/RPA. This means a much more stable
quasi-particle is predicted within BSE. The plasmon peaks shown in the inset of Fig.
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Figure 5: The imaginary part of the dielectric response function for diamond is calculated
using TDDFT, BSE and MA at finite ~q for ρ = 3.509 g/cm3. The charge state Z = 1 is
considered for q = 0.3/Å and 0.76/Å and Z = 4 is considered for q = 0.76/Å and 1.51/Å.

Figure 6: The position of the plasmon in diamond in the optical limit as function of
the density. Experimental data obtained via x-ray Thompson scattering (XRTS) is taken
from [72], electron-energy loss spectroscopy data by Sato et al [88] and Waidmann et al
[89], BSE calculations for ambient conditions by Gao [73], TDDFT calculations at ambient
conditions by Azzolini et al [90]. KG, BSE, and TDDFT results of this work.

4 show the shift to higher energies as well as a broadening with increase of pressure.
In figure 6, we show the change of the location of the plasmon at k = 0 with

density as it can be obtained in experiment and theory. The slope, i.e., the increase of
the plasmon peak energy with density, is predicted by all theories in agreement with
the XRTS measurements. The absolute values of the plasmon positions is lowest using
BSE, about 30% lower than the TDDFT, RPA, KG, and available experimental results.
Our KG and TDDFT results track the XRTS data nicely over the whole available
experimental density range. Only for the highest densities where we reach pressures
of up to 900 GPa, close to the proposed diamond to BC8 transition, differences between
KG and TDDFT appear. The observed differences between theories at ambient
diamond density are due to the implementation of scissor corrections in our TDDFT
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Figure 7: The imaginary part of the inverse of the dielectric function for diamond at ambient
density ρ = 3.509 g/cm3 using TDDFT, BSE and MA at finite ~q. The charge state Z = 1 is
considered for q = 0.3/Å and 0.76/Å and Z = 4 is considered for q = 0.76/Å and 1.51/Å.

〈100〉
〈111〉
〈110〉

Figure 8: The position of the plasmon in diamond at ambient density as function of the
wavenumber. Experimental data obtained via x-ray Thompson scattering (XRTS) is taken
from [72], electron-energy loss spectroscopy (EELS) data by Waidmann et al [89]. RPA,
TDDFT and Mermin results of this work.

results to incorporate the correct band gap vs. an omission of scissor corrections in
Azzolini et al [90].

Next we study the dispersion of the plasmon subject to a change in wavenumber.
For this purpose, Fig. 7 displays the imaginary part of the inverse of the response
function calculated using various approaches at finite q. For small wavenumbers, one
obviously observes a similar situation as in the optical limit. BSE predicts a too small
excitation energy. TDDFT and the KG result extended using the Mermin approach
predict nearly the same peak location but slightly different peak widths. Again,
we point out the free parameter of the ion charge state entering the KG+Mermin
formulation which is not known a priori [29]. For the highest value of q = 1.51 Å−1 the
TDDFT and KG+Mermin results differ strongly in peak position and width indicating
very different dispersion relations.
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Figure 9: The imaginary part of the inverse dielectric function for different wavenumbers
for diamond at ambient conditions. Electron-energy loss spectroscopy (EELS) data by
Waidmann et al [89], Daniels et al [91], and Raether [92]. TDDFT and Mermin results of
this work.

The change of the plasmon with wavenumber is shown in Fig. 8. We have
omitted the BSE results, for which we already know the value in the optical limit
to be too small. BSE predicts further no shift in the plasmon peak as function of
the wavenumber within the error bars. Some experimental results in Fig. 8 stem
from electron loss spectroscopy, which is even able to resolve the slightly different
dispersion relation in different lattice directions [89]. The XRTS method cannot do
so, the results are basically an arithmetic mean of the EELS data showing a weak
quadratic dispersion in q [72]. The TDDFT(or KG)+Mermin dispersion, using the
DFT data from the optical limit, is by default quadratic as well, but the prefactor
is too large giving blue shifted plasmon positions for large wavenumbers. For small
wavenumbers, KG+Mermin (or TDDFT+Mermin) gives the same result as TDDFT.
The best agreement with experiments over a wider wavenumber range can be reached
when using first principle TDDFT or RPA methods that are explicitly capable of
calculating the wavenumber dependence. We show results of different classes of
approximations: with or without long range kernel (RPA vs. TDDFT) and with
standard PBE-GGA exchange correlation functional versus exact exchange (EXX).
Including local field corrections, i.e., the long range kernel fxc, lowers the plasmon
energies, compare the RPA and TDDFT curves. Both RPA and TDDFT show a
change in plasmon energy with wavenumber that is smaller than the experimental
values. A very flat plasmon dispersion similar to the current TDDFT results has also
been reported by Azzolini et al [90]. Improvements with respect to the measurements
are possible when using not a PBE-GGA exchange correlation functional but a more
advanced exact exchange (EXX) functional.

The best method overall appears to be TDDFT when using an advanced EXX
functional. However, it seems that the TDDFT long range kernel has so far mostly
been tested and benchmarked on absorption data in the optical limit. The present
theoretical data show deficiencies for finite q and higher energies. Areas where
improvements are necessary can be found for instance in the 1 . . . 2 Ha energy range.

Beside the location and dispersion of the plasmon peak, the general functional
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Figure 10: The imaginary part of the inverse dielectric function for diamond at warm dense
matter conditions (p = 150 GPa, T = 6000 K) in the optical limit.

form of the imaginary part of the inverse dielectric function as function of energy
and wavenumber is of interest. In Fig. 9, we compare experimental results with our
supposedly best theoretical model. Again, for lower wavenumbers, the agreement is
satisfactory. However, for the higher wavenumbers shown, we find that peaks and
distribution of weight deviate between experiment and theory thus giving a more
complete picture of the challenges for theory than just, e.g., the plasmon location.

A similar analysis as for a high pressure solid can be performed for a warm dense
state of carbon as presented in Fig. 10. It is apparent that it is essential to choose the
system size as large as possible to capture all the possible excitations, in particular
for the TDDFT & RPA results that seem more dependent on the system size as the
KG results. We provide additional results from TDDFT calculations concerning the
influence of the xc-kernel and of smearing in Appendix B. Comparing the results of
Figs. 4, 6 & 10, we observe a down-shift of the plasmon energy with increase in
temperature analogue to the closing of the band gap due to temperature effects.

In general, evaluating all the information of this section, this emphasizes the
need for TDDFT in calculating inelastic scattering spectra since it compares best with
known experimental results and has less computational demands than BSE [54, 36, 93].
In particular, TDDFT can also be used on DFT-MD snapshots in the warm dense
matter regime (similar to the workflow when using the KG approach, but without the
need to guess a charge state), where the theoretical S(q, ω) ∝ Im[ε−1(q, ω)] is used in
experiments to fit the XRTS signal, see Kraus et al for diamond at 150 GPa and 5000
K [2].

4.2. Lonsdaleite

Lonsdaleite is an allotrope of carbon with the spacegroup P63/mmc. The lattice
parameters are a = b 6= c, α = β = 900, γ = 1200. The unit cell volume is (

√
3/2)a2c

with 4 atoms per unit cell. The basis vectors in lattice coordinates are given by the 4f
Wyckoff positions ( 1

3 ,
2
3 , z1), ( 2

3 ,
1
3 ,

1
2 + z1), ( 2

3 ,
1
3 ,−z1), ( 1

3 ,
2
3 ,

1
2 − z1) with the internal

parameter z1 [94].
The DFT calculations were performed using the elk code for 16 bands on a

16 × 16 × 16 k -point mesh using PBE-GGA functional with Broyden mixing [66].
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Figure 11: The density of states for lonsdaleite as function of pressure as obtained from
DFT using the all-electron full potential code elk. The pressures are in GPa and the valence
band maximum is adjusted to zero.

The muffin-tin radius was adjusted ranging from 0.55 to 0.75 Å to account for the
different pressure ranges. The equilibrium lattice constants using the Vinet equation
are calculated to be a = 2.524 Å, c = 4.128 Å with z1 = 0.0625 which are in excellent
agreement with the experimental values (a=2.52 Å, c=4.12 Å) [10] and theoretical
results [96, 71, 84]. The ideal values for the hexagonal structure are given by z1 = 1

16

with c/a =
√

8/3. The ideal value of z1 = 0.0625 for c/a = 1.635 is favorable up
to 600 GPa based on the enthalpy changes for the aforementioned equilibrium lattice
parameters. The methodology to obtain these parameters are discussed in Appendix
C.

The electronic density of states is shown in Fig. 11. Contrary to cubic diamond,
the band gap closes with pressure increase. To account for the corrections of the
eigenvalues, we use the GW approximation implemented in the VASP code with a
16×16×16 k -point mesh centered around the Gamma point for 64 bands, and a PBE-
GGA exchange-correlation functional. The kinetic energy cutoff for the wavefunctions
was set to 40 Ha. We used the single shot GW0 approach ignoring the off-diagonal
elements of the self energy. The lowest band gap is indirect just like for the cubic
diamond phase but across the points Γ → K [97]. The band gap reduces with
increasing pressure as shown in Fig. 12. The GW and the PBE band gaps are in
good agreement with the available theoretical values for zero pressure [73, 16, 98].
Again, HSE06 seems the best of the advanced xc-functionals in comparison with GW,
even though B3LYP is close.

The calculations for the dielectric function based on TDDFT were performed
using the Bootstrap kernel on a 12 × 12 × 12 k -point mesh and 24 empty states.
The BSE calculations were done on a lower 8 × 8 × 8 k -point mesh and 16 empty
states. So far, no known experimental band gaps are reported for lonsdaleite. With a
large band gap, the screened Coulomb interaction is strong and the excitonic effects
are prominent at lower pressures. With increasing pressure, contrary to the case of
diamond, the band gap is reduced until it finally closes in the vicinity of 1000 GPa.

Figure 13 shows the imaginary part of the response function using various
approaches along two orientations for the hexagonal lattice structure at ~q = 0 and
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Figure 12: Lonsdaleite band gap as function of pressure using DFT and GW. We also show
the direct band gap calculated using PBE. Gao uses LDA and the routines implemented in
abinit [73]; Zhu et al use PBE-GGA within VASP [16]; De et al results are based on an
empirical pseudopotential method [98]. The density range covers 3.5 g/cc to 6.9 g/cc.
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Figure 13: The imaginary part of the dielectric response function in panels a) and b)
for lonsdaleite at 242 GPa using various approaches at ~q=0. We compare TDDFT to
KG+Mermin (MA) at finite ~q in panels c) and d).

using TDDFT at finite q. The spectrum in the optical limit is well represented by
BSE, and the TDDFT spectra is blue-shifted at a lower oscillator strength. In this
case, TDDFT doesn’t quite resolve the prominent peaks in the BSE spectra along both
the directions. The TDDFT maximum is located at the average of the twin peaks of
the BSE result for the perpendicular case and closer to the first peak in the parallel
case. As in the case for diamond, RPA predicts the maximum of the imaginary part



Ab-initio dielectric response function of diamond 16

0 1 2 3
E [Ha]

3

2

1

0

Im
[

1
(q

,
)]

TDDFT z q = 0.57/Å
TDDFT z q = 0.57/Å
MA z q = 0.57/Å
MA z q = 0.57/Å

Figure 14: The imaginary part of the inverse of the dielectric function for lonsdaleite at 242
GPa using MA and TDDFT at ||~q|| = 0.57Å−1.

of the dielectric function at higher energies than BSE or TDDFT for the case ‖ to
z. On the other hand, the KG calculation shows a red shift compared to BSE and
TDDFT. For the case ⊥ to the z axis, all difference are mitigated.

In panels c) and d) of Fig. 13, we show finite-q results from TDDFT together with
results from the Mermin response function using a DFT(KG) based collision frequency.
For ||~q|| = 0.57 Å−1, we choose an ionization degree z = 1 as the fitting parameter.
At ~q 6= 0, the Mermin+DFT spectrum is almost uniform along both the directions
in stark contrast to the TDDFT curves, as can be seen in Fig. 13. In addition, we
observe that the differences between the two directions parallel and orthogonal to z,
respectively, as apparent in the optical limit (panels a) and b) in Fig. 13, vanish for
the finite q values as shown in panels c) and d).

In Fig. 14, the imaginary part of the inverse dielectric function for lonsdaleite
at a pressure of p = 242 GPa is presented. The difference in plasmon peak positions
between TDDFT and Mermin+DFT is around 0.3 − 0.4 Ha, which is larger than in
the cubic diamond case. Further, the Mermin+DFT result has different structures
near the peak parallel and perpendicular to z compared to TDDFT in Fig. 14.
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Figure 15: Comparison of the imaginary part of the TDDFT dielectric function for diamond
and lonsdaleite at 292 GPa in the optical limit and at finite q. The inset panel shows the
imaginary part of the inverse of the dielectric function at ||~q|| = 0.68 Å−1 for diamond and
||~q|| = 0.59 Å−1 for lonsdaleite (red–diamond, blue/yellow–lonsdaleite).

In an x-ray scattering experiment, it would be of advantage to not only distinguish
the diamond and lonsdaleite phases in the x-ray diffraction (elastic) signal, but also
to find characteristic traits in the inelastic spectrum. Figure 15 shows that it should
indeed be possible to distinguish lonsdaleite from diamond at high pressure conditions
either in the absorption spectrum or in the inelastic scattering spectrum by the
characteristic positions of the respective absorption and plasmon peaks.

4.3. BC8

BC8 has a body-centered cubic structure with the spacegroup Ia3̄ consisting of 8
atoms per unit cell. The unit cell volume is a30/2 where a0 is the lattice constant. The
lattice parameters are a = b = c, α = β = γ = 900 [99, 24]. The basis vectors in
lattice coordinates are given by the 16c Wyckoff positions (2x1, 2x1, x1), ( 1

2 , 0,
1
2−2x1),

(0, 12 − 2x1,
1
2 ), ( 1

2 − 2x1,
1
2 , 0), (−2x1,−2x1,−2x1), ( 1

2 , 0,
1
2 + 2x1), (0, 12 + 2x1,

1
2 ),

( 1
2 + 2x1,

1
2 , 0) with x1 as a parameter [94].

The equilibrium value x1 = 0.0935 compares favorably to the experimental value,
0.1003 ± 0.0008 widely used for the bc8 phase of silicon. This value is also used for
the DFT simulations of the bc8 carbon phase [100, 101, 102]. The enthalpy changes
up to 2500 GPa are negligible among the x1 values considered and hence we consider
the parameter x1 = 0.1003 for all our calculations, see Appendix D. Our equilibrium
lattice constant a0=4.437 Å lies within the range of the values 4.425 - 4.477 Å obtained
by Z. Li and Crain et al [103, 101].

In Fig. 16, the electronic density of states is shown as calculated using a PBE-
GGA exchange-correlation functional in elk on a 16×16×16 k -point mesh for 32 bands.
The LDA (GW) bandgaps at zero pressure of 3.58 and 2.7 (3.5) eV, respectively,
reported by Z. Li and Zhu et al are large compared to our GGA (GW) values 0.9 (1.94)
eV, which are comparable to early calculations by Johnston et al [103, 16, 104]. Correa
et al obtained a GGA bandgap of approximately 0.40 eV near the phase transition
boundary from diamond at T=0 which may be compared to our result of 0.15 eV [105].
The band gap reduces with increasing pressure and closes in the vicinity of 2900 GPa,
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Figure 16: The density of states for bc8 as function of pressure obtained from DFT using
the all-electron full potential code elk. The inset plot shows the direct and indirect band
gaps calculated using the PBE functional in elk. The pressures indicated are in GPa and the
valence band maximum is adjusted to zero.
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Figure 17: The imaginary part of the dielectric function of bc8 in the optical limit for various
pressures using BSE, TDDFT, RPA and Kubo-Greenwood formula.

where the simple cubic structure is the thermodynamically stable phase [67].
The absorption spectrum is obtained using TDDFT with the bootstrap kernel

for a 4 × 4 × 4 k -point mesh and 28 empty states. The BSE calculations are also
done on a similar 4 × 4 × 4 k -point mesh and 18 empty states. Due to the larger
basis set size of BC8 compared to diamond, a similar k -point mesh as in diamond is
unfeasible. However, due to the close proximity of the band edges for small pressures,
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a smaller k -point mesh is sufficient for convergence, see Fig. 17. There is close
resemblance of RPA, TDDFT and BSE spectra albeit with different peak locations
for the different pressures. The KG-formula has a significant absorption peak near
ω = 0 due to the nature of semi-metallicity from DFT prediction which is clearly
absent from BSE spectra even at higher pressures. The KG result also show a shift
of the main absorption peak to higher energies than found with RPA, TDDFT, and
BSE. The overall agreement of BSE, RPA, and TDDFT is quite remarkable for BC8,
especially in hindsight after having analyzed the diamond and lonsdaleite phases.
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Figure 18: The imaginary part of the inverse of the dielectric function of bc8 at various
pressures using BSE, TDDFT, RPA and the Kubo-Greenwood formula. The TDDFT, RPA,
and KG are scaled fivefold and the finite-q MA curve is scaled tenfold. All curves in the
optical limit except the specially marked MA and TDDFT curves.

Figure 18 shows the collective oscillations via the imaginary part of the inverse
dielectric function obtained using various approaches. The TDDFT and RPA spectra
do not show the twin peaks of the BSE and predict a very broad feature instead.
The KG-formula produces a broad peak at a different location. Whereas the plasmon
peak in BSE and TDDFT shifts to higher energies for higher pressures, the KG result
shows the opposite behaviour for the case of the highest pressure. As seen earlier for
diamond, the BSE curve predicts the most stable plasmon excitation (rather narrow
peak with largest magnitude).

For the cases of 869 GPa and 1518 GPa, we also provide the results for finite
wave numbers and a comparison between the MA approach and TDDFT. The collision
frequency used in MA is taken from the optical limit of TDDFT. The TDDFT results in
the optical limit and for finite wavenumbers are very similar owing to the small change
in wavenumber. However, the MA approach shows drastically different behavior with
the peak location at smaller energy and the magnitude reduced.
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5. Conclusions

We have calculated the electronic density of states, the band gap, and the dielectric
response function as a function of pressure for various phases of carbon, namely
diamond, lonsdaleite, and bc8. In particular, we were interested in the wavenumber
dependence of the dielectric function in order to provide high quality predictions for
the dynamic structure and XRTS signals of these phases under high pressure. We also
calculated the dynamic structure for warm dense matter states of carbon.

The theory including the most advanced approximations is BSE which therefore
was expected to provide the quantitatively best results. However, it is clear that we
are at the limit of what is currently possible in terms of computer resources with
BSE. In this light, it is fortunate that TDDFT can reproduce the excitonic effects of
the BSE reasonably well at a fraction of the computational cost and also at finite ~q.
We have further analyzed how the standard KG approach and its extension to finite
wavenumbers via the MA theory compares to BSE and TDDFT. We investigated the
influence of different xc-functionals on the band gaps and eigenvalues and thus on the
response functions.

Available experimental data for diamond have been compared to the results of the
simulations. For lonsdaleite and the bc8 phase, experimental data under high pressure
are very sparse and only comparisons with different theoretical methods were possible.
In the case of diamond, where the band gap increases with pressure, the HSE06 xc-
potential gave the best agreement with GW calculations of the band gap. The change
in the location of the optical plasmon with density was best reproduced by KG or
TDDFT. The experimental dispersion of the plasmon at ambient conditions compares
best with a TDDFT calculation without scissor correction and the EXX potential.
Similarly, TDDFT can reasonably well give the functional form of the imaginary part
of the inverse dielectric function for small wavenumbers but fails to reproduce the
peak structure for higher wavenumbers as obtained from EELS measurements. For
warm dense matter conditions, TDDFT and RPA give different results to KG, and
particular care is needed to eliminate finite size effects. Moreover, it seems that for
the case of diamond, the approximations inherent in the used BSE solver are not be
justified as this method does not compare well to experimental results.

Lonsdaleite shows a decrease in band gap with increasing pressure and HSE06
seems again best when compared to GW calculations. The differences in the dielectric
response between the directions parallel and perpendicular to the z-axis, that are
apparent in the optical limit, seem to vanish for finite wavenumbers. We found
substantial differences between MA and TDDFT for the imaginary part of the inverse
dielectric function at high pressure. Based on our TDDFT results, it might be possible
to distinguish diamond and lonsdaleite based on their XRTS signal in the warm dense
matter range.

We performed an accurate analysis of the parameter x1 of the bc8 lattice structure
for a wide pressure range and found deviations of our DFT/GW bandgaps to predicted
values for ambient conditions and for high pressures. Similarly to the diamond case,
BSE gives plasmon positions at lower energies than all the other methods. Whereas
BSE, RPA, and TDDFT show a continuous increase of the plasmon energy with
pressure, the KG method is different. The approach using TDDFT to compute the
inelastic-scattering spectra should be a viable tool for experiments involving carbon
and carbon bearing mixtures e.g. with attention to the formation of diamond. Our
results can provide a theoretical reference for future experiments on band gaps and
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optical properties for the various phases of carbon at high pressures.
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Appendix

Appendix A. Pressure calculations, lattice parameters, band gaps
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Figure A1: Cold curves for various phases of carbon. The inset panel shows the relative
energies with respect to diamond vs volume.

The DFT calculations using elk don’t provide the necessary output of pressure. Hence
we use the “eos” utility in elk to first fit the DFT results to the Vinet equation [68, 69]
to obtain the volume dependent parameters: lattice volume, bulk modulus, pressure
derivative and total energy. This provides the corresponding densities and pressures
for all our calculations. The cold curves and the EOS for various phases are shown in
figures A1 and A2 respectively.
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Figure A2: EOS for various phases in comparison with experiments at 298 K (diamond only).
Experimental values by Occelli [106] and Dewaele [107] up to 4 g/cm3. The inset panel shows
the relative difference in pressures with respect to diamond vs density, ∆P = P − Pdia.

The calculated equilibrium parameters are listed in table A1 along with the
available experimental results. The band gaps at equilibrium volume using GW0

and various xc functionals are summarized in table A2.

Table A1: The equilibrium lattice parameters, equilibrium volume per atom, bulk modulus,
pressure derivative and static dielectric constants for various phases of carbon. The double
row values shown for hexagonal diamond are for the lattice parameters, a=b and c. The static
dielectric constant is computed using BSE. The values shown in parentheses are experimental
data. a [70]; b [10]; c [108]; d [98].

phase a0 (Å) V0 (Å3) B0 (GPa) B
′

0 ε1(0)

bcc 4.437 5.46 433.1 3.97 8.04

fcc 3.569 (3.567)a 5.68 430.8 3.82 5.76 (5.9)c

hex. 2.524 (2.52)b 5.69 430.9 3.87 6.25 (6.31)b

4.128 (4.12)b 5.40 (5.79)d

Table A2: Band gap (indirect) results in eV. We use GW0 with HSE for the fcc phase and
PBE for all the phases. a [75].

phase GW HSE06 PBE0 B3LYP SCAN PBE Exp.

bcc 1.94 1.89 2.64 2.24 1.11 0.90 -

fcc 5.47 5.31 6.04 5.61 4.56 4.19 5.48a

hex. 4.65 4.66 5.40 4.93 3.86 3.48 -

Appendix B. The influence of the xc-kernel in TDDFT

The LRC kernel is computed using Quantum ESPRESSO and yambo using an uniform
4 × 4 × 4 k -point mesh with 144 bands and an energy cutoff of 40 Ha with a PBE
pseudopotential. A Marzari-Vanderbuilt smearing of 0.019 Ha is also used for the
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electronic temperature due to the presence of the tiny band gap from the DFT
calculations. For the bootstrap calculation, due to the use of the all-electron code
elk, the k -point mesh is reduced to 3×3×3. In figure B1, we show the convergence of
the TDDFT result for warm dense carbon. Contrary to the KG result, the TDDFT
result depends strongly on the system size. N = 64 particles is the most we can afford
on the available compute infrastructure. We note the strong influence of the xc kernel
used in the TDDFT procedure. The LRC kernel uses free parameters, whereas the
Bootstrap kernel avoids these via a self consistency procedure [109, 54]. The cold
smearing may be used to speed up convergence as the band gap in warm dense carbon
at these conditions is very small. However, this strongly changes the response function.
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Figure B1: The change in the imaginary part of the inverse dielectric function of diamond
at p = 150 GPa and T = 6000 K with system size and different xc kernels in TDDFT. The
Bootstrap kernel is used when not labeled otherwise. LRC is the long-range contribution
kernel [36, 109], MV is Marzari-Vanderbilt smearing [110]

Appendix C. Lonsdaleite structure

In figure C1a, we show the variation in energy with respect to volume for different
values of z1 and c/a. The ideal value of z1 = 0.0625 for c/a = 1.635 is favorable up
to 600 GPa based on the enthalpy changes for the equilibrium lattice parameters in
figure C1b.
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Figure C1: (a) Variation of the parameters c/a and z1 for lonsdaleite. (b) Enthalpy vs
pressure with respect to z1 for lonsdaleite. The inset plot shows the relative enthalpies with
respect to z1 = 0.0625 vs pressure for c/a = 1.635.

Appendix D. BC8 structure

In figure D1a, we show the variation in energy with respect to volume for different
values of x1. The enthalpy changes up to 2500 GPa are shown in figure D1b for various
x1 values.
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Figure D1: (a) Variation of the parameter x1 for BC8. The inset panel zooms at the region
of the minimum. (b) Enthalpy vs pressure with respect to x1 for bc8. The inset plot shows
the relative enthalpies with respect to x1 = 0.1003 vs pressure. x1 = 0.935 suggested by
Clark is ideal for the formation of bc8 phase from diamond and at higher pressures the larger
internal parameter is better suited [100].
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R. W. Falcone, S. H. Glenzer, T. Döppner, and J. Vorberger. High-pressure chemistry of
hydrocarbons relevant to planetary interiors and inertial confinement fusion. Physics of
Plasmas, 25(5):056313, 2018.
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