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super Yang Mills theory have recently been constructed perturbatively in the long wave-

length limit. We demonstrate that these geometries all have regular event horizons, and

determine the location of the horizon order by order in a boundary derivative expansion.

Intriguingly, the derivative expansion allows us to determine the location of the event hori-

zon in the bulk as a local function of the fluid dynamical variables. We define a natural

map from the boundary to the horizon using ingoing null geodesics. The area-form on

spatial sections of the horizon can then be pulled back to the boundary to define a local

entropy current for the dual field theory in the hydrodynamic limit. The area theorem of

general relativity guarantees the positivity of the divergence of the entropy current thus

constructed.
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D. Independent data in fields up to third order 38

1. Introduction

Over the last few years, a special class of strongly coupled d-dimensional conformal field

theories have been “solved” via the AdS/CFT duality. Quite remarkably, the solution to

these theories is given by the equations of d+1 dimensional gravity (interacting with other

fields) in AdSd+1 spacetime. Since the long distance dynamics of any genuinely interacting

field theory is well described by the equations of relativistic hydrodynamics, it follows as a

prediction of the AdS/CFT correspondence that at long distances, the equations of gravity

in an AdSd+1 background should reduce to the (relativistic) Navier-Stokes equations in

d dimensions. There is now substantial direct evidence for the connection between the

long distance equations of gravity on AdSd+1 spacetime and d dimensional relativistic fluid

dynamics; cf., [1 – 38] for a sampling of the literature on the subject.

In particular, it was noted in [33] that the equations of pure gravity with a negative

cosmological constant form a universal subsector in any theory of gravity on AdS spacetime.

Following up on earlier work [20, 21, 23], it was demonstrated in [33] (for AdS5) and

more recently in [37] (for AdS4) that Einstein’s equations in this universal sector may be

recast, order by order in a boundary derivative expansion, into equations of motion for two

collective fields, namely — the ‘temperature’ and the ‘velocity’. These new equations of

motion turn out to be simply the relativistic Navier-Stokes equations of fluid dynamics.

The gravitational solutions of [33] and [37] constitute an explicit map from the space

of solutions of the hydrodynamic equations to the space of long wavelength gravitational

solutions (which are asymptotically AdS).1 Subject to a regularity condition that we will

discuss further below, the solutions of [33, 37] are locally exhaustive in solution space i.e.,

all long wavelength solutions to Einstein’s equations that lie nearby in solution space to

a metric dual to a particular fluid flow are themselves metrics dual to slightly perturbed

fluid flows. This at first sight surprising result is a consequence of the requirement of

regularity. This requirement cuts down the 9-parameter space of Fefferman-Graham type

solutions of AdS5 spacetime — parameterized by a traceless boundary stress tensor — to

the 4-parameter set of solutions of fluid dynamics.

We believe the local exhaustiveness of the gravity solutions dual to fluid dynamics,

described in the previous paragraph, in fact generalizes to a global statement. We think it

likely, in other words, that the solutions of [33, 37] in fact constitute all long wavelength

asymptotically AdS solutions of gravity with a cosmological constant; we pause here to

explain why. Every state in a conformal field theory has an associated local energy density

1By ‘long wavelength’ solutions, we mean solutions whose spacetime variations are slow on a scale set

by their respective boundary extrinsic curvature. Via the AdS/CFT dictionary this is the same as the

requirement that the solutions vary slowly on the scale of the inverse temperature associated with the local

energy density of the solution.
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and a consequent associated mean free path length scale lmfp, the inverse of the temperature

that is thermodynamically associated with this energy density. As a consequence of inter-

actions every state is expected to evolve rapidly — on the time scale lmfp — towards local

thermodynamic equilibrium, in an appropriate coarse grained sense,2 at the local value of

the temperature. This approach to local equilibrium is not long wavelength in time and is

not well described by fluid dynamics. The dual bulk description of this (short wavelength)

phenomenon is presumably gravitational collapse into a black hole. On the other hand,

once local equilibrium has been achieved (i.e., a black hole has been formed) the system

(if un-forced) slowly relaxes towards global equilibrium. This relaxation process happens

on length and time scales that are both large compared to the inverse local temperature,

and is well described by fluid dynamics and therefore by the solutions of [33, 37]. In other

words it seems plausible that all field theory evolutions that are long wavelength in time

as well as space are locally equilibriated, and so are well described by fluid dynamics. The

discussions of this paragraph, coupled with the AdS/CFT correspondence, motivate the

conjecture that the solutions of [33, 37] are the most general regular long wavelength so-

lutions to Einstein’s equations in a spacetime with negative cosmological constant in five

and four spacetime dimensions respectively.

We pause here to note two aspects of the solutions of [33, 37] that we will have occasion

to use below. First, it is possible to foliate these solutions into a collection of tubes, each of

which is centered about a radial ingoing null geodesic emanating from the AdS boundary.

This is sketched in figure 1 for a uniform black brane, where we indicate the tubes on a

local portion of the spacetime Penrose diagram.3 As we will explain below, the congruence

of null geodesics (around which each of our tubes is centered) yields a natural map from the

boundary of AdS space to the horizon of our solutions. When the width of these tubes in

the boundary directions is small relative to the scale of variation of the dual hydrodynamic

configurations, the restriction of the solution to any one tube is well-approximated tube-

wise by the metric of a uniform brane with the local value of temperature and velocity. This

feature of the solutions — the fact that they are tube-wise indistinguishable from uniform

black brane solutions — is dual to the fact that the Navier-Stokes equations describe the

dynamics of locally equilibrated lumps of fluid.

Second, the gravitational solutions constructed in [33] are regular everywhere away

from a spacelike surface, and moreover the authors conjectured that this singularity is

shielded from the boundary of AdS space by a regular event horizon. We will prove this

conjecture by explicitly constructing the event horizon of the solutions of [33] order by

order in the derivative expansion. It should be possible to carry out a parallel study for

the solutions presented in [37] for four dimensions. We will not carry out such a study

here; however, aspects of our discussion are not specific to AdS5 and can be used to infer

2The N → ∞ limit of the field theory (dual to the classical limit in gravity) justifies this coarse graining

and supresses consequent fluctuations (which are dual to quantum fluctuations in gravity).
3This is a causal diagram which captures the entire globally extended spacetime (note that in order

for the boundaries to be drawn straight, the singularities are curved, as discussed in [39]). For a realistic

collapse scenario, described by the nonuniform solutions of [33], only the right asymptotic region and the

future horizon and singularity are present.
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Figure 1: Penrose diagram of the uniform black brane and the causal structure of the spacetimes

dual to fluid mechanics illustrating the tube structure. The dashed line in the second figure denotes

the future event horizon, while the shaded tube indicates the region of spacetime over which the

solution is well approximated by a tube of the uniform black brane.

the desired features of 2 + 1 dimensional hydrodynamics. We expect that the results of

such a study would be similar to those presented in this paper.

As we have explained above, we study the causal properties — in particular, the

structure of the event horizon for the solutions presented in [33]. We then proceed to

investigate various aspects of the dynamics — specifically, the entropy production — at

this event horizon. In the rest of the introduction, we will describe the contents of this

paper in some detail, summarizing the salient points.

As we have discussed above, [33] provides a map from the space of solutions of fluid

dynamics to a spacetime that solves Einstein’s equations. The geometry we obtain out of

this map depends on the specific solution of fluid dynamics we input. In this paper we

restrict attention to fluid dynamical configurations that approach uniform homogeneous

flow at some fixed velocity u
(0)
µ and temperature T (0) at spatial infinity. It seems intuitively

clear from the dissipative nature of the Navier-Stokes equations that the late time behaviour

of all fluid flows with these boundary conditions will eventually become uµ(x) = u
(0)
µ

and T (x) = T (0); we assume this in what follows.4 The gravitational dual to such an

equilibrated fluid flow is simply the metric of a uniformly boosted black brane.

The causal structure of the uniform black brane is given by the Penrose diagram plotted

in figure 1 (see [39]). In particular, the equation for the event horizon of a uniform black

4This is true for conformal fluid dynamics in d spacetime dimensions for d ≥ 3. Conformal fluid dynamics

in 1 + 1 dimensions is not dissipative (for instance it is non-viscous since here the shear tensor does not

exist). More generally, there are as many degrees of freedom in a traceless 1 + 1 dimensional stress tensor

as in temperature and velocity fields in 1 + 1 dimensions. Consequently, the most general solution to 1 + 1

dimensional ‘fluid dynamics’ is simply given by T++ = f(σ+) and T−− = h(σ−) for arbitrary functions g

and h. This solution describes left and right moving waves that maintain their shape forever, propagating

non-dissipatively at the speed of light. We thank A. Strominger discussions on this point.
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brane is well known. The event horizon of the metric dual to the full fluid flow is simply

the unique null hypersurface that joins with this late time event horizon in the asymptotic

future.5 It turns out to be surprisingly simple to construct this hypersurface order by

order in the boundary derivative expansion used in [33]. In this paper, we perform this

construction up to second order in derivatives. Within the derivative expansion it turns out

that the radial location of the event horizon is determined locally by values and derivatives

of fluid dynamical velocity and temperature at the corresponding boundary point. This is

achieved using the boundary to horizon map generated by the congruence of ingoing null

geodesics described above (see figure 1).6

However, while locality is manifest in a derivative expansion, upon summing all orders

we expect this local behaviour to transmute into a limited nonlocality: the radial position

of the event horizon at a given point should be determined by the values of fluid dynamical

variables in a patch of size 1/T centered around the associated boundary point. The

ateleological behaviour of the event horizon is a surprising feature of these solutions and

implies that the event horizon behaves as a ‘membrane’ whose vibrations are a local mirror

of fluid dynamics. Our explicit construction of the event horizon of the metrics dual to

fluid dynamics is one of the key results of our paper; cf., (5.4).

We now turn to a description of our second main result; the construction of an en-

tropy current with non-negative divergence for a class of asymptotically AdS solutions of

gravity, and its explicit evaluation for the solutions of [33] at second order in the derivative

expansion.7 As we will see in section 3, it is possible to define a natural area (d − 1)-form

on any event horizon in a d + 1 dimensional spacetime in general relativity. This form is

defined to ensure that its integral over any co-dimension one spatial slice of the horizon

is simply the area of that submanifold. It follows almost immediately from the definition

of this form and the classic area increase theorems of general relativity that the exterior

derivative (on the event horizon) of this (d− 1)-form, viewed of as a top dimensional form

on the horizon, is ‘positive’ (we explain what we mean by the positivity of a top form on

the horizon in section 3.1).

The positivity of the exterior derivative of the area (d − 1)-form is a formally elegant

restatement of the area increase theorem of general relativity that is local on the horizon.

Hence we would like to link this statement to the positivity of the entropy production in

the boundary theory. However, at least naively, the CFT fluid dual to our solutions lives

at the boundary of AdS space rather than on its horizon. If we wish to study the interplay

between the local notion of entropy of the fluid and the fluid equations of motion, it is

5Note that for a generic hydrodynamic solution, the bulk spacetime has no manifest isometries; the event

horizon is therefore not a Killing horizon.
6This map may be motivated as follows. Consider perturbing the fluid at a boundary point xµ, e.g.,

by turning on some local operator of Yang Mills theory. This perturbation instanteneously alters all fluid

quantities, including the entropy, at xµ. However, it only alters the geometry near the horizon at and

within the lightcone emanating from xµ at the boundary. It is therefore plausible that local properties of

the spacetime in the neighbourhood of ingoing geodesics that emanate from xµ capture properties of the

fluid at xµ.
7We have been informed that A. Strominger and S. Hartnoll have independently discussed the construc-

tion of a positive divergence entropy current on the horizon, utilizing Brown York stress tensor.
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important for these quantities to be defined on the same space. In order to achieve this, in

section 4 we use a congruence of null geodesics described above to provide a ‘natural’ map

from the boundary to the horizon for a class of asymptotically AdS solutions of gravity

(which include but are slightly more general than those of [33]). The pullback of the area

(d − 1)-form under this map now lives at the boundary, and also has a ‘positive’ exterior

derivative. Consequently, the ‘entropy current’, defined as the boundary Hodge dual to the

pull-back of the area (d − 1)-form on the boundary (with appropriate factors of Newton’s

constant), has non-negative divergence, and so satisfies a crucial physical requirement for

an entropy current of fluid dynamics.

In section 5, we then proceed to implement the construction described in the previ-

ous paragraph for the solutions of [33]. This enables us to derive an expression for the

entropy current, Jµ
S , with non-negative divergence, valid up to second order in the deriva-

tive expansion. As a check of our final result, we use the equations of fluid dynamics to

independently verify the non-negativity of divergence of our entropy current at third order

in the derivative expansion. An example of an entropy current for a conformal fluid with

non-negative divergence was first described in [40].

We also take the opportunity to extend and complete the analysis presented in [40]

to find the most general Weyl covariant two derivative entropy current consistent with the

second law. Note that the requirement of pointwise non-negativity of the entropy produc-

tion — which we impose as a physical constraint of acceptable entropy currents — carries

useful information even within the derivative expansion, though this is a little subtle to

unravel. In particular, in section 6 we present a parameterization of the most general (7

parameter) class of Weyl invariant candidate entropy currents that has the correct equilib-

rium limit, to second order in the derivative expansion. We also demonstrate that only a

five dimensional sub-class of these currents is consistent with the requirement of pointwise

non-negativity of ∂µJµ
S to third order in derivatives. We then turn our attention to the

arbitrariness of our gravitational construction of the entropy current and demonstrate that

there appears to be a two parameter family of physically acceptable generalizations of this

bulk construction (associated with physically acceptable generalizations of the boundary

to horizon map and also the generalisations of the area (d − 1)-form itself). As a result,

we conclude that the gravitational construction presented in this paper yields a two di-

mensional sub-class in the five dimensional space of entropy currents with non-negative

divergence. It would interesting to understand directly from field theory, what principle

(if any) underlies the selection of this distinguished class of entropy currents. It would

also be interesting to investigate whether the remaining positive entropy currents may be

obtained from a generalized gravitational procedure, perhaps involving apparent and other

local horizons.8

This paper is organized as follows. In section 2 below, we present an order by order

construction of the event horizon in a class of metrics that include those of [33]. Following

that, in section 3, we present our construction of a local entropy (d− 1)-form for the event

horizons in gravity, and then implement our constructions in detail for the class of metrics

8We thank A. Strominger and M. Van Raamsdonk for discussions on this point.
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studied in section 2. In section 5, we specialize the results of section 2 and section 3 to

the metrics dual to fluid dynamics [33], using a map for translating horizon information

to the boundary developed in section 4. We obtain explicit formulae, to second order in

the derivative expansion, for the event horizon and the entropy current in the geometries

of [33]. In section 6, we explain in detail the nature of the constraint imposed on second

order terms in the expansion of the entropy current by the requirement of non-negativity

of entropy production at third order in the derivative expansion. We also investigate the

relationship between the geometrically constructed entropy current and the general entropy

current of non-negative divergence generalizing the analysis of [40]. Finally, in section 7, we

end with a discussion of our results and open questions. Some technical results regarding

the computations are collected in various appendices.

2. The local event horizon

As we have explained in the introduction, in this paper we will study the event horizon of

the metrics dual to fluid dynamics presented in [33]. In that reference the authors construct

an explicit classical spacetime dual to an arbitrary solution of fluid dynamics, accurate to

second order in the boundary derivative expansion. While the explicit solutions of [33] are

rather involved, we will see below that the structure of the event horizons of these solutions

are insensitive to many of these details. Consequently, in this section we will describe the

metric of [33] only in general structural form, and carry out all our computations for

an arbitrary spacetime of this form. In section 5 we will specialize these calculations to

the detailed metrics of [33]. We start by presenting a geometric interpretation for the

coordinate system used in [33].

2.1 Coordinates adapted to a null geodesic congruence

Consider a null geodesic congruence (i.e., a family of null geodesics with exactly one geodesic

passing through each point) in some region of an arbitrary spacetime. Let Σ be a hyper-

surface that intersects each geodesic once. Let xµ be coordinates on Σ. Now ascribe coor-

dinates (ρ, xµ) to the point at an affine parameter distance ρ from Σ, along the geodesic

through the point on Σ with coordinates xµ. Hence the geodesics in the congruence are

lines of constant xµ. In this chart, this metric takes the form

ds2 = −2uµ(x)dρdxµ + χ̂µν(ρ, x)dxµdxν , (2.1)

where the geodesic equation implies that uµ is independent of ρ. It is convenient to gener-

alize slightly to allow for non-affine parametrization of the geodesics: let r be a parameter

related to ρ by dρ/dr = S(r, x). Then, in coordinates (r, x), the metric takes the form9

ds2 = GMNdXMdXN = −2uµ(x)S(r, x)drdxµ + χµν(r, x)dxµdxν (2.2)

9We use upper case Latin indices {M, N, · · · } to denote bulk directions, while lower case Greek indices

{µ, ν, · · · } will refer to field theory or boundary directions. Furthermore, we use lower case Latin indices

{a, b, i, j, · · · } to denote the spatial directions in the boundary. Finally, we use (x) to indicate the dependence

on the four coordinates xµ. Details regarding the conventions used in this paper can be found in appendix A.
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Note that Σ could be spacelike, timelike, or null. We shall take Σ to be timelike.

This metric has determinant −S2χµνuµuν det χ, where χµν is the inverse of χµν . Hence

the metric and its inverse will be smooth if S, uµ and χµν are smooth, with S 6= 0, χµν

invertible, and χµνuµ timelike. These conditions are satisfied on, and outside, the horizons

of the solutions that we shall discuss below.

2.2 Spacetime dual to hydrodynamics

The bulk metric of [33] was obtained in a coordinate system of the form (2.2) just described,

where the role of Σ is played by the conformal boundary and the null geodesics are future-

directed and ingoing at the boundary. The key assumption used to derive the solution

is that the metric is a slowly varying function of xµ or, more precisely, that the metric

functions have a perturbative expansion (with a small parameter ǫ):

S(r, x) = 1 −
∞∑

k=1

ǫks(k)
a , (2.3)

χµν(r, x) = −r2f(br)uµuν + r2Pµν

+
∞∑

k=1

ǫk
(
s(k)
c r2Pµν + s

(k)
b uµuν + j(k)

ν uµ + j(k)
µ uν + t(k)

µν

)
. (2.4)

The function f(y) above has the form f = 1− 1
y4 ; however, the only property of f that we

will use is that f(1) = 0. The remaining functions (s
(k)
a , s

(k)
b . . .) are all local functions of

the inverse temperature b(x) and the velocity uµ(x) and the coordinate r, whose form was

determined in [33] and is indicated below in (5.1) and given explicitly in appendix A; we

however will not need the specific form of these functions for the present discussion. As

far as the calculations in this section are concerned, the expressions s
(k)
a , s

(k)
b , s

(k)
c , j

(k)
µ and

t
(k)
µν may be thought of as arbitrary functions of r and xµ. The tensor Pµν = ηµν + uµuν is

a co-moving spatial projector.

In the above formulae, ǫ is a formal derivative counting parameter. Any expression

that multiplies ǫk in (2.3) and (2.4) is of kth order in boundary field theory derivatives.

Note that any boundary derivative of any of the functions above is always accompanied

by an additional explicit power of ǫ. As in [33], all calculations in this paper will be

performed order by order in ǫ which is then set to unity in the final results. This is a good

approximation when field theory derivatives are small in units of the local temperature.

As we have explained in the Introduction, the metrics presented in [33] simplify to

the uniform black brane metric at late times. This metric describes a fluid configuration

with constant uµ and b. As the derivative counting parameter ǫ vanishes on constant

configurations, all terms in the summation in (2.3) and (2.4) vanish on the uniform black

brane configuration. The event horizon of this simplified metric is very easy to determine;

it is simply the surface r = 1
b
. Consequently, the event horizon H of the metric (2.2) has

a simple mathematical characterization; it is the unique null hypersurface that reduces

exactly, at infinite time to r = 1
b
.

In section 2.3 we will describe a local construction of a null hypersurface in the met-

ric (2.2). Our hypersurface will have the property that it reduces exactly to r = 1/b when

– 8 –
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uµ and b are constants, and therefore may be identified with the event horizon for space-

times of the form (2.2) that settle down to constant uµ and b at late times, as we expect

for metrics dual to fluid dynamics. We will evaluate our result for the metrics of [33] in

section 5 where we will use the explicit expressions for the functions appearing in (2.2).

2.3 The event horizon in the derivative expansion

When ǫ is set to zero and b and uµ are constants, the surface r = 1
b

is a null hypersurface in

metrics (2.2). We will now determine the corrected equation for this null hypersurface at

small ǫ, order by order in the ǫ expansion. As we have explained above, this hypersurface

will be physically interpreted as the event horizon H of the metrics presented in [33].

The procedure can be illustrated with a simpler example. Consider the Vaidya space-

time, describing a spherically symmetric black hole with ingoing null matter:

ds2 = −
(

1 − 2m(v)

r

)
dv2 + 2dvdr + r2dΩ2 . (2.5)

Spherical symmetry implies that the horizon is at r = r(v), with normal n = dr − ṙdv.

Demanding that this be null gives r(v) = 2m(v) + 2r(v)ṙ(v), a first order ODE for r(v).

Solving this determines the position of the horizon non-locally in terms of m(v). However,

if we assume that m(v) is slowly varying and approaches a constant for large v, i.e.,

ṁ(v) = O(ǫ) ,mm̈ = O(ǫ2), etc., and lim
v→∞

m(v) = m0 (2.6)

then we can solve by expanding in derivatives. Consider the ansatz, r = 2m + amṁ +

bmṁ2 + cm2m̈ + . . ., for some constants a, b, c, . . .; it is easy to show that the solution for

the horizon is given by a = 8, b = 64, c = 32, etc.. Hence we can obtain a local expression

for the location of the horizon in a derivative expansion.

Returning to the spacetime of [33], let us suppose that the null hypersurface that we

are after is given by the equation

SH(r, x) = 0 , with SH(r, x) = r − rH(x) . (2.7)

As we are working in a derivative expansion we take

rH(x) =
1

b(x)
+

∞∑

k=1

ǫkr(k)(x) (2.8)

Let us denote the normal vector to the event horizon by ξA: by definition,

ξA = GAB∂BSH(r, x) (2.9)

which also has an ǫ expansion. We will now determine r(k)(x) and ξA
(k)(x

µ) order by order

in ǫ. In order to compute the unknown functions r(k)(x) we require the normal vector ξA

to be null, which amounts to simply solving the equation

GAB∂ASH∂BSH = 0 (2.10)
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order by order in perturbation theory. Note that

dSH = dr − ǫ∂µrH dxµ where ǫ∂µrH = − ǫ

b2
∂µb +

∞∑

n=1

ǫn+1∂µr(n) . (2.11)

In particular, to order ǫn, only the functions r(m) for m ≤ n−1 appear in (2.11). However,

the l.h.s. of (2.10) includes a contribution of two factors of dr contracted with the metric.

This contribution is equal to Grr evaluated at the horizon. Expanding this term to order

ǫn we find a contribution
1

κ1b
r(n)

where κ1 is defined in (2.15) below, together with several terms that depend on r(m) for

m ≤ n−1. It follows that the expansion of (2.10) to nth order in ǫ yields a simple algebraic

expression for r(n), in terms of the functions r(1), r(2), · · · , r(n−1) which are determined from

lower order computations.

More explicitly, equation (2.10) gives Grr − 2ǫ∂µrHGrµ + ǫ2∂µrH∂νrHGµν = 0, with

the inverse metric GMN given by:

Grr =
1

−S2uµuνχµν
, Grα =

Sχαβuβ

−S2uµuνχµν
, Gαβ =

S2uγuδ

(
χαβχγδ − χαγχβδ

)

−S2uµuνχµν
.

(2.12)

where the ‘inverse d-metric’ χµν is defined via χµνχνρ = δ ρ
µ . Hence the expression for the

location of the event horizon (2.10) to arbitrary order in ǫ is obtained by expanding

0 =
1

−S2uµuνχµν

(
1 − 2ǫSχαβuβ∂αrH − ǫ2S2

(
χαβχγδ − χαγχβδ

)
uγuδ∂αrH∂βrH

)

(2.13)

to the requisite order in ǫ, using the expansion of the individual quantities S and rH

specified above, as well as of χµν .

2.4 The event horizon at second order in derivatives

The equation (2.10) is automatically obeyed at order ǫ0. At first order in ǫ we find that

the location of the event horizon is given by r = r
(1)
H with10

r
(1)
H (x) =

1

b(x)
+ r(1)(x) =

1

b
+ κ1

(
s
(1)
b − 2

b2
uµ∂µb

)
. (2.14)

where we define
1

κm
=

∂m

∂rm

(
r2f(br)

)∣∣∣∣
r= 1

b

(2.15)

At next order, O(ǫ2), we find

r
(2)
H (x) =

1

b
+ κ1

(

s
(1)
b + ∂rs

(1)
b r

(1)
H − 2

b2

(
1 − s(1)

a

)
uµ∂µb + s

(2)
b + 2uµ∂µr(1) (2.16)

− 1

b2
Pµν

(
b2j(1)

µ + ∂µb
)(

b2j(1)
ν + ∂νb

)
− 1

2κ2
r2
(1)

)

10We have used here the fact that uµj
(k)
µ = 0 and uµt

(k)
µν = 0 which follow from the solution of [33]. We

also restrict to solutions which are asymptotically AdS5 in this section.
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where we have11

Pµν = uµuν + ηµν and ηµν = diag(−1, 1, 1, 1) .

As all functions and derivatives in (2.14) and (2.16) are evaluated at r = 1/b and the point

xµ and we retain terms to O (ǫ) and O
(
ǫ2
)

respectively.

It is now simple in principle to plug (2.16) into (2.2) to obtain an explicit expression

for the metric Hµν of the event horizon.12 We will choose to use the coordinates xµ to

parameterize the event horizon. The normal vector ξA is a vector in the tangent space of

the event horizon (this follows since the hypersurface is null), i.e.,

ξA ∂

∂XA
= nµ ∂

∂xµ
+ nr ∂

∂r
, (2.17)

which is easily obtained by using the definition (2.9) and the induced metric on the event

horizon; namely

nµ =
(
1 + s(1)

a + (s(1)
a )2 + s(2)

a

)
uµ − 1

r4
(t(1))µν

(
j(1)
ν +

∂νb

b2

)
(2.18)

+
1

r2
Pµν

(
j(1)
ν

(
1 + s(1)

a − s(1)
c

)
+

∂νb

b2

(
1 − s(1)

c

)
+ j(2)

ν − ∂νr(1)

)
.

Before proceeding to analyze the entropy current associated with the local area-form

on this event horizon, let us pause to consider the expression (2.16). First of all, we see

that for generic fluids with varying temperature and velocity, the radial coordinate r = rH

of the horizon varies with xµ, which, to the first order in the derivative expansion, is given

simply by the local temperature. The constraints on this variation are inherited from the

equations of relativistic fluid dynamics which govern the behaviour of these temperature

and velocity fields, as discussed above. Note that the variation of rH at a given xi and as a

function of time, can of course be non-monotonic. As we will see in the next section, only

the local area needs to increase. This is dual to the fact that while a local fluid element

may warm up or cool down in response to interacting with the neighbouring fluid, the local

entropy production is always positive.

An example of the behaviour of rH(x) is sketched in the spacetime diagram of figure 2,

with time plotted vertically and the radial coordinate as well as one of the spatial xi

coordinates plotted horizontally.

3. The local entropy current

Having determined the location of the event horizon, it is a simple matter to compute

the area of the event horizon to obtain the area of the black brane. However, as we wish

11It is important to note that in our expressions involving the boundary derivatives we raise and lower

indices using the boundary metric ηµν ; in particular, uµ ≡ ηµνuν and with this defintion uµuµ = −1.
12There are thus three metrics in play; the bulk metric defined in (2.2), the boundary metric which is

fixed and chosen to be ηµν and finally the metric on the horizon H, Hµν , which we do not explicitly write

down. As a result there are differing and often conflicting notions of covariance; we have chosen to write

various quantities consistently with boundary covariance since at the end of the day we are interested in

the boundary entropy current.
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coordinates x (the other two spatial coordinates are suppressed).

to talk about the spatio-temporal variation of the entropy, we will first describe entropy

production in a local setting. This will allow us to derive an expression for the boundary

entropy current in section 5.

3.1 Abstract construction of the area (d − 1)-form

In this brief subsection we present the construction of the area d − 1 form on the spatial

section of any event horizon of a d + 1 dimensional solution of general relativity.

First, recall that the event horizon is a co-dimension one null submanifold of the

d + 1 dimensional spacetime. As a result its normal vector lies in its tangent space. The

horizon generators coincide with the integral curves of this normal vector field, which are

in fact null geodesics13 that are entirely contained within the event horizon. Let us choose

13This follows from the fact that the event horizon is the boundary of the past of future infinity I+

together with the fact that boundaries of causal sets are generated by null geodesics [41]. We pause here

to note a technical point regarding the behaviour of the horizon generators: While by definition these null

– 12 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
5

coordinates (λ, αa), with a = 1, · · · , d − 1, on the event horizon such that αa are constant

along these null geodesics and λ is a future directed parameter (not necessarily affine) along

the geodesics. As ∂λ is orthogonal to every other tangent vector on the manifold including

itself, it follows that the metric restricted on the event horizon takes the form

ds2 = gabdαadαb (3.1)

Let g represent the determinant of the (d− 1) × (d− 1) metric gab. We define the entropy

(d − 1)-form as the appropriately normalized area form on the spatial sections of the

horizon14

a =
1

4Gd+1

√
gdα1 ∧ dα2 ∧ . . . ∧ dαd−1 (3.2)

The area increase theorems of general relativity15 are tantamount to the monotonicity of

the function g, i.e.,
∂g

∂λ
≥ 0 (3.3)

which of course leads to

da =
∂λ

√
g

4Gd+1
dλ ∧ dα1 ∧ dα2 . . . ∧ dαd−1 ≥ 0 . (3.4)

We have chosen here an orientation on the horizon H by declaring a d-form to be positive

if it is a positive multiple of the d-form dλ ∧ dα1 ∧ dα2 . . . ∧ dαd−1.

3.2 Entropy (d − 1)-form in global coordinates

The entropy (d− 1)-form described above was presented in a special set of αa coordinates

which are well adapted to the horizon. We will now evaluate this expression in terms of a

more general set of coordinates. Consider a set of coordinates xµ for the spacetime in the

neighbourhood of the event horizon, chosen so that surfaces of constant x0 = v intersect

the horizon on spacelike slices Σv. The coordinates xµ used in (2.2) provide an example of

such a coordinate chart (as we will see these are valid over a much larger range than the

neighbourhood of the horizon).

As surfaces of constant v are spacelike, the null geodesics that generate the event

horizon each intersect any of these surfaces exactly once. Consequently, we may choose the

coordinate v as a parameter along geodesics. Then we can label the geodesics by αa, the

geodesics generating the event horizon have no future endpoints [42], they do not necessarily remain on the

event horizon when extended into the past. This is because in general dynamical context, these geodesics

will have non-zero expansion, and by Raychaudhuri’s equation they must therefore caustic in finite affine

parameter when extended into the past. Hence, although the spacetime, and therefore the event horizon,

are smooth, the horizon generators enter the horizon at points of caustic. However, since the caustic locus

forms a set of measure zero on the horizon, in the following discussion we will neglect this subtlety.
14This definition is consistent with the Noether charge derivation of entropy currents, a la Wald, cf., [43]

for a discussion for dynamical horizons. We review the connection with Wald’s construction briefly in

appendix C.
15We assume here that the null energy condition is satisfied. This is true of the Lagrangian used in [33]

to construct the gravitation background (2.2).
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value of xa at which the geodesic in question intersects the surface v = 0. The coordinate

system {v, αa} is of the form described in section 3.1; as a result in these coordinates the

entropy (d− 1)-form is given by (3.2). We will now rewrite this expression in terms of the

coordinates xµ at v = 0; for this purpose we need the formulas for the change of coordinates

from xµ to {v, αa}, in a neighbourhood of v = 0. It is easy to verify that

xa = αa +
na

nv
v +

v2

2nv
nµ∂µ

(
na

nv

)
+ O(v3) · · · (3.5)

dxa = dαa + vdαk∂k

(
na

nv

)
+ dv

(
na

nv
+

v

nv
nµ∂µ

(
na

nv

))
+ O(v2)

The coordinate transformation (3.5) allows us to write an expression for the metric on

the event horizon in terms of the coordinates {v, αa}, in a neighbourhood of v = 0. Let

Hµνdxµdxν = GMNdxMdxN |H denote the metric restricted to the event horizon in the xµ

coordinates.

ds2
H = Hµν(x)dxµdxν ≡ gabdαadαb (3.6)

= hij

(
v, αi +

ni

nv

)(
dαi + vdαk∂k

(
ni

nv

))(
dαj + vdαk∂k

(
nj

nv

))
+ O(v2)

where hij(v, x) is the restriction of the metric Hµν onto a spatial slice Σv, which is a

constant-v slice. Note that since the horizon is null, all terms with explicit factors of dv

cancel from (3.6) in line with the general expectations presented in section 3.1. It follows

that the determinant of the induced metric,
√

g of (3.2), is given as

√
g =

√
h +

v

nv

(
ni∂i

√
h +

√
hnv∂i

ni

nv

)
+ O(v2) , (3.7)

where h is the determinant of the metric on Σv, in xµ coordinates (restricted to v = 0).

We are now in a position to evaluate the area (d − 1)-form

a =

√
h

4Gd+1
dα1 ∧ dα2 . . . ∧ dαd−1 , (3.8)

at v = 0. Clearly, for this purpose we can simply set to zero all terms in (3.5) with explicit

powers of v, which implies that dαa = dxa − na

nv dv and

a =

√
h

4Gd+1

(

dx1 ∧ dx2 . . . ∧ dxd−1 −
d−1∑

i=1

ni

nv
dλ ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxd−1

)

(3.9)

From (3.9) we can infer that the area-form can be written in terms a current as

a =
ǫµ1µ2...µd

(d − 1)!
Jµ1

S dxµ2 ∧ . . . ∧ dxµd (3.10)

where Jµ
S is given by

Jµ
S =

√
h

4G
(d+1)
N

nµ

nv
(3.11)
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and our choice of orientation leads to ǫv12···(d−1) = 1. In appendix C, we show that one

can obtain this expression using the construction of an entropy (d − 1)-form due to Wald,

see (C.12). We can further establish that

da =
1

(d − 1)!
ǫµ1µ2...µd

∂αJα
S dxµ1 ∧ . . . ∧ dxµd (3.12)

so that da is simply the flat space Hodge dual of ∂µJµ
S . While the appearance of the flat

space Hodge dual might be puzzling at first sight, given the non-flat metric on H, its origins

will become clear once we recast this discussion in terms of the fluids dynamical variables.

3.3 Properties of the area-form and its dual current

Having derived the expression for the area-form we pause to record some properties which

will play a role in interpreting Jµ
S as an entropy current in hydrodynamics.

Non-negative divergence: firstly, we note that the positivity of da (argued for on

general grounds in section 3.1) guarantees the positivity of ∂µJµ
S ; hence we have ∂µJµ

S ≥ 0.

This in fact may be verified algebraically from (3.7), as

1

4Gd+1
∂v(

√
g) = ∂µJµ

S . (3.13)

The positivity of ∂v(
√

g) thus guarantees that of ∂µJµ
S as is expected on general grounds.

Lorentz invariance: the final result for our entropy current, (3.12), is invariant under

Lorentz transformations of the coordinate xµ (a physical requirement of the entropy current

for relativistic fluids) even though this is not manifest. We now show that this is indeed

the case.

Let us boost to coordinates x̂µ = Λ µ
ν xν ; denoting the horizon metric in the new

coordinates by ĥµν and the boosted normal vector by n̂µ we find

hij = A m
i A n

j ĥmn, A m
i = Λ m

i − Λ v
i n̂m

n̂v
(3.14)

(where we have used n̂µĥµν = 0 ). It is not difficult to verify that

det A =

(
Λ−1

) v

µ
nµ

n̂v
=

nv

n̂v

from which it follows that
√

h
nv =

√
ĥ

n̂v , thereby proving that our area-form defined on the a

spatial section of the horizon is indeed Lorentz invariant.

4. The horizon to boundary map

4.1 Classification of ingoing null geodesics near the boundary

Our discussion thus far has been an analysis of the causal structure of the spacetime

described by the metric in (2.2) and the construction of an area-form on spatial sections
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of the horizon in generic spacetimes. As we are interested in transporting information

about the entropy from the horizon to the boundary (where the fluid lives), we need to

define a map between the boundary and the horizon. The obvious choice is to map the

point on the boundary with coordinates xµ to the point on the horizon with coordinates

(rH(x), xµ). More geometrically, this corresponds to moving along the geodesics xµ =

constant. However, congruences of null geodesics shot inwards from the boundary of AdS

are far from unique. Hence, we digress briefly to present a characterization of the most

general such congruence. In section 4.2 we will then see how the congruence of geodesics

with constant xµ fits into this general classification.

We will find it simplest to use Fefferman-Graham coordinates to illustrate our point.

Recall that any asymptotically AdSd+1 spacetime may be put in the form

ds2 =
du2 +

(
ηµν + udφµν(w)

)
dwµdwν

u2
, (4.1)

in the neighbourhood of the boundary. The collection of null geodesics that intersect the

boundary point (wµ, u = 0) are given by the equations

dwA

dλ
= u2

(
tA + O

(
ud
))

(4.2)

where A runs over the d + 1 variables {u,wµ} and the null tangent vector must obey

tAtA = 0. It is always possible to re-scale the affine parameter to set tu = 1; making

this choice, our geodesics are labelled by a d-vector tµ satisfying ηµνt
µtν = −1. With these

conventions tµ may be regarded as a d-velocity. In summary, the set of ingoing null geodesics

that emanate from any given boundary point are parameterized by the d− 1 directions in

which they can go — this parameterization is conveniently encapsulated in terms of a unit

normalized timelike d-vector tµ which may, of course, be chosen as an arbitrary function of

xµ. Consequently, congruences of ingoing null geodesics are parameterized by an arbitrary

d-velocity field, tµ(x) on the boundary of AdS.

4.2 Our choice of tµ(x)

It is now natural to ask what tµ(x) is for the congruence defined by xµ = const in the

coordinates of [33]. The answer to this question is easy to work out, and turns out to be

satisfyingly simple: for this choice of congruence, tµ(x) = uµ(x) where uµ(x) is the velocity

field of fluid dynamics!16

While metrics dual to fluid dynamics are automatically equipped with a velocity field, it

is in fact also possible to associate a velocity field with a much larger class of asymptotically

16In order to see this note that

uµ
dxµ

dλ
= uµ

dwµ

dλ
+

du

dλ
(4.3)

Pνµ
dxµ

dλ
= Pνµ

dwµ

dλ

whereas indicated quantities on the l.h.s. of (4.3) refer to the coordinate system of [33], the quantities on

the r.h.s. refer to the Fefferman-Graham coordinates (4.1). It follows from these formulae that the geodesic

with tA = (1, uµ) maps to the null geodesic dxµ

dλ
= 0 in the coordinates used to write (2.2).
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AdS spacetimes. Recall that any such spacetime has a boundary stress tensor Tµν .
17 For

most such spacetimes there is a natural velocity field associated with this stress tensor; the

velocity uµ(x) to which one has to boost in order that T 0i vanish at the point x. More

invariantly, uµ(x) is chosen to be the unique timelike eigenvector of the matrix T µ
ν(x).18

That is, we choose uµ(x) to satisfy

(ηµν + uµuν)T νκuκ = 0 (4.4)

This definition of uµ(x) coincides precisely with the velocity field in [33] (this is the so-

called Landau frame). The null congruence given by tµ(x) = uµ(x) is now well defined

for an arbitrary asymptotically AdS spacetime, and reduces to the congruence described

earlier in this section for the metrics dual to fluid dynamics.

4.3 Local nature of the event horizon

As we have seen in section 2 above, the event horizon is effectively local for the metrics

dual to fluid dynamics such as (2.2). In particular, the position of the event horizon

rH(xµ) depends only on the values and derivatives of the fluid dynamical variables in

a neighbourhood of xµ and not elsewhere in spacetime. Given the generic teleological

behaviour of event horizons (which requires knowledge of the entire future evolution of the

spacetime), this feature of our event horizons is rather unusual. To shed light on this issue,

we supply an intuitive explanation for this phenomenon, postponing the actual evaluation

of the function rH(xµ) to section 5.1.

The main idea behind our intuitive explanation may be stated rather simply. As we

have explained above, the metric of [33] is tube-wise well approximated by tubes of the

metric of a uniform black brane at constant velocity and temperature. Now consider a

uniform black brane whose parameters are chosen as uµ = (−1, 0, 0, 0) and b = 1/(πT ) = 1

by a choice of coordinates. In this metric a radial outgoing null geodesic that starts at

r = 1 + δ (with δ ≫ ǫ) and v = 0 hits the boundary at a time δv =
∫

dr
r2f(r) ≈ −4 ln δ.

Provided this radial outgoing geodesic well approximates the path of a geodesic in the

metric of [33] throughout its trajectory, it follows that the starting point of this geodesic

lies outside the event horizon of the spacetime.

The two conditions for the approximation described above to be valid are:

1. That geodesic in question lies within the tube in which the metric of [33] is well

approximated by a black brane with constant parameters throughout its trajectory.

This is valid when δv ≈ −4 ln δ ≪ 1/ǫ.

2. That even within this tube, the small corrections to the metric of [33] do not lead to

large deviations in the geodesic. Recall that the radial geodesic in the metric of [33]

17In a general coordinate system the stress tensor is proportional to the extrinsic curvature of the bound-

ary slice minus local counter-term subtractions. In the Fefferman-Graham coordinate system described

above, the final answer is especially simple; Tµν ∝ φµν(xµ).
18This prescription breaks down when uµ goes null - i.e., if there exist points at which the energy moves

at the speed of light.
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is given by the equation

dv

dr
= −Grv + O (ǫ)

Gvv + O (ǫ)
=

2 + O (ǫ)

f(r) + O (ǫ)
.

This geodesic well approximates that of the uniform black brane provided the O (ǫ)

corrections above are negligible, a condition that is met provided f(r) ≫ ǫ, i.e., when

|r − 1| = δ ≫ ǫ.

Restoring units we conclude that a point at r = 1
b
(1 + δ) necessarily lies outside the

event horizon provided δ ≫ ǫ (this automatically ensures δv ≈ −4 ln δ ≪ 1/ǫ. when ǫ is

small).

In a similar fashion it is easy to convince oneself that all geodesics that are emitted

from r = 1
b
(1−δ) hit the singularity within the regime of validity of the tube approximation

provided δ ≫ ǫ. Such a point therefore lies inside the event horizon. It follows that the

event horizon in the solutions of [33] is given by the hypersurface r = πT (1 + O (ǫ)).

5. Specializing to dual fluid dynamics

We will now proceed to determine the precise form of the event horizon manifold to second

order in ǫ using the results obtained in section 2. This will be useful to construct the

entropy current in the fluid dynamics utilizing the map derived in section 4.

5.1 The local event horizon dual to fluid dynamics

The metric dual to fluid flows given in [33] takes the form (2.2) with explicitly determined

forms of the functions in that metric (see appendix A). We list the properties and values

of these functions that we will need below:19

f(1) = 0,

s(1)
a = 0, s(1)

c = 0,

s
(1)
b =

2

3

1

b
∂µuµ , ∂rs

(1)
b =

2

3
∂µuµ ,

j(1)
µ = −1

b
uν∂νuµ , t(1)µν =

1

b

(
3

2
ln 2 +

π

4

)
σµν ≡ Fσµν

s(2)
a =

3

2
s(2)
c =

b2

16

(
2S − S

(
2 + 12C + π + π2 − 9(ln 2)2 − 3π ln 2 + 4 ln 2

))

s
(2)
b = −2

3
s + S − 1

9
S − 1

12
S + S

(
1

6
+ C +

π

6
+

5π2

48
+

2

3
ln 2

)

j(2)
µ =

1

16
B∞ − 1

144
Bfin (5.1)

where C is the Catalan number. We encounter here various functions (of the boundary

coordinates) which are essentially built out the fluid velocity uµ and its derivatives. These

19Since we require only the values of the functions appearing in the metric (2.3) and (2.4) at r = 1/b to

evaluate (2.16), we present here the functions evaluated at this specific point. The full expressions can be

found in appendix A, see (A.5) and (A.11).
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have been abbreviated to symbols such as s, S, etc., and are defined (A.3). Likewise

B∞ and Bfin are defined in (A.13).

Using the equation for the conservation of stress tensor (∂µT µν = 0) up to second order

in derivatives one can simplify the expression for rH (2.16). Conservation of stress tensor

gives

∂ν

[
1

b4
(ηµν + 4uµuν)

]
= ∂ν

[
2

b3
σµν

]
(5.2)

Projection of (5.2) into the co-moving and transverse directions, achieved by contracting

it with uµ and Pµν respectively, we find

s
(1)
b − 2

b2
uµ∂µb =

1

3
σµνσµν = O

(
ǫ2
)

(5.3)

Pµν
(
b2j(1)

µ + ∂µb
)

= −b2

2
P ν

µ

(
∂ασαµ − 3σµαuβ∂βuα

)
+ O

(
ǫ3
)

Inserting (5.3) into (2.14) we see that r(1) of (2.14) simply vanishes for the spacetime dual

to fluid dynamics, and so, to first order in ǫ, r
(1)
H = 1

b
. At next order this formula is

corrected to

r
(2)
H =

1

b(x)
+ r(2)(x) =

1

b
+

b

4

(
s
(2)
b +

1

3
σµνσ

µν

)
(5.4)

In order to get this result we have substituted into (2.16) the first of (5.3), utilized the fact

that r(1) = 0 and the observation (from the second line of (5.3)) that

Pµν
(
b2j(1)

µ + ∂µb
)(

b2j(1)
ν + ∂νb

)
= O(ǫ4)

In this special case the components of normal vector in the boundary directions (2.18)

(accurate to O
(
ǫ2
)
) are given by

nµ =
(
1 + s(2)

a

)
uµ − b2

2
Pµν

(
∂ασαν − 3σναuβ∂βuα

)
+ b2Pµνj(2)

ν . (5.5)

5.2 Entropy current for fluid dynamics

We will now specialize the discussion of section 3.2 to the metric of [33], using the formulae

derived in section 5.1. In the special case of the metric of [33] we have

√
g =

1

b3

(
1 − b4

4
F 2σµνσ

µν + 3br(2) + s(2)
a

)

=
1

b3

(
1 − b4

4
F 2σµνσ

µν +
b2

4
σµνσ

µν +
3b2

4
s
(2)
b + s(2)

a

)
, (5.6)

where the various quantities are defined in (5.1). We conclude from (3.11) that

4G
(5)
N b3Jµ

S = uµ

(
1 − b4

4
F 2σαβσαβ +

b2

4
σαβσαβ +

3b2

4
s
(2)
b + s(2)

a

)

+b2Pµν

[
−1

2

(
∂ασαν − 3σναuβ∂βuα

)
+ j(2)

ν

]
. (5.7)

This is the expression for the fluid dynamical entropy current which we derive from the

gravitational dual.
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6. Divergence of the entropy current

In previous sections, we have presented a gravitational construction of an entropy current

which, we have argued, is guaranteed to have non-negative divergence at each point. We

have also presented an explicit construction of the entropy current to order ǫ2 in the

derivative expansion. In this section we directly compute the divergence of our entropy

current and verify its positivity. We will find it useful to first start with an abstract

analysis of the most general Weyl invariant entropy current in fluid dynamics and compute

its divergence, before specializing to the entropy current constructed above.

6.1 The most general Weyl covariant entropy current and its divergence

The entropy current in d-dimensions has to be a Weyl covariant vector of weight d. We

will work in four dimensions (d = 4) in this section, and so will consider currents that are

Weyl covariant vector of weight 4. Using the equations of motion, it may be shown that

there exists a 7 dimensional family of two derivative weight 4 Weyl covariant vectors that

have the correct equilibrium limit for an entropy current. In the notation of [40], (reviewed

in appendix B), this family may be parameterized as

(4πη)−1Jµ
S = 4G

(5)
N b3Jµ

S =
[
1 + b2

(
A1σαβσαβ + A2ωαβωαβ + A3R

)]
uµ (6.1)

+b2
[
B1Dλσµλ + B2Dλωµλ

]

+C1 b ℓµ + C2 b2uλDλℓµ + . . .

where b = (πT )−1, η = (16πG
(5)
N b3)−1 and the rest of the notation is as in [40] (see also

appendix A and appendix B).

In appendix B we have computed the divergence of this entropy current (using the

third order equations of motion derived and expressed in Weyl covariant language in [40]).

Our final result is

4G
(5)
N b3DµJµ

S =
b

2

[
σµν + b

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν + 4b(A2 + A3)ω

µαωα
ν

+b

(
4A3 −

1

2

)
(σµασα

ν) + bC2Dµℓν

]2

+(B1 − 2A3)b
2DµDλσµλ + (C1 + C2)b

2ℓµDλσµλ + . . . (6.2)

Note that the leading order contribution to the divergence of the arbitrary entropy

current is proportional to σµνσ
µν . This term is of second order in the derivative expansion,

and is manifestly non-negative. In addition the divergence has several terms at third order

in the derivative expansion.

Within the derivative expansion the second order piece dominates all third order terms

whenever it is nonzero. However it is perfectly possible for σµν to vanish at a point —

σµν are simply 5 of several independent Taylor coefficients in the expansion of the velocity

field at a point (see appendix D for details). When that happens the third order terms are

the leading contributions to DµJµ
S . Since such terms are cubic in derivatives they are odd
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orientation reversal (xµ → −xµ), and so can be non-negative for all velocity configurations

only if they vanish identically. We conclude that positivity requires that the r.h.s. of (6.2)

vanish upon setting σµν to zero.

As is apparent, all terms on the first two lines of (6.2) are explicitly proportional to

σµν . The two independent expressions on the third line of that equation are in general

nonzero even when σµν vanishes. As a result DµJµ
S ≥ 0 requires that the third line of (6.2)

vanish identically; hence, we obtain the following constraints on coefficients of the second

order terms in the entropy current

B1 = 2A3 C1 + C2 = 0 (6.3)

for a non-negative divergence entropy current.

These two conditions single out a 5 dimensional submanifold of non-negative divergence

entropy currents in the 7 dimensional space (6.1) of candidate Weyl covariant entropy

currents.

Since a local notion of entropy is an emergent thermodynamical construction (rather

than a first principles microscopic construct), it seems reasonable that there exist some

ambiguity in the definition of a local entropy current. We do not know, however, whether

this physical ambiguity is large enough to account for the full 5 parameter non uniqueness

described above, or whether a physical principle singles out a smaller sub family of this five

dimensional space as special. Below we will see that our gravitational current - which is

special in some respects - may be generalized to a two dimensional sub family in the space

of positive divergence currents.

6.2 Positivity of divergence of the gravitational entropy current

It may be checked (see appendix B) that our entropy current (5.7) may be rewritten in the

form (6.1) with the coefficients

A1 =
1

4
+

π

16
+

ln 2

4
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
; B2 =

1

2

C1 = C2 = 0 (6.4)

It is apparent that the coefficients listed in (6.4) obey the constraints of positivity (6.3).

This gives a direct algebraic check of the positivity of the divergence of (5.7).

The fact that it is possible to write the current (5.7) in the form (6.1) also demonstrates

the Weyl covariance of our current (5.7).

6.3 A two parameter class of gravitational entropy currents

As we have seen above, there exists a five parameter set of non-negative divergence con-

formally covariant entropy currents that have the correct equilibrium limit. An example

of such a current was first constructed in [40].
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Now let us turn to an analysis of possible generalizations of the gravitational entropy

current presented in this paper. Our construction admits two qualitatively distinct, rea-

sonable sounding, generalizations that we now discuss.

Recall that we constructed our entropy (d−1)-form via the pullback of the area-form on

the event horizon. While the area-form is a very natural object, all its physically important

properties (most importantly the positivity of divergence) appear to be retained if we add

to it the exterior derivative of a (d − 2)-form. This corresponds to the addition of the

exterior derivative of a (d − 2)-form to the entropy current Jµ
S . Imposing the additional

requirement of Weyl invariance at the two derivative level this appears to give us the

freedom to add a multiple of 1
b
Dλωλσ to the entropy current in four dimensions.

In addition, we have the freedom to modify our boundary to horizon map in certain

ways; our construction of the entropy current (5.7) depends on this map and we have made

the specific choice described in section 4. Apart from geometrical naturalness and other

aesthetic features, our choice had two important properties. First, under this map rH(xµ)

(and hence the local entropy current) was a local function of the fluid dynamical variables

at xµ. Second, our map was Weyl covariant; in particular, the entropy current obtained

via this map was automatically Weyl covariant. We will now parameterize all boundary

to horizon maps (at appropriate order in the derivative expansion) that preserve these two

desirable properties.

Any one to one boundary to horizon map may be thought of as a boundary to bound-

ary diffeomorphism compounded with the map presented in section 4. In order to preserve

the locality of the entropy current, this diffeomorphism must be small (i.e., of sub-leading

order in the derivative expansion). At the order of interest, it turns out to be sufficient to

study diffeomorphisms parameterized by a vector δζ that is of at most first order in the

derivative expansion. In order that our entropy current have acceptable Weyl transforma-

tion properties under this map, δζ must be Weyl invariant. Up to terms that vanish by

the equations of motion, this singles out a two parameter set of acceptable choices for δζ;

δζµ = 2 δλ1 b uµ + δλ2 b2 ℓµ (6.5)

To leading order the difference between the (d− 1)-forms obtained by pulling the area

(d − 1)-form a back under the two different maps is given by the Lie derivative of the

pull-back s of a

δs = Lδζs = d(δζµsµ) + δζµ(ds)µ.

Taking the boundary Hodge dual of this difference we find

δJµ
S = LδζJ

µ
S − Jν

S∇νδζ
µ (6.6)

= Dν

[
Jµ

S δζν − Jν
Sδζµ

]
+ δζµDνJ

ν
S

Similarly

δ∂µJµ
s = δζµ∂µ∂νJν

s + ∂µδζµ

∂νJ
ν
s = Lδζ∂µJµ

s + ∂µδζµ∂νJν
s

= LδζDµJµ
s + DµδζµDνJ

ν
s (6.7)
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Using the fluid equations of motion it turns that the r.h.s. of (6.6) is of order ǫ3 (and

so zero to the order retained in this paper) for ζµ ∝ b2lµ. Consequently, to second or-

der we find a one parameter generalization of the entropy current — resulting from the

diffeomorphisms (6.5) with δλ2 set to zero.

Note that, apart from the diffeomorphism shift, the local rate of entropy production

changes in magnitude (but not in sign) under redefinition (6.6) by a factor proportional to

the Jacobian of the coordinate transformation parameterized by δζ. In appendix B we have

explicitly computed the shift in the current (5.7) under the operation described in (6.6)

(with δζ of the form (6.5)) and also explicitly verified the invariance of the positivity of

divergence under this map.

In summary we have constructed a two parameter generalization of our gravitational

entropy current (5.7). One of these two parameters arose from the freedom to add an exact

form to the area form on the horizon. The second parameter had its origin in the freedom

to generalize the boundary to horizon map.

7. Discussion

We have demonstrated that any singularities in the metrics of [33], dual to fluid dynamics,

are shielded behind a regular event horizon (we expect the same to be true for the solution

of [37]). Further, we have shown that the structure of this event horizon is determined

locally by the variables of fluid dynamics, and have presented an explicit expression for

the location of the event horizon to second order in the ǫ (boundary derivative) expansion.

Remarkably, the event horizon, which is a global concept in general relativity, turned out

to be rather simple to locate, partly due to our choice of particularly useful coordinate

system (2.2), and more importantly due to the long-wavelength requirement that our so-

lution be dual to a system described by fluid dynamics. We emphasize that within the

boundary derivative expansion of this paper we are directly able to construct the event

horizon; we did not need to discuss other more local constructs like the apparent horizon

as an intermediate step towards understanding the global structure of our solutions.

We have also constructed an entropy (d− 1)-form on the event horizon of an arbitrary

d+1 dimensional spacetime and used the pullback of this form to the boundary to construct

a manifestly non-negative divergence entropy current for asymptotically AdSd+1 solutions

of gravity with a horizon. We have derived an explicit expression for this entropy current

for the solutions dual to [33] and demonstrated a direct algebraic check of the positivity of

divergence of this current within fluid dynamics.

In order to lift the entropy (d − 1)-form from the horizon to the boundary, we used a

natural map between the horizon and the boundary, given by ingoing null geodesics which

emanate from the boundary in the direction of the fluid flow. These ingoing geodesics in

fact determine the coordinate system of [33] (they constitute lines of constant xµ for the

metric (2.2)).

We also directly studied a seven parameter family of weight four Weyl covariant fluid

dynamical vectors that have the appropriate equilibrium limit to be an entropy current and

demonstrated that a 5 parameter subclass of this family of currents has non negative di-
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vergence to second order in the derivative expansion. The entropy currents we constructed

via a pullback of the area form constitute a special subclass of these currents. It is natural

to inquire what the gravitational interpretation of the remaining currents is.20 It is natural

to wonder whether they are assosicated with appararent horizons21 and other quasi-local

horizons (such as trapping/dynamical horizons, isolated horizons, e.g. [44, 45]). At least

several of these horizons also appear to obey versions of the area increase theorem. Con-

sequently, it should be possible to obtain conserved entropy currents via the pullback of

a suitably defined area form on these horizons. Apparent and other dynamical horizons

have one initially unpalatable feature; their structure depends on a choice of the slicing

of spacetime into spacelike surfaces. However perhaps it is precisely this ambiguity that

allows these constructions to cover the full 5 parameter set of non negative entropy currents

discussed above?22 Note that in the context of dynamical horizons, [46] obtain23 a char-

acterization of a membrane fluid obeying non-relativistic hydrodynamics equations with

a uniquely specified entropy. Their system has rather different characteristics (absence of

shear-viscositly for instance) and appears to model the black hole as a fluid, rather than

construct an explicit dual as in the current discussion. It would interesting to understand

this connection better.

We re-emphasize that our results demonstrate that each of the solutions of [33] (with

regular fluid data) has its singularities hidden from the boundary by a regular event horizon.

Consequently all gravitational solutions dual to regular solutions of fluid dynamics obey

the cosmic censorship conjecture. It would be interesting to investigate how our results

generalize to irregular (e.g., turbulent) solutions of fluid dynamics, as also to gravitational

solutions beyond the long wavelength expansion. As we have explained in the Introduction,

several such solutions are dual descriptions of the field theoretic approach towards local

equilibrium. The appearance of a naked singularity in this approach would appear to imply

singularities of real time correlation functions in this process. It would be fascinating to

study this connection in more detail. On a more speculative, or perhaps more ambitious

note, it is natural to inquire what (if any) feature of field theoretic correlators would be

sensitive to the apparently crazy nature of near singularity dynamics even when the latter

is cloaked by a horizon.

Another interesting direction concerns α′ corrections to the bulk solutions, which in the

language of the dual field theory correspond to finite ’t Hooft coupling effects. In the bulk,

there is a well developed formalism due to Wald [47, 43] which provides a generalization of

the Bekenstein-Hawking area formula for the entropy of the black hole to higher derivative

gravity. The main idea is to construct the entropy of (asymptotically flat) solutions using

a variational principle of the Lagrangian; essentially, from the variational principle one

20We thank M. Van Raamsdonk for raising this question.
21We thank A. Strominger for stressing the physical relevance of apparent horizons to our situation, and

for a very useful related discussion.
22A cautionary note is in order; it is possible that a subclass of the 5 parameter non negative divergence

entropy currents is an artifact of the derivative expansion, and has no continuation to finite ǫ. We thank

M. Van Raamsdonk for discussions on this point.
23We thank I. Booth for bringing this reference to our attention.
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obtains the first law of thermodynamics, which is used to construct the entropy as a Noether

charge. This construction of the Noether charge entropy is conceptually similar to the area-

form we present and in fact reduces to it in the two derivative limit. It might be possible

– and would be very interesting — to generalize the discussion presented in this paper to

be able to account for α′ corrections (see appendix C). The key issue here would be to

find an analogue of the area increase theorem for α′ corrected gravity. This is complicated

from a pure general relativity standpoint, owing to the fact that higher derivative theories

generically violate the energy conditions.24 The AdS/CFT correspondence seems to require

that such a generalization exist, and it would be very interesting to determine it. It is

possible that the requirement of the existence of such a theorem provides ‘thermodynamical’

constraints to α′ corrections of the low energy equations of gravity.25

If the gravity/fluid dynamics correspondence could be understood in more detail for

confining gauge theories (see e.g., [54, 55]), fluid dynamics could give us a handle on very

interesting horizon dynamics. For instance, one might hope to explore the possibility of

topological transitions of the event horizon.26

Turning to more straightforward issues, it would be interesting to generalize the discus-

sion of this paper to encompass the study of field theory on arbitrary curved manifolds. It

would also be interesting to generalize our analysis to the bulk dual of charged fluid flows,

and especially to the flows of extremal charged fluids. This could permit more direct con-

tact with the entropy functional formalism for extremal black holes. A natural framework

for such analysis, specifically in relation to the horizon dynamics studied here, is provided

by the near-horizon metrics for degenerate horizons discussed in [56]. Furthermore, one

might hope that such a study could have bearing on studying the behaviour of superfluids.

Finally, note that while field theoretic conserved currents are most naturally evaluated

at the boundary of AdS, the entropy current most naturally lives on the horizon. This is

probably related to the fact that while field theoretic conserved currents are microscopically

defined, the notion of a local entropy is an emergent long distance concept, and so naturally

lives in the deep IR region of geometry, which, by the UV/IR map, is precisely the event

horizon. Correspondingly, we find it fascinating that, in the limits studied in this paper, the

shape of the event horizon is a local reflection of fluid variables. This result is reminiscent

of the membrane paradigm of black hole physics. It would be fascinating to flesh out this

observation, and perhaps to generalize it.

24In the context of supersymmetric solutions in α′ corrected gravity, as discussed in [48] for the so called

small black holes, while the entropy remains proportional to the area and specific classes of solutions satisfy

the averaged null energy condition [49]; one still is unable to show the desired monotonicity property of

entropy.
25In [50] the authors demonstrate the second law for the Einstein Hilbert action deformed by an R2 term;

this Lagrangian however is not likely to arise as the low energy effective action from string theory [51]. See

also [52, 53] for recent discussions of constraints on parameters appearing in higher derivative theories in

connection to the dual hydrodynamic description.
26While Cosmic Censorship precludes splitting of black holes, they can easily merge without the curvatures

becoming large.
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A. Notation

We work in the mostly positive, (− + + . . .), signature. The dimensions of the spacetime

in which the conformal fluid lives is denoted by d. In the context of AdS/CFT, the dual

AdSd+1 space has d + 1 spacetime dimensions. The event horizon is a d-dimensional null

manifold H. H is foliated by d − 1 dimensional constant v spatial slices denoted by Σv.

The induced metric on Σv is denoted by hab (and h denotes its determinant).

Latin alphabets A,B, . . . are used to denote the d + 1 dimensional bulk indices which

range over {r, 0, 1, . . . , d−1}. Lower Greek letters µ, ν, . . . indices range over {0, 1, . . . , d−1}
and lower case Latin letters a, b, . . . indices range over {1, . . . , d − 1}. The co-ordinates in

the bulk are denoted by XA which is often split into a radial co-ordinate r and xµ. We

will often split xµ into v and xa.

In these co-ordinates, the equation for the horizon takes the form SH ≡ r− rH(x) = 0.

We can choose to eliminate the co-ordinate r in favour of xµ’s via this equation. Then,

in the xµ co-ordinates the components of the metric are denoted by Hµν . In addition, we

find it convenient to use a co-ordinate system {αa, λ} on H — in these co-ordinates, the

components of the induced metric on the horizon take the special form gλλ = gaλ = 0 and

gab 6= 0.

Our convention for the Riemann curvature tensor is fixed by the relation

[∇µ,∇ν ]V
λ = Rµνσ

λV σ. (A.1)

In table 1, we list the physical meaning and the definitions of various quantities used

in the text, referring to the equations defining them where appropriate:

A.1 Fluid dynamical parameters

Various expressions in the text and are built out of the fluid velocity; we list them here for

convenience. The basic building blocks are the derivatives of the fluid velocity, decomposed

into appropriate representations based on their symmetries. We have (see the table above
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Symbol Definition Symbol Definition

d dimensions of boundary H The event horizon (d-dimensional)

XA Bulk co-ordinates xµ Boundary co-ordinates

Σv A spatial slice of H λ, αa Co-ordinates on H
GAB Bulk metric,(2.2) ηµν Boundary metric (Minkowski)

hab Induced metric on Σv gab Metric on Σv ⊂ H
rH(x) Horizon function, (2.7) Hµν Induced metric on H
SH = 0 eq. of Horizon s Entropy (d-1)-form on Σλ

ξA Normal vector to the Horizon (2.9) nµ See (2.17)

s
(k)
a See (2.2), (A.5), (5.1) s

(k)
b See (2.2), (A.5), (5.1)

j
(k)
µ See (2.2), (A.11), (5.1) t

(k)
µν See (2.2), (5.1)

T Fluid temperature η Shear viscosity

T µν Energy-momentum tensor Jµ
S Entropy current

uµ Fluid velocity (uµuµ = −1) Pµν Projection tensor, ηµν + uµuν

aµ Fluid acceleration, (A.2) ϑ Fluid expansion, (A.2)

σµν Shear strain rate, (A.2) ωµν Fluid vorticity, (A.2)

πµν Visco-elastic stress

Dµ Weyl-covariant derivative Aµ See (B.4)

Rµνλ
σ Riemann tensor Fµν ∇µAν −∇νAµ

Rµν , R Ricci tensor/scalar Rµν ,R See (B.4)

Gµν Einstein tensor Gµν See (B.4)

Cµνλσ Weyl curvature

Table 1: Conventions used in the text

for the physical meaning of these parameters),

ϑ = ∂µuµ

aν = uµ∂µuν

σµν =
1

2

(
P λµ∂λuν + P λν∂λuµ

)
− 1

3
Pµν∂λuλ

ωµν =
1

2
PµαP νβ (∂αuβ − ∂βuα)

ℓµ = ǫαβνµωαβuν

(A.2)

In addition, we will have occasion at various points in the text to encounter various

functions built out of the first derivatives of the fluid velocity defined in (A.2). These

functions were defined in [33] to present the second order metric, and show up for example

in (5.1). We have:

s =
1

b
Pαβ∂α∂βb S = DuαDuα , S = ℓµDuµ (A.3)

S = (∂µuµ)2 , S = ℓµℓµ , S = σµνσµν .
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where D = uµ∂µ (Note that this is a different derivative from the Weyl covariant derivative

introduced in appendix B; the distinction should be clear from the context).

vν =
9

5

[
1

2
Pα

ν P βγ∂γ (∂βuα + ∂αuβ) − 1

3
PαβP γ

ν∂γ∂αuβ

]
− Pµ

ν Pαβ∂α∂βuµ

vν = Pµ
ν Pαβ∂α∂βuµ

Vν = ∂αuαDuν , Vν = ǫαβγνuαDuβℓγ , Vν = σανDuα .

(A.4)

A.2 The functions appearing in the second order metric

The metric (2.2) derived in [33] has been rewritten in terms of various auxiliary functions

used to define S(r, xµ) and χµν(r, x
µ). These functions can be read off from Eq (5.25)

of [33]; we list them here for convenience.27

Scalars under SO(3) spatial rotations: the scalar functions appearing at first and

second order are respectively,

s(1)
a (r, xµ) = 0

s(2)
a (r, xµ) =

3

2
b2h2(br)

s
(1)
b (r, xµ) =

2

3
r∂λuλ

s
(2)
b (r, xµ) =

1

r2

k2(br)

b2

(A.5)

in terms of several functions of r which are given as

F (r) =
1

4

[
ln

(
(1 + r)2(1 + r2)

r4

)
− 2 arctan(r) + π

]
(A.6)

Defining

Sh(r) ≡ 1

3r3
S +

1

2
Wh(r)S (A.7)

Sk(r) ≡ 12r3h2(r) + (3r4 − 1)h′
2(r) −

4r

3
s + 2rS

−2r

9
S +

1 + 2r4

6r3
S +

1

2
Wk(r)S , (A.8)

where the functions Wh(r) and Wk(r) are given by

Wh(r) =
4

3

(
r2 + r + 1

)2 − 2
(
3r2 + 2r + 1

)
F (r)

r (r + 1)2 (r2 + 1)2
,

Wk(r) =
2

3

4
(
r2 + r + 1

) (
3r4 − 1

)
F (r) −

(
2r5 + 2r4 + 2r3 − r − 1

)

r (r + 1) (r2 + 1)
.

27One notational change we have made is to rename the functions α
(k)
µν appearing in [33] to t

(k)
µν . We don’t

list this here as it doesn’t appear directly in our analysis of the entropy current.

– 28 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
5

The other symbols s, S, etc., are defined in (A.3). We can now write the expressions for

the functions appearing in the definition of s
(2)
a,b as

h2(r) = − 1

4r2
S∞

h +

∫ ∞

r

dx

x5

∫ ∞

x

dy y4

(
Sh(y) − 1

y3
S∞

h

)

k2(r) =
r2

2
S∞

k −
∫ ∞

r

dx (Sk(x) − xS∞
k ) .

(A.9)

where we have defined

S∞
h =

(
1

3
S +

2

3
S

)
, S∞

k ≡
(
−4

3
s + 2S − 2

9
S − 1

6
S +

7

3
S

)
. (A.10)

Vectors under SO(3) spatial rotations: The vector functions appearing at first and

second order are respectively,

j(1)
µ (r, xµ) = −ruαP β

µ ∂αuβ

j(2)
µ (r, xµ) = − 1

b2r2
Pα

µ

(
− r2

36
B∞

α +

∫ ∞

r

dx x3

∫ ∞

x

dy

(
Bα(y) − 1

9y3
B∞

α

))
(A.11)

where

B(r) =

(
2r3 + 2r2 + 2r − 3

)
B∞ + Bfin

18r3(r + 1) (r2 + 1)
(A.12)

with

B∞ = 4 (10v + v + 3V − 3V − 6V)

Bfin = 9 (20v − 5V − 6V) ,
(A.13)

The symbols vk and Vk are defined above in (A.4) as derivatives of the fluid velocity.

B. Weyl covariant formalism

In this appendix, we present the various results related to Weyl covariance in hydrodynam-

ics that are relevant to this paper. The conformal nature of the boundary fluid dynamics

strongly constrains the form of the stress tensor and the entropy current [32, 40]. An effi-

cient way of exploiting this symmetry is to employ a manifestly Weyl-covariant formalism

for hydrodynamics that was introduced in the reference [40].

In brief, for an arbitrary tensor with weight w, one defines a Weyl-covariant derivative28

Dλ Qµ...
ν... ≡ ∇λ Qµ...

ν... + w AλQµ...
ν...

+
[
gλαAµ − δµ

λAα − δµ
αAλ

]
Qα...

ν... + . . .

− [gλνAα − δα
λAν − δα

ν Aλ] Qµ...
α... − . . .

(B.1)

where the Weyl-connection Aµ is related to the fluid velocity via the relation

Aµ = uλ∇λuµ − ∇λuλ

d − 1
uµ (B.2)

28In contrast to the analysis in the main text, we find it convenient here to work with an arbitrary

background metric, whose associated torsion-free connection is used to define the covariant derivative ∇µ.
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We shall exploit the manifest Weyl covariance of this formalism to establish certain results

concerning the entropy current that are relevant to the discussion in the main text.

In section B.1, we write down the most general Weyl-covariant entropy current and

compute its divergence. This computation leads us directly to an analysis of the constraints

on the entropy current imposed by the second law of thermodynamics. This analysis

generalizes and completes the analysis in [40] where a particular example of an entropy

current which satisfies the second law was presented. Following that, in section B.2, we

rewrite the results of this paper in a Weyl-covariant form and show that the expression

for the entropy current derived in this paper satisfies the constraint derived in section B.1.

This is followed by a discussion in section B.3 on the ambiguities in the definition of the

entropy current.

B.1 Constraints on the entropy current: Weyl covariance and the second law

We begin by writing down the most general derivative expansion of the entropy current

in terms Weyl-covariant vectors of weight 4.29 After taking into account the equations of

motion and various other identities, the most general entropy current consistent with Weyl

covariance can be written as:

(4πη)−1Jµ
S = 4G

(5)
N b3Jµ

S =
[
1 + b2

(
A1σαβσαβ + A2ωαβωαβ + A3R

)]
uµ

+ b2
[
B1Dλσµλ + B2Dλωµλ

]

+ C1 b ℓµ + C2 b2uλDλℓµ + . . .

(B.3)

where b = (πT )−1 and we have already assumed the leading order result for the entropy

density s = 4πη = (4G
(5)
N b3)−1 and ℓµ = ǫαβνµωαβuν .

30

Now, we want to derive the constraints imposed by the second law on the A,B and C

coefficients appearing above. To this end, we take the divergence of the entropy current

above to get

4G
(5)
N b3DµJµ

S = − 3b−1uµDµb − 2C1 ℓµDµb

+ b2Dµ

[(
A1σαβσαβ + A2ωαβωαβ + A3R

)
uµ

+
(
B1Dλσµλ + B2Dλωµλ + C2 uλDλℓµ

)]
+ . . .

(B.5)

where we have used the facts that Dµℓµ = 0 and that Dµb gets non-zero contributions only

at second order (B.7). Further, uλFµλ gets non-zero contributions only at third order (the

equations of motion force uλFµλ = 0 at second order).

29We will restrict attention to fluid dynamics in 3 + 1 dimensions.
30We shall follow the notations of [40] in the rest of this appendix. In particular, we recall the following

definitions

Aµ = aµ −
ϑ

3
uµ ; Fµν = ∇µAν −∇νAµ (B.4)

R = R − 6∇λA
λ + 6AλA

λ ; Dµuν = σµν + ωµν

Dλσµλ = ∇λσµλ − 3Aλσµλ ; Dλωµλ = ∇λωµλ −Aλωµλ

Note that in a flat spacetime, R is zero but R is not. Though we will always be working in flat spacetime,

we will keep the R-terms around to make our expressions manifestly Weyl-covariant.
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In order to simplify the expression further, we need the equations of motion. Let us

write the stress tensor in the form

T µν = (16πG
(5)
N b4)−1 (ηµν + 4uµuν) + πµν (B.6)

where πµν is transverse — uνπµν = 0. This would imply

0 = b4uµDνT
µν = b4Dν(uµT µν) − b4(Dνuµ)T µν (B.7)

=⇒ 4

(
3

b
uµDµb − b

4η
σµνπ

µν

)
= 0

where we have multiplied the equation by 16πG
(5)
N in the second line to express things

compactly. Similarly, we can write 2ℓµDµb = −b2ℓµDλσµλ which is exact upto third order

in the derivative expansion. Note that these are just the Weyl-covariant forms of the

equations that we have already encountered in (5.3).

We further invoke the following identities (which follow from the identities proved in

the appendix A of [40])31

Dµ(σαβσαβuµ) = 2σµνuλDλσµν

Dµ(ωαβωαβuµ) = 4σµνωµ
αωαν − 2DµDλωµλ

Dµ(Ruµ) = −2σµνRµν + Dµ

[
−2Dλσµλ + 2Dλωµλ + 4uλFµλ

]

−2σµνRµν = 4σµν

[
uλDλσµν + ωµαωα

ν + σµασα
ν − Cµανβuαuβ

]

Dµ(uλDλℓµ) = Dµ(ℓλDλuµ) −Fµνℓ
µuν

Dµ(ℓλDλuµ) = σµνDµℓν + ℓµDλσµλ

(B.8)

to finally obtain

4G
(5)
N b3DµJµ

S = b2σµν

[
−πµν

4ηb
+ 2A1u

λDλσµν + 4A2ω
µαωα

ν − 2A3Rµν + C2Dµℓν

]

+(B1 − 2A3)b
2DµDλσµλ + (C1 + C2)b

2ℓµDλσµλ + . . .

= b2σµν

[
− πµν

4ηb
+ (2A1 + 4A3)u

λDλσµν

+4(A2 + A3)ω
µαωα

ν + 4A3σ
µασα

ν + C2Dµℓν

]

+(B1 − 2A3)b
2DµDλσµλ + (C1 + C2)b

2ℓµDλσµλ + . . . (B.9)

Substituting the value of πµν as calculated from the known stress tensor, we find

4G
(5)
N b3DµJµ

S = b2σµν

[
σµν

2b
+

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν

+4(A2 + A3)ω
µαωα

ν +

(
4A3 −

1

2

)
(σµασα

ν) + C2Dµℓν

]

+(B1 − 2A3)b
2DµDλσµλ + (C1 + C2)b

2ℓµDλσµλ + . . . (B.10)

31Since we are only interested in the case where boundary is conformally flat, we will consistently neglect

terms proportional to the Weyl curvature in the following.
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This expression can in turn be rewritten in a more useful form by isolating the terms that

are manifestly non-negative:

4G
(5)
N b3DµJµ

S =
b

2

[
σµν + b

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν + 4b(A2 + A3)ω

µαωα
ν

+ b

(
4A3 −

1

2

)
(σµασα

ν) + bC2Dµℓν

]2

+(B1 − 2A3)b
2DµDλσµλ + (C1 + C2)b

2ℓµDλσµλ + . . . (B.11)

The second law requires that the right hand side of the above equation be positive

semi-definite at every point in the boundary. First, we note from (B.11) that the first two

lines are positive semi-definite whereas the terms in the third line are not — given a velocity

configuration in which the third line evaluates to a particular value, as argued in the main

text, we can always construct another configuration to get a contribution with opposite

sign. Consider, in particular, points in the boundary where σµν = 0 — at such points, the

contribution of the first two lines become subdominant in the derivative expansion to the

contribution from the third line. The entropy production at these points can be positive

semi-definite only if the combination the coefficients appearing in the third line vanish

identically.

Hence, we conclude that the second law gives us two constraints relating A,B and

C, viz.,

B1 = 2A3 C1 + C2 = 0 (B.12)

Any entropy current which satisfies the above relations constitutes a satisfactory proposal

for the entropy current from the viewpoint of the second law.

One simple expression for such an entropy current which satisfies the above require-

ments was proposed in [40]. The Jλ
s proposed there is given by

(4πη)−1Jλ
S = uλ − b2

8

[
(ln 2σµνσµν + ωµνωµν)uλ + 2uµ(Gµλ + Fµλ) + 6Dνωλν

]
+ . . .

(B.13)

Now, using the identity

uµ(Gµλ + Fµλ) = −R
2

uλ −Dνσλν −Dνωλν + 2uµFλµ (B.14)

and the equations of motion, we can rewrite the above expression in the form appearing

in (B.3) to get the value of A,B and C coefficients as

A1 = − ln 2

8
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
B2 = −1

2

C1 = C2 = 0 (B.15)

It can easily be checked that these values satisfy the constraints listed in (B.12). Further,

for these values, the divergence of the entropy current simplifies considerably and we get

4G
(5)
N b3DµJµ

S =
b

2
σµνσµν (B.16)
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However, as the analysis in this section shows, this proposal is just one entropy current

among a class of entropy currents that satisfy the second law. This is not surprising, since

(as was noted in [40]) the second law alone cannot determine the entropy current uniquely.

B.2 Entropy current and entropy production from gravity

We now calculate the coefficients Ai’s and Bi’s for the actual entropy current calculated

from gravity in (5.7) and check whether they obey the constraints in (B.12). Unlike the

proposal in [40], the entropy current derived in section 5 takes into account the detailed

microscopic dynamics (of which hydrodynamics is an effective description) encoded in the

dual gravitational description.

In order to cast the entropy current in the form given by (B.3), we have to first rewrite

the quantities appearing in this paper in a Weyl-covariant form. We have the following

relations in the flat spacetime which identify the Weyl-covariant forms appearing in the

second-order metric of [33] –

S = 2ωαβωαβ;

S = σαβσαβ;

−4

3
s + 2S − 2

9
S =

2

3
σαβσαβ − 2

3
ωαβωαβ +

1

3
R

5

9
vµ +

5

9
vµ +

5

3
Vµ − 5

12
Vµ − 11

6
Vµ = P ν

µDλσν
λ

15

9
vµ − 1

3
vµ − Vµ − 1

4
Vµ +

1

2
Vµ = P ν

µDλων
λ

(B.17)

These can be used to obtain

B∞
µ = 18P ν

µDλσλ
ν + 18P ν

µDλωλ
ν

= 18
(
−σαβσαβ + ωαβωαβ

)
uµ + 18Dλσµ

λ + 18Dλωµ
λ

Bfin
µ = 54P ν

µDλσλ
ν + 90P ν

µDλωλ
ν

=
(
−54σαβσαβ + 90ωαβωαβ

)
uµ + 54Dλσµ

λ + 90Dλωµ
λ

(B.18)

Hence, all the second-order scalar and the vector contributions to the metric can be written

in terms of three Weyl-covariant scalars σαβσαβ , ωαβωαβ and R and two Weyl-covariant

vectors Dλσµ
λ and Dλωµ

λ.

Using the above expressions, we can rewrite the second order scalar and the vector

contributions to the entropy current appearing in (5.1) as

s(2)
a =

3

2
s(2)
c = −b2

4

(
1

2
+ ln 2 + 3 C +

π

4
+

5π2

16
−
(

3

2
ln 2 +

π

4

)2
)

σαβσαβ − b2

4
ωαβωαβ

s
(2)
b =

(
1

2
+

2

3
ln 2 + C +

π

6
+

5π2

48

)
σαβσαβ − 1

2
ωαβωαβ +

1

6
R

(B.19)
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while the vector contribution is given as

j(2)
µ = P ν

µ

[
3

4
Dλσν

λ +
1

2
Dλων

λ

]
=

(
−3

4
σαβσαβ +

1

2
ωαβωαβ

)
uµ +

3

4
Dλσµ

λ +
1

2
Dλωµ

λ

(B.20)

Now, we use (5.4), (5.5) and (5.6) to write rH , nµ and
√

g in Weyl covariant form as

follows:

rH =
1

b

(
1 +

b2

4

[(
5

6
+

2

3
ln 2 + C +

π

6
+

5π2

48

)
σαβσαβ − 1

2
ωαβωαβ +

1

6
R
])

(B.21)

nµ =

(
1 − b2

4

[
1

2
+ ln 2 + 3 C +

π

4
+

5π2

16
−
(

3

2
ln 2 +

π

4

)2
]

σαβσαβ − b2

4
ωαβωαβ

)
uµ

+b2P ν
µ

(
1

4
Dλσν

λ +
1

2
Dλων

λ

)
(B.22)

√
g =

1

b3

(
1 +

b2

4

[(
2 + ln 2 +

π

4

)
σαβσαβ − 5

2
ωαβωαβ +

1

2
R
]

.

)
(B.23)

Putting all of these together we can finally obtain the expression for the entropy

current:

4G
(5)
N b3Jµ

S =

(
1 + b2

[(
1

2
+

1

4
ln 2 +

π

16

)
σαβσαβ − 5

8
ωαβωαβ +

1

8
R
])

uµ

+ b2P ν
µ

(
1

4
Dλσν

λ +
1

2
Dλων

λ

)

=

(
1 + b2

[(
1

4
+

1

4
ln 2 +

π

16

)
σαβσαβ − 1

8
ωαβωαβ +

1

8
R
])

uµ

+ b2

(
1

4
Dλσµλ +

1

2
Dλωµλ

)

(B.24)

from which we can read off the coefficients A, B and C appearing in the general cur-

rent (B.3)

A1 =
1

4
+

π

16
+

ln 2

4
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
; B2 =

1

2

C1 = C2 = 0 (B.25)

These coefficients manifestly obey the constraints laid down in (B.12) and hence, the

entropy current derived from gravity obeys the second law. Further, we get the divergence

of the entropy current as

4G
(5)
N b3Jµ

S = b2σµν

[
σµν

2b
+ 2

(
1

4
+

π

16
+

3

8
ln 2

)
uλDλσµν

]
+ . . .

=
b

2

[
σµν + b

(
1

4
+

π

16
+

3

8
ln 2

)
uλDλσµν

]2

+ . . .

(B.26)
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which can alternatively be written in the form

TDµJµ
S = 2 η

[
σµν +

(π + 4 + 6 ln 2)

16πT
uλDλσµν

]2

+ . . . (B.27)

which gives the final expression for the rate of entropy production computed via holography.

B.3 Ambiguity in the holographic entropy current

We now examine briefly the change in the coefficients A, B and C parametrizing the

arbitrary entropy current, under the ambiguity shift discussed in section 6.3, see eq. (6.6).

In particular, we want to verify explicitly that under such a shift, the entropy production

still remains positive semi-definite.

The first kind of ambiguity in the entropy current arises due to the addition of an

exact form to the entropy current. The only Weyl covariant exact form that can appear in

the entropy current at this order is given by

4G
(5)
N b3δJ

µ
S = δλ0b

2Dνω
µν (B.28)

which induces a shift in the above coefficients B2 −→ B2 + δλ0.

The second kind shift in the entropy current (due to the arbitrariness in the boundary

to horizon map) is parametrised by a vector δζµ(which is Weyl-invariant) and is given by

δJµ
S = LδζJ

µ
S − Jν

S∇νδζ
µ

= Dν

[
Jµ

S δζν − Jν
Sδζµ

]
+ δζµDνJ

ν
S

(B.29)

where in the last line we have rewritten the shift in a manifestly Weyl-covariant form.

If we now write down a general derivative expansion for δζµ as

δζµ = 2 δλ1 b uµ + δλ2 b2 ℓµ + . . . (B.30)

the shift in the entropy current can be calculated using the above identities as

4G
(5)
N b3δJµ

S = δλ1 b2 σαβσαβuµ + . . . (B.31)

which implies a shift in the above coefficients given by A1 −→ A1 + δλ1 .

Note that both these shifts maintain the constraints listed in (B.12) and hence, the

positive semi-definite nature of the entropy production is unaffected by these ambiguities

as advertised.

C. Wald’s “entropy form”

In this section we briefly discuss the notion of a local “entropy form”, as defined by

Wald, [57, 43, 47]. This is defined using a variational principle for any diffeomorphism

invariant Lagrangian L to derive an expression for the first law of black hole mechanics.

We consider a d + 1 dimensional spacetime with metric GAB which is a solution to L’s

equations of motion and denote ∇A to be the associated covariant derivative.
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C.1 Stationary black branes

Let us first consider the case of a stationary black brane, characterized by a Killing horizon

H which is generated by a Killing vector χA. We normalize χA by the condition that it

satisfies χA∇AχB = χB on H and assume that H possesses a bifurcation surface Σb.

Consider the following d − 1-form

SA1...Ad−1
= −2π

√
−G

(d − 1)!

∂L
∂RABCD

ǫA1···Ad−1AB∇CχD (C.1)

It has been shown in [43, 47] that the entropy of the black hole S is then simply the integral

of S over Σb, and it satisfies the first law of thermodynamics. Hence, (C.1) provides a local

expression for the entropy- form. As is to be expected, this expression is not unique, and

suffers from ambiguities arising from: (i) the possibility of adding exact derivatives to L,

(ii) addition of a (d−1) form to S which arises from the additive ambiguity of the Noether

current up to the Hodge dual of an exact d-form, and (iii) the possibility of adding to S

an exact d − 1 form without changing the entropy S, cf. proposition 4.1 of [43]. However,

in the discussion that follows, these additional terms will not be important.

It is easy to evaluate the above expression (C.1) in case of General Relativity. In this

case L = 1

16πG
(d+1)
N

(R + Λ), and

∂L
∂RABCD

=
1

32πG
(d+1)
N

(GACGBD − GBCGAD). (C.2)

Further, on Σb,

∇[AχB] = nAB (C.3)

where nAB is the binormal to Σb, defined by

nAB = NAχB − NBχA, (C.4)

where NA is the “ingoing” future-directed null vector, normalized such that NAχA = −1.32

It is easy to show that the volume element on Σb is given by (see eq. (12.5.34) of [58]):

ΩA1...Ad−1
= −

√
−G

2(d − 1)!
ǫA1...Ad−1AB nAB

= −
√
−G

(d − 1)!
ǫA1...Ad−1AB ∇CχD GACGBD (C.5)

Putting all this together, the entropy form S becomes

SA1...Ad−1
=

1

4G
(d+1)
N

ΩA1...Ad−1
(C.6)

32This normalization, together with fact that NA, χA are both normal to Σb uniquely fixes NA.
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The total entropy is given by the integral

S =

∫

Σb

SA1...Ad−1
dxA1 ∧ . . . ∧ dxAd−1 =

1

4G
(d+1)
N

Area (Σb) (C.7)

thus reproducing the usual Bekenstein-Hawking formula. For stationary black holes the

area of the bifurcation surface of course coincides with the area of the black hole horizon.

To be explicit, let us consider the example of the five dimensional stationary (boosted)

black brane solution which is given by (2.2), with ǫ = 0 and b and uµ constants (independent

of xµ). The horizon is located at r = rH ≡ 1/b. Let us consider a spacelike slice Σ ⊂ H
defined by uµdxµ = 0. The binormal nAB to this surface (C.4) is given in terms of the

null vectors χA and NA. We have the normalized Killing vector χA ∂
∂XA = 1

κ
uµ ∂

∂xµ and

NAdXA = κ(2dr − r2f(br)uµdxµ). Here κ = 1
2

(
r2∂rf(br)

)
|r=rH

.

From (C.4) we find that the only non-vanishing components of the entropy (d−1)-form

S are given by

Sµ1µ2...µd−1
=

rd−1
H

4G
(d+1)
N (d − 1)!

uµǫµµ1µ2...µd−1
=

√
h

4G
(d+1)
N (d − 1)!

ǫµµ1µ2...µd−1

uµ

uv
. (C.8)

We have used the fact that on the (d − 1)-surface Σ,
√

h = rd−1
H uv.

The entropy form a, given in (3.10), agrees with the above expression:

a = Sµ1µ2...µd−1
dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµd−1 (C.9)

where we note that the vector nµ in (3.10) becomes equal to uµ in the static case (we will

discuss the dynamical situation below).

It is interesting to note that in case of higher derivative gravity, the entropy form

has terms in addition to the area-form. For example, in case of Lovelock gravity, with

Lagrangian density

L =
1

16πG
(d+1)
N

R + α
(
RABCDRABCD − 4RABRAB + R2

)
, (C.10)

the entropy form S as defined by (C.1) (see eq. (72) of [43]) leads to an entropy, which has

contributions from the first Chern class of the bifurcation surface:

S =
1

4G
(d+1)
N

Area (Σb) + 8πα

∫

Σb

R(d−1)
√

g(d−1)dd−1x. (C.11)

C.2 Dynamical horizons

The horizon of dynamical black holes (such as the generic situation with (2.2)) is not

generated by a Killing field and generically one doesn’t have a bifurcation surface. So the

formula (C.1) cannot be applied as such. However, as argued in [43], the simplest way to

proceed in this case is to develop a notion of a local bifurcation surface, and construct a

“local Killing field” χ. In case of General Relativity, this leads to a definition of the entropy

(d−1) form S as in (C.1); the main distinction is that ∇CχD is interpreted as the binormal
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nCD only in a sufficiently small neighbourhood close to the initially chosen surface. Hence

locally, we can continue as before using the result (C.5) to arrive at the expression

Sµ1µ2...µd−1
=

√
h

4G
(d+1)
N

ǫµµ1µ2...µd−1

nµ

nv
(C.12)

Here in constructing the binormal (C.4) we have used the fact that χA ∝ nA on H where

nA is defined by (2.17). As explained in [43], at any point p on a spacelike surface σ ⊂ H
we can choose coordinates such that the expression (C.1) for the entropy remains correct

(in particular, one can choose coefficients to ensure that the additional terms arising from

ambiguities in defining S vanish), so that the above derivation of (C.12) remains valid. It

is easy to see that the entropy form a, given in (3.10), agrees with the above expression in

the dynamical case as well.

C.3 Second law

We saw above, in case of General Relativity in arbitrary dimensions, that the Wald defini-

tion of entropy leads to the area-form on the horizon. The divergence of the entropy current

therefore is nonnegative as a consequence of Hawking’s area theorem and hence obeys the

second law of thermodynamics (assuming cosmic censorship). Recall that area theorem

requires that the energy conditions hold; physically, the only when gravity is attractive are

we guaranteed area increase. However, in case of higher derivative theories, it is not clear

whether the second law is obeyed [47, 43] by the Wald entropy (cf., [59, 50] for a discus-

sion in certain special classes of higher derivative theories). This is simply because higher

derivative theories violate the energy conditions and the situation is further complicated

by the fact that the entropy starts to depend on the intrinsic geometry of the black hole

horizon. On the other hand, from the viewpoint of the boundary theory, α′ corrections

simply provide a one-parameter deformation of various parameters of the fluid which must

continue to obey the second law of thermodynamics. It would be interesting to resolve this

puzzle (see section 7 for comments).

D. Independent data in fields up to third order

There are 16, 40 and 80 independent components at first, second and third orders in

the Taylor expansion of velocity and temperature.33 These pieces of data are not all

independent; they are constrained by equations of motion. The relevant equations of

motion are the conservation of the stress tensor and its first and second derivatives34 (at

our spacetime point) which are 4, 16 and 40 respectively in number.35 The terms that

appear in the three kinds of equations listed above start at first, second and third order

33For each independent function we count the number of independent partial derivatives at a given order;

for the temperature we have ∂µT , ∂µ∂νT , etc..
34The relevant equations are just the moments of the conservation equation which arise as local constraints

at higher orders.
35As T µν is not homogeneous in the derivative expansion, these equations of motion mix terms of different

order in this expansion.
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respectively. Consequently these equations may be used to cut down the independent data

in Taylor series coefficients of the velocity and temperature at first second and third order

to 12, 24 and 40 components respectively. We will now redo this counting keeping track of

the SO(3) transformation properties of all fields.

Let us list degrees of freedom by the vector (a, b, c, d, e) where a represents the number

of SO(3) scalars (1), b the number of SO(3) vectors (3), etc.. Working up to third order we

encounter terms transforming in at most the 9 representation of SO(3). In this notation,

the number of degrees of freedom in Taylor coefficients are (2, 3, 1, 0, 0), (3, 5, 3, 1, 0), and

(4, 7, 5, 3, 1) at first, second and third order respectively. The number of equations of

motion are (1, 1, 0, 0, 0), (2, 3, 1, 0, 0) and (3, 5, 3, 1, 0) respectively (note that the number

of equations of motion at order n+1 is the same as the number of variables at order n). It

follows from subtraction that the number of unconstrained variables at zeroth, first, second

and third order respectively can be chosen to be (1, 1, 0, 0, 0), (1, 2, 1, 0, 0), (1, 2, 2, 1, 0) and

(1, 2, 2, 1, 1). This choice is convenient in checking the statements about the non-negativity

of the divergence of the entropy current at third order explicitly.
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