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Abstract: A theoretical mechanism is devised to determine the large distance physics of

spacetime. It is a two dimensional nonlinear model, the lambda model, set to govern the

string worldsurface in an attempt to remedy the failure of string theory, as it stands. The

lambda model is formulated to cancel the infrared divergent effects of handles at short dis-

tance on the worldsurface. The target manifold is the manifold of background spacetimes.

The coupling strength is the spacetime coupling constant. The lambda model operates at

2d distance Λ−1, very much shorter than the 2d distance µ−1 where the worldsurface is

seen. A large characteristic spacetime distance L is given by L2 = ln(Λ/µ). Spacetime

fields of wave number up to 1/L are the local coordinates for the manifold of spacetimes.

The distribution of fluctuations at 2d distances shorter than Λ−1 gives the a priori mea-

sure on the target manifold, the manifold of spacetimes. If this measure concentrates at a

macroscopic spacetime, then, nearby, it is a measure on the spacetime fields. The lambda

model thereby constructs a spacetime quantum field theory, cutoff at ultraviolet distance

L, describing physics at distances larger than L. The lambda model also constructs an

effective string theory with infrared cutoff L, describing physics at distances smaller than

L. The lambda model evolves outward from zero 2d distance, Λ−1 = 0, building spacetime

physics starting from L =∞ and proceeding downward in L. L can be taken smaller than

any distance practical for experiments, so the lambda model, if right, gives all actually

observable physics. The harmonic surfaces in the manifold of spacetimes are expected to

have novel nonperturbative effects at large distances.
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1. Introduction

I propose here a systematic, mechanical theory of large distance physics. The mecha-

nism is a two dimensional nonlinear model, the lambda model, whose target manifold is

a manifold of spacetimes. Each spacetime is characterized by its riemannian metric and

certain other spacetime fields. In the lambda model, spacetime as a whole fluctuates lo-

cally in two dimensions. The distribution of the fluctuations at short two dimensional

distance is a measure on the manifold of spacetimes. If this measure concentrates at

a macroscopic spacetime, then, nearby, it is a measure on the spacetime fields in that

macroscopic spacetime. Spacetime quantum field theory is thereby constructed as the

effective description of large distance physics. But the dynamics that governs the large

distance physics is the local dynamics of the two dimensional nonlinear model, the lambda

model.

I only formulate the theory here. I describe its structure and speculate about its

prospects. I do no calculations in the theory. The arguments are based on abstract general

principles. Most of the technical details are left to be filled in. I concentrate on the task of

formulating a well-defined theoretical structure that is capable of providing a comprehensive

and useful theory of the large distance physics of the real world. The theory that I am

proposing does appear capable of selecting a specific discrete set of macroscopic spacetimes,

producing a specific spacetime quantum field theory in each. In particular, the theory

appears capable of producing specific, calculable, nonperturbatively small mass parameters

in the effective spacetime quantum field theories. But calculations are needed to check

whether the theory actually does accomplish this. If the theory does work as envisioned,

it will be a comprehensive, definitive, predictive theory of large distance physics, whose

reliability can be checked by detailed comparison with existing experimental knowledge of

the real world.

1.1 Renormalization of the general nonlinear model

This work began with the renormalization of the two dimensional general nonlinear model

[1, 2, 3]. The general nonlinear model is a two dimensional quantum field theory. It is

defined as a functional integral
∫

Dx e−A(x) (1.1)

over all maps x(z, z̄) from the plane to a fixed compact riemannian manifold, called the

target manifold. The couplings of the general nonlinear model are comprised in a rieman-

nian metric hµν(x) on the target manifold, called the target metric or the metric coupling.

The classical action is
∫

d2z
1

2π
hµν(x) ∂x

µ ∂̄xν . (1.2)

Each wave mode δhµν(x) of the reimannian metric on the target manifold is a coupling

constant λi in the two dimensional quantum field theory, parametrizing a perturbation

δA(x) =

∫

d2z
1

2π
δhµν(x) ∂x

µ ∂̄xν (1.3)
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of the action. The general nonlinear model is ‘general’ in the sense that the riemannian

metric on the target manifold is not assumed to have any special symmetries.

The general nonlinear model was shown to be renormalizable [1, 2, 3]. The renormal-

ized couplings of the model were shown to comprise an effective riemannian metric on the

target manifold, at every two dimensional distance. The renormalization group was shown

to act as a flow on the manifold of riemannian metrics. The infinitesimal renormalization

group generator βi(λ) became a vector field on the manifold of riemannian metrics. The

renormalization group fixed point equation β = 0, expressing two dimensional scale invari-

ance, became, at large distance in the target manifold, the equation Rµν = 0. This was

recognized as Einstein’s equation for the spacetime metric in general relativity, without

matter.

Renormalization is based on an extremely large ratio between two distances. The

quantum field theory is constructed at a short distance Λ−1. The theory is used, its

properties calculated, at a long distance µ−1. Inverse powers of the extremely large ratio

Λ/µ act to suppress the effects of all coupling constants having negative scaling dimensions.

In the general nonlinear model, the distances Λ−1 and µ−1 are two dimensional distances.

The metric coupling of the general nonlinear model is naively dimensionless. The

fluctuations in the model give each coupling constant λi an anomalous scaling dimension

−γ(i). It was shown that the anomalous scaling dimensions −γ(i) are the eigenvalues of

a covariant second order differential operator on the target manifold, acting on the wave

modes of the riemannian target metric. Each coupling constant λi is an eigenmode with

eigenvalue −γ(i). The numbers γ(i) take the form γ(i) = p(i)2 up to corrections for the

curvature of the target manifold, where p(i) is the spacetime wave number of the wave

mode λi.

In a renormalized quantum field theory, the coupling constants λi having γ(i) > 0 are

irrelevant. Their effects are suppressed by factors (Λ/µ)−γ(i). The quantum field theory

depends only on the λi having γ(i) = 0, which are the marginal coupling constants, and

the λi having γ(i) < 0, which are the relevant coupling constants. Thus the small distance

modes of the target riemannian metric, the wave modes of high wave number, became

irrelevant coupling constants λi in the renormalized general nonlinear model. The large

distance wave modes of the riemannian metric became the marginal and relevant coupling

constants in the general nonlinear model.

The target manifold of the general nonlinear model was taken to be compact and

riemannian so that the model would be well-defined as a two dimensional quantum field

theory. Assuming a riemannian target manifold ensured that the action A(x) would be

bounded below. Assuming a compact target manifold ensured a discrete spectrum of

anomalous scaling dimensions −γ(i). It followed from these assumptions that only a finite

number of marginal and relevant coupling constants λi could occur in the general nonlinear

model. The marginal and relevant coupling constants λi are the parameters for variations

of the quantum field theory. So the space of general nonlinear models was shown to be a

finite dimensional manifold.

When spacetime geometry was translated into the language of the renormalization

of the general nonlinear model, it became possible to imagine that the physics of real
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spacetime might be found encoded within that abstract machinery. It became possible to

imagine that real spacetime might in fact be the target manifold of the general nonlinear

model, and that Einstein’s equation on the physical metric of spacetime might in fact be

the fixed point equation β = 0 of the renormalization group acting on the metric coupling

of the general nonlinear model.

Renormalized two dimensional quantum field theory offers a small set of abstract ba-

sic principles which are distinguished, definitive and tractable in comparison with the

possible principles of spacetime physics that they would replace. The wave modes of

the spacetime metric become the coupling constants λi which parametrize the two di-

mensional quantum field theory. The equation of motion Rµν = 0 on the spacetime

metric becomes the renormalization group fixed point equation β i(λ) = 0, expressing

scale invariance of the two dimensional quantum field theory. Positivity of the spacetime

metric becomes unitarity of the two dimensional quantum field theory. The compact-

ness of spacetime becomes the discreteness of the spectrum of two dimensional scaling

fields. Small distance in spacetime becomes irrelevance in the two dimensional quan-

tum field theory. Geometric conditions on spacetime became natural regularity condi-

tions on two dimensional quantum field theories. The renormalization of the coupling

constants λi of the general nonlinear model is a systematic and reliable calculus. A con-

struction can be formulated in the language of the renormalized general nonlinear model

with confidence in its coherence, although explicit calculations might remain technically

difficult.

When the general nonlinear model was shown to be renormalizable, it was pointed

out [1, 2, 3] that a manifold of nontrivial compact riemannian solutions to the one loop fixed

point equation Rµν = 0 were already known to exist, namely the Calabi-Yau spaces [4, 5].

But the two dimensional scale invariance of a general nonlinear model with a Calabi-

Yau target manifold was violated by the two loop contribution to the beta function.

Nontrivial two dimensional scale invariance was discovered in the supersymmetric ver-

sion of the general nonlinear model with Calabi-Yau target manifold, when the remark-

able cancellation among the two loop contributions to the beta function was discov-

ered [6].

1.2 Application in string theory

The nontrivial scale invariant general nonlinear models found a role in perturbative string

theory [7]. The general nonlinear model constructs the string worldsurface in a curved

background spacetime. The target manifold of the nonlinear model is the background

spacetime in which strings scatter. The two dimensional plane gives the local two dimen-

sional patches out of which the string worldsurface is made. Consistency of the string

theory requires the string worldsurface to be scale invariant, so the coupling constants λi

in the general nonlinear model of the worldsurface must satisfy the fixed point equation

βi(λ) = 0. The manifold of scale invariant general nonlinear models forms the manifold of

possible background spacetimes.
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1.3 The failure of string theory, as it stands1

String theory, as it stands, has failed as a theory of physics because of the existence of a

manifold of possible background spacetimes. All potentially observable properties of string

theory depend on the geometry and topology of the background spacetime in which the

strings scatter. In string theory, a specific background spacetime has to be selected by hand,

or by “initial conditions”, from among the manifold of possibilities. Many continuously

adjustable parameters must be dialed arbitrarily to specify the background spacetime.

The existence of a manifold of possible background spacetimes renders string theory, as it

stands, powerless to say anything definite that can be checked.

1.4 Physics is reliable knowledge

Physics is reliable knowledge of the real world, based on experiment. A new theory of

physics must establish its reliability first by explaining existing knowledge of the real world.

New theories of physics build on existing reliable theories. A candidate theory of physics

obtains credibility first by giving definite explanations of established theories. A new theory

inherits the reliability of the theories it explains. For example, special relativity explained

newtonian mechanics. General relativity explained special relativity and newtonian gravity.

Quantum mechanics explained classical mechanics. Bohr’s correspondence principle, which

guided the formation of quantum mechanics, was an explicit statement that a candidate

theory of physics must explain the existing reliable theory.

Present knowledge of the laws of physics is summarized in the combination of classical

general relativity and the standard model of elementary particles, to the extent that the

standard model has been confirmed by experiment. A candidate theory of physics must

establish its reliability by explaining this currently successful theory. It must explain

1Note added for publication. The introduction and abstract have been revised to address a concern

of the referee. Phrases such as ‘the failure of string theory’ and ‘string theory cannot . . . ’ were interpreted

by the referee as absolute assertions of impossibility. These phrases have now been revised by systematically

replacing ‘string theory’ with ‘string theory, as it stands’. The revision is meant to make more explicit the

diagnostic nature of my discussion. My purpose in noting ‘the failure of string theory, as it stands’ is to

diagnose the failure in order to attempt a remedy. I see string theory, as it stands, to be an S-matrix theory,

unable to give a mechanical description of large distance physics. I see the need to choose from among a

multiplicity of possible background spacetimes as a failure, suggesting to me that there is something wrong

with the specification of what is a background spacetime, in string theory as it stands. I propose to provide

string theory with a mechanism that actually produces the background spacetime. As it happens, this new

machinery, if it should succeed, would end up supplanting string theory. It would generate a mechanical

description of all of large distance physics, relegating the string S-matrix to a formal role as a formally

consistent description of presently unobservable small distance physics. Nevertheless, the design is to fix

string theory, as it stands. I take a very conservative view of ‘string theory, as it stands’. The part of

string theory that stands solidly, that does not rest on conjectures and assumptions, is the perturbative

string S-matrix. I do not exclude the possibility that some other more or less conjectural versions of string

theory might some day succeed. But I take the position that conjecture, even when strongly supported

by internal evidence, remains conjecture. I worry that some of the underlying assumptions might turn

out to be unreliable, spacetime supersymmetry in particular. Perhaps some version of string theory will

eventually succeed as physics, perhaps it will be a version that realizes current conjectures. Meanwhile, for

diagnostic purposes, what string theory can do is what it actually manages to do, as it stands, not what it

is conjectured to be able to do, or what it might some day do.
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classical general relativity and the standard model in detail. At the very least, a candidate

theory of physics must contain fewer adjustable parameters than does the standard model,

and must give reliable methods to calculate precise numerical values for the masses and

coupling constants in the standard model. A candidate theory of physics that is not capable

of explaining the standard model and classical general relativity cannot obtain reliability,

because it cannot be checked against the existing knowledge of the real world.

The standard model of elementary particles is a quantum field theory. General rela-

tivity is a classical field theory, but can be regarded equally well as a quantum field theory

which is accurately approximated by its classical field theoretic limit at the spacetime dis-

tances where gravity is observed. A theory of physics should explain quantum field theory.

It should explain why quantum field theory in spacetime has been so successful at the

spacetime distances accessible to observation.

A candidate theory of physics must be capable of producing spacetime quantum field

theory. More, it must be capable of producing one specific quantum field theory, contain-

ing specific, nontrivial, calculable mass parameters and coupling constants. One specific

quantum field theory, the standard model, has been successful in physics, not quantum

field theory in general. Quantum field theory in general has too many free parameters to

be a useful search space in which to find a definite explanation of the standard model.

A mechanism is needed that is capable of producing a specific spacetime quantum field

theory, the one that is actually seen in the real world. The unnaturally small value of the

cosmological constant suggests that, if such a mechanism is at work in the real world, it

does not work generically, but rather in a very specific fashion, to produce a very specific

spacetime quantum field theory.

I stress capability. The first step in forming a theory of physics is to find a well-defined

theoretical structure capable of producing a specific spacetime quantum field theory. Only

then is there a chance of explaining the standard model and general relativity, and of making

definite predictions. When such a theoretical structure is found, it becomes worthwhile

to perform calculations to determine whether the capabilities are realized. Of course,

success in physics requires actually giving definite explanations of existing knowledge and

actually making definite predictions that are verified. But a first prerequisite in a candidate

theory of physics is a structure capable of providing definite, unequivocal explanations and

predictions. A theory of physics must be capable of making definite statements that can

be checked. It must be capable of doing useful work in the real physical world.

1.5 Only large distance physics is observable

In units of the Planck length, lP = (1 × 1019 GeV )−1, the smallest distance probed by

feasible experiments is a very large dimensionless number, on the order of 1 × 1016 =

(1× 103 GeV lP)
−1, or perhaps 1× 1014 = (1× 105 GeV lP)

−1. In any theory of physics in

which spacetime distances are dimensionless numbers and in which the unit of distance lies

within a few orders of magnitude of the Planck length, the only theoretical explanations

and predictions that can be checked against experiment are those made in the large distance

limit of the theory.
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1.6 The long-standing crisis of string theory

The long-standing crisis of string theory is its complete failure to explain or predict any

large distance physics. String theory, as it stands, cannot say anything definite about large

distance physics. String theory, as it stands, is incapable of determining the dimension,

geometry, particle spectrum and coupling constants of macroscopic spacetime. String the-

ory, as it stands, cannot give any definite explanations of existing knowledge of the real

world and cannot make any definite predictions. The reliability of string theory cannot

be evaluated, much less established. String theory, as it stands, has no credibility as a

candidate theory of physics.

Recognizing failure is a useful part of the scientific strategy. Only when failure is

recognized can dead ends be abandoned and useable pieces of failed programs be recycled.

Aside from possible utility, there is a responsibility to recognize failure. Recognizing failure

is an essential part of the scientific ethos. Complete scientific failure must be recognized

eventually.

String theory, as it stands, fails to explain even the existence of a macroscopic space-

time, much less its dimension, geometry and particle physics. The size of the generic

possible background spacetime is of order 1 in dimensionless units. Large distances oc-

cur only in macroscopic spacetimes, which are found near the boundary of the manifold

of background spacetimes. String theory, as it stands, cannot explain the existence of a

macroscopic spacetime, being incapable of selecting from among the manifold of possible

background spacetimes.

Even if some particular macroscopic background spacetime is chosen arbitrarily, by

hand or by “initial conditions”, string theory, as it stands, still fails to be realistic at

large distance. The large distance limit of string theory, as it stands, consists of the

perturbative scattering amplitudes of the low energy string modes, which are particle-like.

But the particle masses are exactly zero, and the low energy scattering amplitudes are

exactly supersymmetric. String theory, as it stands, fails to provide any mechanism to

generate the very small nonzero masses that are observed in nature, or to remove the

exact spacetime supersymmetry, which is not observed in nature. More broadly, string

theory, as it stands, is incapable of generating the variety of large characteristic spacetime

distances seen in the real world. At best, for each macroscopic background spacetime

in the manifold of possibilities, string theory, as it stands, gives large distance scattering

amplitudes that form a caricature of the scattering amplitudes of the standard model of

particle physics.

The massless string modes are the manifestations, locally in the macroscopic spacetime,

of the continuous degeneracy of the manifold of background spacetimes. The failure of

string theory, as it stands, to generate nonzero small particle masses is a consequence of its

failure to resolve the continuous degeneracy of the manifold of spacetimes. The continuous

degeneracy of the manifold of background spacetimes makes string theory, as it stands,

unacceptable as a candidate theory of physics. If the continuous degeneracy were accepted,

then, by assumption, it would be impossible to determine the dimension and geometry of

macroscopic spacetime or the masses and coupling constants of the elementary particles.

– 8 –
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String theory, as it stands, fails to produce spacetime quantum field theory at large

distance. String theory, as it stands, gives only scattering amplitudes. String theory, as it

stands, cannot explain the standard model, or general relativity, because it cannot produce

a spacetime quantum field theory as an effective description of large distance physics. The

practice in string theory, as it stands, is to assume that spacetime quantum field theory

describes the large distance physics. First, a macroscopic background spacetime is cho-

sen by hand, arbitrarily, from among the manifold of possibilities. Then string theory

scattering amplitudes are calculated perturbatively in the chosen background spacetime.

The perturbative string theory is invariant under some spacetime supersymmetries. The

massless particle-like states and their perturbative large distance scattering amplitudes are

identical to the perturbative large distance scattering amplitudes derived from a super-

symmetric field theory lagrangian in the arbitrarily chosen macroscopic spacetime. It is

then assumed that the large distance physics in the chosen macroscopic spacetime is given

by some quantized version of the supersymmetric spacetime field theory. The continuous

degeneracy of the manifold of background spacetimes appears as a continuous degeneracy

of the manifold of ground states of the spacetime field theory, as a continuous degeneracy

of the manifold of possible vacuum expectation values of the spacetime fields. The su-

persymmetric spacetime field theory is then examined for possible nonperturbative effects

that might break the degeneracy of the manifold of ground states.

The assumption that spacetime quantum field theory governs the large distance physics

is not justified. There is no derivation of spacetime quantum field theory from string

theory, as it stands. There is no construction from string theory, as it stands, of any

effective spacetime quantum field theory governing the large distance physics, even given

an arbitrary choice of background spacetime. String theory, as it stands, is incapable of

explaining any spacetime field theory, classical or quantum mechanical. String theory, as

it stands, provides nothing at large distance but perturbative scattering amplitudes for

gravitons and other massless particles. It is true that the same perturbative scattering

amplitudes for massless particles can be derived from massless supersymmetric quantum

field theories, but this formal coincidence does not justify the claim that string theory, as it

stands, explains quantum field theory, or the claim that string theory, as it stands, implies

quantum field theory at large distances.

In particular, there is no justification for the claim that string theory, as it stands,

explains or predicts gravity. String theory, as it stands, gives perturbative scattering

amplitudes of gravitons. Gravitons have never been observed. Gravity in the real world

is accurately described by general relativity, which is a classical field theory. There is no

derivation of general relativity from string theory, as it stands. General relativity can be

regarded as the large distance classical limit of quantum general relativity, if an ultraviolet

cutoff is imposed to make sense of quantum general relativity. A cutoff quantum general

relativity would give the same formal perturbative low energy scattering amplitudes for

massless gravitons as does string theory. But it is illogical to claim, from this formal

coincidence between two technical methods of calculating unobserved graviton scattering

amplitudes, that string theory, as it stands, explains classical general relativity, or that

string theory, as it stands, explains gravity, or that string theory, as it stands, is a quantum
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theory of gravity. String theory, as it stands, does not produce any mechanical theory of

gravity, much less a quantum mechanical theory.

In any case, a quantum theory of gravity is unnecessary at present. No physical effects

of quantum gravity have been observed, and there is no credible possibility of observing any.

What is needed is a theory which produces general relativity as an effective classical field

theory at large distance. It might produce classical general relativity by producing at large

distance an effective quantized general relativity that is deep in its classical regime. But

what is essential to produce is the classical, mechanical spacetime field theory of gravity.

String theory, as it stands, is only a perturbative theory. The widespread practice is

to assume that there exists a nonperturbative formulation of string theory, and that this

hypothetical nonperturbative formulation would be a quantum mechanical theory, micro-

scopic in spacetime, invariant under some exact, fundamental spacetime supersymmetries.

If such a nonperturbative formulation of string theory did exist, then it might well follow

that the large distance physics in that hypothetical theory would be governed by supersym-

metric spacetime quantum field theory, and that the fate of the degeneracy of the manifold

of background spacetimes would be determined by nonperturbative field theoretic effects

at large distance in spacetime in that supersymmetric quantum field theory. But it is only

an assumption that there exists such a nonperturbative, microscopic, quantum mechanical

formulation of string theory. Any reasoning about a hypothetical nonperturbative version

of string theory is unreliable if it rests on the assumption of spacetime quantum field theory

at large distance, without any way to derive spacetime quantum field theory from string

theory.

The assumption of fundamental, exact, quantum mechanical spacetime supersymme-

try is a very strong extrapolation from perturbative string theory, where spacetime su-

persymmetry is only a perturbative symmetry of the scattering amplitudes in individual

background spacetimes. Adopting this assumption requires accepting as inevitable the con-

tinuous degeneracy of the manifold of background spacetimes. An assumption as strong

as fundamental spacetime supersymmetry loses credibility as a guide in searching for a

theory of physics if it cannot lead to definite explanations of existing knowledge and def-

inite predictions. There is certainly no physical evidence to support the assumption that

spacetime supersymmetry is a fundamental property of nature. At most, it is possible

that indications of approximate spacetime supersymmetry might be found experimentally

in the not so distant future. Contrast the radical assumptions of the old quantum theory,

which obtained credibility by giving definite explanations of the black body spectrum, the

photoelectric effect, the Balmer series, the Rydberg constant, and much more of atomic

physics, before eventually leading to quantum mechanics.

Any reasoning about a hypothetical nonperturbative version of string theory is unre-

liable if it assumes fundamental spacetime supersymmetry but is unable to make definite,

unequivocal explanations or predictions that could be used to check that assumption. The

search for a theory of physics should not be based on dogma. Certain symmetries are

observed in the real world, to a certain accuracy, in a certain range of spacetime distances.

This does not justify a dogma of fundamental symmetry in theoretical physics, much less

a dogma of fundamental spacetime supersymmetry. It has rarely proved fruitful in physics
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to cling indefinitely to assumptions that are incapable of producing definite explanations

of existing knowledge or definite predictions.

Spacetime supersymmetry does give beneficial formal effects in spacetime quantum

field theories of particle physics, but these benefits could as well be provided by accidental,

approximate spacetime supersymmetry. In a weakly coupled theory, perturbative spacetime

supersymmetry would be enough to protect mass parameters that are perturbatively zero,

so that very small masses could be produced by nonperturbative, supersymmetry violating

effects. Spacetime supersymmetry provides benefits for formal calculation, giving powerful

analytic control over quantum mechanical theories and especially over spacetime quantum

field theories. But the price of control is the supersymmetry itself. Supersymmetry is

not observed in nature, and the theoretical control is lost with the loss of supersymmetry.

Useful theoretical control must come from some other source.

The assumption that physics has a microscopic quantum mechanical formulation is

of course supported by an enormous body of physical evidence. Microscopic quantum

mechanics has had triumphant success, culminating in the local quantum field theory

that is the standard model of elementary particles. But the evidence for microscopic

quantum mechanics is entirely at very large distance in spacetime. However strong is

the evidence for quantum mechanics at large distance, that evidence does not require

that microscopic quantum mechanics in spacetime must be the fundamental language of

physics. The evidence only requires that microscopic quantum mechanics be produced at

large distance in any theory of physics. Quantum mechanics in spacetime is the language

in which large distance physics is to be read out, but it is not necessarily the language in

which physics is to be written.

Likewise, the fact that certain beautiful mathematical forms were used in the period

1905-1974 to make the presently successful theory of physics does not imply that any par-

ticular standard of mathematical beauty is fundamental to nature. The evidence is for

certain specific mathematical forms, of group theory, differential geometry and operator

theory. The evidence comes from a limited range of spacetime distances. That range of

distances grew so large by historical standards, and the successes of certain specific math-

ematical forms were so impressive, that there has been an understandable psychological

impulse in physicists responsible for the triumph, and in their successors, to believe in a

certain standard of mathematical beauty. But history suggests that it is unwise to extrap-

olate to fundamental principles of nature from the mathematical forms used by theoretical

physics in any particular epoch of its history, no matter how impressive their success.

Mathematical beauty in physics cannot be separated from usefulness in the real world.

The historical exemplars of mathematical beauty in physics, the theory of general relativ-

ity and the Dirac equation, obtained their credibility first by explaining prior knowledge.

General relativity explained newtonian gravity and special relativity. The Dirac equation

explained the non-relativistic, quantum mechanical spinning electron. Both theories then

made definite predictions that could be checked. Mathematical beauty in physics cannot

be appreciated until after it has proved useful. Past programs in theoretical physics that

have attempted to follow a particular standard of mathematical beauty, detached from

the requirement of correspondence with existing knowledge, have failed. The evidence for
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beautiful mathematical forms in nature requires only that a candidate theory of physics

explain those specific mathematical forms that have actually been found, within the range

of distances where they have been seen, to an approximation consistent with the accuracy

of their observation.

1.7 Formal clues

The search for an explanation of the standard model and of general relativity has become

a speculative enterprise, because the guiding theoretical principles of local spacetime field

theory, quantum mechanics and symmetry have proved inadequate. A strategy must be

chosen. It is necessary to decide what formal clues might be useful. No particular choice

of strategy is inherently valid. Only the outcome of the search can give validity.

My primary formal clue to a possible theory of large distance physics has been the

expression of spacetime geometry in the renormalization of the general nonlinear model.

The appearance of the field equation Rµν = 0 of general relativity as the fixed point

equation β = 0 of the general nonlinear model suggested that spacetime field theory might

somehow be derived from the general nonlinear model. The renormalization of the general

nonlinear model isolates the large distance wave modes of its target manifold, decoupling

the irrelevant small distance wave modes. The renormalization uses the extreme shortness

of the two dimensional distance Λ−1 where the model is constructed, compared to the two

dimensional distance µ−1 where the properties of the model are seen. The large distance

physics of spacetime is to be found in the short distance structure of the renormalized

general nonlinear model.

String theory was the second clue. String theory gave a specific technical context,

the string worldsurface, in which to place the general nonlinear model. The fixed point

equation β = 0 for the general nonlinear model of the string worldsurface is the condition

of two dimensional scale invariance, which is needed for string theory to be consistent. The

possible background spacetimes for string theory are determined by imposing the equation

β = 0 on the general nonlinear model of the worldsurface. Thus the Einstein equation

Rµν = 0 arises as a consistency condition in string theory.

But a consistency condition is not an equation of motion. A consistency condition is

not the mechanical dynamics of a field theory in spacetime. String theory, as it stands,

does not have a dynamical mechanism that constructs an effective quantum field theory at

large distance in spacetime, whose equation of motion is β = 0.

Nor does string theory, as it stands, have a dynamical mechanism that selects the

background spacetimes to be those in which the worldsurface is scale invariant. Without

such a mechanism, there cannot be a reliable characterization of the possible background

spacetimes for string theory.

The third clue was the failure of string theory, as it stands, at large distance. This

failure provides a formal task for a theory of large distance physics to accomplish, the task

of determining dynamically the possible background spacetimes for string theory. String

theory, as it stands, although useless at large distance, is formally successful in the ultravi-

olet as a technical perturbative algorithm for calculating ultraviolet scattering amplitudes

in a given background spacetime. But scattering amplitudes are not sufficient for physics.
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A theory of physics must produce an effective mechanical theory at large distance, if it is to

explain existing knowledge. The evidence for the reliability of theoretical physics includes

all the evidence for newtonian mechanics, newtonian gravity, classical electromagnetism,

special relativity, general relativity, non-relativistic quantum mechanics and the standard

model. Any candidate theory of physics must be capable of producing each of those me-

chanical theories as an approximation in the appropriate regime. A theory that gives only

scattering amplitudes is not capable of this. Scattering amplitudes can be derived from

a mechanical theory, but mechanics cannot be derived from a theory of scattering ampli-

tudes. Scattering amplitudes intrinsically represent small distance physics as observed by

a relatively large experimentalist. String theory, as it stands, might well serve adequately

as a technical perturbative algorithm for calculating ultraviolet scattering amplitudes. It

might serve as a formal representation of unobservable small distance physics. But a re-

liable and effective mechanism outside string theory, as it stands, is needed to determine

the large distance physics of spacetime.

1.8 The lambda model

My strategy has been to analyze the failure of string theory at large distance in an arbi-

trarily fixed background spacetime. The technical symptom of failure is a short distance

pathology in the string worldsurface, a logarithmic divergence at short two dimensional

distance, bi-local in form, produced by degenerating handles attached locally to the world-

surface. The divergence is due to the existence of marginal coupling constants in the general

nonlinear model of the worldsurface. Marginal coupling constants express the continuous

degeneracy of the manifold of possible spacetimes. The divergence is an infrared problem

in spacetime, because the marginal coupling constants are the large distance wave modes

of spacetime.

A theoretical mechanism is then devised to cancel the bi-local divergence. The mech-

anism is a two dimensional nonlinear model, the lambda model. The target space of the

lambda model is the manifold of spacetimes, which is the manifold of renormalized general

nonlinear models of the string worldsurface. In the lambda model, spacetime as a whole

fluctuates in two dimensions.

The fields λi(z, z̄) of the lambda model are local sources in the general nonlinear

model. They are coupled to the marginal and slightly irrelevant two dimensional quantum

fields φi(z, z̄) of the general nonlinear model. The lambda fields λi(z, z̄) fluctuate with

a propagator designed so that, acting as a bi-local source, it cancels the bi-local effects

of a handle attached locally on the worldsurface. The couplings of the lambda model are

completely determined by the cancellation requirement. In particular, the coupling strength

of the lambda model is equal to the spacetime coupling constant gs of the perturbative

string theory.

There are two widely separated two dimensional distances. The coupling constants λi

of the renormalized general nonlinear model are normalized at µ−1, the long two dimen-

sional distance. The lambda fields λi(z, z̄) fluctuate at short two dimensional distances,

up to a sliding characteristic two dimensional distance Λ−1 which stays much shorter than

µ−1. The renormalization of the general nonlinear model suppresses the effects of the short
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distance fluctuations of the coupling constant λi by a factor (Λ/µ)−γ(i), where −γ(i) is

the anomalous dimension of λi. The coupling constants which have γ(i) ln(Λ/µ) À 1 are

irrelevant at the short two dimensional distance Λ−1. There are only a finite number of

non-irrelevant coupling constants λi in the general nonlinear model, so the target manifold

of the lambda model is finite dimensional.

The number L defined by L2 = ln(Λ/µ) is a spacetime distance, because the anoma-

lous dimensions −γ(i) are the eigenvalues of differential operators in spacetime that are

quadratic in spacetime derivatives. The effects of the spacetime wave mode λi are sup-

pressed by factors e−L
2γ(i). The irrelevant coupling constants in the general nonlinear

model are the λi with γ(i)L2 À 1. These are the spacetime wave modes at spacetime

distances 1/p(i) smaller than L.

The small distance wave modes, being irrelevant coupling constants, are decoupled

in the renormalization of the general nonlinear model. Their fluctuations can be omitted

from the lambda model at two dimensional distance Λ−1. Only the non-irrelevant coupling

constants fluctuate, the coupling constants λi having γ(i)L2 < 1. These are the large

distance spacetime wave modes, the wave modes at spacetime distances larger than L.

Thus, from the renormalization of the general nonlinear model, the lambda model inherits

a natural, built-in, sliding ultraviolet spacetime cutoff distance L. The spacetime wave

modes at distances smaller than L are decoupled from the large distance wave modes, so

this is an ultraviolet cutoff in the strongest sense.

The lambda model is a two dimensional quantum field theory. As such, its construction

starts from the short distance limit at Λ−1 = 0, building outward to nonzero values of the

sliding characteristic two dimensional distance Λ−1. So the lambda model builds spacetime

physics from the limit at L =∞ downward to finite values of the sliding characteristic large

spacetime distance L.

The fluctuations in a nonlinear model at distances shorter than the characteristic two

dimensional distance Λ−1 distribute themselves to form a measure on the target manifold

of the model, called the a priori measure of the nonlinear model, following the terminology

of lattice statistical mechanics, using ‘a priori ’ with its literal meaning ‘from what is before’

or ‘from the earlier part’ [1, 2, 3]. The a priori measure summarizes the short distance

fluctuations in the nonlinear model. As the characteristic two dimensional distance Λ−1

increases from zero, the fluctuations in the nonlinear model generate the a priori measure

by a diffusion process on the target manifold.

The target manifold of the lambda model is the manifold of spacetimes, so the a priori

measure of the lambda model is a measure on the manifold of spacetimes. The manifold

of spacetimes is the manifold of general nonlinear models. As Λ−1 increases, the fluctua-

tions cause the a priori measure of the lambda model to diffuse in the manifold of general

nonlinear models, while simultaneously the general nonlinear model is flowing under the

renormalization group. The a priori measure of the lambda model undergoes a driven diffu-

sion process. The generator of the driving flow is the vector field −β i(λ) on the manifold of

general nonlinear models. The renormalization group flow pushes the a priori measure to-

ward the fixed point submanifold where β(λ) = 0. The lambda model dynamically imposes

the two dimensional scale invariance condition β(λ) = 0 on the general nonlinear model.
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The lambda model is background independent, because, even if a particular back-

ground spacetime is initially selected by hand, the fluctuations in the lambda model dif-

fuse the distribution of spacetimes away from the arbitrary initial spacetime. Whatever

the arbitrary initial choice of background spacetime, the a priori measure diffuses to the

unique stable measure of the driven diffusion process. The lambda model eliminates the

need in string theory to choose a background spacetime by hand.

The lambda model is a nonperturbative two dimensional quantum field theory. Non-

perturbative two dimensional effects in the lambda model due to harmonic surfaces in the

manifold of spacetimes appear capable of lifting the continuous degeneracy of the manifold

of spacetimes, possibly concentrating the a priori measure at some macroscopic spacetimes.

If so, then the a priori measure of the lambda model, near such a macroscopic spacetime,

is a measure on the spacetime wave modes λi at spacetime distances larger than L. It is

a spacetime quantum field theory with ultraviolet cutoff distance L. The lambda model

produces a specific quantum field theory, with equation of motion β = 0, describing the

spacetime physics at large spacetime distances L in each possible macroscopic spacetime.

Although the lambda model works from L =∞ downwards in L, it constructs space-

time quantum field theory so that it is local in spacetime, in the sense that the a priori

measure at a spacetime distance L1 can be obtained from the a priori measure at a smaller

distance L2 < L1 by integrating out the spacetime wave modes at the distances between L2

and L1. The lambda model accomplishes this in reverse fashion. The lambda model con-

structs the a priori measure with increasing two dimensional distance Λ−1, so with decreas-

ing spacetime distance L. The lambda model makes the a priori measure at the smaller dis-

tance L2 from the a priori measure at the larger distance L1 by diffusion of the wave modes

at the intermediate spacetime distances, between L2 and L1. Locality is ensured because

integrating out the intermediate wave modes merely undoes the diffusion. The spacetime

quantum field theory is constructed so as to be local as a measure on the spacetime wave

modes, but there is no guarantee that the effective lagrangian of the spacetime field theory

at the smaller distance can be used to determine the effective spacetime quantum field

theory at larger distances, except perturbatively. Nonperturbative two dimensional effects

in the lambda model might intervene in the construction of the effective spacetime action.

The proposed theory, if successful, will call into question the atomistic assumption that

the effective laws of physics at large distance can be deduced from the laws of physics at

small distance. It will call into question the atomistic assumption there is a fundamental

microscopic formulation of physics. If the proposed theory works, the observed quantum

mechanical hamiltonian will be explained, but there will not be a fundamental quantum

mechanical hamiltonian.

The lambda model also produces an effective worldsurface at two dimensional distances

longer than Λ−1. The effective worldsurface can be used to calculate effective string scatter-

ing amplitudes, cut off in the infrared at spacetime distance L. For each large spacetime dis-

tance L, the lambda model gives two complementary descriptions of spacetime physics. The

spacetime physics at distances larger than L is described by an effective spacetime quantum

field theory. The spacetime physics at distances smaller than L is described by effective

string scattering amplitudes. The two descriptions of spacetime physics are consistent.
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The a priori measure on the manifold of spacetimes is the effective spacetime back-

ground in which the effective string scattering takes place, at every large spacetime distance

L. The relation between the effective string scattering amplitudes and the effective space-

time quantum field theory is not the relation commonly assumed in string theory. The large

distance spacetime physics is not derived from any microscopic, small distance physics. In

particular, it is not derived from string theory. There is no microscopic quantum me-

chanical system underlying string theory, that has spacetime quantum field theory as its

effective description at large distance. The lambda model provides the spacetime back-

ground for the effective string theory, constructing it starting from the limit at spacetime

distance L =∞. The fluctuations of the lambda model make quantum corrections to the

effective worldsurface in tandem with corrections to the effective metric coupling and a

priori measure of the lambda model itself, thus ensuring that the effective string scattering

amplitudes match, at every large spacetime distance L, the particle scattering amplitudes

calculated from the effective quantum field theory.

The lambda model, if right, determines all actually observable physics. The sliding

characteristic spacetime distance L can be taken smaller than any distance actually ac-

cessible to experiment, while still remaining a large number. As a practical matter, only

the large distance physics given by the a priori measure can be checked. All calculations

of large distance physics can be done in the lambda model. No string calculations are

necessary. The fluctuations of the lambda model completely replace the effects of han-

dles at short distance in the worldsurface, so string calculations, and especially string loop

calculations, are entirely unnecessary, as far as large distance physics is concerned.

String loop calculations are needed only for perturbative calculations of the effective

string scattering amplitudes at unobservably small spacetime distances. There is no prac-

tical use for these effective string scattering amplitudes. The only information that the

effective string scattering amplitudes give, beyond what is given by the a priori measure

of the lambda model, is information about physics at unobservably small distances. There

is no practical way to make any independent test of the small distance effective string

scattering amplitudes.

The lambda model is a nonperturbative theory, while the small distance effective string

theory is only perturbative. String theory calculations of scattering amplitudes at space-

time distances smaller than L will not be reliably accurate, because nonperturbative effects

in the lambda model at spacetime distances smaller than L will not yet have been taken

into account. The only reliable calculations will be the nonperturbative calculations of

large distance physics that are made in the lambda model.

String theory is used in three ways in the lambda model. First, the string worldsurface

gives a specific technical context in which to place the general nonlinear model. The

manifold of spacetimes is the manifold of general nonlinear models of the worldsurface.

The detailed specification of the manifold of spacetimes depends on the detailed technical

form of the worldsurface in which the general nonlinear model is placed.

Second, string theory gives an algorithm for calculating perturbative corrections to

scattering amplitudes in terms of handles in the worldsurface, an algorithm that is formally

consistent at small spacetime distance. The lambda model is constructed to cancel the
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perturbative corrections due to handles attached locally on the worldsurface, so the details

of the technical form of the worldsurface determine the detailed definition of the target

manifold and the metric coupling of the lambda model.

Once the lambda model is defined, string theory becomes an auxiliary technical appa-

ratus. String theory is used only as a formal representation of unobservable small distance

physics in the spacetime constructed by the lambda model. The correspondence between

the effective general nonlinear model of the worldsurface and the effective lambda model

is used for technical purposes. The correspondence constrains the renormalization of the

lambda model. The two dimensional scaling properties of the effective general nonlinear

model implies the two dimensional scale invariance of the lambda model.

It appears that, for entirely technical reasons, the heterotic string worldsurface [8] is

the only form of the worldsurface that is suitable for the lambda model. The manifold of

spacetimes is a graded manifold. Its bosonic and fermionic coordinates are the bosonic and

fermionic coupling constants λi, which are the wave modes of the bosonic and fermionic

spacetime fields. A two dimensional nonlinear model such as the lambda model is well-

defined only if its metric coupling is positive definite on the bosonic part of its target

manifold. Only for the heterotic string worldsurface is the metric on the manifold of

spacetimes positive definite in the bosonic directions. For this technical reason, it seems

that only the heterotic string worldsurface is suitable for the lambda model.

Fortunately, the heterotic worldsurface is the only one that is suitable for a formal rep-

resentation of weakly coupled small distance spacetime physics. The heterotic string theory

gives small distance scattering amplitudes of massless chiral fermions, vector bosons, scalar

bosons, and gravitons. The perturbative spacetime superymmetry of the heterotic string

theory ensures that the general nonlinear model of the heterotic worldsurface contains

only marginal and irrelevant coupling constants. There are no relevant coupling constants,

which would be the wave modes of spacetime tachyon fields. The perturbative spacetime

supersymmetry of the heterotic theory ensures that the perturbative string theory is con-

sistent at small distance. The perturbative spacetime supersymmetry is inherited by the

lambda model, where it protects the zero mass spacetime fields against perturbative mass

corrections, allowing the possibility of small spacetime masses generated by nonperturba-

tive effects in the lambda model violating the perturbative spacetime supersymmetry.

My most optimistic hope, amounting only to wishful thinking at present, is that non-

perturbative weak coupling effects in the lambda model will produce a calculable spectrum

of large distances in the spacetime physics generated by the lambda model. Each harmonic

surface λH(z, z̄) in the manifold of spacetimes is an instanton in the lambda model, a

lambda instanton. It is easy to point to the existence of harmonic surfaces in the manifold

of spacetimes, but their effects remain speculative until calculated.

Harmonic surfaces in the manifold of spacetimes appear capable of making small con-

tributions to the effective action of the spacetime quantum field theory, giving small masses

to the elementary particles. More broadly, they appear capable of eliminating the contin-

uous degeneracies, including spacetime supersymmetries and ordinary gauge symmetries.

Spacetime symmetries would then be seen as only accidental and approximate attributes

of individual spacetimes.

– 17 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

A lambda instanton λH(z, z̄) that is localized in a macroscopic spacetime can be ex-

pected to generate spacetime masses of the formm2 = e−S(λH ), where S(λH) is the classical

action of the harmonic surface λH . The coupling strength of the lambda model is the space-

time coupling constant gs so S(λH) is proportional to g−2s . The actual numerical values of

the elementary particle masses might be produced in this way, if g2s is on the order of 1/100

and if the unit of length is logarithmically close to the Planck length. For example, the

mass-squared of the W vector boson is approximately m2
W = e−78 in Planck units, and that

of the electron is m2
e = e−101. If the lambda model does in fact produce such calculable

small particle masses, it will become of interest to check whether mass generation by the

lambda model can be distinguished experimentally from the quantum field theoretic Higgs

mechanism.

Even more fanciful hopes are evoked by writing the inverse square of the Hubble

length in Planck units, approximately e−281. It is hard to imagine where such a number

might come from, if not a semiclassical, nonperturbative, weak coupling effect. It would

be wonderful, though rather much to expect, if semiclassical nonperturbative effects in the

lambda model could explain systematically the essential features of the rich spectrum of

large characteristic spacetime distances observed in the real world.

If the lambda model does succeed in reducing the continuous degeneracy of the mani-

fold of spacetimes at least to a discrete degeneracy, then the remaining uncertainty would

be acceptable, as long as a finite number of experiments could serve to decide which, if any,

of the remaining discrete collection of possible spacetimes matches the real world. Definite

explanations and predictions could then be made, and tested definitively against existing

knowledge and future experiments.

Even if all goes well, even if effects can be found in the lambda model that concentrate

the a priori measure on a discrete set of macroscopic spacetimes, produce small particle

masses, and that fix the spacetime coupling constant g2s in the macroscopic spacetimes at

a small value, it will of course still not be guaranteed that one of the resulting spacetime

quantum field theories matches the real world. It will be necessary to check that one of the

macroscopic quantum field theories produced by the lambda model matches in detail the

standard model and the observed cosmology. Formal capabilities do not guarantee that a

theory will be successful as physics.

The proposed theory of large distance physics, if it succeeds, will still be only approx-

imate. It will be a weak coupling, semiclassical approximation, unless effective methods

can be found to do strongly coupled two dimensional quantum field theory calculations

in the lambda model. Moreover, the theory is intrinsically only approximate for L < ∞,

because the renormalized general nonlinear model is taken away from the strict two dimen-

sional continuum limit at Λ−1 = 0. The renormalization of the general nonlinear model

is justified by the divergence of L2 = ln(Λ/µ). Renormalization is exact only in the limit

of an infinitely wide gulf between the short two dimensional distance Λ−1 and the long

two dimensional distance µ−1. Renormalization of the general nonlinear model is only

approximate when ln(Λ/µ) <∞.

Feasible experiments in the real world are at values of L2 larger than some extremely

large number, at least 1028, if the unit of distance is within a few orders of magnitude of

– 18 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

the Planck length. I suspect that ln(Λ/µ) ≈ 1028 is close enough to the two dimensional

continuum limit that the theory will be quite precise, intrinsically, at all spacetime distances

accessible to experiment.

If successful, this theory of large distance physics will not be a fundamental theory of

physics, but it will describe with sufficient accuracy everything that can be checked, unless

and until experiments are able to probe physics at spacetime distances approaching the

Planck length. If spacetime quantum field theory is explained as merely an epiphenomenon

of the lambda model, then quantum field theory, and quantum mechanics, will be seen to

be effective descriptions of spacetime physics only at large distance, and will be seen to

be inherently approximate except at infinite distance in spacetime. The possibility will

then arise that theoretical physics in general might be inherently approximate at finite

distance in spacetime. Alternatively, if the lambda model does succeed in giving a very

accurate approximate description of large distance physics, it will become the touchstone

for candidate exact theories of physics. The challenge will become to find more exact

theories that have the lambda model as approximation, and to find experiments capable of

distinguishing between the lambda model and any such candidate exact theories, in order

to establish the greater reliability of a more exact candidate theory.

1.9 Many questions remain

Many questions about the theory remain. The most immediate questions concern cal-

culations of the local properties of the spacetime quantum field theories produced by the

lambda model. Do the lambda instantons that are local in a macroscopic spacetime succeed

in removing spacetime supersymmetry, removing local gauge symmetries and generating

nonperturbatively small particle masses? Are there effects in the lambda model that fix the

spacetime coupling constant at a small numerical value? If the lambda model succeeds in

doing these things, then the question becomes, is the verified part of the standard model to

be found among the spacetime quantum field theories constructed by the lambda model?

A reasonable strategy is to assume a macroscopic spacetime, temporarily, in order to

do the urgent local calculations in spacetime. Eventually, the existence and dimension of

macroscopic spacetime must be settled by calculation in the lambda model. The lambda

model has to explain the observation of macroscopic spacetime. The technical question is,

do harmonic surfaces in the manifold of spacetimes succeed in concentrating the a priori

measure at macroscopic spacetimes, of which some are four dimensional?

A theory of large distance physics must give a definite explanation of cosmology. It

must explain the observed cosmological data, especially the essential features of the rich

spectrum of characteristic distance scales that are found in the observed universe. But

cosmology is still a diffuse, data rich subject compared to high energy particle physics.

The standard model of particle physics is a sharp theoretical target. The standard model

provides a definite, succinct theoretical structure to be explained, and a small set of precisely

measured parameters to be calculated. A candidate theory of physics needs credibility

before it can usefully take on the relatively nebulous theoretical problems of cosmology.

The only reliable way I can see for a theory of physics to establish credibility is to explain

– 19 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

the verified part of the standard model in detail. If that can be done in the lambda model,

then the project of extracting cosmology from the lambda model will become promising.

An explanation of cosmology will require a construction of cosmological time. The

general nonlinear model, to be well-defined as a two dimensional quantum field theory,

needed its target manifold, spacetime, to be riemannian and compact. The general nonlin-

ear model has to be well-defined in order that the manifold of general nonlinear models be

usable as the target manifold of the lambda model. The problem is to construct real time.

A real time quantum field theory can be obtained from the a priori measure of the

lambda model by making an ad hoc Wick rotation locally in spacetime, at distances where

the spacetime curvature is insignificant, if a macroscopic spacetime is singled out by the

lambda model. But cosmological time presumably needs a global construction that is

everywhere consistent with local Wick rotation. I have no clear idea how this might be

done. Perhaps there is a global analytic continuation of the manifold of spacetimes, which

looks like Wick rotation locally in any macroscopic spacetime. Perhaps cosmological time

can be related to the sliding large spacetime distance L, through the relation between L2

and the logarithm of the characteristic two dimensional distance.

In the lambda model, where spacetime is taken to be riemannian for technical reasons,

an explanation of real time is needed. There should be principle that explains why Wick

rotation should be done locally in a macroscopic riemannian spacetime.

The basic question is the existence of the short distance limit in two dimensions, the

limit at Λ−1 = 0. The lambda model is built as a two dimensional quantum field theory by

integrating out the fluctuations at short two dimensional distances, starting from Λ−1 = 0.

So the lambda model is well-defined as a two dimensional quantum field theory only if the

limit exists. The short distance limit Λ−1 = 0 in two dimensions is the limit L = ∞ in

spacetime, the limit in which only the spacetime zero modes fluctuate. The lambda model

generates and controls the large distance spacetime physics, acting downward in spacetime

distance from the limit at L =∞. The theory is well-founded only if the L =∞ limit exists.

My argument that the lambda model has a scale invariant limit at asymptotically

short two dimensional distance is only formal. In the limit Λ−1 = 0, the fluctuating

two dimensional fields of the lambda model are dimensionless. Their fluctuations can be

expected to explore the entire manifold of spacetimes. Control over the global structure of

the manifold of spacetimes will be needed before a rigorous argument can be made for the

scale invariant short distance limit of the lambda model.

The question is probably not a practical one. For practical purposes, it is enough to

construct the lambda model for sufficiently large finite values of L. The limit at L =∞ is

only needed to make the theory secure.

2. The structure of the theory

2.1 The lambda model

The lambda model is a two dimensional nonlinear model. Its target manifold is the manifold

of renormalized general nonlinear models of the string worldsurface, which is the manifold

of compact riemannian background spacetimes. The lambda model acts on the general
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nonlinear model at short two dimensional distances, determining the large distance physics

of spacetime.

Consider a renormalized general nonlinear model of the worldsurface. The perturba-

tions of this reference general nonlinear model are parametrized by the nearly dimensionless

coupling constants λi. The λi are coupled to the approximately marginal spin 0 quantum

fields φi(z, z̄), the fields that have scaling dimension near 2. The nearby general nonlinear

models are made by inserting

e−
∫

d2z µ2 1
2π

λiφi(z,z̄) (2.1)

into the reference general nonlinear model. The two dimensional distance µ−1 is the dis-

tance at which the general nonlinear model is normalized. The coupling constants λi are

local coordinates for the manifold of spacetimes. The λi are the large distance wave modes

of the spacetime metric and other spacetime fields.

The lambda model is a nonlinear model whose field is a fluctuating map λ(z, z̄) from

the worldsurface to the manifold of spacetimes. In coordinates, the lambda field λ(z, z̄) is

expressed by component lambda fields λi(z, z̄) which act as local sources coupled to the

quantum fields of the reference general nonlinear model. The worldsurface is defined locally

as a function of the lambda field by inserting

e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (2.2)

into the reference general nonlinear model.

The map λ(z, z̄) fluctuates at short two dimensional distances, from a two dimensional

cutoff distance Λ−10 up to a sliding characteristic two dimensional distance Λ−1 which is

still very much shorter than µ−1. The fluctuations are described by a functional integral
∫

Dλ e−S(λ) e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (2.3)

inserted in the reference general nonlinear model. The action S(λ) depends on the two

dimensional distance. The action of fluctuations at two dimensional distance Λ−1 is

S(Λ, λ) =

∫

d2z
1

2π
T−1gij(Λ, λ) ∂λ

i ∂̄λj . (2.4)

The metric coupling T−1gij varies with the two dimensional distance Λ−1.

At large spacetime distance, there are only a finite number of spacetime wave modes,

because of spacetime being assumed compact and riemannian. So there are only a finite

number of nearly marginal coupling constants λi in the general nonlinear model. So there

are only a finite number of fields λi(z, z̄) in the lambda model. The target manifold of the

lambda model is finite dimensional.

2.2 Cancelling handles at short two dimensional distance

The lambda model is designed to cancel the effects of handles at short distance on the

worldsurface. A handle attached to the worldsurface at two dimensional distance Λ−1 has

the effect of a bi-local insertion

1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
φi(z1, z̄1) T g

ij(Λ, λ) ln(Λ2 |z1 − z2|
2) φj(z2, z̄2) (2.5)
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where z1 and z2 are the points where the two ends of the handle are attached to the

worldsurface. The sum over indices i, j is the sum over states flowing through the handle.

The fields φi(z1, z̄1) and φj(z2, z̄2) are produced in the worldsurface by the states flowing

through the ends of the handle. The handle connects the fields at its two ends by the

gluing matrix Tgij(Λ, λ).

The bi-local insertion, equation (2.5), will calculated explicitly in section 3 below. For

now, its form follows from general principles of two dimensional quantum field theory. The

logarithmic dependence on the separation |z1 − z2| between the two ends of the handle,

for separations near Λ−1, follows from the fact that the fields φi(z, z̄) are approximately

marginal.

The metric coupling T−1gij(Λ, λ) of the lambda model is formulated as the inverse of

the handle gluing matrix T gij(Λ, λ). This formulation is designed so that the propagator

of the lambda fields at two dimensional distance Λ−1 is

〈

λi(z1, z̄1) λ
j(z2, z̄2)

〉

= −Tgij(Λ, λ) ln(Λ2 |z1 − z2|
2) . (2.6)

The lambda model, equation (2.3), then produces the bi-local insertion

1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
φi(z1, z̄1)

〈

λi(z1, z̄1) λ
j(z2, z̄2)

〉

φj(z2, z̄2) (2.7)

which cancels the effects of the handle.

The properties that define the lambda model — its form as a two dimensional nonlinear

model, its field as a map from the worldsurface to the manifold of spacetimes, its specific

metric coupling — are all naturally determined by the short distance properties of the

worldsurface, which determine the effects of handles at short distance in the worldsurface,

which the lambda model is designed to cancel.

The number T−1 is the partition function of the worldsurface without handles, the

2-sphere. In a macroscopic spacetime of volume V ,

T−1 = g−2s V (2.8)

where gs is the spacetime coupling constant. The metric coupling of the lambda model has

a form that is local in spacetime,

T−1gij = g−2s V gij (2.9)

where V gij is properly normalized so that it is expressible as the spacetime integral of the

product of the corresponding spacetime wave modes. The coupling strength of the lambda

model is therefore the spacetime coupling constant gs.

2.3 Generalized scale invariance

The general nonlinear model is renormalizable, so it depends on the characteristic short

distance Λ−1 only through the running coupling constants λir(Λ/µ, λ) which satisfy the

renormalization group equation

Λ
∂

∂Λ/µ,λ
λir = βi(λr) . (2.10)
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The running coupling constants couple to the two dimensional quantum fields φΛ
i (z, z̄)

normalized at the short two dimensional distance Λ−1. The general nonlinear model can

be described at short distance by the insertion of the running couplings,

e−
∫

d2z µ2 1
2π

λiφi(z,z̄) = e−
∫

d2zΛ2 1
2π

λirφ
Λ
i (z,z̄) (2.11)

obeying the renormalization group equation
(

Λ
∂

∂Λ /λr
+ βi(λr)

∂

∂λir

)

e−
∫

d2zΛ2 1
2π

λirφ
Λ
i (z,z̄) = 0 . (2.12)

The handle gluing matrix and its inverse matrix, the metric coupling T −1gij , are natural

structures of the worldsurface at two dimensional distance Λ−1, so they depend on Λ−1

only through the running coupling constants λr. The action of the lambda model therefore

depends only on the running sources λir(z, z̄),

S(Λ, λ) = S(λr) (2.13)

S(λr) =

∫

d2z
1

2π
T−1gij(λr) ∂λ

i
r ∂̄λ

j
r (2.14)

where the metric coupling T−1gij(λr) is independent of the two dimensional distance, as

a function of the running coupling constants. The lambda model takes the same form at

every short two dimensional distance Λ−1
∫

Dλr e
−S(λr) e−

∫

d2z Λ2 1
2π

λir(z,z̄)φ
Λ
i (z,z̄) , (2.15)

when it is expressed in terms of running fields λir(z, z̄). The running fields transform, with

an increase of the two dimensional distance Λ−1 → (1 + ε)Λ−1, by the renormalization

group flow λir → λir − εβ
i(λr).

The lambda model is therefore a scale invariant nonlinear model in the generalized

sense [1, 2, 3]. The metric coupling T−1gij(Λ, λ), written in terms of the original renormal-

ized coupling constants, is not literally invariant under a change of the characteristic two

dimensional distance Λ−1. Rather, the metric coupling is invariant under the combination

of changing scale, Λ−1 → (1 + ε)Λ−1, and simultaneously flowing in the target manifold,

λi → λi + εβi(λ). The transformation of the target manifold is only a change of variables

in the functional integral that defines the nonlinear model, so all observable quantities are

scale invariant. The lambda model is novel in that its scale invariance is of the generalized

kind even at the classical level.

2.4 The lambda model acts at short two dimensional distance

The lambda model is constructed, starting at a vanishingly short two dimensional cutoff

distance Λ−10 , by integrating over more and more short distance fluctuations, up to the char-

acteristic two dimensional distance Λ−1. The characteristic two dimensional distance Λ−1

slides outwards, as in any two dimensional quantum field theory. The lambda model acts

entirely at short two dimensional distance. The fluctuations at two dimensional distances

up to Λ−1 act on the short distance structure of the general nonlinear model to produce

an effective general nonlinear model at two dimensional distances longer than Λ−1. The

effective general nonlinear model of the worldsurface defines an effective string theory.
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2.5 The general nonlinear model at short distance

Formally, the general nonlinear model is parametrized by infinitely many coupling constants

λi, corresponding to infinitely many spacetime wave modes. But the general nonlinear

model is renormalizable, so almost all of the coupling constants are irrelevant. The irrele-

vant coupling constants λi are coupled to irrelevant quantum fields φi(z, z̄). An irrelevant

quantum field has negligible renormalized effect when inserted at short two dimensional

distance. In particular, the irrelevant quantum fields that are inserted at short distance

at the ends of handles have negligible renormalized effect. There is no need to cancel this

negligible effect, so there is no need for the irrelevant coupling constants λi to fluctuate in

the lambda model. It would not matter if the irrelevant λi did fluctuate. Their fluctuations

would have negligible effect.

Consider a reference general nonlinear model that is scale invariant, satisfying β = 0.

In coordinates around this reference point, the beta function takes the form

βi(λ) = γ(i)λi +O(λ2) (2.16)

so

λi = (µΛ−1)γ(i) λir (2.17)

up to higher order corrections. Each coupling constant λi has definite scaling dimension

−γ(i). The corresponding two dimensional quantum field φi(z, z̄) is a scaling field with

scaling dimension 2 + γ(i). The number γ(i) is the anomalous dimension of the field φi.

All coupling constants with γ(i) > 0 are irrelevant in the extreme short distance limit

Λ−1 = 0. Their effects are driven to zero at the long two dimensional distance µ−1. They

have no effect in the renormalized two dimensional quantum field theory.

If a coupling constant λi had γ(i) < 0, it would be a relevant coupling constant. But a

relevant coupling constant in the general nonlinear model of the string worldsurface would

correspond to a tachyonic spacetime wave mode. There are no relevant coupling constants

in a sensible string worldsurface. That is, all the anomalous dimensions satisfy

γ(i) ≥ 0 . (2.18)

At Λ−1 = 0, the general nonlinear model is parametrized by the marginal coupling con-

stants, the λi with γ(i) = 0.

Because all the anomalous dimensions γ(i) are nonnegative, the renormalization group

flow drives the general nonlinear model to the submanifold of fixed points, the submanifold

where β = 0. The manifold of scale invariant general nonlinear models is the attracting

manifold for the renormalization group flow. Renormalization forces the general nonlinear

model to be scale invariant, so there is no possible choice of spacetime besides the manifold

of scale invariant general nonlinear models.

The sharp distinction between the irrelevant and the marginal coupling constants does

not persist when Λ−1 is greater than zero. Define the number L by

L2 = ln(µ−1Λ) . (2.19)
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The suppression of irrelevant coupling constants is

λi = e−L
2γ(i) λir (2.20)

so λi is irrelevant at two dimensional distance Λ−1 if L2γ(i) À 1. The property of irrele-

vance changes with the short two dimensional distance Λ−1, depending on the value of the

number L.

At a macroscopic spacetime, the coupling constants λi in the general nonlinear model

are the wave modes of spacetime fields, including the spacetime metric. For wave modes

that are localized in the macroscopic spacetime, the numbers γ(i) are the eigenvalues

of covariant second order differential operators acting on the spacetime wave modes. For

wave modes localized at spacetime distances where spacetime curvature is insignificant, the

anomalous dimensions γ(i), being quadratic in the spacetime derivatives, take the form

γ(i) = p(i)2 +m(i)2 (2.21)

where p(i) is the spacetime wave number and m(i) is the spacetime mass of the wave

mode λi.

The number L is therefore a spacetime distance. The manifold of spacetimes is

parametrized by the spacetime wave modes that have wave number p(i) and mass m(i)

not many times larger than 1/L. These are the coupling constants λi that fluctuate in the

lambda model, so the number L is the characteristic ultraviolet spacetime distance in the

lambda model.

Each coupling constant λi is associated to a spacetime distance L(i) given by

L(i)2 = γ(i)−1 . (2.22)

The coupling constant λi is irrelevant if L(i)/L ¿ 1. To be specific, call λi irrelevant if

L(i)/L < 1/20. With this definition, the irrelevant coupling constants are suppressed by

drastic scaling factors e−L
2γ(i), factors of e−400 or less. The effects of the irrelevant coupling

constants can be omitted without significant loss of accuracy. The ratio 1/20 is more or

less arbitrary. The details of the definition of irrelevance do not matter, as long as enough

accuracy is maintained.

The coupling constants that are not irrelevant have δ(i) < 400/L2. If L2 is a large

number, the non-irrelevant coupling constants are very nearly marginal. Their scaling di-

mensions −γ(i) differ only slightly from zero. They might be called the quasi-marginal or

L-marginal coupling constants. The coupling constants that are irrelevant at two dimen-

sional distance Λ−1 might be called the L-irrelevant coupling constants.

The renormalization of the general nonlinear model decouples the irrelevant coupling

constants. The decoupling is accomplished by defining the renormalized quasi-marginal

coupling constants so that all effects of the L-irrelevant coupling constants are absorbed

into the effects of the quasi-marginal coupling constants. This is the basic principle of

renormalization in quantum field theory.

The coupling constants that describe the structure of the general nonlinear model at

short two dimensional distance Λ−1 are the spacetime wave modes that describe spacetime
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at spacetime distances larger than L. The coupling constants that are spacetime wave

modes at distances much smaller than L are decoupled. Thus the short distance structure of

the renormalized general nonlinear model encodes the large distance structure of spacetime.

The lambda model acts on the short distance structure of the general nonlinear model,

constructing an effective short distance structure in two dimensions, thereby constructing

the effective large distance structure of spacetime.

The principles of renormalization can be applied accurately to the general nonlinear

model at the short distance Λ−1 as long as L2 = ln(Λ/µ) is a very large number, large

enough to be effectively a divergence in the two dimensional field theory. Precisely how

large is necessary will have to be settled by detailed calculations. It seems reasonable to

assume, tentatively, that numbers on the order of L2 = 1024 or L2 = 1020 are more than

large enough. If that is so, and if the unit of spacetime distance is within a few orders of

magnitude of the Planck length, then L can be taken smaller than any distance practical for

experiment, while L2 = ln(Λ/µ) still remains large enough for the lambda model to work.

Write M(L) for the manifold of renormalized general nonlinear models at two dimen-

sional distance Λ−1. The manifold of renormalized general nonlinear models depends on L

because the property of coupling constant irrelevance depends on the ratio µΛ−1 = e−L
2

between the short two dimensional distance Λ−1 and the long two dimensional distance

µ−1. The L-irrelevant coupling constants are the coupling constants whose scaling dimen-

sions −γ(i) are far from zero on the scale set by L−2, say γ(i)L2 > 400. The L-irrelevant

coupling constants are decoupled by the renormalization of the general nonlinear model

and are ignored, without significant loss of accuracy. The manifold M(L) is parametrized

by the coupling constants that are not L-irrelevant, the quasi-marginal coupling constants

λi, those whose scaling dimensions are not far from zero on the scale set by L−2, say

γ(i)L2 < 400. The structure of the general nonlinear model at two dimensional distance

Λ−1 depends only on the quasi-marginal coupling constants λi. So these λi parametrize

the manifold M(L).

Each coupling constant λi is associated to a spacetime distance L(i) by equation (2.22).

The L-irrelevant coupling constants are the spacetime wave modes at spacetime distances

L(i) which are small on the scale set by L, say L(i) < L/20. The quasi-marginal coupling

constants λi are the spacetime wave modes at spacetime distances that are not much

smaller than L, say L(i) > L/20. The manifold M(L) is parametrized by the spacetime

wave modes at spacetime distances on the order of L and larger. M(L) is the manifold of

spacetimes at spacetime distances on the order of L and larger.

M(∞) is the manifold of scale invariant general nonlinear models, the exact solutions

of the fixed point equation β = 0. In the strict continuum limit, the limit Λ−1 = 0,

renormalization forces the general nonlinear model to lie in M(∞), because M(∞) is the

stable attracting manifold of the renormalization group flow. There are no relevant coupling

constants in M(∞), only marginal and irrelevant coupling constants.

M(∞) is the foundation on which all the manifolds M(L) are built. Scaling fields

φi(z, z̄) are constructed in a scale invariant general nonlinear model, a model in M(∞).

The anomalous dimensions γ(i) are calculated there. These calculations identify the quasi-

marginal coupling constants λi, out of which the manifolds M(L) are built.

– 26 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

As Λ−1 increases from zero, as L decreases from infinity, the set of quasi-marginal

coupling constants grows. As L becomes smaller, the spacetime wave modes at spacetime

distances somewhat smaller than L become available as quasi-marginal coupling constants.

The dimension of the manifold M(L) increases.

The manifoldsM(L) are built up incrementally as L decreases. If L > L′, the manifold

M(L′) is made by extending M(L).

A general nonlinear model λ in M(L) satisfies β i(λ) = 0 in the directions of the L-

irrelevant coupling constants λi. As a spacetime, λ satisfies the classical field equation

β = 0 at spacetime distances smaller than L. The spacetime λ might be pictured as

composed of spacetime regions or cells, each of linear size L, satisfying β = 0 inside each

cell. The spacetime wave modes localized inside the cells are the L-irrelevant coupling

constants. They are coupled to the L-irrelevant scaling fields φi(z, z̄). These are scaling

fields because they see only the spacetime at distances smaller than L, where β = 0.

The properties of the L-irrelevant scaling fields φi(z, z̄), including the anomalous scaling

dimensions γ(i), are calculated locally in the spacetime λ. The properties of an L-irrelevant

scaling field localized inside a spacetime cell depend on the values of the quasi-marginal

coupling constants only through the values of the spacetime fields in the neighborhood of

the spacetime cell where the L-irrelevant scaling field is localized.

At each λ in M(L), the L-irrelevant coupling constants are determined by calculations

in the spacetime λ that are local on the spacetime distance scale set by L. In particular,

the coupling constants that are L′-marginal but L-irrelevant are determined locally in

spacetime. These are the additional coupling constants that parametrize the extension of

M(L) to M(L′) at the spacetime λ in M(L).

In this way, the structure of the manifold of spacetimes is built from large spacetime

distance towards smaller, as the renormalized general nonlinear model is built from short

two dimensional distance towards longer. As the characteristic spacetime distance L de-

creases, the spacetime wave modes at the distances below L appear as ripples on the larger

wave modes of spacetime.

For L larger than L′, the manifold M(L) is a submanifold in M(L′). It is the subman-

ifold defined by the vanishing of the L-irrelevant coupling constants. It is the submanifold

of spacetimes in M(L′) that solve the classical field equations β = 0 at spacetime distances

smaller than L.

M(L) is also a quotient manifold of M(L′). At two dimensional distance Λ−1, the

L-irrelevant coupling constants that extend M(L) to M(L′) are decoupled from the quasi-

marginal coupling constants that parametrizeM(L). Nothing of the structure of the general

nonlinear model at two dimensional distance Λ−1 depends on the L-irrelevant coupling

constants.

A general nonlinear model at particular values of the quasi-marginal coupling constants

λi describes a string worldsurface at two dimensional distances longer than Λ−1. The

properties of the general nonlinear model of the worldsurface depend on the values of the

quasi-marginal coupling constants λi. The quasi-marginal coupling constants parametrize

the classical background spacetime in which the strings scatter.
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The quasi-marginal coupling constants change only very slowly with the two dimen-

sional distance, so the worldsurface is approximately scale invariant at distances longer

than Λ−1. String scattering amplitudes are computed by integrating scaling fields φi(z, z̄)

over the worldsurface. The two dimensional distance Λ−1 acts as short distance cutoff in

these worldsurface integrals. As a result, the string propagator has the cut off form

T gij

[

1− e−2L
2γ(i)

γ(i)

]

. (2.23)

The propagation of string modes associated to spacetime distances L(i) larger than L

is suppressed. The spacetime distance L acts as infrared spacetime cutoff in the string

scattering amplitudes. The string scattering is taking place inside a spacetime region, or

cell, of linear size L.

The manifoldM(L) of general nonlinear models at two dimensional distance Λ−1 is the

manifold of classical background spacetimes where strings scatter within spacetime regions

of size L. The amplitudes for string scattering within a spacetime cell are calculated by

integrating over the worldsurface the L-irrelevant scaling fields that are localized inside the

spacetime cell. The worldsurface integrals are cutoff at the short distance two dimensional

distance Λ−1. The spacetime cell of size L might be considered a hypothetical experimental

region, within which strings are hypothetically scattered at spacetime distances smaller

than L. The string scattering amplitudes are determined by the background spacetime in

the spacetime neighborhood where the experiment takes place, which is parametrized by

the quasi-marginal coupling constants.

The quasi-marginal coupling constants are not precisely dimensionless. Some have

β(λ) 6= 0, so can act as sources and detectors for string modes at spacetime distance

L. It should be possible, in principle, to use the quasi-marginal coupling constants in

this way to describe the experimental apparatus for scattering experiments at spacetime

distances smaller than L. The theoretical representation of nature is divided, for every

large spacetime distance L, into a background spacetime at spacetime distances larger

than L, containing observers measuring hypothetical string scattering amplitudes in the

background spacetime at spacetime distances smaller than L.

From the point of view of an observer situated in spacetime at spacetime distance L,

the condition β(λ) = 0 on the L-marginal coupling constants is the consistency condition

for extending tree-level string scattering amplitudes to spacetime distances larger than L. It

expresses the condition that the background spacetime is a classical vacuum at spacetime

distances L and larger. When the tree-level string scattering calculations are extended

to spacetime distances larger than L, the general nonlinear model of the worldsurface is

probed at two dimensional distances shorter than Λ−1. If the background spacetime were

not a classical vacuum, if β(λ) were not zero on the L-marginal coupling constants, then

the running coupling constants would blow up at two dimensional distances shorter than

Λ−1. The worldsurface would be pathological at short two dimensional distance. From this

point of view, the equation β = 0 is a consistency condition.

But if the classical spacetime is the renormalized general nonlinear model, then the

condition β(λ) = 0 is inevitable. It is forced by the renormalization. The renormalized
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general nonlinear model at nonzero two dimensional distance Λ−1 derives from the renor-

malized model at Λ−1 = 0, where necessarily β(λ) = 0 because there are no relevant

coupling constants. Spacetime is necessarily a classical vacuum. From this point of view,

the equation β = 0 holds necessarily. In this classical picture, there does not seem to be

any room for an observer, in the absence of fluctuations.

2.6 What the cancelling does

The condition β(λ) = 0 on the quasi-marginal coupling constants allows the tree-level

string scattering amplitudes to be extended to larger spacetime distances. But string loop

corrections are divergent in the spacetime infrared. The divergence is logarithmic in the

short two dimensional distance Λ−1. Because of the divergence, the two dimensional cutoff

cannot be removed. The spacetime infrared cutoff cannot be relaxed.

The divergence, equation (2.5), is a bi-local insertion at short two dimensional dis-

tance. It disturbs the short distance structure of the general nonlinear model, disturbing

the selected background spacetime. The divergence signals that the possible background

spacetimes are not properly determined, at any large spacetime distance L. A mechanism

is missing that will determine the background spacetime so as to nullify the effects of the

string loop divergence at short two dimensional distances.

The lambda model does this. The fluctuating lambda fields cancel the string loop

effects at short two dimensional distance, eliminating the dependence on Λ−1. The lambda

model acts at two dimensional distances from Λ−10 up to Λ−1, producing an effective general

nonlinear model of the worldsurface at each two dimensional distance between Λ−10 and

Λ−1. These are effective background spacetimes at every spacetime distance from L0 down

to L, where L0 is defined by

L2
0 = ln

(

Λ0

µ

)

. (2.24)

The cancelling implies that infrared string loop corrections do not ever have to be cal-

culated, because their effects are already built into the effective background spacetimes

produced by the lambda model. Infrared string loop corrections, starting at spacetime dis-

tance L in the effective background spacetime, would merely undo what the lambda model

already did when it built the effective background spacetime from larger spacetime distance

down to L. Because of the cancelling, the infrared string loop corrections would disturb

the effective background spacetime at spacetime distance L exactly so as to produce the

effective background spacetimes at spacetime distances larger than L. The lambda model

produces the effective background spacetime depending on L exactly so it nullifies the

infrared divergent string loop corrections.

The lambda model thus acts autonomously at short two dimensional distances, from

a very short two dimensional cutoff distance Λ−10 up to Λ−1. It acts autonomously at large

spacetime distances from a very large infrared spacetime cutoff distance L0 down to L. The

structure of the effective general nonlinear model of the worldsurface is determined, at any

short distance Λ−1, entirely by two dimensional nonlinear model calculations in the lambda

model. Handles are dispensed with completely, at two dimensional distances shorter than

Λ−1. Infrared string loop corrections are dispensed with, at spacetime distances larger than
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L. String theory is used only at spacetime distances smaller than L. There is no practical

use for string theory, if L can be pushed smaller than any observable spacetime distance.

Moreover, the lambda model makes sense nonperturbatively, as a two dimensional

nonlinear model, while string theory is formulated only perturbatively. The lambda model

constructs the effective background spacetime nonperturbatively. It defines nonperturba-

tive string theory, at large distance in spacetime. If a nonperturbative version of string

theory did exist, then its infrared quantum corrections, accumulated from small distance

to large, would undo the work of the lambda model. Even if a nonperturbative version of

string theory did exist, there would be no need to use it at large spacetime distances.

2.7 The effective general nonlinear model

The lambda model constructs the effective general nonlinear model of the worldsurface by

a local process in two dimensions, acting entirely at short distance. So the effective general

nonlinear model at two dimensional distance Λ−1 is independent of the two dimensional

cutoff distance Λ−10 . It depends only on effective coupling constants λie(Λ/Λ0, λr). The

lambda model builds the effective coupling constants starting at the two dimensional cutoff

distance, starting from the running coupling constants at that distance,

λie

(

Λ0

Λ0
, λr

)

= λi0 = λir

(

µ

Λ0
, λ

)

. (2.25)

The effective coupling constants λie are coupled to effective two dimensional fields φΛ,ei (z, z̄)

at two dimensional distance Λ−1. The effective general nonlinear model is described by the

insertion

e−
∫

d2z Λ2 1
2π

λieφ
Λ,e
i (z,z̄) . (2.26)

It satisfies an effective renormalization group equation
(

Λ
∂

∂Λ /λe
+ βie(λe)

∂

∂λie

)

e−
∫

d2zΛ2 1
2π

λieφ
Λ,e
i (z,z̄) = 0 . (2.27)

The effective beta function βe consists of the beta function of the general nonlinear model,

β, plus corrections δβ generated by the lambda model,

βe = β + δβ . (2.28)

2.8 The effective lambda model

The lambda fluctuations produce an effective lambda model as well as an effective general

nonlinear model. The lambda model is itself a two dimensional nonlinear model, so it is

renormalizable. The effective lambda model at two dimensional distance Λ−1 is described

by the effective metric coupling T−1geij(Λ/Λ0, λr).

The crucial principle is that the effective lambda model and the effective general non-

linear model of the worldsurface evolve in tandem as the two dimensional distance Λ−1

increases. The propagator of the effective lambda model cancels handles at distance Λ−1

in the effective worldsurface. The effective metric coupling T −1geij(Λ/Λ0, λr) is the inverse

of the effective handle gluing matrix.
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This principle of tandem renormalization follows from the cancelling of handles by

lambda fluctuations over a finite range of two dimensional distances. The cancelling of

handles by lambda fluctuations between two dimensional distances Λ−10 and Λ−11 , with

Λ−10 < Λ−1 < Λ−11 , can be broken up into the cancelling between Λ−10 and Λ−1, and the

cancelling between Λ−1 and Λ−11 . The second cancelling can be expressed in terms of

handles in the effective worldsurface and fluctuations in the effective lambda model, both

at two dimensional distance Λ−1. The second cancelling therefore implies that the effective

metric coupling T−1geij(Λ/Λ0, λr) is the inverse of the effective handle gluing matrix.

The effective metric coupling of the lambda model is identified with a natural structure

in the effective general nonlinear model of the worldsurface, so it depends only on the

effective coupling constants λie. It depends on Λ−1 only through the λie. Therefore the

effective lambda model is scale invariant in the generalized sense, taking the same form
∫

Dλe e
−Se(λe) e−

∫

d2z Λ2 1
2π

λie(z,z̄)φ
Λ,e
i (z,z̄) (2.29)

Se(λe) =

∫

d2z
1

2π
T−1geij(λe) ∂λ

i
e ∂̄λ

j
e (2.30)

at every short two dimensional distance Λ−1.

2.9 The a priori measure

In a two dimensional nonlinear model, the fluctuations at two dimensional distances shorter

than the characteristic distance Λ−1 distribute themselves over the target manifold of the

model to form a measure dρ(Λ, λ) on the target manifold, called the a priori measure [1, 2,

3]. The a priori measure summarizes the fluctuations at two dimensional distances shorter

than Λ−1.

The a priori measure is calculated as the one point expectation value at two dimen-

sional distance Λ−1,
∫

dρ(Λ, λ) f(λ) = 〈 f(λ(z, z̄)) 〉 (2.31)

where the expectation value is calculated by integrating over the lambda fluctuations at

two dimensional distances up to Λ−1. Equivalently,

dρ(Λ, λ′) = dvol(λ′)
〈

δ(λ′ − λ(z, z̄))
〉

. (2.32)

The a priori measure of the lambda model is a measure on the manifold of spacetimes.

Locally on the manifold of spacetimes, it takes the form of a measure on the spacetime wave

modes λi, so it has the potential to be a quantum field theory in spacetime. The spacetime

quantum field theory correlation functions of the wave modes λi are to be the integrals of

functions f(λ) with respect to the a priori measure on the manifold of spacetimes. So the

spacetime correlation functions are to be calculated as the one point expectation values in

the lambda model, as in equation (2.31).

In a two dimensional nonlinear model, the renormalization group acts on the target

manifold of the model by a diffusion process [1, 2, 3]. As the characteristic two dimensional

distance Λ−1 increases, additional fluctuations are included in the a priori measure, causing
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the it to diffuse outwards in the target manifold. The metric governing the diffusion is the

effective metric coupling. When the nonlinear model is scale invariant, the diffusion process

has stationary coefficients. When the scale invariance is of the generalized kind, as in the

lambda model, the stationary diffusion process is driven by the flow in the target manifold

that provides the scale invariance.

With each infinitesimal increase in the two dimensional distance, Λ−1 → (1 + ε)Λ−1,

the a priori measure diffuses outwards because of the additional fluctuations. At the same

time, the effective coupling constants flow, λie → λie−εβ
i
e(λe), along the driving vector field

−βie.

Writing the a priori measure in the variables λie as dρe(Λ, λe), the driven diffusion

process is

−Λ
∂

∂Λ/λe
dρe(Λ, λe) = ∇

e
i

(

T gije (λe)∇
e
j + βie(λe)

)

dρe(Λ, λe) (2.33)

where ∇e
i is the covariant derivative with respect to the effective metric T −1geij . The coef-

ficients, T gije and βie, of the diffusion process are stationary, independent of Λ−1, because

of the generalized scale invariance of the effective lambda model.

In the very long diffusion time ln(Λ0/Λ), the a priori measure converges to the equi-

librium measure dρeq(λe) of the stationary diffusion process, no matter what its initial

value at Λ−10 . The equilibrium a priori measure is peaked near the attracting submanifold

where βe = 0. If the equilibrium a priori measure concentrates near a macroscopic space-

time, then the a priori measure, as a measure on the wave modes of spacetime fields, is

potentially a quantum field theory in spacetime, uniquely produced by the lambda model.

Assuming that the lambda model makes only small corrections to β, the a priori

measure is driven by −βe first to the submanifold where β = 0. Then the corrections to

β determine the subset of the β = 0 submanifold at which the a priori measure actually

concentrates.

The a priori measure of the lambda model is generally covariant in spacetime, the

target manifold of the general nonlinear model, because the renormalization of the general

nonlinear model is carried out in a way that is invariant under reparametrization of its

target manifold [1, 2, 3].

If a particular background spacetime is chosen by hand, arbitrarily, then it serves as

the initial condition for the diffusion of the a priori measure. By the time a finite value of

Λ−1 is reached, the a priori measure has diffused to the equilibrium measure, erasing all

dependence on the initial choice of spacetime. The lambda model dynamically produces

independence from the arbitrary choice of background spacetime.

2.10 The spacetime action principle

The beta function of the general nonlinear model, β i(λ), is a gradient vector field on the

manifold of general nonlinear models [1, 2, 3, 9, 10, 11, 12]. In the proof of the gradient

property [11, 12], the beta function is expressed as a gradient with respect to an intrinsic

metric on the manifold of two dimensional quantum field theories, defined by the two point

correlation function of the fields φi(z, z̄) on the plane. The metric coupling of the lambda

model, T−1gij(λ), defined as the inverse of the handle gluing matrix, is that same intrinsic
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metric, multiplied by T−1. So the beta function of the general nonlinear model is the

gradient with respect to the metric coupling T −1gij(λ)

T−1gij(λ)β
j(λ) =

∂

∂λi
T−1a(λ) (2.34)

of the potential function T−1a(λ) on the manifold of spacetimes.

In a macroscopic spacetime of volume V ,

T−1a(λ) = g−2s V a(λ) (2.35)

where V a(λ) is properly normalized so as to be the spacetime integral of a local functional

of the spacetime wave modes λi. The potential function T−1a(λ) is the spacetime action

of the massless spacetime field theory whose scattering amplitudes are the same as the

tree-level string scattering amplitudes at large distance [13, 10].

The gradient property will be derived as well for the effective beta function of the

effective general nonlinear model,

T−1geij(λe)β
j
e(λe) =

∂

∂λie
T−1ae(λe) . (2.36)

The stationary diffusion process for the a priori measure is therefore driven by a gradient

flow. The equilibrium measure then satisfies the first order differential equation

0 =
(

T gije (λe)∇
e
j + βie(λe)

)

dρeq(λe) (2.37)

whose solution is

dρeq(λe) = dvole(λe) e
−T−1ae(λe) (2.38)

where dvole(λe) is the metric volume element associated to the effective metric coupling.

The first order equation (2.37) for the a priori measure is the equation of motion

βie(λe) = 0 in the sense of spacetime quantum field theory. If the lambda model is suc-

cessful, spacetime quantum field theory will be explained as the a priori measure of the

lambda model. The quantum action principle of spacetime physics will then derive from

the gradient property of the beta function of the general nonlinear model.

The a priori measure of the lambda model is nontrivial even at the classical level,

because the lambda model is scale invariant in the generalized sense even at the classical

level. The effective potential function is the classical potential function plus corrections

generated by the lambda fluctuations

T−1ae = T−1a+ δ(T−1a) . (2.39)

Before quantum corrections are taken into account, the a priori measure and the

diffusion process are written in terms of the uncorrected running coupling constants λir,

around a spacetime satisfying β = 0, to leading order in the λir,

− Λ
∂

∂Λ /λr
dρr(Λ, λr) = ∂i

(

Tgij∂j + γ(i)λir
)

dρr(Λ, λr) . (2.40)
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The uncorrected potential function is

T−1a(λr) =
1

2
T−1gijγ(i)λ

i
rλ

j
r +O(λ3r) . (2.41)

The uncorrected equilibrium a priori measure is

dvol(λr) e
− 1
2
T−1gijγ(i)λ

i
rλ

j
r (2.42)

in the gaussian approximation. The equilibration time for the wave mode λi is 1/γ(i).

2.11 Complementarity between spacetime quantum field theory and string

theory

For each value of the characteristic spacetime distance L, the lambda model produces

two complementary descriptions of spacetime physics. The a priori measure describes the

spacetime physics at distances larger than L as spacetime quantum field theory. The effec-

tive general nonlinear model of the worldsurface describes spacetime physics at distances

smaller than L by effective string scattering amplitudes. Both descriptions apply in local

regions of spacetime, on the scale of spacetime distance set by L. L is the characteristic

ultraviolet distance in the effective spacetime quantum field theory, and the characteristic

infrared distance in the effective string scattering amplitudes.

The lambda model constructs the a priori measure and the effective general nonlinear

model so that the two descriptions agree at spacetime distance L, where both apply. By

the tandem renormalization principle, the data of the effective lambda model matches the

data of the effective general nonlinear model. The effective potential function on the wave

modes λie at spacetime distance L will be the generating functional for the effective string

scattering amplitudes at distance L, by a version of the argument [13] that connected

the beta function βi(λ) of the general nonlinear model to the tree-level string scattering

amplitudes at large distance.

Given that the effective string scattering amplitudes match the scattering amplitudes

of the effective spacetime quantum field theory, and that the effective spacetime quantum

field theory has to be produced by the lambda model before the effective string scattering

amplitudes become nonperturbatively reliable, there does not seem to be any practical use

for the string scattering amplitudes at any spacetime distance L large enough to be reached

by the lambda model. On the other hand, there could be circumstances where the effective

string theory would be useful as an alternate technical algorithm for calculating scattering

amplitudes.

2.12 The fermionic spacetime modes

The target manifold of the lambda model is a graded manifold. The manifold of spacetimes

has both bosonic and fermionic dimensions. The bosonic coupling constants λi are the

wave modes of bosonic spacetime fields, the fermionic λi are the wave modes of fermionic

spacetime fields. The a priori measure is a measure on the graded manifold of spacetimes,

a quantum field theory of bosonic and fermionic fields in spacetime.
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The lambda model needs a technical construction of the general nonlinear model of the

worldsurface in which the bosonic and fermionic coupling constants λi occur on an equal

footing. The bosonic λi must couple to bosonic fields φi(z, z̄), the fermionic λi to fermionic

fields φi(z, z̄). The metric coupling T−1gij must be symmetric in the bosonic directions

and antisymmetric in the fermionic directions. And the construction must accomodate a

general compact riemannian spacetime.

A construction of the fermionic coupling constants λi and their antisymmetric met-

ric coupling T−1gij is given below, in section 9. The construction is based on the locally

supersymmetric string worldsurface, in which worldsurface reparametrization invariance

is implemented by means of supersymmetric worldsurface ghost fields [14]. The odd pa-

rameters of the supersymmetric worldsurface are eliminated, and the bosonic worldsurface

ghost fields are used to construct an ordinary scale invariant worldsurface that is spacetime

covariant [15]. Bosonic and fermionic scaling fields φi(z, z̄) couple to the spacetime wave

modes λi, which are correspondingly bosonic and fermionic.

The technical drawback of the covariant worldsurface is the picture ambiguity. The

worldsurface scaling fields fall into infinitely many formally equivalent subspaces called

pictures, distinguished by a discrete picture charge. The bosonic scaling fields have integer

picture charge. The fermionic scaling fields have picture charge integer plus half. The

canonical pictures are distinguished by the condition that the dimensions of the scaling

fields are bounded below. These are the natural pictures to use in analyzing the effects

of handles at short distance. For the bosonic scaling fields, there is exactly one canonical

picture, which has picture charge −1. The metric is symmetric on the canonical bosonic

picture. For the fermionic scaling fields, there are two canonical pictures, the pictures of

charge −1/2 and −3/2. The metric pairs the two canonical fermionic pictures. In the sum

over states flowing through a handle, one of the canonical fermionic pictures is inserted at

one end of the handle, the other canonical fermionic picture at the other end of the handle.

There is no single space of fermionic coupling constants λi with an antisymmetric metric

coupling T−1gij .

A small technical innovation is devised to put the canonical fermionic scaling fields

effectively in a single picture that effectively has picture charge −1, and on which there

is an antisymmetric metric T−1gij . The bosonic and fermionic coupling constants λi then

combine to form a single graded space, with a graded metric coupling T −1gij .

When the bosonic and fermionic coupling constants λi are put on the same footing as

coordinates for the graded manifold of spacetimes, the spacetime dynamics of the fermionic

wave modes takes a nonstandard form. The wave operators acting on the fermionic wave

modes are quadratic in the spacetime derivatives, like the wave operators acting on the

bosonic wave modes. They are not the standard first order Dirac wave operators. The

unphysical degrees of freedom of the fermionic spacetime fields are eliminated by gauge

symmetries, leaving the standard physical content of the Dirac operators.

The lambda model needs the metric coupling T−1gij to be positive definite in the

bosonic directions. Otherwise, there would be instability under short distance fluctua-

tions of the bosonic lambda fields λi(z, z̄). This positivity condition is not satisfied if the

worldsurface contains a Ramond-Ramond sector, because the metric on that sector is the
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tensor product of two antisymmetric matrices, which is not positive definite. Only the

heterotic string worldsurface [8] is without a Ramond-Ramond sector. For this purely

technical reason, it appears that the lambda model can only work in the heterotic string

worldsurface. The metric coupling T−1gij on the manifold of general nonlinear models of

the heterotic worldsurface is positive definite in the bosonic directions, because there is no

Ramond-Ramond sector and because spacetime is assumed riemannian.

2.13 Physics is built from large distance towards small

The degrees of freedom of the lambda model are the coupling constants λi of the renormal-

ized general nonlinear model, varying locally in two dimensions as fields λi(z, z̄). The target

manifold of the lambda model at two dimensional distance Λ−1 is the manifold M(L). The

renormalized general nonlinear model at two dimensional distance Λ−1 provides the data

on the target manifold M(L), the metric T−1gij(λr) and the vector field βi(λr), which

specify the couplings of the lambda model. The renormalized general nonlinear model pro-

vides the lambda model with its degrees of freedom and its interactions. The renormalized

general nonlinear model is the raw material on which the lambda model works.

The coupling constants λi are the wave modes of spacetime. The renormalization of

the general nonlinear model arranges the degrees of freedom λi over the range of short

two dimensional distances Λ−1, in a hierarchy organized according to spacetime distance

L, following the formula L2 = ln(Λ/µ). At the shortest two dimensional distances, the

degrees of freedom λi are at the largest spacetime distances. The renormalization of the

general nonlinear model decouples the small distance spacetime wave modes at short two

dimensional distance Λ−1. As the two dimensional distance Λ−1 increases, as the spacetime

distance L decreases, the renormalization introduces, as additional degrees of freedom, the

spacetime wave modes at smaller spacetime distances on the distance scale set by L.

The hierarchy of degrees of freedom is put in place by the renormalization of the

general nonlinear model, before the lambda model is set to work. The lambda model acts

autonomously on the renormalized general nonlinear model, from short two dimensional

distance towards long. The lambda model operates on the degrees of freedom λi as it finds

them, distributed by the renormalization of the general nonlinear model across the range

of short two dimensional distances. The lambda model begins to operate at the extremely

short two dimensional cutoff distance Λ−10 ≈ 0, seeing only the extreme infrared wave

modes in spacetime. As the lambda model operates at longer two dimensional distance

Λ−1, it sees spacetime wave modes at decreasing spacetime distance L. At each stage,

at each characteristic spacetime distance L, the lambda model can ignore the decoupled

spacetime wave modes at distances smaller than L, without significant loss of accuracy.

The lambda model never notices the small distance structure of spacetime.

Locality in spacetime is expressed by the hierarchy of degrees of freedom λi, distributed

in the two dimensional distance Λ−1 according to the spacetime distance L. This form of

locality in spacetime is left undisturbed by the lambda model. The lambda model produces

corrections to the interactions at each two dimensional distance Λ−1, at each characteristic

spacetime distance L. Nonperturbative effects in the lambda model might possibly change

the form in which the degrees of freedom effectively appear. But the lambda model does not
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change the distribution of the basic degrees of freedom λi in the two dimensional distance

Λ−1, and in the spacetime distance L. Nor does it change the decoupling of small distance

spacetime wave modes, for every large value of L.

The a priori measure of the lambda model is the distribution of the fluctuations of

the fields λi(z, z̄) at two dimensional distances shorter than Λ−1. It is a measure on

the target manifold of the lambda model, so it is a measure, for each L, on the graded

manifold of spacetimes, M(L). The a priori measure is thus a measure on the bosonic and

fermionic spacetime wave modes λi at spacetime distances larger than L. If this measure

has appropriate technical properties, then it is a quantum field theory in spacetime, cut off

in the ultraviolet at spacetime distance L, describing physics at spacetime distances larger

than L.

The lambda model is a local two dimensional quantum field theory, so it is built starting

from its short distance limit at Λ−1 = 0, and proceeding outwards to longer two dimensional

distances Λ−1 by integrating over the short distance modes of the fields λi(z, z̄).

As the two dimensional distance Λ−1 increases, the spacetime distance L decreases.

Additional spacetime modes λi begin to fluctuate, at smaller and smaller spacetime dis-

tances. Each wave mode λi is at a characteristic spacetime distance L(i). The mode λi

starts fluctuating in the lambda model when L has dropped below a value L0(i) not much

larger than L(i), say L0(i) = 20L(i). The fluctuations of the two dimensional field λi(z, z̄)

are cut off at a short two dimensional distance Λ0(i)
−1 given by L0(i)

2 = ln(Λ0(i)/µ). The

field λi(z, z̄) fluctuates only at two dimensional distances Λ−1 longer than its individualized

cutoff distance Λ0(i)
−1.

The a priori measure of the lambda model evolves with the increasing two dimensional

distance Λ−1, starting from the cutoff distance Λ−10 . As Λ−1 increases, as L decreases, the

spacetime wave modes λi at distance L begin to fluctuate, and are integrated in to the

a priori measure. The a priori measure is effectively a delta function in the variable λi

concentrated at λi = 0, until L drops below L0(i), until Λ
−1 becomes longer than Λ0(i)

−1.

When L drops below L0(i), the a priori measure begins to diffuse outward in the spacetime

wave mode λi.

The characteristic equilibration time of the variable λi is 1/γ(i) = L(i)2, according

to equation (2.40). The available diffusion time, L0(i)
2 − L(i)2, is more than enough to

allow λi to reach equilibrium well before L decreases from L0(i) to L(i). The a priori

measure at two dimensional distance Λ−1 therefore gives an accurate description of the

physics at all spacetime distances greater than L, the physics of the spacetime wave modes

λi at all spacetime distances L(i) > L. The assumption here is that the equilibration times

estimated from the uncorrected diffusion process are not significantly different from the

actual diffusion times in the effective diffusion process.

The lambda model thus builds its a priori measure, which is to be spacetime quantum

field theory, starting from the large distance limit at L =∞, by integrating in the spacetime

wave modes at smaller and smaller spacetime distances L. Despite this top down method

of construction, from large spacetime distance to small, the resulting quantum field theory

appears local in spacetime. Spacetime locality is expressed in the functional integral formu-

lation of quantum field theory by the possibility of integrating out the small distance wave

– 37 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

modes of the spacetime fields without losing information about the functional measure on

the wave modes at larger distances. The a priori measure of the lambda model is local

in spacetime, in this sense, because integrating out the spacetime wave modes at small

spacetime distance merely reverses the process of integrating in that was performed by the

lambda model. Integrating out a small distance wave mode λi replaces the equilibrium a

priori measure in that variable with the value of the integral over λi, multiplied by the

delta function concentrated at λi = 0. This simply reverses the diffusion accomplished by

the lambda model, which starts from the delta function concentrated at β i(λ) = 0 and

tends to the equilibrium measure, since diffusion conserves the total weight of the measure.

The a priori measure at a larger spacetime distance L > L′ is recovered from the a priori

measure at the smaller spacetime distance L′, by integrating out the wave modes λi at

spacetime distances L(i) between L and L′.

This appearance of locality in the spacetime quantum field theory depends crucially on

the fact that, as Λ−1 increases, the newly fluctuating fields λi(z, z̄) at spacetime distances

smaller than L do not disturb the equilibrium a priori measure on the wave modes at

spacetime distances larger than L. As L decreases, the a priori measure stabilizes on the

spacetime wave modes at distances larger than L. Stability at large distance is ensured

by the decoupling of irrelevant coupling constants in the renormalization of the general

nonlinear model. The spacetime wave modes λi at small distance on the scale set by L are

relatively irrelevant coupling constants in the renormalized general nonlinear model. The

small distance wave modes are decoupled from the large distance wave modes, which are

less irrelevant. The fluctuations of the small distance wave modes have no effect on the a

priori measure at distances larger than L, as a measure on the large distance spacetime

wave modes.

The building of the a priori measure from short two dimensional distance Λ−1 towards

longer, is based on the hierarchy of submanifolds M(L) → M(L′), L > L′. As Λ−1

increases, the a priori measure diffuses outwards from the submanifold M(L) in M(L ′),

along the L-irrelevant directions λi that parametrize the extension of M(L) to M(L′).

The stability of the a priori measure on the large distance wave modes, its inde-

pendence from the additional degrees of freedom that enter at relatively small spacetime

distance, is based on the hierarchy of quotient manifolds M(L′)→M(L). The decoupling

by renormalization, expressed in the quotient structure, ensures that integration over the

fibers of the quotient reverses the diffusion of the a priori measure, which gives the property

of spacetime locality to the a priori measure as spacetime quantum field theory.

Because of the stability of the a priori measure on the large distance wave modes,

it should not be necessary to calculate quantum corrections in the lambda model at all

spacetime distances from L = ∞ down to L, in order to find the effective spacetime

physics at distance L. That much calculation would not be practical. It would accumulate

enormous amounts of information about very large distance physics that would not be

relevant to the physics at spacetime distance L. The only new calculations that are needed

in the lambda model at two dimensional distance Λ−1 are to be done at spacetime distances

on the order of L. The effective interactions in the lambda model of the degrees of freedom

at larger spacetime distances have already been calculated at two dimensional distances
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shorter than Λ−1. The effective lambda model has already stabilized in the large distance

degrees of freedom, so the large distance calculations do not need to be redone. Only the

properties of the coupling constants λi, on the border between L-marginal and L-irrelevant,

are in flux at two dimensional distance Λ−1. What new calculations are needed can be made

in local spacetime regions, on the spacetime distance scale set by L, which is where the

borderline coupling constants λi are found.

Spacetime quantum field theory, as constructed by the lambda model, is local in space-

time, but it is not constructed from a microscopic dynamics. There is no guarantee, outside

the perturbation expansion, that the dynamical laws of spacetime physics at large distance

can be derived from the dynamical laws at small distance. The effective potential func-

tion g−2s V ae(λe) at spacetime distance L cannot be derived from the effective potential

function at a smaller spacetime distance L′, except perturbatively. The actual form of the

effective degrees of freedom λie at spacetime distance L are not determined by spacetime

quantum field theory effects acting on the degrees of freedom at spacetime distances smaller

than L, but rather by nonperturbative two dimensional effects in the lambda model acting

at two dimensional distances shorter than Λ−1, so at spacetime distances larger than L.

Perturbatively, the effective degrees of freedom and the effective potential function of the

lambda model will be consistent with perturbative spacetime quantum field theory. But

nonperturbative effects (such as quark confinement) will have to be found in the lambda

model.

For the lambda model to be well-defined, its target manifold should be finite dimen-

sional. Calculations requiring an infinite number of fields λi(z, z̄) would be difficult to

control. The target spacetime of the general nonlinear model is assumed to be compact

and riemannian. It follows that the general nonlinear model has a discrete spectrum of

scaling dimensions γ(i). The renormalization of the general nonlinear model then sup-

presses the ultraviolet wave modes in spacetime by factors e−L
2γ(i), leaving only a finite

number of quasi-marginal coupling constants λi to parametrize the target manifold M(L).

The target manifold M(L) is therefore finite dimensional, at each point λ in M(L). The

lambda model is well-defined, at least for small fluctuations around any point λ in its target

manifold, M(L), the manifold of compact riemannian spacetimes.

For any finite L, no matter how large, it is possible that fluctuations in M(L) will

lead to spacetimes of linear size much larger than L, spacetimes which are macroscopic

on the distance scale set by L. Fluctuations in the lambda model can lead to the places

in M(L) where spacetime grows arbitrarily large. The dimension of M(L) would then

increase without bound. In particular, there are harmonic surfaces λH(z, z̄) in M(L) that

pass through such places, as described in section 11 below. Weak coupling nonperturbative

effects in the lambda model will be dominated by harmonic surfaces in the target manifold,

including such decompactifying harmonic surfaces. So it will be necessary to control the

effects of the unbounded growth in the dimension of M(L) on a decompactifying harmonic

surface.

The potential difficulty should only arise when the limit L → ∞ is studied. At any

finite value of L, calculations in the lambda model see only spacetime regions that are

bounded on the distance scale set by L. Only a finite number of quasi-marginal spacetime
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wave modes λi can fit into any such local spacetime region. The difficulty posed by the

unbounded dimensionality of the target manifold is a problem of the extreme infrared in

spacetime, relevant to the problem of sending the two dimensional cutoff distance Λ−10 to

zero.

To finding the spacetime physics at finite distance L, the lambda model must be built

from the two dimensional cutoff distance all the way out to Λ−1. This would seem to

require starting with control over the extreme infrared in spacetime, the limit L → ∞

at zero two dimensional distance. But, in the most favorable circumstance, it might be

possible to postpone the problem of controlling the limit L → ∞. The limit L → ∞

might become purely a question of principle. At any finite value of L, it might be possible

to obtain the spacetime physics of a local region of spacetime, on the distance scale set

by L, in terms of the spacetime fields over a bounded neighborhood of that region. The

spacetime wave modes λi in the extreme infrared, however many there are, will only make

their influence known through the values of the local spacetime fields in the spacetime

neighborhood under study. The two dimensional cutoff distance can be removed, so far

as the local spacetime physics is concerned, without needing to worry about the possibly

infinite number of spacetime wave modes in the extreme infrared.

Formally, the scale invariance of the effective lambda model allows the two dimensional

cutoff distance Λ−10 to be taken to zero. According to the principle of tandem renormaliza-

tion, the effective lambda model and the effective general nonlinear model evolve together

in the two dimensional distance Λ−1. It follows that the effective lambda model is auto-

matically scale invariant, in the generalized sense. This tautological scale invariance means

that any divergent dependence on the two dimensional cutoff distance Λ−10 can be absorbed

into a change of integration variable in the functional integral defining the lambda model.

The lambda model is thus finite in the limit Λ−10 → 0. This formal argument should be

effective in calculations of spacetime physics at finite spacetime distance L, allowing the

two dimensional cutoff to be removed in such calculations. But it will be necessary to

control the extreme infrared spacetime wave modes in arbitrarily large spacetimes, before

it will be possible to establish the tautological generalized scale invariance of the lambda

model at asymptotically short two dimensional distance. The existence of the limit L→∞

will need to be established in order to make the foundation of the theory secure.

3. The infrared divergence in string theory

The infrared failure of string theory, which is due to the existence of a manifold of possible

background spacetimes, expresses itself as a technical disease of the string worldsurface,

a divergence at short two dimensional distance. Each degenerating handle in the string

worldsurface depends logarithmically on the two dimensional cutoff distance. The loga-

rithmic divergence is due to marginal scaling fields flowing as string states through the

degenerating handle. The divergence is in the infrared in spacetime, because the marginal

scaling fields of the general nonlinear model correspond to the zero modes of the spacetime

fields that characterize spacetime. The marginal scaling fields of the general nonlinear

model generate the infinitesimal variations in the manifold of spacetimes. The infrared di-
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vergence occurs precisely when there is infinitesimal continuous degeneracy of the possible

background spacetimes. The divergence occurs because of the existence of a continuous

manifold of spacetimes. A background spacetime cannot be chosen from the manifold of

possible background spacetimes, because perturbative string theory is divergent in any one

of the manifold of possible background spacetimes.

3.1 A degenerating handle

Suppose that a background spacetime is chosen, satisfying β = 0 at all spacetime distances.

The string worldsurface is described by an exactly scale invariant general nonlinear model.

Consider a degenerating handle in the scale invariant worldsurface.

A handle is a tube that connects the worldsurface to itself. Making a transverse cut

through the tube displays the handle to be formed by gluing together the boundaries of

two holes in the worldsurface. The two holes can be anywhere on the worldsurface. The

handle degenerates when the two holes shrink, each to a single point. The limit is a node,

consisting of two distinct points on the worldsurface identified together as a single point.

A degenerating handle is parametrized by its two endpoints on the worldsurface, z1
and z2, and by a complex number q. The absolute value of q measures the thickness of

the handle. Each hole has radius |q|1/2. The phase of q measures the twist imparted

when the two holes in the worldsurface are glued to form the handle. The endpoints z1
and z2 are the centers of the two holes. Let w1 and w2 be complex coordinates for the

two regions of the worldsurface where the holes are located. The first hole is formed by

removing the disk |w1 − z1| < |q|
1/2 from the first region, the second hole by removing the

disk |w2 − z2| < |q|
1/2 from the second region. The boundaries of the two resulting holes

are identified by the equation (w1 − z1)(w2 − z2) = q. The result is an almost degenerate

handle whose complex structure is parametrized by the two points, z1 and z2, and by the

complex number q which lies near 0. At q = 0, the handle degenerates to a node. The two

points z1 and z2 become identified together as a single point.

A degenerating handle can also be pictured as a long tube of length − ln |q| connect-

ing the two regions of the worldsurface. The long tube is parametrized by the complex

coordinate u = ln(w1 − z1)−
1
2 ln q = − ln(w1 − z1) +

1
2 ln q. In this view, the degenerating

handle represents string states propagating between two regions of the worldsurface in the

very long world time − ln |q|, during which the string can explore the largest distances in

spacetime.

A string scattering amplitude is calculated in perturbative string theory by integrating

the partition function of the worldsurface with respect to all the parameters of its complex

structure. The worldsurface partition function is non-singular in the integration parame-

ters, except where a handle in the worldsurface degenerates to a node. Only there can the

integral diverge.

3.2 The contribution of a degenerating handle

The contribution of a degenerating handle to the worldsurface partition function is made

explicit by summing over a complete set of string states flowing through the handle. Each

end of the handle is the boundary circle of a hole in the worldsurface. A string state flowing
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through an end of the handle shows itself on the worldsurface as a boundary condition on

the boundary of the hole. A hole in the worldsurface with a boundary condition on the

boundary of the hole is a local field in the worldsurface. The local fields in a scale invariant

worldsurface are linear combinations of the scaling fields. Each sum over string states

flowing through an end of the handle is a sum over scaling fields inserted at the point in

the worldsurface where the end of the handle is attached. The integral over the phase of q

eliminates the scaling fields of nonzero spin, leaving only spin 0 scaling fields at the ends

of the handle.

Summing over string states flowing through a degenerating handle replaces the handle

with a double insertion of scaling fields in the worldsurface,

1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π

∫

d2q µ4
1

2π
(µ |q|1/2)−8 ×

×φi(z1, z̄1)(µ |q|
1/2)2+γ(i)Tgij(µ |q|1/2)2+γ(j) φj(z2, z̄2) . (3.1)

The φi(z, z̄) form a complete set of linearly independent spin 0 scaling fields, normalized

at two dimensional distance µ−1. The scaling dimension of the field φi is 2 + γ(i), the

anomalous dimension is γ(i). The sums over indices i, j are sums over the string states

flowing through the two ends of the handle. The summation convention is used for indices

i, j in place of explicit sums. The scaling field φi(z1, z̄1) represents the string state flowing

through the handle at endpoint z1. The scaling field φj(z2, z̄2) represents the string state

flowing through the handle at endpoint z2. The endpoints z1 and z2 range over the entire

worldsurface.

The factor (µ |q|1/2)2+γ(i) scales the field φi from the circle of radius µ−1 to the circle

of radius
∣

∣q1/2
∣

∣. Similarly, φj is scaled by (µ |q|1/2)2+γ(j).

The factor (µ |q|1/2)−8 is for two dimensional scale invariance. The gluing equation

(w1 − z1)(w2 − z2) = q is left invariant when w1, w2, z1, z2, and q
1/2 are simultaneously

scaled by the same scaling factor, so the integral over the handle parameters must also be

invariant.

There is an overall factor 1/2 because the two ends of the handle are indistinguishable.

The factor 1/2π in each two dimensional integral is conventional.

The matrix T gij implements the gluing of the two boundary circles to form the handle,

tying together the string states passing through the two ends of the handle. A more specific

identification of the gluing matrix T gij is given below, in section 4.5. One property is

needed now, the fact that T gij = 0 if γ(i) 6= γ(j). This follows from scale invariance of

the gluing process when the two holes are scaled inversely.

The handle degenerates at q = 0. The integral over the parameter |q| diverges near

q = 0 if and only if there are spin 0 scaling fields φi(z, z̄) with anomalous scaling dimension

γ(i) = 0. These are the marginal scaling fields, the scaling fields with scaling dimension

exactly equal to 2. The spin 0 scaling fields are the possible infinitesimal variations

ε

∫

d2z
1

2π
φi(z, z̄) (3.2)

of the action of the general nonlinear model. The marginal scaling fields are the infinitesimal

variations that preserve two dimensional scale invariance. The marginal scaling fields
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are the infinitesimal variations of the background spacetime. So a degenerating handle

produces a divergence if and only if there is an infinitesimal continuous degeneracy in the

set of possible background spacetimes.

The divergence is in the infrared in spacetime, because the marginal scaling fields

correspond to the zero modes of the spacetime field equations β = 0. Also, a handle

with thickness parameter q near 0 describes a string propagating for very long world time,

exploring the largest distances in spacetime.

In order to regulate the perturbative string theory, integrals over worldsurface param-

eters are cut off at a short two dimensional distance Λ−10 . In particular, the radius of the

hole at each end of a degenerating handle is bounded below by Λ−10 . The integral over q in

equation (3.1) is regulated by the cutoff |q|1/2 > Λ−10 . The cutoff dependence is extracted

by integrating up to some limit |q|1/2 = Λ−11 , where Λ−11 is a fixed worldsurface distance,

independent of the cutoff. The cutoff dependent part of the handle insertion, integral (3.1),

becomes
∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
φi(z1, z̄1)T g

ij

[

(µ2Λ−21 )γ(i) − (µ2Λ−20 )γ(i)

γ(i)

]

φj(z2, z̄2) . (3.3)

The expression

T gij

[

(µ2Λ−21 )γ(i) − (µ2Λ−20 )γ(i)

γ(i)

]

(3.4)

is the string propagator of the large distance string modes, with the two dimensional short

distance cutoff acting as infrared regularizer in spacetime. The infrared spacetime cutoff

distance L0 is given by

L2
0 = ln

(

Λ0

µ

)

. (3.5)

For small γ(i), the string propagator behaves as

T gij
1

γ(i)
(3.6)

until γ(i) becomes smaller than L−20 . Then the pole is regularized, becoming

T gij ln(Λ2
0Λ
−2
1 ) (3.7)

a logarithm of the two dimensional cutoff distance Λ−10 . The two dimensional cutoff dis-

tance, by acting as the short distance cutoff in worldsurface integrals, cuts off the propa-

gator of the string modes at infrared spacetime distance L0.

If the spacetime is held fixed, the two dimensional cutoff distance Λ−10 can be taken

so close to zero that there is cutoff dependence only when γ(i) = 0. The divergent part of

the handle insertion, integral (3.1), then becomes

1

2

∫

d2z1µ
2 1

2π

∫

d2z2µ
2 1

2π
φj(z2, z̄2)T g

ij ln(Λ2
0Λ
−2
1 )φi(z1, z̄1) (3.8)

where now the indices i, j range only over the marginal scaling fields. They will continue

to do so until further notice.

The restriction to marginal scaling fields φi(z, z̄) will have to be relaxed, because it will

become untenable to assume that Λ−10 can be taken to zero with the spacetime held fixed.
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3.3 The effects of the divergence at short distance

The divergence is a symptom of deficiency in the string worldsurface. The divergence

signals that string theory is incomplete, that the string worldsurface is not adequately

formulated. A mechanism is missing to cancel the divergence. The divergence is in the

spacetime infrared, so the missing mechanism should operate at large distance in spacetime.

The renormalization of the general nonlinear model exhibits the large distance space-

time physics to be encoded in the short distance structure of the general nonlinear model

of the worldsurface. So the missing mechanism should operate at short two dimensional

distance. But a degenerating handle is not necessarily local on the worldsurface. A de-

generating handle may connect two regions on the worldsurface which, in the absence of

the handle, are distant from each other or even disconnected from each other. First, it

is necessary to isolate the divergent effects of degenerating handles on the short distance

structure of the general nonlinear model of the worldsurface. These are the effects on the

large distance physics of spacetime. Then a mechanism can be designed to cancel the

divergent effects at short two dimensional distance.

The short distance structure of the worldsurface is visible in an arbitrary local two

dimensional neighborhood. So the short distance effects of degenerating handles are pro-

duced by those degenerating handles whose two endpoints lie in the same two dimensional

neighborhood. These are the local handles. The missing mechanism can then be designed

to cancel the divergence produced by the local degenerating handles.

The endpoints z1 and z2 of a local handle lie in the same two dimensional neighbor-

hood. The two dimensional distance |z1 − z2| is independent of the two dimensional cutoff

distance, so the divergent effects of a local handle can be extracted naturally, by putting

Λ−11 = |z1 − z2| as upper bound on the handle thickness parameter |q|1/2. The availability

of the two dimensional distance |z1 − z2| between the endpoints of a local handle allows

the short distance effects of the local handle to be isolated naturally.

Substituting |z1 − z2| for Λ
−1
1 in equation (3.8), the divergent effects of a local handle

are described by a bi-local insertion in the local two dimensional neighborhood

1

2

∫

d2z1µ
2 1

2π

∫

d2z2µ
2 1

2π
φj(z2, z̄2)T g

ij ln(Λ2
0 |z1 − z2|

2)φi(z1, z̄1) . (3.9)

As mentioned, the indices i, j are now ranging only over the marginal scaling fields, but

this restriction will have to be lifted, because it derives from the assumption that Λ−10 can

be taken arbitrarily close to zero with the spacetime held fixed.

4. A local mechanism to cancel the divergence

4.1 The restricted lambda model

The lambda model is formulated to cancel the effects of local handles at short two dimen-

sional distance. The construction of the lambda model will be formal, at first, because of

the artificial restriction to marginal scaling fields φi(z, z̄) in the description of the divergent

effects of handles.
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To cancel the divergent bi-local insertion made by a local handle, the marginal coupling

constants λi are made into local sources λi(z, z̄) which are coupled to the marginal scaling

fields φi(z, z̄) by inserting

e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (4.1)

into the general nonlinear model of the worldsurface. Then the sources λi(z, z̄) are set

fluctuating with gaussian propagator

〈

λi(z1, z̄1) λ
j(z2, z̄2)

〉

= −T gij ln(Λ2
0 |z1 − z2|

2) . (4.2)

The fluctuating sources λi(z, z̄), coupled to the marginal scaling fields φi(z, z̄), produce at

leading order the insertion

1

2

∫

d2z1µ
2 1

2π

∫

d2z2µ
2 1

2π
φj(z2, z̄2)

〈

λi(z1, z̄1)λ
j(z2, z̄2)

〉

φi(z1, z̄1) (4.3)

which cancels the effects of a single local handle at two dimensional distances near Λ−10 .

Exponentiated, the insertions of the lambda propagator cancel the effects of arbitrarily

many independent local handles on the worldsurface. But multiple handles are independent

only when widely separated on the worldsurface. The sub-leading effects of colliding local

handles remain to be cancelled.

The gaussian fluctuations are generated by inserting into the general nonlinear model

of the worldsurface a functional integral over the sources λi(z, z̄)

∫

Dλe−
∫

d2z 1
2π

T−1gij ∂λi ∂̄λje−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (4.4)

The sources λi(z, z̄) have become dimensionless, massless, scalar quantum fields. The

propagator of a massless scalar field in two dimensions is logarithmic, so must be normalized

at a characteristic two dimensional distance, which is Λ−10 .

The sub-leading effects of colliding local handles are cancelled by making non-gaussian

corrections to the fluctuations. The corrections are generated by adding interaction terms

to the gaussian action

S(λ) =

∫

d2z
1

2π

(

T−1gij ∂λ
i ∂̄λj + T−1gij,kλ

k ∂λi ∂̄λj + T−1gij,klλ
kλl ∂λi ∂̄λj + · · ·

)

.

(4.5)

Only local interactions are needed to cancel the short distance effects of the local handles.

A rough argument is that collisions between handles produce the insertions of scaling fields

that are to be cancelled by the interactions, only local interactions are needed. A better

argument is given later. The interaction terms must be scale invariant because the effects

of the handles are given by scale invariant integrals over worldsurface parameters. The

interaction terms must therefore all contain two derivatives of the dimensionless scalar

fields λi(z, z̄), multiplied by any number of scalar fields. Infinitely many such interaction

terms are possible. The infinite number of coefficients are calculated, in principle, from the

worldsurface integrals for multiple handles. Fortunately there is a much simpler way.
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The marginal coupling constants λi are parameters for the scale invariant perturba-

tions of the reference general nonlinear model that was chosen initially. The λi are local

coordinates on the manifold M(∞) of scale invariant general nonlinear models, which is

the manifold of spacetimes. The sources λi(z, z̄) are therefore the components of a map

λ(z, z̄) from the worldsurface to the manifold M(∞), written in coordinates.

The reference general nonlinear model is a point λ1 in M(∞), the origin of the coor-

dinate system, the point with coordinates λi1 = 0. If the sources were nonzero constants

λi(z, z̄) = λi2, their effect would be to change the general nonlinear model to a nearby scale

invariant general nonlinear model λ2 in M(∞). The fluctuating sources λi(z, z̄) describe

spacetime fluctuating locally on the worldsurface.

Once spacetime is set fluctuating in two dimensions, the mechanism that cancels the

divergence must operate within any local fluctuation. Within a local fluctuation, the

worldsurface might be in a nearby spacetime λ2 in M(∞). The fluctuating spacetime

λ(z, z̄) can be considered to be nearly constant, locally in two dimensions, because the

fields λi(z, z̄) are dimensionless, and their variations in two dimensions are suppressed in

the functional integral.

Within a local fluctuation to a spacetime λ2, the short distance effects of local handles

are given by the handle gluing matrix T gij(λ2) of the general nonlinear model λ2. Local

fluctuations around λ2 will be needed to cancel the effects of these local handles. The

gaussian fluctuations around λ2 will be governed by the metric T−1gij(λ2) which is the

inverse of the handle gluing matrix in the general nonlinear model λ2. The non-gaussian

corrections at λ2 are given by an infinite series of interaction terms, as in equation (4.5),

with coefficients T−1gij,k(λ2), T
−1gij,kl(λ2), and so on.

To cancel the effects of local handles, once spacetime is set fluctuating locally in two

dimensions, there must be a cancelling set of local fluctuations around each point λ in

M(∞). For each point λ in M(∞), the cancelling mechanism is a functional integral over

maps λ(z, z̄) from the worldsurface to a coordinate neighborhood of λ in M(∞).

But the fluctuations around λ2 are completely determined by the fluctuations around

λ1, and vice versa, since one set of fluctuations is obtained from the other simply by a

translation of coordinates in M(∞). The cancelling mechanisms for two nearby points,

λ1 and λ2, must be equivalent, under the dictionary that translates sources λi(z, z̄) in λ1
to equivalent sources in λ2. The cancelling mechanisms must operate simultaneously, and

coherently, in all the spacetimes λ in the manifold M(∞).

A coherent collection of such functional integrals over dimensionless scalar fields is a

two dimensional nonlinear model [1, 2, 3]. The target manifold of the nonlinear model is the

manifold M(∞). The field of the nonlinear model is a map λ(z, z̄) from the worldsurface

to M(∞). The metric coupling of the nonlinear model is completely determined by the

gaussian fluctuations at each point λ in M(∞). The handle gluing matrix T g ij(λ) in each

spacetime λ gives all the information needed to determine the higher order interactions of

the fluctuations. The action of the nonlinear model is globally defined as a function of the

map λ(z, z̄) from the worldsurface to M(∞),

S(λ) =

∫

d2z
1

2π
T−1gij(λ) ∂λ

i ∂̄λj . (4.6)
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The coherence condition on the local fluctuations avoids a laborious calculation of the

effects of collisions of multiple handles in a fixed spacetime.

The local mechanism that is inserted to cancel the divergence is the functional integral

∫

Dλe−S(λ)e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) . (4.7)

This is a two dimensional nonlinear model whose target manifold is the manifold of space-

times M(∞). The metric coupling is the natural metric T −1gij(λ) on the manifold of

spacetimes, the inverse of the handle gluing matrix. The field is the lambda field, λ(z, z̄).

The small fluctuations around a given reference spacetime are described in coordinates by

the lambda fields, λi(z, z̄).

This nonlinear model completely accomplishes the cancelling of the short distance ef-

fects of the local handles. The argument for complete cancelation is based on the coherence

condition over the manifold of spacetimesM(∞). Suppose that some part of the divergence

is left uncancelled. For each spacetime λ in M(∞), the uncancelled divergence would be

cancelled by additional interactions among the lambda fields λi(z, z̄). The gaussian part

of the divergence is already cancelled, by design, so the additional interactions must be at

least tri-linear in the lambda fields λi(z, z̄). There must be coherence of these remaining in-

teractions as λ varies inM(∞), so the additional interactions must involve only derivatives

of the lambda fields. Otherwise, varying λ would produce quadratic interaction terms. The

additional interactions must be scale invariant in two dimensions. Finally, the additional

interactions cannot increase at long two dimensional separations because the effects being

cancelled are made by handles in collision. There are no interactions compatible with all

these conditions.

The lambda fields λi(z, z̄) are dimensionless scalar fields in two dimensions. Once they

are set fluctuating, large fluctuations are inevitable. Locality in two dimensions requires

that all configurations λ(z, z̄) participate in the functional integral, not merely the con-

figurations that can be represented as perturbations λi(z, z̄) around a constant spacetime

λ. The functional integral must contain field configurations λ(z, z̄) that make large ex-

cursions in the manifold of spacetimes. The most interesting configurations will be those

that wrap around nontrivial topological features in the manifold of spacetimes, producing

semi-classical nonperturbative effects.

On the other hand, because the lambda fields are dimensionless scalars, every fluc-

tuation can be regarded locally as almost constant in two dimensions. Every fluctuation,

however large, can be regarded as pieced together out of locally almost constant fluctua-

tions.

The action S(λ) is defined by the coherent family of actions for small fluctuations

around constant configurations of λ(z, z̄). But S(λ), as given by equation (4.6), is well-

defined globally, for all maps λ(z, z̄) to the manifold of spacetimes. It does not depend on

any choice of reference point λ1 in the target manifold M(∞), nor on any choice of coor-

dinates for the target manifold. The global definition of the nonlinear model is equivalent

to the local definition.
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Also needed is a global construction of the worldsurface, as a functional of the map

λ(z, z̄). Each local two dimensional region can be constructed by inserting sources λi(z, z̄)

into some general nonlinear model, as in equation (4.1). The local regions can then be

patched together, in principle, to construct the global worldsurface, as a function of the

map λ(z, z̄). But I do not give any effective method for doing such patching. Instead, in

section 5, I point out a way to avoid worldsurface calculations entirely.

The cancelling mechanism described by equation (4.7) is the restricted lambda model.

It is only a formal mechanism. It works only perturbatively, and only in a generic subman-

ifold of the target manifold M(∞), and only at sufficiently short two dimensional distances

Λ−10 . The formal nature of this mechanism is due to the assumption that the spacetime

λ can be held fixed while the two dimensional cutoff distance Λ−10 is taken to zero. Once

spacetime has been set fluctuating in two dimensions, this assumption becomes untenable.

The two dimensional cutoff distance Λ−10 must be held fixed while the spacetime fluctuates.

It is possible that fluctuations of λ(z, z̄) will reach places inM(∞) where some scaling fields

φi(z, z̄) become only slightly irrelevant. Some anomalous dimensions γ(i) will becomve very

small. The calculation of the divergence produced by a local handle must then be revised

to include the insertions of slightly irrelevant scaling fields. To cancel the divergence, it

will be necessary to extend the target manifold of the lambda model beyond M(∞).

4.2 Macroscopic spacetimes

As the spacetime λ fluctuates, it may come upon places within M(∞) where spacetime

becomes large in some or all of its dimensions. In such a macroscopic spacetime, there are

many large distance wave modes which are not zero modes, but which have γ(i) very small,

small enough that the corresponding scaling fields φi(z, z̄) are not suppressed by the factors

(µΛ−10 )γ(i) in the effects of a local handle. These scaling fields φi(z, z̄) are almost marginal.

It is no longer possible to separate distinctly the marginal scaling fields from the irrelevant

scaling fields in the analysis of the degenerating handle. It is no longer possible to ignore

as cutoff independent the contribution of the irrelevant scaling fields, and describe the

divergence entirely in terms of the marginal scaling fields. The slightly irrelevant scaling

fields must be included in the analysis of the divergence.

Write the spacetime metric on the macroscopic dimensions of spacetime as 1
α′hµν(x),

explicitly proportional to 1/α′. The linear size of the macroscopic spacetime spacetime

goes as (α′)−1/2. The macroscopic spacetime becomes infinitely large as α′ → 0. The

spacetime wave operators acting on the massless spacetime fields are proportional to α ′,

up to corrections that are higher order in α′. The eigenvalues γ(i) go to zero as α′. The

characteristic spacetime distances L(i) of the massless wave modes go as (α′)−1/2. More

and more of the massless wave modes λi become almost marginal coupling constants in the

general nonlinear model.

As spacetime fluctuates in the lambda model, the parameter α′ might approach zero. In

the handle insertion, the coefficient of the almost marginal scaling fields would approach a

logarithm of the two dimensional cutoff distance Λ−10 . Once the spacetime is set fluctuating

at fixed two dimensional cutoff distance, it becomes impossible to separate the marginal

coupling constants from the irrelevant coupling constants.
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The manifold of spacetimes M(∞) can be completed, and made locally compact, by

adding a set of points M(∞)d which corresponds to the limits α′ → 0, subject to some

identifications in the remaining parameters of the spacetime metric, which lose their sig-

nificance in the limit. The completed manifold of spacetimes is the union

M(∞) =M(∞) ∪M(∞)d . (4.8)

The submanifoldM(∞)d might be called the locus of decompactification. The macroscopic

spacetimes are the points λ in M(∞) which lie near the locus of decompactification.

The prototype for this completion of M(∞) is the manifold of toroidal two dimen-

sional spacetimes. A two dimensional spacetime torus has Kahler metric proportional to

a complex number σ. The spacetime volume is Im(σ). When Im(σ) is large, the manifold

of spacetimes is parametrized by the complex parameter q = e2πiσ . The locus of decom-

pactification is the single point q = 0. The real part of σ loses significance in the general

nonlinear model in the limit q → 0.

Besides the macroscopic spacetimes, there are also exceptional submanifolds within

M(∞) where some scaling fields that are generically irrelevant become marginal. Such a

scaling fields has anomalous dimension γ(i) = 0 on the exceptional submanifold, but is not

a tangent vector to the manifold M(∞). The beta function β(λ) vanishes to first order in

the coupling constants, but becomes nonzero at some higher order. Near the exceptional

submanifold, the anomalous dimension γ(i) is slightly larger than 0.

There are also combinations of these phenomena, places where spacetime becomes

macroscopic in some dimensions and goes to an exceptional point in other dimensions.

These are the circumstances under which large distance spacetime wave modes get small

nonzero masses m(i).

Call the singular locus the entire submanifold M(∞) where some generically nonzero

anomalous dimensions γ(i) go to zero, where some generically irrelevant scaling fields

φi(z, z̄) become marginal. The singular locus includes the locus of decompactification.

Almost marginal coupling constants λi occur in the spacetimes which lie near the singular

locus.

When the almost marginal coupling constants λi are set fluctuating, the manifold of

spacetimes M(∞) is thickened near the singular locus. Near the singular locus, the man-

ifold M(∞) is extended in the directions parametrized by the slightly irrelevant coupling

constants λi.

4.3 Gaussian fluctuations of quasi-marginal sources

The short distance effects of a degenerating local handle must be re-calculated, to include

the scaling fields that are slightly irrelevant. The reference spacetime is still assumed to be

in M(∞). The general nonlinear model is still assumed to be scale invariant. Again, the

integral over the handle thickness parameter |q| in equation (3.1) is bounded below by the

two dimensional cutoff |q|1/2 > Λ−10 , and above by the separation between the endpoints of

the handle, |q|1/2 < |z1 − z2|. The complete short distance contribution of the local handle,
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after integrating over the parameter q, is the bi-local insertion

1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
φi(z1, z̄1)T g

ij

[

(µ2 |z1 − z2|
2)γ(i) − (µ2Λ−20 )γ(i)

γ(i)

]

φj(z2, z̄2) .

(4.9)

The indices i, j now range over the entire collection of marginal and slightly irrelevant spin

0 scaling fields. The logarithmic divergence appears in the limit γ(i)→ 0.

To cancel the effects of the degenerating local handle, again insert local sources λi(z, z̄)

in the worldsurface,

e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (4.10)

and again set the sources fluctuating with a gaussian propagator, which now is

〈

λi(z1, z̄1) λ
j(z2, z̄2)

〉

= T gij

[

(µ2Λ−20 )γ(i) − (µ2 |z1 − z2|
2)γ(i)

γ(i)

]

. (4.11)

This gaussian propagator is scale invariant, given that λi has scaling dimension −γ(i).

Only the additive normalization constant depends on Λ−10 .

Even though the lambda fields are not all dimensionless, their fluctuations are still

described by a two dimensional nonlinear model. But now the metric coupling of the

nonlinear model depends on the two dimensional distance. At distances |z1 − z2| close to

Λ−10 , the lambda propagator, equation (4.11), is approximately

〈

λi(z1, z̄1)λ
j(z2, z̄2)

〉

≈ −T gij (µΛ−10 )2γ(i) ln(Λ2
0 |z1 − z2|

2) . (4.12)

This is the gaussian propagator of a nonlinear model with a metric coupling

T−1gij(Λ0) = (Λ0µ
−1)2γ(i) T−1gij (4.13)

that varies with the two dimensional distance Λ−10 .

Now consider the lambda propagator at a two dimensional distance Λ−1 longer than

Λ−10 but still much shorter than µ−1. For |z1 − z2| near Λ
−1, the lambda propagator is

〈

λi(z1, z̄1)λ
j(z2, z̄2)

〉

≈ −T gij (µΛ−1)2γ(i) ln(Λ2 |z1 − z2|
2) +

+T gij

[

(µ2Λ−20 )γ(i) − (µ2Λ−2)γ(i)

γ(i)

]

. (4.14)

After the constant term is subtracted, this is the gaussian propagator of a nonlinear model

with metric coupling

T−1gij(Λ) = (Λµ−1)2γ(i) T−1gij . (4.15)

The constant term

T gij

[

(µ2Λ−20 )γ(i) − (µ2Λ−2)γ(i)

γ(i)

]

= T gij

[

e−2L
2
0γ(i) − e−2L

2γ(i)

γ(i)

]

(4.16)

makes a contribution to the renormalization of the effective lambda model, and to the

renormalization of the effective general nonlinear model. For spacetime wave modes λi at
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spacetime distances lying between L0 and L, L2γ(i) is small and L2
0γ(i) is large, so the

constant term is

−T gij
1

γ(i)
. (4.17)

Except for the minus sign, this is the tree-level spacetime propagator for the wave modes

at distances between L0 and L. The minus sign is there because, as the two dimensional

distance increases from Λ−10 to Λ−1, the wave modes from spacetime distance L0 down to

L are being integrated in. String theory works in the opposite direction, from L to L0. In

string theory, spacetime wave modes are integrated out by making contractions using the

spacetime propagator, with positive sign. The difference in sign expresses the cancelling

between lambda fluctuations and worldsurface handles. Integrating out the spacetime wave

modes from L up to L0 undoes the integrating in that is done in the lambda model, goint

from L0 down to L.

When the characteristic two dimensional distance increases from Λ−10 to Λ−1, the

lambda propagator becomes

T gij (µΛ−1)2γ(i)

[

1− (Λ2 |z1 − z2|
2)γ(i)

γ(i)

]

(4.18)

while, in the handle insertion, the coefficient of the scaling fields

T gij (µΛ−1)2γ(i)

[

(Λ2 |z1 − z2|
2)γ(i) − 1

γ(i)

]

. (4.19)

Comparing the two expressions shows that the string worldsurface is at two dimensional

distances longer than Λ−1, while the lambda model operates at two dimensional distances

shorter than Λ−1. The handle insertion makes sense in the regime |z1 − z2| > Λ−1, where

handles contribute positively. In the short distance regime, |z1 − z2| < Λ−1, the handle in-

sertion is defined only by analytic continuation. On the other hand, the lambda propagator

makes sense for |z1 − z2| < Λ−1. There are fluctuations at all two dimensional distances

y from Λ−10 up to Λ−1. The fluctuations contribute positively to the lambda correlations

when y > |z1 − z2|

〈

λi(z1, z̄1) λ
j(z2, z̄2)

〉

=

∫ Λ−1

Λ−10

dy
2

y
θ(y − |z1 − z2|)T g

ij (µy)2γ(i) . (4.20)

This formula for the lambda propagator parallels the integral over handle thickness. It

exhibits the lambda fluctuations as a random process indexed by the two dimensional

distance,

λi(z, z̄) =

∫ Λ−1

Λ−10

dy λi(y, z, z̄) (4.21)

〈

λi(y1, z1, z̄1) λ
j(y2, z2, z̄2)

〉

= θ(y1 − |z1 − z2|) δ(y1 − y2)T g
ij (µy1)

γ(i) (µy2)
γ(j) . (4.22)

The lambda propagator is defined for |z1 − z2| > Λ−1 only by continuation.
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The gaussian fluctuations are generated by inserting into the general nonlinear model

of the worldsurface a functional integral over the sources λi(z, z̄),
∫

Dλ e−
∫

d2z 1
2π

T−1gij(Λ) ∂λ
i ∂̄λj e−

∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) . (4.23)

This is the gaussian approximation to a nonlinear model whose metric coupling is explicitly

scale dependent.

The gaussian fluctuations of the lambda field λi(z, z̄) at two dimensional distance Λ−1

are suppressed by the factor

(µΛ−1)γ(i) = e−L
2γ(i) (4.24)

which is just the suppression of the irrelevant coupling constants in the renormalized general

nonlinear model of the worldsurface. Only the quasi-marginal coupling constants fluctuate

significantly, the coupling constants λi with L2γ(i) not larger than, say, 400. These are the

coupling constants that parametrize the extension of M(∞) into M(L). The spacetime

wave modes are cut off in the ultraviolet. The spacetime wave modes λi fluctuate only at

characteristic spacetime distances L(i), given by L(i)2 = 1/γ(i), that are larger than the

ultraviolet spacetime distance L/20.

The fluctuations of the quasi-marginal coupling constants λi extend the target manifold

of the lambda model fromM(∞) into M(L). The target manifold becomes the manifold of

spacetimes M(L), which is a thickening of the manifold of spacetimes M(∞) near the locus

of decompactification, and near the rest of the singular locus. The thickening is controlled

in the spacetime ultraviolet at spacetime distance L. The control is in place before λ is set

fluctuating, having been provided by the renormalization of the general nonlinear model.

The thickening is suppressed away from the singular locus by the renormalization of the

general nonlinear model. Away from the singular locus, the target manifold of the lambda

model is simply M(∞). The meaning of away from is set by the spacetime distance L,

which derives from the ratio µΛ−1 of the two dimensional distances in the renormalization

of the general nonlinear model. The meaning of near the locus of decompactification is set

by the spacetime distance L. A macroscopic spacetime is a spacetime of linear size much

larger than L.

Once the fluctuations of the quasi-marginal coupling constants λi extend away from

M(∞) into M(L), the cancelling mechanism must act in any spacetime λ in M(L). The

cancelling mechanism must act on worldsurfaces described by general nonlinear models

that are not exactly scale invariant. In retrospect, it was an oversimplification to start the

analysis of the string theory divergence in a spacetime λ1 that was an exact solution of

β = 0. At the nonzero two dimensional cutoff distance Λ−10 , the possible general nonlinear

models form the manifold M(L0). The initial spacetime λ1 should have been chosen from

the manifold of spacetimes M(L0).

4.4 The full lambda model

Reconsider the gaussian fluctuations in a spacetime inM(∞), described by equation (4.23).

Define running coupling constants

λir = (µ−1Λ)γ(i)λi (4.25)
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which couple to scaling fields

φΛi (z, z̄) = (µΛ−1)2+γ(i) φi(z, z̄) (4.26)

which are normalized at two dimensional distance Λ−1. The gaussian fluctuations at dis-

tance Λ−1 take the form
∫

Dλre
−

∫

d2z 1
2π

T−1gij∂λ
i
r ∂̄λ

j
re−

∫

d2zΛ2 1
2π

λir(z,z̄)φ
Λ
i (z,z̄) (4.27)

which is the same at every two dimensional distance Λ−1. This is the generalized scale

invariance of the lambda model, in the gaussian approximation.

The effects of the local handle also take the same form at every two dimensional

distance Λ−1, when the states flowing through the ends of a handle are represented by

the scaling fields φΛi . The handle gluing matrix takes the same form T gij at every two

dimensional distance Λ−1. The bi-local handle insertion for |z1 − z2| near Λ
−1 is

1

2

∫

d2z1 Λ
2 1

2π

∫

d2z2 Λ
2 1

2π
φΛi (z1, z̄1)T g

ij ln(Λ2 |z1 − z2|
2)φΛj (z2, z̄2) (4.28)

at every two dimensional distance Λ−1.

Now consider a spacetime λ1 in M(L). The general nonlinear models in M(L) near

λ1 are parametrized by the quasi-marginal coupling constants λi. The general nonlinear

model near λ1 is given by the insertion

e−
∫

d2z µ2 1
2π

λiφi(z,z̄) (4.29)

which is interpreted as a perturbation of the general nonlinear model λ1 with coefficients

λi − λi1,

e−
∫

d2z µ2 1
2π

λi1φi(z,z̄) e−
∫

d2z µ2 1
2π

(λi−λi1)φi(z,z̄) . (4.30)

The renormalized general nonlinear model at short two dimensional distance Λ−1 de-

pends on Λ−1 only through the running coupling constants λir(Λ/µ, λ), which satisfy the

full renormalization group equation

Λ
∂

∂Λ/µ,λ
λir = βi(λr) . (4.31)

The running coupling constants couple to the two dimensional quantum fields φΛ
i (z, z̄) that

are normalized at the short two dimensional distance Λ−1. The general nonlinear models

are equally well described by insertion of the running coupling constants

e−
∫

d2z µ2 1
2π

λiφi(z,z̄) = e−
∫

d2z Λ2 1
2π

λir φ
Λ
i (z,z̄) . (4.32)

The scale dependence of the renormalized general nonlinear model is expressed by the full

renormalization group equation

(

Λ
∂

∂Λ/λr
+ βi(λr)

∂

∂λir

)

e−
∫

d2zΛ2 1
2π

λir φ
Λ
i (z,z̄) = 0 . (4.33)

– 53 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

Once the quasi-marginal coupling constants λi are set fluctuating locally in two dimen-

sions, there will be local fluctuations into spacetimes where the general nonlinear model of

the worldsurface is not scale invariant. The effect of a local handle in that region of the

worldsurface is a bi-local insertion of local fields in the scale non-invariant general nonlinear

model.

Consider a general nonlinear model λ1 in M(L). At two dimensional distances close

to Λ−1, the departure from scale invariance is slight, because the quasi-marginal coupling

constants are nearly marginal. The departure from scale invariance becomes significant

only over a range of two dimensional distances. The analysis of the effects of a local handle

at |z1 − z2| near Λ−1 is just as in an exactly scale invariant worldsurface. The general

nonlinear model λ1 is described at two dimensional distance Λ−1 by the running coupling

constants

λi1,r = λir(µΛ
−1, λ1) . (4.34)

The effects of the local handle are given by the bi-local insertion

1

2

∫

d2z1 Λ
2 1

2π

∫

d2z2 Λ
2 1

2π
φΛi (z1, z̄1)T g

ij(λ1,r) ln(Λ
2 |z1 − z2|

2)φΛj (z2, z̄2) (4.35)

where T gij(λ1,r) is the handle gluing matrix at two dimensional distance Λ−1 in the space-

time λ1.

The gaussian mechanism that cancels the effects of the handle consists of sources

λir(z, z̄) fluctuating in two dimensions around the constant values λi1,r,

∫

Dλr e
−

∫

d2z 1
2π

T−1gij(λ1,r) ∂λir ∂̄λ
j
r e−

∫

d2zΛ2 1
2π

λir(z,z̄)φ
Λ
i (z,z̄) (4.36)

where the metric coupling T−1gij(λ1,r) is the inverse of the handle gluing metric at two

dimensional distance Λ−1 in the spacetime λ1.

It remains to patch together the collection of gaussian functional integrals, consistently,

over the manifold of spacetimes M(L). Again, the interactions are completely determined

by the collection of gaussian functional integrals around the points λ1 in M(L), and by

the condition that the interactions be coherent under shifting of the origin of coordinates

in M(L). Again, the model is a nonlinear model. The target manifold is M(L). The

fields of the nonlinear model are the maps λr(z, z̄) from the worldsurface to the manifold

of spacetimes M(L).

The nonlinear model, the lambda model, is the functional integral over maps λr(z, z̄)

∫

Dλre
−S(λr) e−

∫

d2zΛ2 1
2π

λir(z,z̄)φ
Λ
i (z,z̄) (4.37)

with action

S(λr) =

∫

d2z
1

2π
T−1gij(λr) ∂λ

i
r ∂̄λ

j
r . (4.38)

Again, the coherence condition on the local fluctuations avoids a laborious calculation of

the effects of collisions of multiple handles in a fixed spacetime.
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The lambda model is manifestly scale invariant in the generalized sense, as written in

terms of the field λr(z, z̄). Re-written in terms of the field λ(z, z̄), the lambda model is

∫

Dλe−S(Λ,λ) e−
∫

d2z µ2 1
2π

λi(z,z̄)φi(z,z̄) (4.39)

S(Λ, λ) =

∫

d2z
1

2π
T−1gij(Λ, λ) ∂λ

i ∂̄λj . (4.40)

The metric coupling depends on the two dimensional distance Λ−1, but only through a

transformation of the target manifold

T−1gij(Λ, λ) =
∂λkr
∂λi

T−1gkl(λr)
∂λlr
∂λj

. (4.41)

The metric coupling satisfies the natural renormalization group equation
(

Λ
∂

∂Λ
+ β∗

)

T−1gij(Λ, λ) = 0 (4.42)

where

β∗(T
−1gij) = βk∂k(T

−1gij) + (∂iβ
k)T−1gkj + T−1gik (∂jβ

k) (4.43)

is the infinitesimal change of the metric coupling under the flow generated by the vector

field βi(λ).

The generalized scale invariance of the full lambda model is of course consistent with

the generalized scale invariance of the gaussian fluctuations around a scale invariant general

nonlinear model. There, the linearized beta function is

βi(λ) = γ(i)λi + · · · (4.44)

and the infinitesimal equation for generalized scale invariance is
(

Λ
∂

∂Λ
+ γ(i) + γ(j)

)

T−1gij(Λ) = 0 (4.45)

in the gaussian approximation.

The lambda model differs from the nonlinear models with generalized scale invariance

as originally contemplated [1, 2, 3], in that the classicalmetric coupling of the lambda model

depends nontrivially on the two dimensional distance. The flow on the target manifold,

generated by the vector field β i(λ), is present already in the classical lambda model, instead

of arising from the quantum corrections.

Given βi(λ), the metric coupling T−1gij(Λ, λ) can be determined entirely from its

value at one specific short two dimensional distance, for example its value T −1gij(Λ0, λ) at

two dimensional distance Λ−10 , by integrating the renormalization group equation (4.42).

The data that gives the couplings of the lambda model can be determined entirely at

small two dimensional distance in the renormalized general nonlinear model. The long two

dimensional distance µ−1 enters only in the determination of the target manifold M(L),

by the decoupling of the irrelevant coupling constants in the renormalization of the general

nonlinear model.
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The lambda model is formulated at each two dimensional distance Λ−1 as a nonlinear

model whose metric coupling depends on Λ−1. The metric coupling at two dimensional

distance Λ−1 governs the fluctuations of the lambda field λ(z, z̄) at that distance. The

lambda model is built up incrementally in the two dimensional distance, from the cutoff Λ−10

to longer two dimensional distances Λ−1, using the nonlinear model at each distance to make

the next incremental step. The building of the lambda model expresses the fundamental

principle of renormalization, that information propagates locally in the distance scale.

4.5 Identification of the metric coupling

The metric coupling T−1gij of the lambda model is defined as the inverse of the handle

gluing matrix, T gij , because the lambda model is designed to cancel the effects of the local

handles. But the handle gluing matrix is not a directly accessible object in the general

nonlinear model of the worldsurface. For calculation, it is useful to express the handle

gluing matrix in terms of more usual field theory quantities.

First consider a scale invariant general nonlinear model. Make a worldsurfurce by

connecting a pair of 2-spheres to each other by a handle. This worldsurface is equivalent

to a single 2-sphere. Place a scaling field φi(z1, z̄1) in one of the 2-spheres, and a second

scaling field φj(z2, z̄2) in the other 2-sphere. Calculate the partition function function of

the worldsurface, summing over scaling fields at the ends of the handle, at points z3 and

z4. Schematically, the result is

Z 〈φi(1) φk(3) 〉 T g
klZ 〈φl(4) φj(2)〉 . (4.46)

This can also be calculated as the partition function of the single 2-sphere containing the

two scaling fields,

Z 〈φi(1) φj(2)〉 . (4.47)

The equivalence of the two calculations implies that the metric coupling is identical to the

un-normalized two point expectation value of the scaling fields at separation |z1−z2| = µ−1,

T−1gij = Z 〈φi(z1, z̄1) φj(z2, z̄2) 〉 . (4.48)

The two point expectation value at arbitrary separation is

Z 〈φi(z1, z̄1)φj(z2, z̄2) 〉 = T−1gij(µ |z1 − z2|)
−2−γ(i)−2−γ(j) . (4.49)

The scale-dependent metric T−1gij(Λ) is given by the two point expectation value at sep-

aration |z1 − z2| = Λ−1

T−1gij(Λ) = Z 〈φi(z1, z̄1)φj(z2, z̄2) 〉 (µ
−1Λ)4 (4.50)

T−1gij = Z
〈

φΛi (z1, z̄1) φ
Λ
j (z2, z̄2)

〉

. (4.51)

These un-normalized expectation values are normalized to geive ordinary expectation

values. The normalizing factor is the partition function without insertions

Z 〈1〉 = T−1 (4.52)
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which is the factor T−1 in the metric coupling T−1gij . The normalized metric gij is identical

to the normalized two point expectation value

gij =
〈

φΛi (z1, z̄1)φ
Λ
j (z2, z̄2)

〉

(4.53)

at |z1 − z2| = Λ−1. Equivalently, the normalized metric is the coefficient of the identity

operator in the operator product expansion

φΛi (z1, z̄1)φ
Λ
j (z2, z̄2) = (Λ |z1 − z2|)

−2−γ(i)−2−γ(j)gij 1 + · · · . (4.54)

When the spacetime is macroscopic, it makes sense to calculate the volume V of

spacetime, which is a large number. The spacetime coupling constant gs in the macroscopic

spacetime is given by

T−1 = g−2s V . (4.55)

The number V is the factor in the partition function Z 〈1〉 that comes from the integral

over the zero mode of the worldsurface position xµ(z, z̄) in the macroscopic spacetime. The

metric coupling at the macroscopic spacetime is written

T−1gij = g−2s V gij . (4.56)

The metric V gij is properly normalized to be a local inner product on the wave modes of

the spacetime fields, an integral over the macroscopic spacetime of a product of the two

spacetime wave modes.

From the two dimensional point of view, the metric coupling should be written T −1gij ,

because this form makes sense in the general spacetime, macroscopic or not. The form

g−2s V gij only makes sense when there is a macroscopic spacetime, in which case it is the

appropriate form for expressing effects that are local in the macroscopic spacetime.

Now consider a general spacetime λ in M(L). The general nonlinear model λ is not

scale invariant. Again, the departure from scale invariance is not significant at two dimen-

sional distances |z1 − z2| close to Λ−1. The argument identifying the gluing matrix can be

repeated, since it depends only on the properties of the worldsurface at two dimensional

distance Λ−1, where the worldsurface appears scale invariant to a first approximation. The

metric coupling at two dimensional distance Λ−1, the inverse of the handle gluing matrix,

is again identified with T−1 times the coefficient of the identity in the operator product at

|z1 − z2| = Λ−1,

φΛi (z1, z̄1)φ
Λ
j (z2, z̄2) = gij(λr) 1 + · · · . (4.57)

The metric coupling is also again given by the un-normalized two point expectation value

at |z1 − z2| = Λ−1

T−1gij(λr) = Z
〈

φΛi (z1, z̄1)φ
Λ
j (z2, z̄2)

〉

(4.58)

but this formula obscures the crucial point that the metric coupling T −1gij(λr) is a purely

short distance property of the worldsurface, because its inverse, the handle gluing matrix,

is a purely short distance property of the worldsurface.
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Except for the factor T−1, the metric coupling T−1gij(λr), defined as the inverse of the

handle gluing matrix, is identified with the intrinsic metric on the space of two dimensional

quantum field theories used to prove the gradient property of β i(λ) [11, 12].

T is taken to be a fixed number. It will have to be fixed at an extremely small numerical

value, if the volume V of macroscopic spacetime is to turn out proportional to T −1. I leave

untouched the question of whether the value of T is fixed by a dynamical mechanism within

the lambda model.

5. d = 2 + ε dimensions

The first step in calculating the quantum corrections to the scaling behavior of the lambda

model is to calculate the scale variation of the renormalized general nonlinear model in the

presence of sources λi(z, z̄) at a short two dimensional distance Λ−1. The method is to

calculate to second order in the sources, in an arbitrary spacetime λ1 in M(L), then patch

together the results to get the result.

First assume a spacetime in M(∞). The general nonlinear model is scale invariant.

Insert sources λi(z, z̄). If the sources were constant, there would be no dependence on Λ−1.

Renormalization eliminates all dependence on the short two dimensional distance. The

variation with respect to Λ−1 depends only on the derivatives of the sources λi(z, z̄).

The calculation is done to second order in the sources, keeping only terms containing

derivatives of the sources, giving

Λ
∂

∂Λλ
e−

∫

d2z µ2 1
2π

λiφi =

∫

d2z
1

2π

(

−
1

2
T

)

T−1gij(Λ) ∂λ
i ∂̄λj . (5.1)

The computation is

Λ
∂

∂Λ /λ

1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
θ(|z1 − z2| − Λ−1) λi(1)λj(2)φi(1)φj(2) =

=
1

2

∫

d2z1 µ
2 1

2π

∫

d2z2 µ
2 1

2π
Λ−1δ(|z1 − z2| − Λ−1)×

×λi(1)λj(2)gij(µ |z1 − z2|)
−2−γ(i)−2−γ(j)

=

∫

d2z
1

2π

(

−
1

2

)

(Λµ−1)γ(i)+γ(j)gij ∂λ
i ∂̄λj

=

∫

d2z
1

2π

(

−
1

2
T

)

T−1gij(Λ) ∂λ
i ∂̄λj . (5.2)

The two scaling fields φiφj are replaced by their expectation value because all other oper-

ators that contribute to the product are down by powers of Λ−1. The sources are assumed

to vary only locally in two dimensions, which allows integration by parts.

Rewritten in terms of the running coupling constants λir, and the sources λir(z, z̄), the

scale variation is

D = Λ
∂

∂Λ/λ
= Λ

∂

∂Λ /λr
+ βi(λr)

∂

∂λir
. (5.3)

D e−
∫

d2zΛ2 1
2π

λirφ
Λ
i =

∫

d2z
1

2π

(

−
1

2
T

)

T−1gij ∂λ
i
r ∂̄λ

j
r . (5.4)
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Next, the calculation is repeated for a general nonlinear model λ1 in M(L), using

the approximate scale invariance at two dimensional distances |z1 − z2| near Λ−1. Then

the quadratic calculations are patched together coherently over M(L) to get the full scale

variation formula

D e−
∫

d2z Λ2 1
2π

λir(z,z̄)φ
Λ
i (z,z̄) = e−

∫

d2zΛ2 1
2π
λir(z,z̄)φ

Λ
i (z,z̄) ×

×

∫

d2z
1

2π

(

−
1

2
T

)

T−1gij(λr) ∂λ
i
r ∂̄λ

j
r . (5.5)

The result is a correction to the metric coupling T −1gij(λr) of the lambda model, which is

proportional to the metric coupling itself, with a coefficient T/2. That is, the entire effect

of the general nonlinear model on the scaling behavior of the lambda model is to give the

metric coupling a scaling dimension of T/2.

If the lambda model were continued from two dimensions to dimension d = 2 + T/2,

the same effect would be obtained. The metric coupling of a nonlinear model in d = 2 + ε

dimensions has scaling dimension ε.

The general nonlinear model can now be dispensed with. The lambda model interacting

with the general nonlinear model is equivalent to the lambda model by itself in dimension

2 + T/2. This technical device gives a way to avoid the technical difficulty of calculating

properties of the general nonlinear model in the presence of sources when the lambda field

λ(z, z̄) makes large excursions in the manifold of spacetimes.

6. A formula for S(λ)

6.1 The global scale variation formula

The scale variation of the general nonlinear model in the presence of sources, equation (5.5),

gives a formula for the action functional S(λr) of the lambda model,

− 2T−1De−
∫

d2z Λ2 1
2π

λirφ
Λ
i = e−

∫

d2z Λ2 1
2π

λirφ
Λ
i S(λr) . (6.1)

Calculating S(λr) from the scale variation of the general nonlinear model is equivalent

to calculating the short distance effects of the local handle, then designing the lambda

propagator to cancel those effects, then finding the action S(λr) that produces the needed

lambda propagator. The equivalence between the two procedures for finding S(λr) rests on

the identification of the handle gluing matrix T gij with the inverse of the un-normalized

2-point expectation value of the fields φi.

This is only a formula for S(λr). It does not explain the lambda model as a mechanism.

The scale variation formula only happens to give the same result as the handle calculation.

But such a simple expression as equation (6.1) for the action of the lambda model invites

speculation that the formula has a deeper explanation. Perhaps there is a way of writing

the integral over string worldsurface parameters which makes it obvious that the effects of

local handles are cancelled by the lambda model as defined by the scale variation formula.

Perhaps there is a more complete model of the string worldsurface in which the lambda

model does not have to be inserted by hand, but arises automatically.
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Such speculations are not immediately useful. For now, it is enough to design the

lambda model in order to cancel the local handles, and use the scale variation formula as

an effective way to calculate the action functional S(λr) from the short distance properties

of the general nonlinear model.

6.2 The local scale variation and the gradient property

Let the characteristic two dimensional distance Λ−1 vary in two dimensions, defining a

riemannnian metric

ds2 = Λ(z, z̄)2 |dz|2 (6.2)

with scalar curvature density

Λ2R2(Λ)(z, z̄) = −4∂∂̄ ln(Λ2) . (6.3)

The general nonlinear model is renormalized locally in each two dimensional neighborhood.

The renormalization depends covariantly on the two dimensional riemannian metric. The

characteristic short two dimensional distance is Λ(z, z̄)−1 at the point z.

The local scale derivative is

D(z, z̄) = Λ(z, z̄)
∂

∂Λ(z, z̄)/λr
+ βi(λr(z, z̄))

∂

∂λir(z, z̄)
(6.4)

D =

∫

d2z D(z, z̄) . (6.5)

The local scale variation of the general nonlinear model must be dimensionless, it must

be covariant in the two dimensional metric, it must be a local functional of Λ(z, z̄) and

λr(z, z̄), and it must vanish if both Λ(z, z̄) and λr(z, z̄) are locally constant. It must take

the form

D(z, z̄) e−
∫

Λ2 1
2π

λirφ
Λ
i = e−

∫

Λ2 1
2π

λirφ
Λ
i × (6.6)

×
1

2π

(

−
1

2
T

)[

T−1gij(λr)∂λ
i
r∂̄λ

j
r −

1

4
Λ2R2(Λ)T

−1a(λr)

]

where T−1a(λr) is some function on M(L).

The local scale derivatives commute,

[D[ε1], D[ε2] ] = 0 (6.7)

where

D[ε] =

∫

d2z ε(z, z̄)D(z, z̄) . (6.8)

The commutator of two local scale derivatives acting on the general nonlinear model is

[D[ε1], D[ε2] ]e
−

∫

Λ2 1
2π
λirφ

Λ
i = (6.9)

= e−
∫

Λ2 1
2π
λirφ

Λ
i
1

2
T

∫

d2z
1

2π

{

(ε1∂ε2 − ε2∂ε1)[β
iT−1gij(λr)∂̄λ

j
r − ∂̄T

−1a(λr)] +

+
[

∂λir T
−1gij β

j(λr)− ∂ T
−1a(λr)

]

(ε1∂̄ε2 − ε2∂̄ε1)

}

– 60 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

This must vanish, because the local scale derivatives commute, so

0 = βi T−1gij(λr) ∂̄λ
j
r − ∂̄ T

−1a(λr) (6.10)

0 = ∂λir T
−1gij β

j(λr)− ∂ T
−1a(λr) . (6.11)

The function T−1a(λr) depends only on λr, so

0 = βi T−1gij − ∂j(T
−1a) (6.12)

0 = T−1gij β
j − ∂i(T

−1a) (6.13)

proving that the vector field β i on M(L) is the gradient of the function T−1a with respect

to the metric T−1gij . The function T−1a(λr) is the potential function.

This proof of the gradient property, using the commutativity of the local scale deriva-

tives, is equivalent to the original proof [11, 12]. The first attempts to show the gradient

property of the beta function of the general nonlinear model failed because the dilaton cou-

plings were missing from the general nonlinear model [1, 2, 3]. Given the dilaton couplings

to the two dimensional scalar curvature [9], the gradient property of β i(λ) was shown by

direct calculation, in the limit of large target spacetime [10]. The beta function β i(λ) was

shown to be the gradient of the classical spacetime field theory action that reproduced the

large distance tree-level string scattering amplitudes. That same spacetime field theory

action had been identified with the coefficient of the two dimensional scalar curvature in

the local scale variation of the general nonlinear model [9]. The proof of the gradient

property [11, 12] can be interpreted as an explanation of the coincidence between the cal-

culations [9, 10] which found the same spacetime field theory action both as the coefficient

of R2 in the scale variation and as the potential function whose gradient was β i(λ). The

proof [11, 12] was based on the axiomatic properties of two dimensional quantum field

theory. It introduced an intrinsic metric to the space of two dimensional quantum field

theories, gij(λr), rather than the ad hoc metric defined on the spacetime wave modes that

was used previously [1, 2, 3, 10]. The present version of the proof, using the commutativity

of the local scale derivatives acting on the general nonlinear model, displays the historical

genesis of the proof. The present version of the proof is particularly suited to the general

nonlinear model at nonzero two dimensional distance Λ−1, where the general nonlinear

model is parametrized by slightly irrelevant coupling constants. The axiomatics of two

dimensional quantum field theory do not quite apply.

6.3 The local scale variation formula

The local scale variation gives a formula for the covariant action density of the lambda

model

− 2T−1D(z, z̄)e−
∫

Λ2 1
2π

λirφ
Λ
i = e−

∫

Λ2 1
2π

λirφ
Λ
i L(λr)(z, z̄) (6.14)

L(λr)(z, z̄) =
1

2π

[

T−1gij(λr) ∂λ
i
r ∂̄λ

j
r −

1

4
Λ2R2(Λ)T

−1a(λr)

]

(6.15)

S(λr) =

∫

d2z L(λr)(z, z̄) . (6.16)
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The renormalization of the general nonlinear model guarantees that the metric coupling

T−1gij(λr) and the potential function T−1a(λr) depend on the two dimensional distance

Λ−1 only through the running couplings λir.

This is the locally scale invariant form of a nonlinear model with generalized scale

invariance [10]. The local scale variation of the action

D(z, z̄) S(λr) =
1

2π

[

β∗T
−1gij(λr)∂λ

i
r∂̄λ

j
r −

1

4
Λ2R2(Λ)β

k∂kT
−1a(λr)

]

. (6.17)

is equivalent to the local change in the couplings T −1gij and T
−1a that is produced by the

flow along the vector field β i(λ) in the target manifold. The potential function T −1a(λr)

plays the role that the dilaton potential plays in the general nonlinear model [9, 10].

The local scale variation formula, equation (6.14), gives an effective method to calculate

the metric coupling T−1gij(λr) and the potential function T−1a(λr), the couplings of the

locally covariant lambda model. This data determines the couplings of the lambda model

at every short two dimensional distance Λ−1.

7. The a priori measure

A nonlinear model such as the lambda model is specified by two pieces of data, the metric

coupling, which is a riemannian metric on the target manifold, and the a priori measure

which is a measure on the target manifold [1, 2, 3]. In the functional integral, equa-

tion (4.39), defining the lambda model

∫

Dλ e−S(Λ,λ) e−
∫

d2z µ2 1
2π

λiφi (7.1)

the functional measure Dλ on the lambda fields is formally a product over the points (z, z̄)

of the worldsurface, at characteristic two dimensional distance Λ−1,

Dλ =
∏

(z,z̄)

dρ(Λ, λ(z, z̄)) (7.2)

where the measure at each point

dρ(Λ, λ(z, z̄)) = dvol(Λ, λ(z, z̄)) ρ(Λ, λ(z, z̄)) (7.3)

is the a priori measure, written as the metric volume element dvol(Λ, λ) associated to the

metric coupling T−1gij(Λ, λ) multiplied by a function ρ(Λ, λ).

The a priori measure of the lambda model is a normalized measure on the manifold of

spacetimes M(L). It describes the distribution of fluctuations at two dimensional distances

shorter than Λ−1. It is dynamically determined, fixed by the two dimensional generalized

scale invariance of the lambda model.
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More concretely, the a priori measure governs the values of the lambda field at short

distance on the worldsurface. The a priori measure at two dimensional distance scale Λ−1

is the distribution of the values of the field λ(z, z̄). For any function f(λ) on the manifold

of spacetimes M(L),
∫

dρ(Λ, λ) f(λ) = 〈 f(λ(z, z̄)) 〉 (7.4)

where the expectation value is in the functional integral over all lambda fluctuations at

two dimensional distances up to Λ−1.

The calculations of the a priori measure in this section will be tree-level calculations,

done at leading order in T , ignoring quantum corrections. The same calculations will be

used, in the same form, in section 8.4 below, to find the effective a priori measure of the

effective lambda model, which includes the quantum corrections.

7.1 Diffusion in λ

The a priori measure of a scale invariant nonlinear model is completely determined by

the renormalization group of the model. As the two dimensional distance Λ−1 increases,

the a priori measure diffuses outward in the target manifold, because of the fluctuations.

The a priori measure is built outward from short two dimensional distance towards longer

distance, as the fluctuations at longer distances are added in. If the nonlinear model

is scale invariant, then the a priori measure diffuses to the equilibrium measure of the

diffusion process. It does not matter what arbitrary measure is used for the a priori

measure at the cutoff two dimensional distance Λ−10 . The a priori measure will diffuse to

the equilibrium measure at distances Λ−1 much longer than the cutoff. When the cutoff

distance Λ−10 is taken to zero, only the equilibrium a priori measure is visible. In the

lambda model, whose scale invariance is of the generalized kind, the action takes the same

form at every two dimensional distance Λ−1 when expressed in the running variables λir,

so the equilibrium a priori measure takes the same form also when expressed in terms of

the running variables λir.

The diffusion process is calculated in the usual way, expanding to second order about

a reference point λ1 in the target manifold,

f(λ) = f(λ1) + λi∂if(λ1) +
1

2
λiλj∇i∂jf(λ1) + · · · (7.5)

−Λ
∂

∂Λ
〈 f 〉 = −Λ

∂

∂Λ

1

2

〈

λi(z, z̄)λj(z, z̄)
〉

∇i∂jf(λ1)

= T gij(Λ, λ1)∇i∂jf(λ1) . (7.6)

Only the propagator contributes to the scale variation because only two derivatives of the

lambda fields λi(z, z̄) occur in the interaction terms of the nonlinear model. The same

scale variation formula can be obtained by canonically quantizing the lambda model, in

the radial quantization, where the target manifold laplacian operator occurs as the zero

mode piece of the dilation generator.

Patching coherently over the target manifold gives the diffusion equation on expecta-

tion values

−Λ
∂

∂Λ
〈 f 〉 =

〈

T gij(Λ, λ)∇i∂jf
〉

(7.7)
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or, equivalently, the diffusion equation directly on the measure

− Λ
∂

∂Λ /λ
ρ = T gij(Λ, λ)∇i∂jρ . (7.8)

Changing variables to the running coupling constants λir, the a priori measure is rewritten

dvol(λr) ρr(Λ, λr) = dvol(Λ, λ) ρ(Λ, λ) . (7.9)

The diffusion equation, rewritten in the variables λir, is

−Λ
∂

∂Λ
ρr = ∇i

[

T gij(λr)∂j + βi(λr)
]

ρr . (7.10)

As Λ−1 increases, the distribution of fluctuations diffuses outwards on the target mani-

fold, while the running coupling constants are driven by −β i(λr) towards the fixed point

submanifold where β = 0.

Using the gradient property, the diffusion equation is written

−Λ
∂

∂Λ
ρr = ∇i T g

ij
(

∂j + ∂j(T
−1a)

)

ρr . (7.11)

The equilibrium a priori measure is simply

dvol(λr) e
−T−1a(λr) . (7.12)

It satisfies the first order equation

0 = (∂i + T−1gij β
j) e−T

−1a(λr) (7.13)

which is the equation of motion β = 0.

The lambda propagator, normalized at two dimensional distance Λ−1, at a scale in-

variant general nonlinear model, is

〈

λi(1) λj(2)
〉

= T gij

[

(µ2Λ−2)γ(i) − (µ2 |z1 − z2|
2)γ(i))

γ(i)

]

. (7.14)

Evaluating at |z1 − z2| = Λ−10 gives

〈

λi λj
〉

= T gij

[

(µ2Λ−2)γ(i) − (µ2Λ−20 )γ(i))

γ(i)

]

(7.15)

which is the solution of the diffusion equation (7.8) starting at the cutoff distance Λ−10

with initial condition the delta function measure at λi = 0. The integral equation for the

lambda propagator, equation (4.20), is the solution of the diffusion equation.

– 64 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

7.2 Gaussian approximation

The potential function at a scale invariant general nonlinear model has the gaussian ap-

proximation

T−1a(λr) =
1

2
λir T

−1gij γ(i)λ
j
r + · · · (7.16)

which gives the tree-level two point correlation function

〈

λirλ
j
r

〉

= Tgij
1

γ(i)
(7.17)

in the a priori measure. This matches the tree-level one point expectation value of f(λr) =

λirλ
j
r in the lambda model, which is the lambda propagator

〈

λir(1) λ
j
r(2)

〉

= T gij

[

1− (Λ2 |z1 − z2|
2)γ(i))

γ(i)

]

(7.18)

evaluated at |z1 − z2| = 0.

The potential function written in terms of the original renormalized coupling constants

λi is

T−1a(Λ, λ) =
1

2
(µ−1Λ)γ(i) λi T−1gij γ(i) (µ

−1Λ)γ(j)λj + · · · (7.19)

or

T−1a(Λ, λ) =
1

2
eL

2γ(i)λi T−1gij γ(i) e
L2γ(j)λj + · · · (7.20)

which exhibits the spacetime ultraviolet cutoff at γ(i) = L−2, at least in a naive way.

The actual implementation of the ultraviolet cutoff by the renormalization of the general

nonlinear model depends on the decoupling of the L-irrelevant coupling constants in the

interactions. The a priori measure does manifestly accomplish the basic task of keeping the

irrelevant running coupling constants λir from becoming large, which keeps the irrelevant

renormalized coupling constants λi close to zero, which is a necessary condition for the

renormalization to be effective.

7.3 Spacetime quantum field theory

Near a macroscopic spacetime, the manifold of spacetimes M(L) is parametrized by the

spacetime wave modes λir at spacetime distances larger than L. The a priori measure takes

the form of a functional integral over the spacetime wave modes. The potential function

can be written

T−1a(λr) = g−2s V a(λr) (7.21)

where gs is the spacetime coupling constant, and V a(λr) is an integral over spacetime of

a local functional of the spacetime fields. The a priori measure

dvol(λr) e
−g−2s V a(λr) (7.22)

is the functional integral of a spacetime quantum field theory whose classical action is the

potential function g−2s V a(λr), and whose classical equation of motion is β i(λr) = 0. It is
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the gradient property which that the classical action principle and implies that the classical

spacetime equation of motion is β = 0.

It was known by explicit calculation [9, 10] that the potential function T −1a(λr) in

a macroscopic spacetime has the form of a classical action functional of a spacetime field

theory. It was shown [13] that the classical equation of motion β = 0 in a macroscopic

spacetime generates the tree-level string scattering amplitudes at large spacetime distance.

There should be a direct argument from the local scale variation, equation (6.6), showing

that the potential function T−1a(λ) is the generating functional for the tree-level string

scattering amplitudes at large spacetime distance. It should be possible to show directly

that the coefficient of the two dimensional curvature density Λ2R2 in the local scale vari-

ation gives precisely the generating functional for the one particle irreducible tree-level

string scattering amplitudes.

The a priori measure governs the string worldsurface at short distance, which is to

say, roughly, that the a priori measure governs strings when they look like points. In

particular, when a handle degenerates to a node, the two dimensional curvature density

accumulates in a delta-function at the node

1

4π
Λ2R2(Λ) = −2δ

2(z, z̄) (7.23)

containing the contribution −2 to the Euler number of the worldsurface. The covariant

action of the lambda model, equation (6.14), then contains a discrete contribution at the

node which is exactly T−1a(λr). The lambda model therefore inserts the a priori measure

at the node ∫

dvol(λr) e
−T−1a(λr) . (7.24)

The a priori measure thus controls the propagation of strings at large spacetime distance.

There should be a similarly direct, general argument that the a priori measure governs the

large distance string scattering.

8. The effective lambda model

8.1 Se(λe)

Integrating out the fluctuations of the lambda fields at short two dimensional distances

from the cutoff distance Λ−10 up to Λ−1 produces an effective general nonlinear model of

the worldsurface at two dimensional distances longer than Λ−1. The effective model of the

worldsurface is constructed out of two dimensional surface elements at distance Λ−1, so it

depends only on Λ−1 and on effective running coupling constants λie. The effective general

nonlinear model satisfies an effective renormalization group equation

De e
−

∫

d2zΛ2 1
2π

λieφ
Λ,e
i (z,z̄) = 0 (8.1)

De = Λ
∂

∂Λ /λe
+ βie(λe)

∂

∂λie
. (8.2)

The effective model of the worldsurface is still approximately scale invariant at two dimen-

sional distances near Λ−1, so the calculations and arguments can be carried over from the
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general nonlinear model,

De e
−

∫

d2zΛ2 1
2π

λie(z,z̄)φ
Λ,e
i (z,z̄) = e−

∫

d2zΛ2 1
2π

λie(z,z̄)φ
Λ,e
i (z,z̄) ×

×

∫

d2z
1

2π

(

−
1

2
Te

)

T−1e geij(λe) ∂λ
i
e ∂̄λ

j
e . (8.3)

The effective metric T−1e geij(λe) is the inverse of the handle gluing matrix for the effective

model of the worldsurface.

The effective lambda model and the effective model of the worldsurface evolve in

tandem under the two dimensional renormalization group, in the sense that the effective

fluctuations of the lambda fields at each two dimensional distance Λ−1 must automati-

cally cancel the effects of local handles in the effective model of the worldsurface at two

dimensional distance Λ−1. The tandem renormalization principle states that T −1e geij(λe),

obtained from the scale variation of the effective model of the worldsurface, is the effective

metric coupling of the effective lambda model at two dimensional distance Λ−1,

Se(λe) =

∫

d2z
1

2π
T−1e geij(λe) ∂λ

i
e ∂̄λ

j
e . (8.4)

Calculating the scale variation of the effective model of the worldsurface is equivalent to

calculating the effective action Se(λe) of the lambda model,

De e
−

∫

d2zΛ2 1
2π

λie(z,z̄)φ
Λ,e
i (z,z̄) = e−

∫

d2z Λ2 1
2π

λie(z,z̄)φ
Λ,e
i (z,z̄)(−

1

2
Te)Se(λe) . (8.5)

Calculating the local scale variation of the effective model of the worldsurface is equivalent

to calculating the covariant action density of the effective lambda model,

De(z, z̄) = Λ(z, z̄)
∂

∂Λ(z, z̄)/λe
+ βie(λe(z, z̄))

∂

∂λie(z, z̄)
(8.6)

De(z, z̄) e
−

∫

Λ2 1
2π

λieφ
Λ,e
i = e−

∫

Λ2 1
2π

λieφ
Λ,e
i

(

−
1

2
Te

)

Le(λe)(z, z̄) (8.7)

Le(λe)(z, z̄) =
1

2π

[

T−1e geij(λe) ∂λ
i
e ∂̄λ

j
e −

1

4
Λ2R2(Λ)T

−1
e a(λe)

]

(8.8)

Se(λe) =

∫

d2z Le(λe)(z, z̄) . (8.9)

The commutativity of local scale derivatives again implies the gradient property

0 = βie T
−1
e geij − ∂j(T

−1
e ae)

0 = T−1e geij β
j
e − ∂i(T

−1
e ae) . (8.10)

The results of integrating out the lambda fluctuations at two dimensional distances up

to Λ−1 are described by the effective classical action Se(λe) of the effective lambda model.

As before, at an effective spacetime solving βe(λe) = 0, there is a coordinate system of

effective coupling constants λie in which the matrix of effective anomalous dimensions is

diagonalized,

T−1e ae(λe) = T−1e ae(0) +
1

2
λie T

−1
e geij γe(i)λ

j
e + · · · (8.11)

βie(λe) = γe(i)λ
i
e + · · · . (8.12)
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The effective lambda propagator is, as before,

〈

λie(z1, z̄1) λ
j
e(z2, z̄2)

〉

= Te g
ij
e

[

1− (Λ2 |z1 − z2|
2)γe(i)

γe(i)

]

. (8.13)

8.2 Self-sufficiency of the lambda model

For the classical lambda model, the scale variation of the general nonlinear model, equa-

tion (6.14), gives the couplings, the metric coupling T −1gij(λr) and the potential function

T−1a(λr). The scale variation formula gives the same couplings that are derived from the

formulation of the lambda model as the local mechanism that cancels the short distance

effects of local handles.

The effective metric coupling T−1e geij(λe) and the effective potential function T−1e ae(λe)

can be calculated by constructing the effective model of the worldsurface, then taking the

scale variation, equation (8.7). But the calculation can be done in the opposite direction.

The effective lambda model can be constructed, as an autonomous nonlinear model in

2+ ε dimensions. Then the effective scale variation formula, equation (8.7), can be used to

find the short distance properties of the effective model of the worldsurface. In principle,

calculations in the effective model of the worldsurface can be entirely avoided, unless there

is a reason to be interested in string scattering at small spacetime distance.

The manifold of renormalized general nonlinear models define the lambda model. Once

defined, the lambda model becomes self-sufficient. All calculations of large distance physics

can be done entirely within the lambda model. No worldsurface calculations are needed.

On the other hand, it might well be useful to have a second means of calculating the

effective couplings of the lambda model, from the effective model of the worldsurface.

8.3 Tautological scale invariance

The generalized scale invariance of the effective lambda model derives from the existence

of the effective renormalizable model of worldsurface and from the tandem renormalization

property. Enormously strong constraints are put on the renormalization of the lambda

model. The lambda model is not a general nonlinear model. Its target manifold and its

couplings are extremely special, mathematically natural objects. They have remarkable

properties, which are realized in the scale invariance of the effective lambda model.

The scale invariance of the effective lambda model derives from the parametrization of

the effective model of the worldsurface by effective running coupling constants λie, flowing

under an effective renormalization group generated by an effective beta function β ie(λe).

The existence of such a parametrization of the effective general nonlinear model is a conse-

quence of locality in the two dimensional distance scale, by the usual argument of effective

field theory. The processes which accomplish change of two dimensional distance in the

effective model of the worldsurface do not themselves depend on the distance, but depend

only on the effective couplings constants at each distance Λ−1. These processes now in-

clude integrating out the fluctuations of the lambda fields taking values in M(L), using

the effective lambda action given by the scale variation of the effective model of the world-

surface. All dependence on the two dimensional distance is absorbed into a flowing of the
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effective coupling constants λie. All local properties of the effective general nonlinear model

at distance Λ−1, such as the effective metric coupling T−1e geij(λe) and the potential function

T−1ae(λe) depend only on the effective coupling constants, and are independent of the two

dimensional distance Λ−1.

The effective lambda model is tautologically scale invariant. Its scale invariance follows

automatically from its tandem relation to the effective model of the worldsurface.

8.4 The effective a priori measure

The overall distribution of fluctuations in the effective lambda model at distances shorter

than Λ−1 is described by an effective a priori measure on the manifold of spacetimesM(L),

dρe(Λ, λe) = dvole(λe) ρe(Λ, λe) (8.14)
∫

dvole(λe) ρe(Λ, λe)f(λe) = 〈 f(λe(z, z̄)) 〉e (8.15)

where the expectation value is evaluated in the effective lambda model at two dimensional

distance Λ−1.

All the considerations that applied to the classical lambda model carry over to the

effective lambda model. The effective a priori measure satisfies an effective diffusion equa-

tion, which takes the same form as the tree-level diffusion equation. The generalized scale

invariance of the effective lambda model implies that the diffusion equation has stationary

coefficients,

−Λ
∂

∂Λ/λe
ρe(Λ, λe) = ∇e

i

(

Teg
ij
e ∂j + βie

)

ρe

= ∇e
i Teg

ij
e

(

∂j + ∂j(T
−1
e ae)

)

ρe . (8.16)

The effective a priori measure is the equilibrium measure

dvole(λe) e
−T−1e ae(λe) (8.17)

which satisfies the equation of motion βe = 0,

0 =
(

∂i + T−1e geij β
j
e

)

e−T
−1
e ae(λe) . (8.18)

The effective a priori measure is a measure on the manifold of spacetimes M(L). If it

concentrates near a macroscopic spacetime, then it will take the form

dvole(λe) e
−g−2s V ae(λe) (8.19)

which will be an effective quantum field theory of the spacetime physics at distances larger

than L. The gradient property of the effective beta function β ie(λe) implies the quantum

action principle in the spacetime quantum field theory, and the quantum equation of motion

βe = 0.

The effective potential function is the effective classical action of the spacetime quan-

tum field theory. Correlation functions in the a priori measure are classical calculations
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in the effective a priori measure. For example, at an effective spacetime solving βe = 0,

the two-point correlation function in the effective a priori measure is the effective lambda

propagator, equation (8.13), at z1 = z2,

〈

λie λ
j
e

〉

e
= T gije

1

γe(i)
. (8.20)

8.5 Complementarity with effective string theory

The effective a priori measure concentrates at the effective spacetimes λe in M(L) where

βe(λe) = 0. The effective model of the worldsurface is scale invariant. If the spacetime is

macroscopic, then the effective model of the worldsurface can be used to calculate effec-

tive string scattering amplitudes at distances larger than L. The same relation will exist

between the effective string scattering amplitudes and the effective spacetime action as in

the tree-level theory, by the same arguments.

The effective a priori measure of the lambda model is a spacetime quantum field theory.

It describes the spacetime physics at distances larger than L by the effective field equation

βe = 0, just as the uncorrected a priori measure is a classical spacetime field theory

describing the spacetime physics at distances larger than L by the classical field equation

β = 0. The tandem renormalization principle guarantees that the effective spacetime action

is the effective potential function derived from the effective model of the worldsurface, which

is also the generating functional for the effective string scattering amplitudes at spacetime

distances on the order of L. The effective string scattering amplitudes therefore agree with

the scattering amplitudes calculated from the effective spacetime quantum field theory.

Again, in principle there is no need to calculate the effective string scattering ampli-

tudes except as a description of hypothetical physics at small distance in spacetime. The

effective a priori measure can be calculated entirely within the lambda model, and gives

all the large distance physics. In particular, it gives all the large distance string scattering

amplitudes, via the effective spacetime quantum field theory.

Because the lambda model is designed to cancel the effects of local handles, string

theory calculations proceeding from L to larger spacetime distances would reverse the evo-

lution of the a priori measure down from larger spacetime distances to L, if nonperturbative

string theory calculations could be done. In the absence of a nonperturbative formulation

of string theory, all that can be said is that the perturbative evolution of the a priori mea-

sure is consistent with the string loop expansion, calculated using the effective model of

the worldsurface. This will ensure that the effective action of the spacetime quantum field

theories produced by the lambda model depends on the characteristic spacetime distance

L in a way that is consistent with perturbative spacetime quantum field theory, whenever

the perturbative theory is accurate.

At issue is the validity of the strange method by which the lambda model is to build

spacetime quantum field theories. A spacetime quantum field theory, as a measure on the

wave modes of the spacetime fields, is to be built up starting from the wave modes at the

largest spacetime distances. As Λ−1 increases, as L becomes smaller, the spacetime wave

modes at smaller and smaller spacetime distances are gradually included. This is opposite

to the method used by renormalizable spacetime quantum field theory, which builds from
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small spacetime distance to large. The lambda model must be capable of reproducing the

spectacular numerical successes that have been achieved in the real world by perturbative

renormalizable spacetime quantum field theory. The lambda model cannot possibly be

useful unless the method by which it builds spacetime quantum field theory is consistent

with that of perturbative renormalizable spacetime quantum field theory.

9. The fermionic spacetime wave modes

The lambda model needs certain basic capabilities in the general nonlinear model of the

worldsurface. Compact riemannian background spacetimes must be accomodated. There

must be fermionic coupling constants λi on an equal footing with the bosonic λi, so that

the manifold of spacetimes M(L) will be a graded manifold. The a priori measure will

then be a measure on fermionic as well as bosonic spacetime wave modes, which can be

the functional integral of a spacetime quantum field theory containing both bosonic and

fermionic fields.

As far as I know, the only model of the worldsurface that has these capabilities is the

model that is constructed starting with a superconformal worldsurface in which two dimen-

sional super-reparametrization invariance is implemented using worldsurface superconfor-

mal ghost fields [14]. The GSO projection then throws away the two dimensional spinor

fields and the two dimensional supersymmetry, producing a two dimensional conformally

invariant worldsurface. The resulting ordinary, scale invariant model of the worldsurface

is covariant in spacetime. After the GSO projection, the spinor components of the world-

surface superconformal ghost fields are incorporated into the fermionic vertex operators,

which are the two dimensional scaling fields φi(z, z̄) that represent the on-shell fermionic

spacetime wave modes [15]. The GSO projection removes the tachyonic string modes, elim-

inating all scaling fields of scaling dimension less than 2 from flowing through degenerating

handles. The drawback of the covariant worldsurface is the ambiguous characterization

it gives of the two dimensional scaling fields. The scaling fields occur in a multiplicity of

equivalent linear spaces, called pictures, requiring picture independence to be verified in

global worldsurface calculations.

A technical obstacle stands in the way of using the covariant worldsurface to construct

a graded manifold of general nonlinear models that can serve as the target manifold of the

lambda model. The fermionic scaling fields occur in different pictures from the bosonic scal-

ing fields. A unified description is needed of the bosonic and fermionic coupling constants

λi, to serve as graded coordinates on the graded manifold of background spacetimes.

Only the on-shell fermionic vertex operators were needed for the covariant string per-

turbation theory. The on-shell fermionic vertex operators are the scaling fields that repre-

sent the on-shell fermionic string states. The lambda model needs all the fermionic scaling

fields, on-shell and off-shell. All the marginal and nearly marginal fermionic scaling fields

have to be constructed, since all the fermionic string states flow through degenerating

handles. The fermionic scaling fields have to be constructed so that they appear in the

worldsurface on an equal footing with the bosonic scaling fields, effectively in the same

picture. There must be a single metric T−1gij on all the scaling fields, symmetric in the
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bosonic directions and antisymmetric in the fermionic directions. In the operator product

φi(1)φj(2) = T−1gij |z1 − z2|
−2−γ(i)−2−γ(j) 1 + · · · (9.1)

the metric T−1gij is antisymmetric if and only if φi and φj are fermionic.

The fermionic scaling fields φi(z, z̄) have to be constructed in the same picture as the

bosonic scaling fields, with an antisymmetric metric arising from the operator product.

Then the bosonic and fermionic scaling fields can be coupled to bosonic and fermionic

lambda fields λi(z, z̄), which can be interpreted as the even and odd components of a map

λ(z, z̄) from the worldsurface to the graded manifold of spacetimes.

Two notable technical consequences will follow from the construction of the antisym-

metric metric on the Ramond sector scaling fields.

First, it seems that only on the heterotic worldsurfaces [8] can the lambda model make

sense. A non-heterotic worldsurface would contain a Ramond-Ramond sector of bosonic

scaling fields. The metric T−1gij on the Ramond-Ramond sector would be the tensor

product of two antisymmetric metrics, which cannot be positive definite. The metric

coupling of the lambda model would not then be positive definite on the bosonic part of

the manifold of spacetimes. For this purely technical reason, it seems that the lambda

model can only work on the heterotic worldsurface.

Second, the spacetime equation of motion for the fermionic wave modes is a second

order wave equation, just as it is for the bosonic modes. The spacetime equation of motion

takes the same form

0 = βi(λ) = γ(i)λi +O(λ2) (9.2)

for all the wave modes λi, fermionic and bosonic. The anomalous dimension is quadratic in

the spacetime wave number, γ(i) = p(i)2 +m(i)2, for the fermionic wave modes, as well as

the bosonic ones. The unphysical states in the solutions of the second order wave equation

are eliminated by a gauge symmetry, leaving the usual physical solutions of the first order

Dirac equation.

The construction of the fermionic scaling fields is guided by the requirement that the

linear space of scaling fields should match the space of states flowing through the handle,

the need for an antisymmetric metric on the ferminonic scaling fields, and also the need to

realize perturbative spacetime supersymmetry as a direct cancellation between the bosonic

and fermionic lambda fields, whose simplest expression is the vanishing of the graded trace

δii = T gij T−1gji = 0 (9.3)

which is the dimension of the graded manifold of spacetimes. In the space of string states,

the vanishing of the graded trace δii = 0 follows from perturbative spacetime supersymmetry

applied to the one-loop vacuum string diagram. The same equation must hold in the

corresponding space of scaling fields φi(z, z̄) or in the corresponding space of coupling

constants λi.

The rest of this section is purely technical. The notation of [15] is used.
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9.1 The antisymmetric metric

The covariant string worldsurface [15] is an ordinary bosonic worldsurface. The spinor

components β(z), γ(z) of the superconformal worldsurface ghost fields [14] are combined

with the spacetime degrees of freedom to form the scaling fields φi(z, z̄). For simplicity,

I only treat here the worldsurface in flat ten dimensional spacetime, and discuss only the

z dependent parts of the worldsurface scaling fields. All the essential technical issues are

resolved in this simplified context. The novel part of the construction of the fermionic

scaling fields involves only the structure of the β, γ ghost fields. It is easily taken over to

the general nonlinear model with a general target spacetime.

The space of z dependent scaling fields splits into two subspaces, the Ramond sector

and the Neveu-Schwarz sector. The string states and the corresponding two dimensional

scaling fields are described redundantly in an infinite set of pictures, labelled by the picture

charge. The Neveu-Schwarz sector is represented by the pictures of integer picture charge,

the Ramond sector by the pictures of charge integer plus half.

In analyzing the effects of degenerating handles in the worldsurface, there is an obvious

benefit to choosing those special pictures in which the scaling dimensions are bounded

below. In those special pictures, the scaling dimensions of the z dependent fields are

bounded below by 1. The z dependent fields of dimension 1 are combined with z̄ dependent

fields of dimension 1 to form the marginal scaling fields, of scaling dimension 2.

For the Neveu-Schwarz sector, there is only one picture with bounded scaling dimen-

sions, the picture of charge −1. The z dependent Neveu-Schwarz sector fields with picture

charge −1 and scaling dimension 1 are, after GSO projection, the ten bosonic fields

ψµe
−φ µ = 1, · · · , 10 (9.4)

plus two fermionic fields made entirely from the worldsurface ghost fields

β−1/2e
−φ , γ−1/2e

−φ . (9.5)

The field φ(z) is the bosonization of the βγ current, βγ = −∂φ. The exponentials of φ(z)

correspond to the highest weight states of the β, γ algebra,

βne
qφ = 0 n ≥ −q − 1/2 (9.6)

γne
qφ = 0 n ≥ q + 3/2 . (9.7)

The operators βn and γn lower the scaling dimension by n. The only pictures with scaling

dimension bounded below are q = −1/2, q = −1, and q = −3/2

The graded trace δii in flat spacetime is the product of two factors,

δii = (δii)z(δ
i
i)z̄ . (9.8)

One factor is the graded trace over the z dependent fields, the other factor comes from the

z̄ dependent fields. The object will be to have

(δii)z = 0 . (9.9)

The Neveu-Schwarz sector fields make a net contribution of 10−2 = 8. The Ramond sector

fields must make a contribution of −8.
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The metric on the bosonic z dependent fields of the N-S sector is symmetric and

positive
〈

ψµe
φ(z1) ψνe

φ(z2)
〉

= δµν (z1 − z2)
−2 . (9.10)

while the metric on the pair of fermionic N-S fields is antisymmetric

〈

β−1/2e
φ(z1) γ−1/2e

φ(z2)
〉

= (z1 − z2)
−2 (9.11)

〈

γ−1/2e
φ(z1) β−1/2e

φ(z2)
〉

= −(z1 − z2)
−2 . (9.12)

The Ramond sector has two pictures in which the scaling dimensions are bounded

below, the pictures of charges −1/2 and −3/2. These two pictures are conjugate to each

other in the metric on scaling fields, because a product of scaling fields can have nonzero

expectation value on the 2-sphere, where the metric is calculated, only if the sum of the

picture charges is −2.

Before GSO projection, the dimension 1 fields of picture charge −1/2 are

F1(γ0)e
−φ/2Sα(z) (9.13)

and those of picture charge −3/2 are

F2(β0)e
−3φ/2Sβ(z) (9.14)

where Sα(z) is the spin field of the spacetime degrees of freedom, a 32 component space-

time spinor in 10 dimensional spacetime; β0 and γ0 are the zero mode operators of the

spinor ghost fields, satisfying the canonical commutation relations [γ0, β0] = 1; and F1,2

are arbitrary functions.

The spacetime spinor fields Sα(z) have 32 components. The GSO projection cuts

that number in half, to 16. Somehow, the infinite multiplicity of the β0, γ0 zero mode

representation must give another factor of 1/2, to obtain the contribution of −8 to (δ ii)z,

in order to cancel the contribution of +8 from the N-S sector.

Several questions need to be answered. Which of the two pictures should go at each end

of a degenerating handle? How can the Ramond sector fields, appearing in two different

pictures, −1/2 and −3/2, play the same role as the N-S sector fields, appearing in the

single charge −1 picture? How can a single antisymmetric metric on a space of graded

dimension −8 be made from the symmetric metric hαβ on the spacetime spinors?

All of these questions are answered by finding a formalism in which the two conjugate

q = −1/2 and q = −3/2 pictures appear effectively in a single picture of charge −1. The

key is to represent the states of the quantized β, γ ghost fields in terms of distributions [16].

One crucial technical subtlety in the nature of these distributions has to be remarked.

Define the Ramond sector field

Sα(t, z) = δ(t− γ0)e
−φ/2Sα(z) (9.15)

which depends on a spacetime spinor index α and a complex number t. Sα(t, z) is a

– 74 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

distribution in the complex number t, satisfying
∫

dt tm Sα(t, z) = γm0 e
−φ/2Sα(z) (9.16)

∫

dt δ(n)(t)Sα(t, z) = βn0 e
−3φ/2Sα(z) (9.17)

where the latter follows from the identity [16]

e−3φ/2 = δ(γ0)e
−φ/2 . (9.18)

The metric is

〈Sα1(t1, z1)Sα2(t2, z2)〉 = K(t1, t2)hα1 ,α2 (z1 − z2)
−2 (9.19)

where hα1 ,α2 is the symmetric metric on the spacetime spinors, and

K(t1, t2) = δ(t1 − t2) . (9.20)

The crucial technical subtlety is that this delta function distribution is an odd function of

its argument,

δ(t1 − t2) = −δ(t2 − t1) . (9.21)

This is not the real delta function distribution which is a measure on the real line, to be

integrated against functions of a real variable. Rather, it is the formal delta function of a

complex variable. It is to be integrated against analytic functions of the complex variable

according to the rule
∫

dt δ(t)f(t) = f(0) . (9.22)

This formal delta function can be written as an equivalence class of ordinary distributional

1-forms on the complex plane,

δ(t) = dt̄ δ2(t, t̄) (9.23)

modulo ∂/∂t̄ of an arbitrary distribution with compact support on the complex plane. The

formal delta function δ(t) is a 1-form, therefore an odd object. It satisfies, for any nonzero

complex number a,

δ(at) = d(āt̄) δ2(at, āt̄) = a−1δ(t) . (9.24)

In particular

δ(−t) = −δ(t) . (9.25)

To see that the formal delta function is needed for the distributional quantization of

the β(z), γ(z) ghost fields, consider the identity

e−φ(z) = δ(γ(z)) (9.26)

which is justified by comparing the analytic operator product expansions

γ(z) e−φ(0) = z γ−1/2e
−φ(0) + · · · (9.27)

γ(z) δ(γ(0)) = z ∂γ(0)δ(γ(0)) + · · · . (9.28)
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Then consider the operator product

e−φ(z) e−φ(0) = z−1 e−2φ(0) + · · · (9.29)

which is translated, for all complex numbers z,

δ(γ(z)) δ(γ(0)) = δ(z∂γ(0)) δ(γ(0)) + · · ·

= z−1 δ(∂γ(0)) δ(γ(0)) + · · · (9.30)

only if the formal delta function is used. This calculation illustrates how the usual quanti-

zation of the β, γ ghost fields [15] is systematically translated into the language of formal

delta functions [16]. More details of the translation are given in section 9.5 below.

The metric K is antisymmetric,

K(t1, t2) = −K(t2, t1) (9.31)

and it is an odd object, because it is a formal delta function.

The metric hα,β on the spacetime spinors can also be interpreted as a distribution.

The spacetime spinors sα are the functions of 5 anticommuting variables t̂. There are

25 = 32 linearly independent functions sα(t̂). The symmetric metric hαβ is represented by

the distribution

K̂(t̂1, t̂2) = sα1(t̂1)hα1α2s
α2(t̂2)

= δ5(t̂1 + t̂2) . (9.32)

The metric on the spacetime spinors K̂(t̂1, t̂2) is also an odd object, but symmetric.

The spinor fields Sα(z) are rewritten as functions of the 5 anticommuting variables t̂,

S(t̂, z) = Sα(z) s
α(t̂) . (9.33)

The Ramond sector scaling field is a function of t and t̂,

S(t, t̂, z) = δ(t− γ0) e
−φ/2 S(t̂, z) . (9.34)

The Ramond sector metric, equation (9.19), is the product

K(t1, t2) K̂(t̂1, t̂2) = δ(t1 − t2) δ
5(t̂1 + t̂2) . (9.35)

It is even, as the product of two odd objects. It is antisymmetric as the product of

an antisymmetric metric and a symmetric metric. The Ramond sector field S(t, t̂, z) is

therefore fermionic.

The GSO transformation sends t̂→ −t̂ and t→ −t, so the GSO projected fields are

S+(t, t̂, z) =
1

2
S(t, t̂, z) +

1

2
S(−t,−t̂, z) . (9.36)

The metric on the GSO projected fields is

1

2
δ(t1 − t2) δ

5(t̂1 + t̂2) +
1

2
δ(t1 + t2) δ

5(t̂1 − t̂2) . (9.37)
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When the scaling field S+(t, t̂, z) is smeared with a polynomial function of t, it is in picture

−1/2. When it is smeared with δ(t), or derivatives of δ(t), it is in picture −3/2. Effectively,

in any worldsurface calculation, S+(t, t̂, z) is midway between the two pictures, which puts

it in picture −1 along with the fields of the N-S sector.

The fermionic marginal scaling fields φi(z, z̄) are formed by combining the Ramond

sector fields S+(t, t̂, z) with bosonic scaling fields depending on z̄, for example

S+(t, t̂, z) ∂̄x
µ(z̄) . (9.38)

Fermionic coupling constants λi couple to these fermionic scaling fields.

The merging of the two pictures −1/2 and −3/2 to form a virtual picture −1 removes

the ambiguity in the assignment of a picture at each of the two ends of a local handle.

The handle can be represented as a sum of pairs of bosonic fields plus a sum of pairs of

fermionic fields, each contracted with the handle gluing metric. Whatever picture changing

operators are needed near the local handle will serve simultaneously to define the insertions

of both the fermionic and the bosonic scaling fields.

The antisymmetric metric is presented as a kernel in equation (9.37). It is a well-

defined generalized function of the variables t1, t̂1, t2, t̂2. But no concrete vector space is

defined, on which the antisymmetric metric acts as a bilinear inner product. Formally, the

Ramond sector fields S(t, t̂, z) lie midway between picture −1/2 and picture −3/2. This

formal description serves all practical purposes, since calculations in the lambda model

require only contractions of products of the metric and its inverse. But the technical

foundations of the theory would be more secure if the Ramond sector fields could be

indexed by a concrete vector space. This should be a vector space of functions of t, lying

midway between the analytic functions and the formal delta functions, perhaps some space

of half-forms.

9.2 Lack of positivity in a Ramond-Ramond sector

If the string worldsurface has a Ramond-Ramond sector, as in any of the non-heterotic

string theories, there is a serious technical difficulty for the lambda model, because the

metric on a Ramond-Ramond scaling fields is not positive definite. For example, the

Ramond-Ramond scaling fields

S+(t1, t̂1, z) S̄+(t2, t̂2, z̄) (9.39)

have a metric that is the tensor product of two antisymmetric metrics. Such a tensor

product always has directions with negative metric. Bosonic lambda fields would couple

as sources to these Ramond-Ramond scaling fields. The metric coupling on those bosonic

lambda fields would be negative. The action of the lambda model on these bosonic lambda

fields would be unbounded below. I do not see how the lambda model could be made to

work then. I do not see how there could be control over the short distance worldsurface

fluctuations of the negative metric bosonic lambda fields, even if they are unphysical gauge

artifacts.

This pathology seems to disqualify the non-heterotic string theories from being associ-

ated with a sensible large distance physics, at least as provided by the lambda model. But
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the pathology is purely technical. It should have a physical interpretation. There should

be an explanation in physical terms of what goes wrong with the large distance physics in

non-heterotic string theories.

9.3 δii = 0

The goal now is to show that the Ramond sector fields contribute −8 to the graded trace.

The inverse of the kernel

δ(t1 − t2) δ
5(t̂1 + t̂2) (9.40)

is the kernel

d5t̂1dt1 δ(t1 − t2) δ
5(t̂1 + t̂2) d

5t̂2dt2 (9.41)

because
∫

t2,t̂2

δ(t1 − t2) δ
5(t̂1 + t̂2) d

5t̂2dt2 δ(t2 − t3) δ
5(t̂2 + t̂3) d

5t̂3dt3 =

= δ(t1 − t3) δ
5(t̂1 − t̂3)d

5 t̂3dt3 (9.42)

which is the kernel of the identity operator. The inverse metric on the Ramond sector fields

is then the GSO projection

d5t̂1dt1

[

1

2
δ(t1 − t2) δ

5(t̂1 + t̂2) +
1

2
δ(t1 + t2) δ

5(t̂1 − t̂2)

]

d5t̂2dt2 . (9.43)

The contribution of the Ramond sector fields to the graded trace is

−

∫

d5t̂1dt̂1

[

1

2
δ(t1 − t2) δ

5(t̂1 − t̂2) +
1

2
δ(t1 + t2) δ

5(t̂1 + t̂2)

]

/t̂2=t̂1,t̂2=t̂1
(9.44)

where the overall minus sign comes from the antisymmetry of the metric. The first term

inside the integral needs to be regularized

[

δ(t1 − t2) δ
5(t̂1 − t̂2)

]

/t̂2=t̂1,t̂2=t̂1 = lim
y→1

[

δ(t1 − yt1) δ
5(t̂1 − yt̂2)

]

= lim
y→1

[

(1− y)−1δ(t1) (1− y)
5δ5(t̂1)

]

= 0 . (9.45)

The second term contributes

−

∫

d5t̂1dt̂1
1

2
δ(2t1) δ

5(2t̂1) = −

∫

d5t̂1dt̂1
1

2
2−1δ(t1) 2

5δ5(t̂1)

= −8 (9.46)

to the graded trace, as was to be shown. The first factor 1/2 is from the GSO projection.

The factor 25 is from the trace over spacetime spinors. The extra factor of 1/2 comes from

the trace over the states of the bosonic ghost zero modes β0, γ0.

– 78 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

9.4 Second order wave equation

In flat spacetime, the almost marginal fermionic scaling fields take the form

φi(z, z̄) = S+(t, t̂, z) ∂̄x
µ(z̄) eipx (9.47)

indexed by i = (t, t̂, µ, pµ). The anomalous scaling dimension is γ(i) = p2. The spacetime

equation of motion βi(λ) = 0 linearizes to γ(i)λi = 0 which is the second order differential

equation in spacetime p2λi = 0. In a curved spacetime, the linearized equation of motion

on the fermionic lambda modes becomes a covariant second order differential operator.

On the on-shell states, which satisfy p2 = 0, the worldsurface BRS operator is t 6p, where

6 p is the spacetime Dirac operator. The physical states, in either of the two conjugate

Ramond sector pictures, are the BRS cohomology classes. In either picture, the BRS

cohomology classes are the solutions of the first order spacetime Dirac equation. The

infinite multiplicity of the ghost zero modes is eliminated.

The a priori measure of the lambda model, interpreted as a spacetime quantum field

theory, uses a second order differential wave equation on the fermionic fields, not the

traditional Dirac equation. But the physical content is the same.

9.5 Quantizing the β, γ ghost fields using the formal delta function

The β, γ ghost fields are expanded in modes

β(z) =
∑

n

z−n−3/2βn γ(z) =
∑

n

z−n+1/2γn (9.48)

where the index n is integer in the Ramond sector, integer plus half in the NS sector. The

modes satisfy canonical commutation relations

[γm, βn] = δm+n . (9.49)

The ground state of picture charge q is the state |q〉, satisfying

γn |q〉 = 0 n− q =
3

2
,
5

2
, · · · (9.50)

βn |q〉 = 0 n+ q = −
1

2
,
1

2
, · · · . (9.51)

The ground state |0〉 is the SL2 invariant state.

In the bosonization formalism for the β, γ ghosts,

|q〉 = eqφ(0) |0〉 (9.52)

The states are represented as distributional wave functions [16], say of the γn. The βn
act as derivative operators

βn = −
∂

∂γ−n
. (9.53)

The ground state of picture charge q is

|q〉 = δ(γ3/2+q) δ(γ5/2+q) δ(γ7/2+q) · · · . (9.54)
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The dual states are

〈q| = · · · δ(γ−7/2−q) δ(γ−5/2−q) δ(γ−3/2−q) (9.55)

so

〈−q − 2 | q〉 = 1 (9.56)

The states and dual states can be thought of as two classes of analytic subvarieties in the

infinite dimensional analytic manifold whose coordinates are the γn. The inner product is

the intersection number of the subvarieties.

The field δ(γ(z)) acts on the ground state |q〉 by

δ(γ(z)) |q〉 = δ(z−qγ1/2+q + · · ·) |q〉 = zq |q − 1〉+ · · · (9.57)

where the formal delta function must be used in order that the operator product expansion

will be analytic.

The inner product on the zero mode wave functions is obtained by noting that
〈

−
1

2

∣

∣

∣

∣

F (γ0)

∣

∣

∣

∣

−
1

2

〉

=

∫

dγ0 F (γ0) (9.58)

then calculating
〈

−
1

2

∣

∣

∣

∣

δ(t1 − γ0) δ(t2 − γ0)

∣

∣

∣

∣

−
1

2

〉

=

∫

dγ0 δ(t1 − γ0) δ(t2 − γ0)

= δ(t1 − t2) . (9.59)

A formal integral representation of the formal delta function,

δ(γ) =

∫

dt etγ (9.60)

allows such calculations as

δ(β(z)) |q〉 = δ(zqβ−q−3/2 + · · ·) |q〉

= z−q δ(β−q−3/2) δ(γ3/2+q) |q + 1〉+ · · ·

= z−q
∫

dt exp

(

−t
∂

∂γ3/2+q

)

δ(γ3/2+q) |q + 1〉+ · · ·

= z−q
∫

dt δ(−t+ γ3/2+q) |q + 1〉+ · · ·

= −z−q |q + 1〉+ · · · (9.61)

which is the operator product needed to make the identification

e−φ(z) = −δ(β(z)) . (9.62)

The identities

1 =

∫

dγ δ(γ) =

∫

dγ

∫

dt etγ = −

∫

dt

∫

dγ etγ =

∫

dt δ(t) (9.63)

are justified by the fact that the formal expression etγ is odd under exchange of t and γ,

because it implicitly contains the factor dt̄dγ̄.
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10. Geometric identities on the manifold of spacetimes

Scale invariance in 2 + ε dimensions in a nonlinear model such as the lambda model is

expressed by the vanishing of the beta function, which is a geometric identity on the target

manifold of the model [1, 2, 3]. To one loop, the geometric identity expressing ordinary

scale invariance is

0 = −ε T−1gij + 2Rij . (10.1)

The numerical coefficient 2 multiplying the Ricci tensor is due to the normalization of the

action S(λ), which is the same as the normalization of the general nonlinear model, which

is designed to give anomalous dimensions of the form p(i)2, with numerical coefficient 1.

Scale invariance of the generalized kind is expressed by a somewhat more elaborate

geometric identity involving the potential function T −1a(λ) and whatever other couplings

occur in the nonlinear model [1, 2, 3, 10].

The effective metric coupling T−1geij(λe) and the effective potential function T−1ae(λe)

and whatever other effective couplings might arise will satisfy the geometric identities

expressing generalized scale invariance.

I will not write these meta Einstein equations here. The quantum corrections to the

metric coupling and the other couplings will enter at each order, so the full import is in

the exact equations, not in their truncation to one loop or to any finite number of loops.

The geometric identities will involve the effective potential function T −1ae(λe), which is

the effective action in the spacetime quantum field theory. It will eventually be interesting

to ask what significance the meta Einstein equations might have in the special spacetime

quantum field theories produced by the lambda model.

10.1 Geometric identites from perturbative spacetime supersymmetry

Perturbative spacetime supersymmetry suppresses string loop corrections. The lambda

model is formulated to cancel the effects of the string loop corrections at large distance in

spacetime. Perturbative spacetime supersymmetry of the string theory in a given spacetime

λ will be mirrored as a perturbative symmetry of the lambda fluctuations around the point

λ in the target manifold. Perturbative spacetime supersymmetry will supress perturbative

quantum corrections to the couplings of the lambda model at the point λ in its target

manifold.

In particular, perturbative spacetime supersymmetry preserves the degeneracy of the

manifold of spacetimes M(∞) against perturbative quantum corrections. M(∞) is the

manifold of solutions of β(λ) = 0. The restricted lambda model is the formal, perturbative

nonlinear model whose target manifold isM(∞). In the restricted lambda model, βe(λe) =

0 perturbatively on M(∞). So the restricted lambda model will be scale invariant order by

order in the loop expansion, in the ordinary sense of scale invariance. The vanishing of the

perturbative beta function for the metric coupling of the restricted lambda model means

that the metric T−1gij(λ) onM(∞) will satisfy a series of geometric identities, indicative of

a very special geometry. The fermionic directions in the manifold of spacetimes are essential

for these identities, since the identities arise from cancellations between the bosonic and

fermionic directions in the manifold of spacetimes.
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The first cancellation is the vanishing of the (graded) trace

δii = T−1gij T g
ji = 0 (10.2)

which states that the graded dimension of the manifold of spacetimes is zero. The equation

δii = 0 is easily recognized from the string loop expansion. It is the condition that the one

loop correction to the vacuum string amplitude is finite. The one loop correction to the

vacuum amplitude is
∫

Z1(q, q̄) (10.3)

where Z1(q, q̄) is the partition function of the genus 1 worldsurface, the complex one-torus

parametrized by q = e2πiτ . The integral is over the modular domain of the upper half

complex τ plane. The partition function is nonsingular everywhere except possibly at

q = 0, where the torus degenerates. The only place where the integral might diverge is at

q = 0. The complex one-torus near q = 0 is an almost degenerate handle connected to a

2-sphere. The integral is cut off at |q|1/2 > µΛ−10 . The divergent part is

Λ0
∂

∂Λ0

∫

d2q
1

2π
|q|−4 |q|2+γ(i) T gij T−1gij = 2(µΛ−10 )2γ(i) T gij T−1gij . (10.4)

Finiteness follows from the existence of a conserved, holomorphic supersymmetry current

QS(z) on the worldsurface, with charge operator QS , and the existence of a conjugate

operator Q′S such that [15]

[QS , Q
′
S] = 1 . (10.5)

Finiteness in the limit Λ−10 → 0 is precisely the condition δii = 0, where the graded trace is

taken over the marginal coupling constants, those having γ(i) = 0.

A more subtle version of this argument should work locally in a spacetime λ that lies

in M(L), at nonzero short two dimensional distance Λ−1. The argument should give a

version of the vanishing of the graded trace, δii = 0, that applies locally in spacetime.

10.2 The meta Einstein equation on M(∞)

The second geometric identity is a meta Einstein equation on M(∞), expressing one loop

scale invariance of the metric coupling of the restricted lambda model in d = 2+ ε dimen-

sions, with ε = T/2,

0 = −
1

2
gij + 2Rij . (10.6)

The term 2Rij is the usual one loop beta function of the nonlinear model. The term − 1
2gij

is the contribution from the scale variation of the general nonlinear model, equation (5.1).

It should be possible to derive the meta Einstein equation (10.6) directly from one

loop finiteness of the string loop corrections. Differentiating the finite one string loop

vacuum correction, equation (10.3), with respect to the marginal coupling constants λi,

gives the finiteness of the one string loop correction to the one point function. This is

the vanishing of the one loop correction to β i(λ) = 0. Differentiating the finite one loop

vacuum correction, equation (10.3), twice with respect to the marginal coupling constants
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λi, gives the finiteness of the one string loop correction to the two point function. As

before, the scale variation must then vanish. The scale variation extracts the contribution

of a degenerating handle attached to a 2-sphere in which there are two scaling fields φi,

φj . This contribution is an integral of the four point expectation value on the 2-sphere,

contracted with a handle gluing matrix, of the form
∫

gkl 〈φi(1), φj(2), φk(3), φl(4) 〉 . (10.7)

The Ricci tensor of the metric gij can be calculated from the scale variation of the general

nonlinear model with sources, equation (5.1). The metric is a two point expectation value

of scaling fields. The curvature tensor is made from two derivatives of the metric, so the

curvature is given by an integral of an expectation value of four scaling fields. The Ricci

tensor is then obtained by contracting the curvature tensor with the inverse metric, g ij .

These results of these two calculations have the same form, so it is plausible that the

meta Einstein equation can be derived explicitly from one loop string finiteness. Heuristi-

cally, the one loop finiteness of the string loop corrections gives rise to an identity on the

metric which involves two derivatives of the metric. By covariance in M(∞), this identity

should be of the form of the meta Einstein equation. Only the relative numerical coefficient

1/4 between the two terms needs to be verified.

It should also be possible to verify the meta Einstein equation (10.6) by explicit calcu-

lation of the Ricci tensor of the metric T−1gij(λ) on M(∞), at least in simple cases such

as the manifold of toroidal spacetimes.

The restricted lambda model is perturbatively finite because of its generalized scale in-

variance, which is a basic property of the lambda model. Perturbative spacetime supersym-

metry is only an accidental property of individual spacetimes. Perturbative spacetime su-

persymmetry simplifies the realization of generalized scale invariance in the lambda model,

by maintaining the degeneracy of the manifold of spacetimes M(∞) against perturbative

corrections. As a consequence, there are strong identities on the geometry of the manifold of

perturbatively supersymmetric spacetimes. For physics, perturbative spacetime supersym-

metry is useful because, by maintaining the degeneracy against perturbative corrections,

it guarantees that any effects that lift the degeneracy will be nonperturbatively small.

11. Lambda instantons

The dominant nonperturbative effects in the lambda model will be produced by harmonic

surfaces in the space of string backgrounds, the lambda instantons. A lambda instanton

is a classical field configuration λH(z, z̄) which is a local minimum of the lambda model

action, S(λ). These are the harmonic surfaces in the manifold of spacetimes.

There are at least two kinds of lambda instanton. The global lambda instantons,

are the harmonic surfaces in the manifold M(∞). The action S(λH) of a global lambda

instanton is on the order of T−1, so only collective effects of global lambda instantons will

be significant. I will describe here one elementary example of a global lambda instanton, in

the manifold of toroidal spacetimes, and speculate on possible collective effects that might

single out a macroscopic spacetime.
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At a macroscopic spacetime λ in M(L), there are localized lambda instantons, which

are harmonic surfaces in the manifold M(L), localized in the macroscopic spacetime at

spacetime distances on the order of L. These are harmonic surfaces in the manifold of

spacetime fields. The action S(λH) of a localized lambda instanton is on the order of

g−2s = (V T )−1, so the localized lambda instantons could possibly produce interesting

characteristic nonperturbative spacetime distances. I only point out here that local lambda

instantons exist.

11.1 Example of a global lambda instanton

Consider a family of spacetimes in M(∞) with two toroidal dimensions. Each spacetime

is the product of a two dimensional real torus with a fixed eight dimensional manifold.

The two dimensional real torus is a complex 1-torus with a Kahler form proportional to

a complex number σ in the upper half complex plane. The volume of the torus is the

imaginary part, Im(σ). All of the other parameters describing the spacetime are held

fixed, including the parameter describing the complex structure of the complex 1-torus.

The modular group is the group of fractional linear transformations of the upper half

plane with integer coefficients, σ → (aσ+ b)/(cσ + d). The modular group is generated by

σ → σ+1 and σ → −1/σ. The two dimensional quantum field theories of the worldsurface

parametrized by σ, σ+1, and −1/σ are all equivalent. So the family of spacetimes inM(∞)

is parametrized by the modular domain, which is the quotient of the upper half complex

σ plane by the action of the modular group. The modular domain can be parametrized by

the classical modular function j(σ) whose values range over the entire complex plane when

σ ranges over the modular domain. The family of toroidal spacetimes is parametrized by

the complex j plane.

The torus becomes macroscopic in the limit Im(σ) → ∞. In this limit, j ≈ e−2πiσ.

The family of spacetimes can be compactified to a 2-sphere by appending the point j =∞.

The compactified family of spacetimes is a complex curve of genus 0, parametrized by the

complex projective j plane.

The j-instanton is the three parameter family of maps from the worldsurface toM(∞)

j(z, z̄) =
az + b

cz + d
(11.1)

parametrized by complex numbers a, b, c, d satisfying ad − bc = 1. The j̄-instanton is the

complex conjugate map. The three complex parameters are just the paramters of the

group SL2(C), the conformal group of the instanton. The j-instanton and the j̄-instanton

are each three parameter families of global lambda instantons. They depend implicitly

on all the other parameters of the spacetime, the parameters describing the fixed eight

dimensional manifold and the complex structure of the torus.

Compactifying the family of 2-tori with the point j =∞ adds a submanifold toM(∞),

described by all the other parameters of the spacetime besides j. Near j = ∞, the two

spacetime dimensions of the 2-torus become macroscopic. The volume of the macroscopic

spacetime is V = Im(σ) ≈ (2π)−1 ln |j|. The j =∞ submanifold is part of the decompact-

ification locus.
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There are three distinguished points in the modular domain, the decompactification

point j =∞, and two orbifold points at j = 0 and j = 1728. The point j = 0 corresponds

to σ = eiπ/3, which is the fixed point of the Z3 subgroup of modular transformations

generated by σ → 1−σ−1. The point j = 1728 corresponds to σ = i, the fixed point of the

Z2 subgroup of modular transformations generated by σ → −σ−1. The decompactification

point j =∞ can also be regarded as an orbifold point, left fixed by the full integer subgroup

Z generated by σ → σ + 1.

The three complex parameters of the j-instanton can be taken to be the three points

on the worldsurface, z3, z2, z∞, where the j-instanton passes through the three orbifold

points, j(z3) = 0, j(z2) = 1728 and j(z∞) = ∞. The j-instanton can be described as a

configuration of three lambda defect operators, τ3, τ2, τ∞,

τ3(z3, z̄3) τ2(z2, z̄2) τ∞(z∞, z̄∞) . (11.2)

Similarly, the j̄-instanton is described as a configuration of three complex conjugate defect

operators τ̄3, τ̄2, τ̄∞.

At each of the orbifold points j = 0, j = 0 or j = 1728, the orbifold group, or

defect group, Z3, Z2 or Z, acts as a group of internal symmetries of the worldsurface.

The worldsurface in the spacetime j = 0 has a Z3 symmetry; the worldsurface in the

spacetime j = 1728 has an internal Z2 symmetry. There is no actual spacetime at the

decompactification point j =∞, so the action of the orbifold group, the integers Z, has to

be defined in the limit j →∞ as an internal symmetry group of the worldsurface.

Each defect operator τ or τ̄ pins the worldsurface to an orbifold point in the mani-

fold of spacetimes. The defect τ3(z, z̄) pins the point z to the torus j = 0. The defect

τ3(z, z̄) pins z to the torus j = 0. The decompactifying defect, τ∞ pins the point z to the

decompactification locus at j =∞.

Each lambda defect operator is associated to an element in the corresponding orbifold

or defect group. The group element is the monodromy of the coupling constants λi cir-

cling the defect operator on the worldsurface. Away from the lambda defects, the scaling

fields φi(z, z̄) vary adiabatically over the lambda instanton λH(z, z̄), in a path independent

fashion, because nearby general nonlinear models have the same degrees of freedom. But

when a path on the worldsurface circles around one of the lambda defect operators, the

scaling fields φi are transformed among themselves by the element of the orbifold group

carried by the defect operator. The lambda defect acts on the worldsurface as the twist

operator of the orbifolded spacetime. The lambda defect operator twists locally by its

orbifold group element, projecting on the invariant degrees of freedom, removing the non-

invariant degrees of freedom, and adding twist fields as new effective degrees of freedom

on the worldsurface.

The nonperturbative lambda model is a two dimensional gas of lambda defect opera-

tors. At issue is the detailed dynamics of the defect gas. Is it a plasma? Or a neutral gas,

with the defects all bound together? Or a combination, a plasma of some defects and some

bound systems of defects?
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11.2 Existence of localized lambda instantons

Near a macroscopic spacetime, there will exist lambda instantons in the target manifold

M(L) which are localized in bounded regions of the macroscopic spacetime. These localized

lambda instantons are the harmonic surfaces in the manifold of spacetime fields.

There is a standard topological argument for the existence of instantons [17]. The

localized lambda instantons are indexed by the second homotopy group, π2, of the manifold

of the target manifold M(L). Every homotopy class of 2-spheres in M(L) should contain

local minima of S(λ).

The target manifold M(L) is the manifold of fields of the effective spacetime field

theory. The spacetime fields are localized, which means that they go to zero outside a

bounded region of the macroscopic spacetime, or more generally become trivial there. So

the spacetime fields can be regarded as defined on a ball in n-dimensional euclidean space,

where n is the dimension of the macroscopic spacetime, and the boundary of the ball can

be identified to a point. Topologically, the spacetime fields can be regarded as defined on

the n-sphere.

The manifold of spacetime fields is actually the manifold of gauge equivalence classes

of spacetime tensor fields, including the metric tensor and the gauge fields. The manifold of

localized spacetime fields is the quotient manifold Fn/Gn, where Fn is the space of tensor

fields on the n-sphere and Gn is the group of local gauge transformations on the n-sphere.

The second homotopy group π2(Fn/Gn) is calculated using the long exact sequence:

· · · → πk(Fn)→ πk(Fn/Gn)→ πk−1(Gn)→ πk−1(Fn)→ · · · (11.3)

the relevant part of which is

· · · → π2(Fn)→ π2(Fn/Gn)→ π1(Gn)→ · · · . (11.4)

Nontrivial topology in the manifold Fn of tensor spacetime fields comes only from the

spacetime scalar fields. The space of metrics and gauge fields is topologically trivial before

gauge equivalence is taken into account. The spacetime scalar fields take their values the

parameters that describe the non-macroscopic dimensions of the spacetime. These are the

coupling constants that parametrize the decompactification locus M(L)d. The scalar fields

form a map from the n-sphere to the decompactification locus. So

π2(Fn) = πn+2(M(L)d) . (11.5)

When n = 0, this is the homotopy group that classifies the global lambda instantons.

Localized lambda instantons formed from the spacetime scalar fields might have in-

teresting physical effects. Locally in spacetime, they might pin to submanifolds of the

decompactification locus where additional spacetime dimensions become macroscopic.

The localized lambda instantons formed from the spacetime metric and the spacetime

gauge fields are indexed by the first homotopy group of the local gauge group, π1(Gn). If the

global internal gauge group is G, then the local gauge transformations are maps from the

n-sphere to G. They contribution πn+1(G) to π1(Gn). The local gauge transformations of
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the spacetime metric are the maps from the n-sphere to itself, so they contribute πn+1(S
n).

For n = 4, these homotopy groups are typically nontrivial, so localized lambda instantons

do exist.

It is not clear to me that this is a complete classification of the localized lambda

instantons. In order to find the example of a global lambda instanton described above,

the j-instanton, it was necessary to complete the manifold of spacetimes by adding the

decompactification locus at j = ∞. Is there an analogous process of completion for the

space of localized spacetime metrics and gauge fields modulo gauge equivalence, which

would give rise to additional localized lambda instantons?

It seems quite possible that localized lambda defects will exist. A localized lambda

defect would occur at a point z on the worldsurface where a localized lambda instanton

λH(z, z̄) passes through a spacetime field configuration with symmetry. The symmetry

subgroup of the local spacetime gauge group would be the defect group of the localized

lambda defect. The nontrivial closed path in the local gauge group Gn associated with the

localized lambda instanton would then be composed of a sequence of path segments, each

path segment implementing a defect twist. The homotopy argument shows the existence

of local lambda instantons. They still need to be constructed explicitly. Then it can be

determined whether they are smooth objects or composed of local lambda defects.

The localized lambda instantons in M(L) are made from the spacetime wave modes at

spacetime distances greater than L. The spacetime physics at distance L will be affected

by those localized lambda instantons that are made from the spacetime wave modes λi at

distances of the order of L. Calculations of their effects will be done locally in spacetime,

in local spacetime regions at distances of the order of L.

Taking L→ ∞ contracts M(L) to M(∞), formally. The localized lambda instantons

inM(L) are pushed closer and closer to the decompactification locusM(∞)d. There should

be an interpretation of the limit defining a completion of M(∞) that can stand for the

target manifold of the lambda model at L =∞. The limit L→∞ will be a practical issue

in calculations of the properties of decompactifying lambda defects, such as τ∞. Spacetime

is macroscopic in the core of a decompactifying defect. The core of the defect is dressed

with localized lambda instantons in the macroscopic spacetime. The limit Λ−1 → 0 will

see the center of the decompactifying defect, where the difficulties of the L→∞ limit will

have to be resolved.

11.3 Lambda instanton calculations

To calculate the quantum corrections to lambda instanton configurations, some way is

needed to calculate the contribution of the general nonlinear model in the presence of a

nontrivial lambda field λH(z, z̄). The general nonlinear model contributes at order T 0,

the same order as the one loop corrections in the lambda model. Each contributes a pre-

factor multiplying the classical instanton contribution e−S(λH). Neither pre-factor is scale

invariant separately, but only the combination.

In principle, the general nonlinear model in the presence of a lambda instanton can

be made out of local two dimensional patches, the sources λi(z, z̄) being almost constant

within each patch. But I have no practical method of putting together the patches that
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could be used for calculation. A possibly effective method of calculation might be to treat

the general nonlinear model in the presence of a lambda instanton as a correlation function

of lambda defects, then calculate using the monodromy properties of the defects.

It is this difficulty of calculation that motivates the proposal of section 5 to account for

the general nonlinear model contribution to the lambda model by continuing the dimension

from d = 2 to d = 2 + ε, dropping the general nonlinear model entirely, and determining

the quantum corrections by finding the scale invariant fixed point of the effective lambda

model in d = 2 + ε dimensions.

11.4 Speculation about the nonperturbative structure

I cannot resist indulging in some premature idle speculation about the nonperturbative

lambda model. Lambda instantons will make nonperturbative corrections to the beta

function βi(λ) of the general nonlinear model. It seems possible that these corrections

will disturb the degeneracy of the manifold of spacetimes. I see two ways this might

happen.

In the first type of scenario, nonperturbative corrections to β i(λ) simply single out

some particular spacetimes from the manifold of spacetimes. These become the local

minima of the effective potential function T−1ae. The a priori measure concentrates at

these particular spacetimes, breaking the degeneracy. Global lambda instantons might

concentrate the a priori measure at a particular macroscopic spacetime, at a partic-

ular point near the locus of decompactification. In that macroscopic spacetime, local

lambda instantons might contribute terms to the local spacetime action g−2s V ae, violat-

ing perturbative spacetime supersymmetry and giving the perturbatively massless space-

time fields definite vacuum expectation values and small masses. The original perturba-

tive degeneracy of the manifold of spacetimes would come to be seen as merely acciden-

tal.

In the second type of scenario, the lambda instantons disorder the system. A plasma

of lambda defects would accomplish this. The lambda defects would act as twist operators,

projecting on the singlets of the defect group, removing the non-singlet degrees of freedom,

and adding the twist degrees of freedom. The degrees of freedom λi would take entirely

different effective forms. An effective target manifold M(L)e would replace the original

target manifold M(L). The effective a priori measure might concentrate at particular

places in the effective target manifold M(L)e. Or something more complicated might

happen, perhaps a hierarchy of disordered systems.

A lambda instanton makes logarithmically divergent corrections to the general nonlin-

ear model when it is configured as a 2-sphere connected to the worldsurface by an almost

degenerate handle. The lambda instanton is a complex analytic curve of genus 0, so three

complex parameters describe its configuration in the worldsurface. In the j-instanton, for

example, the three complex parameters are the locations of the three lambda defects τ2,

τ3, τ∞. In the logarithmically divergent configuration, one parameter becomes the point

on the worldsurface where the instanton is attached. One parameter is the thickness of the

handle by which the instanton is attached. The third parameter is the point on the lambda

instanton where it is attached to the worldsurface. The effective measure on the third pa-
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rameter determines what states flow through the handle to appear on the worldsurface as

corrections to βi(λ). If the measure on the third parameter is concentrated at a smooth

point on the lambda instanton, the first scenario will apply. That point in the manifold

of spacetimes will be singled out. The lambda defects will appear entirely bound. If the

measure on the third parameter is concentrated at one or more of the lambda defects, the

worldsurface will see a plasma of lambda defects. Intermediate possibilities might better

be described as an interacting gas of lambda defects on the worldsurface. The effective

measure on the configuration of the lambda instanton might depend on the spacetime dis-

tance L. The interactions among the lambda defects might depend on L, so the effective

form of the degrees of freedom might change with L.

For a local lambda instanton, in the first kind of scenario, where a particular spacetime

is singled out on the lambda instanton, the lambda instanton will insert local fields with

logarithmically divergent coefficients into the general nonlinear model. If no spacetime

supersymmetry generator can be globally defined over the lambda instanton, then the

divergent insertions can violate spacetime supersymmetry. Likewise, any other spacetime

symmetry can be removed, if the symmetry generator cannot be defined as a single-valued

object over the lambda instanton. Perhaps even local spacetime gauge symmetry might be

removed in this fashion.

In the disordered scenario, a plasma of lambda defects could distribute the a priori

measure over the lambda instanton. Alternatively, degeneracy could be broken by pin-

ning to the orbifold spacetimes. For example, a plasma of global decompactifying lambda

defects, like the defect τ∞ of the j-instanton, would pin the system to the locus of decom-

pactification. The τ2 and τ3 defects would appear bound. This would be a novel form of

decompactification, described by the orbifolded general nonlinear model at the decompact-

ification locus. Such virtual orbifold models still need to be analyzed. The simplest case to

examine is the Z orbifold of the 2-torus at j =∞. There would presumably be no definite

global spacetime geometry. Twisting by the defect τ∞ would remove the angular parameter

of the global spacetime geometry, the real part of σ, as a degree of freedom. In general,

lambda defects will disorder angular parameters in the neighborhood of the orbifold point

in the manifold of spacetimes. This is a tantalizing possibility. Mechanisms that might

remove angular degrees of freedom are especially interesting because of the problem of the

θ parameter in QCD.

Symmetries such as spacetime supersymmetry might also be removed as a result of

twisting in a plasma of local lambda defects. If a spacetime supersymmetry generator

winds nontrivially around a lambda defect, then the generator would be removed by the

plasma of defects.

A form of spacetime gauge confinement could conceivably be produced by a plasma of

local lambda defects twisting by elements of the local gauge group. The plasma would dis-

order the local spacetime gauge group, projecting on gauge singlets. The most interesting

case to investigate is of course the SU(3) local gauge group in four spacetime dimensions.

Perhaps this could provide a viable alternative to the hypothetical quantum field theoretic

confinement of QCD. It might even be possible to find effective methods of calculation, so

that a confinement mechanism in the lambda model could be checked against the experi-
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mental data. It would be essential that the dynamics of the lambda defects depend on L.

When L drops below a characteristic confinement distance, the lambda defects would have

to bind, so that the perturbative spacetime gauge theory would become visible.

I would even guess at a general principle, that the lambda model always disorders at

large enough values of L. In the limit L→∞, I would expect the lambda model to explore

the entire manifold of spacetimes. The effective degrees of freedom at L = ∞ will not

be those associated with any particular spacetime, but will be constructed from the entire

manifold of spacetimes by the nonperturbative fluctuations in the lambda model. Physics

in any individual spacetime will give only a partial view of the large distance physics.

Undoubtedly, these speculations are far too naive, and far too much influenced by

the simple-looking example of the j-instanton. The nonperturbative lambda model is

likely to be a hugely complicated gas of interacting lambda defects and smooth lambda

instantons. The hope is that there are relatively simple regimes at spacetime distances L

which correspond to the distances in nature where relatively simple theoretical descriptions

of physics have been found to apply. My speculations are offered only as suggestions of

a possible complexity and richness in the nonperturbative lambda model that will be a

challenge to calculation, but might yield interesting physics.

12. Spacetime gauge invariance

The lambda model needs a practical implementation of spacetime gauge invariance, includ-

ing spacetime general covariance. The manifold of spacetimes is the manifold of spacetime

tensor fields modulo equivalence under spacetime gauge transformations. In principle, the

target manifold of lambda model is the manifold of gauge equivalence classes. But the

fields φi(z, z̄) of the general nonlinear model couple to the wave modes of the spacetime

tensor fields, not to the gauge equivalence classes. The coupling constants λi are the wave

modes of the spacetime tensor fields.

Some of the fields φi(z, z̄) make no difference when they perturb the action of the gen-

eral nonlinear model. These are the redundant fields. The redundant fields are the deriva-

tives of spin 1 fields in the general nonlinear model. For every spin 1 field (χza(z, z̄), χ
z̄
a(z, z̄))

there is a redundant spin 0 field

φred
a = ∂χza + ∂̄χz̄a . (12.1)

The redundant fields in a general nonlinear model λ are certain linear combinations

φred
a = Gi

a(λ)φi (12.2)

of the fields φi. The redundant coupling constants are the coupling constants λi that couple

to the redundant fields.

In a macroscopic spacetime, the redundant coupling constants of the general nonlinear

model are the gauge variations of the spacetime tensor fields. For example, in a macro-

scopic spacetime with spacetime metric hµν(x), each vector field vµ(x) on the macroscopic
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spacetime gives a spin 1 field

vaχza(z, z̄) = vσ(x)hσν(x) ∂̄x
ν

vaχz̄a(z, z̄) = vσ(x)hµσ(x) ∂x
µ (12.3)

whose derivatives give a redundant field spin 0 field

vaGi
aφi = v∗hµν(x)∂x

µ∂̄xν (12.4)

which represents the infinitesimal gauge transformation of the spacetime metric produced

by the vector field vµ(x).

The Gi
a(λ) form a Lie algebra of vector fields on the manifold of spacetimes

Gj
a∂jG

i
b(λ)−G

j
b∂jG

i
a(λ) = F c

abG
i
c(λ) . (12.5)

The F c
ab are the structure constants of the Lie algebra of redundancy transformations in

the general nonlinear model, which is the Lie algebra of local gauge transformations in

spacetime.

The manifold of spacetimes is parametrized by the coupling constants λi modulo the

redundant coupling constants. The lambda model must respect the equivalence relations

given by redundancy in the general nonlinear model. If the lambda model respects redun-

dancy, then gauge invariance in any macroscopic spacetime will follow automatically. In

particular, the a priori measure will respect equivalence under redundancy. The effective

spacetime quantum field produced by the lambda model in a macroscopic spacetime will

be gauge invariant.

The lambda field λ(z, z̄) can be pictured as a map to the manifold of redundancy equiv-

alence classes, but the component lambda fields λi(z, z̄) would then couple ambiguously to

the fields φi(z, z̄), up to arbitrary admixtures of redundant fields.

Instead, let there be a lambda field λi(z, z̄) for each spin 0 field φi(z, z̄) in the general

nonlinear model, including the redundant fields. Then introduce auxiliary spin 1 sources

(ξaz , ξ
a
z̄ ) to implement spacetime gauge invariance. Couple each spin 1 field (χza, χ

z̄
a) in the

general nonlinear model to a spin 1 source (ξaz , ξ
a
z̄ ), adding

∫

d2z µ2
1

2π

[

ξaz (z, z̄)χ
z
a(z, z̄) + ξaz̄ (z, z̄)χ

z̄
a(z, z̄)

]

(12.6)

to the action of the general nonlinear model

The general nonlinear model is now locally invariant under infinitesimal gauge trans-

formations

λi → λi + εa(z, z̄)Gi
a(λ) (12.7)

if at the same time the auxiliary lambda fields are transformed by

ξaz → ξaz + ∂εa

ξaz̄ → ξaz̄ + ∂̄εa . (12.8)
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The action density of the general nonlinear model changes by the total derivative

∂(εaχza) + ∂̄(εaχz̄a)) . (12.9)

A locally gauge invariant action S(λ, ξ) for the lambda model will be determined by

the scale variation of the general nonlinear model, as in section 6. But the form it will take

is obvious. The two dimensional derivatives ∂λi and ∂̄λi are simply replaced in S(λ) by

the covariant derivatives

Dλi = ∂λi −Gi
a(λ)ξ

a
z

D̄λj = ∂̄λj −Gj
a(λ)ξ

a
z̄ . (12.10)

A localized lambda instanton is now a local minimum of S(λ, ξ). The covariant deriva-

tives Dλi and D̄λi must go to zero as z →∞. The auxiliary lambda field (ξaz , ξ
a
z̄ ) is a 1-form

on the complex plane with values in the Lie algebra of infinitesimal spacetime gauge trans-

formations. Its path-ordered integrals are group elements in the spacetime gauge group.

Along a closed contour around z = ∞, the indefinite path ordered integral from a fixed

starting point gives a closed loop in the group Gn of spacetime gauge transformations,

representing the element in π1(Gn) that indexes the localized lambda instanton.

The renormalization of the general nonlinear model respected general covariance in

the target manifold [3]. No particular symmetry of the target manifold was assumed.

Renormalization of target manifold symmetry was subsumed in renormalization of target

manifold general covariance. The renormalization of general covariance in the target man-

ifold was subject to possible obstructions which were cohomology classes on the target

manifold, the nonlinear model anomalies.

The target manifold of the lambda model is the manifold of spacetimes. The space-

time gauge symmetries are internal symmetries of the lambda model, analogous to space-

time symmetries in the general nonlinear model. The renormalization of spacetime gauge

symmetry in the lambda model is subsumed into the renormalization of reparametriza-

tion invariance in the manifold of spacetimes. Potential nonlinear model anomalies in the

lambda model would obstruct renormalization of reparametrization invariance in the man-

ifold of spacetimes, and might show themselves in spacetime quantum field theory as gauge

anomalies. It will have to be shown that the lambda model is free from anomalies.

13. What needs to be done

The most urgent task now is to find all the local lambda instantons in explicit form, and

develop concrete methods for calculating their contributions to the effective beta function

of the general nonlinear model. Temporarily assume a particular macroscopic spacetime

and assume a fixed small value for the spacetime coupling constant gs, in order to find

out if the lambda model actually does remove spacetime supersymmetry, produce small

nonzero masses, and lift the degeneracies that are local in the macroscopic spacetime.

Developing effective methods of calculation will require filling in details of my argu-

ments for the structure of the theory, or finding better arguments. The most essential
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elements include the principle of tandem renormalization and the effective renormalization

group invariance of the effective general nonlinear model, which together imply the tauto-

logical scale invariance of the effective lambda model. Also crucial is the identification the

action S(λ) with the scale variation of the general nonlinear model, which is used to estab-

lish the gradient property and the spacetime action principle in macroscopic spacetimes.

Details of the action S(λ) also need to be filled in. This should be straightforward, since

S(λ) is completely determined by the scale variation formula, equation (6.14). Lambda

fields λi(z, z̄) are introduced as sources for all the scaling fields φi(z, z̄) that occur in the

general nonlinear model of the worldsurface. The action S(λ) is read off from the scale

variation of the general nonlinear model in the presence of those sources.

In particular, several special scaling fields φi(z, z̄) occur in the string worldsurface,

made entirely from worldsurface ghost fields. The coupling constants λi that couple to

these special scaling fields play distinguished roles [18, 19]. One special bosonic coupling

constant λD has the effect of shifting the value of the number ln(T ). It is conjugate in the

metric T−1gij(λ) to a second special bosonic coupling constant λ′D, which is redundant,

at least in a scale invariant worldsurface. When these special coupling constants are made

into lambda fields λD(z, z̄) and λ′D(z, z̄), it appears that λ′D(z, z̄) can be interpreted as

the logarithm of the local two dimensional scale factor Λ(z, z̄) and acts as a Lagrange

multiplier, enforcing local two dimensional scale invariance. The combined coefficient of

the two dimensional curvature density Λ2R2(Λ) from the combined local lagrangians of the

general nonlinear model and the lambda model, is the sum of the special coupling constant

λD, the number ln(T ), and the potential function T −1a(λ). This seems worth pursuing.

The details of the system of special lambda fields need to be worked out. It might be that

they play only a formal role in the lambda model. But it is also possible that there will be

some indication of how the number T might be determined.

A second basic detail that needs filling in is the possible antisymmetric tensor cou-

pling in the lambda action. The heterotic worldsurface is chirally asymmetric. The scale

variation of the general nonlinear model of the heterotic worldsurface can contain a graded

antisymmetric tensor coupling Θbij(λ) in addition to the graded symmetric metric coupling

T−1gij. It would be surprising if an antisymmetric coupling did not appear.

If calculation shows that the lambda model can in fact produce the needed local effects

in a macroscopic spacetime, then there will be two obvious directions to take. One will be

a renewed search among the possible macroscopic spacetimes for a match to the standard

model. The lambda model will produce a local quantum field theory in each macroscopic

spacetime. Methods will be needed to winnow the macroscopic spacetimes for promising

candidates to compare in detail with the standard model.

It will also become promising to investigate basic issues, including decompactification

mechanisms, mechanisms that could determine the spacetime coupling constant g2s = V T ,

cosmological interpretation, the construction of real time, a mechanism that could fix the

number T or the dimension d = 2 + ε, topology change, and the issue of security in the

limit Λ−1 → 0, L→∞.

The limit L→∞ raises two questions. First is simply the existence of a scale invariant

limit, without which the lambda model would have no foundation on which to build the
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large distance physics. If the lambda model does have a scale invariant limit at Λ−1 = 0,

the question becomes, does degeneracy remain in the limit? Whatever form the effective

degrees of freedom λie take, do any of them have vanishing effective anomalous dimension

γe(i) = 0? Are there marginal effective coupling constants λie in the short distance limit? If

not, if all degeneracy is lifted at L =∞, then the logarithmic divergence will be removed.

The original purpose of the lambda model will be realized. This last question evokes the

historical roots of the two dimensional nonlinear model and the lambda model in the ideas

of Bloch, Hohenburg, Mermin, Wagner and Coleman about the logarithmic divergences of

spin waves in d = 2 dimensions, and the physical consequences of their impossibility for

two dimensional physics.

14. Discussion

The lambda model is a theory of physics which has a fundamental unit of spacetime

distance and works entirely at large distance compared to that fundamental unit. The

lambda mode appears capable of explaining some of the most basic principles of physics.

It appears capable of constructing quantum mechanics in spacetime, and determining the

hamiltonian. The lambda model appears capable of doing this without assumptions about

physics at experimentally inaccessible spacetime distances near the Planck length.

It seems futile to speculate about small distance physics without having in hand a

coherent and testable theory of large distance physics, given the enormous gulf between

the Planck length and the length scales of practical experiments. Without a means of

reliably predicting observable large distance physics, how can a speculative theory of small

distance physics be checked against the real world? There is considerable room for surprise

in the roughly 14 or 15 orders of magnitude between the Planck length and the small-

est distances where theories can be checked. It might be worth remembering that past

explorations over 14 or 15 orders of magnitude in distance discovered such surprises as

quantum mechanics and the elementary particles. What could possibly justify theoretical

assumptions about physics across such an enormous gulf of spacetime distances, if those

theoretical assumptions cannot lead to definite statements that can be checked in the real

world?

The lambda model presents the possibility of exceptions to the well-supported prin-

ciple that the physics of the large is completely explained by the physics of the small.

Under conditions of degeneracy, the lambda model may produce nonperturbative effects in

spacetime which are not explicable on atomistic principles. If such effects can be derived

from the lambda model, and confirmed by experiment, it will be a salutary reminder that

knowledge in physics is always incomplete, no matter how striking the success of existing

theory. There is a temptation to extrapolate successful theories far beyond the extent of

their demonstrated reliability, especially after the past successes of atomistic physics. A

theory which succeeds at describing all available experimental results in a certain regime of

distances, such as the standard model of particle physics does now, is assumed to explain in

principle all the complicated phenomena observed at larger distances, if only the necessary

difficult calculations could be carried out. Even when many such complicated phenomena

– 94 –



J
H
E
P
1
0
(
2
0
0
3
)
0
6
3

are successfully explained, there is no guarantee that all large distance phenomena will be

explained. There still remains a remote possibility that subtle unexpected effects are yet

to be observed. To search at random for such effects is unlikely to be useful. Guidance

is needed from a highly credible theory. The lambda model is proposed as a theory that

might be capable of acquiring such credibility and also predicting unexpected phenomena.

The crucial advantage that the lambda model might have over a fundamentally atom-

istic model of physics is the security that the lambda model could give at large distance in

spacetime by building physics from the limit L =∞ downwards in L. Infrared security in

the lambda model would eliminate the need to guess at the nature of microscopic physics

at unobservably small distances in spacetime. The need for some such infrared security

is suggested by the miniscule value of the observed cosmological constant, which seems

inexplicable in any atomistic version of spacetime physics.

The lambda model is an attempt to make a weakly coupled theory of physics. Weak

coupling means that the spacetime coupling constant gs should be a reasonably small

number, say on the order of 1/10. The value of the number T is a separate matter. The

lambda model undoubtedly needs T to be an extremely small number. The dimension

d = 2 + ε must be very near 2, otherwise the entire analysis and physical interpretation of

the lambda model would break down. The spacetime coupling constant gs emerges only

in a macroscopic spacetime of volume V , by the relation g2s = V T . The lambda model

does not seem to require that gs be small. The lambda model might well be a strongly

coupled two dimensional quantum field theory in some spacetime regimes. The lambda

model might still be useful there, if it happens to be an integrable two dimensional field

theory. The most obvious prospects of the theory, however, seem to call for weak coupling.

For example, it is difficult to imagine how a spectrum of exponentially large spacetime

distances could arise without a small spacetime coupling constant.

I retain a naive hope that a weakly coupled theory of large distance physics can suc-

ceed in explaining the standard model of the elementary particles. It is remarkable that

all observed couplings of the standard model are in fact weak at the smallest distances

accessible to experiment. The weakness of all the observed couplings is one of the most

striking results from high energy experimental physics. It seems to me misguided to turn

away from the possibility of a weakly coupled theory before having in hand a coherent

method to determine large distance physics. A systematic weakly coupled theory of large

distance physics would be so useful that nothing but a definitive demonstration of infeasi-

bility should forestall the attempt. In the end, of course, the assumption of weak coupling

must be justified dynamically, since the spacetime coupling constant is a parameter of the

manifold of spacetimes.

The lambda model is mathematically universal. The target manifold, the metric cou-

pling, the potential function are all mathematically natural objects. The couplings of

the lambda model satisfy mathematically natural differential equations on the manifold of

spacetimes, expressing generalized two dimensional scale invariance. No arbitrary choices

are made.

The lambda model is not universal in the in sense of quantum field theory. As a

nonlinear model, it is scale invariant in the generalized sense. Its couplings are at a fixed
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point of the renormalization group of the general nonlinear model whose target manifold is

the manifold of spacetimes. The fixed point is not stable under the renormalization group.

If a small perturbation were made, the renormalization group would drive the nonlinear

model far away from the fixed point. There are infinitely many unstable directions. Per-

turbing the action density by any function f(λ) on the target manifold gives a dimension

2 perturbation, which would grow quadratically in the two dimensional distance, freezing

the lambda field to the minimum of the function f(λ). A dimension 2 perturbation would

freeze the system into a fixed spacetime, suppressing the fluctuations of the lambda field

that are needed to cancel the divergence due to local handles in that spacetime. The

logarithmic divergence would return.

The lambda model must be held at the fixed point. All relevant perturbations of

the lambda model must be tuned to zero. There might be a formal apparatus in the

lambda model, perhaps involving the special lambda field λ′D, that enforces this tuning.

Or there might be a deeper mechanical explanation. If some mechanical model of the string

worldsurface automatically gives rise to the lambda model, it would presumably hold the

lambda model precisely at the fixed point.

However the tuning is done, by hand if necessary, it is possible to carry out the task

because the couplings of the lambda model do not fluctuate. The couplings of the lambda

model are classical geometric quantities on the manifold of spacetimes.

The lambda model produces a probabilistic description of spacetime. It may single

out a number of possible macroscopic spacetimes. In each, the spacetime fields describing

geometry and matter fluctuate according to a quantum field theory produced by the lambda

model. But the geometry that defines the lambda model does not fluctuate. The couplings

of the lambda model take definite values satisfying classical differential equations on the

manifold of spacetimes. Strict causality, which was renounced in spacetime when quantum

mechanics was discovered, might be regained at another level of abstraction.

If the theory works, part of the a priori measure on the manifold of spacetimes will

be found to concentrate at a spacetime that matches our spacetime in its dimension, its

cosmology, and in the phenomenology of its elementary particles. Our spacetime might

turn out to be only one of many where the a priori measure concentrates, and might carry

only a small share of the total measure. It would become a challenge to devise experiments

that could detect the other possibilities.
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