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Abstract: A holographic duality is proposed relating quantum gravity on dSD
(D-dimensional de Sitter space) to conformal field theory on a single SD−1

((D-1)-sphere), in which bulk de Sitter correlators with points on the boundary are

related to CFT correlators on the sphere, and points on I+ (the future boundary
of dSD) are mapped to the antipodal points on S

D−1 relative to those on I−. For
the case of dS3, which is analyzed in some detail, the central charge of the CFT2 is

computed in an analysis of the asymptotic symmetry group at I±. This dS/CFT
proposal is supported by the computation of correlation functions of a massive scalar

field. In general the dual CFT may be non-unitary and (if for example there are suf-

ficently massive stable scalars) contain complex conformal weights. We also consider

the physical region O− of dS3 corresponding to the causal past of a timelike observer,
whose holographic dual lives on a plane rather than a sphere. O− can be foliated by
asymptotically flat spacelike slices. Time evolution along these slices is generated by

L0 + L̄0, and is dual to scale transformations in the boundary CFT2.
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1. Introduction

The macroscopic entropy-area law [1, 2]

S =
A

4G
. (1.1)

relates thermodynamic entropy to the area of an event horizon. A striking feature of

this law is its universal applicability, including all varieties of black holes as well as

de Sitter [3] and Rindler spacetimes. Understanding the microscopic origin of (1.1) is

undoubtedly a key step towards understanding the fundamental nature of spacetime

and quantum mechanics. Some progress has recently been made in deriving (1.1)

for certain black holes in string theory [4]. This has led to a variety of insights

culminating in the AdS/CFT correspondence [5]. However the situation remains

unsatisfactory in that these recent developments do not fully explain the universality

of (1.1).

In particular one would like to derive the entropy and thermodynamic properties

of de Sitter space. This has taken on added significance with the emerging possibility

that the real universe resembles de Sitter space [6]. Recent discussions of de Sitter
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thermodynamics include [7]–[20]. An obvious approach, successfuly employed in the

black hole case, would be to begin by embedding de Sitter space as a solution of string

theory, and then exploit various string dualities to obtain a microscopic description.

Unfortunately persistent efforts by many (mostly unpublished!) have so far failed

even to find a fully satisfactory de Sitter solution of string theory. Hopefully this

situation will change in the not-too-distant future.

Meanwhile, string theory may not be the only route to at least a partial under-

standing of de Sitter space. Recall that the dual relation between AdS3 and CFT2
was discovered by Brown and Henneaux [21] from a general analysis of the asymp-

totic symmetries of anti-de Sitter space, and the central charge of the CFT2 was

computed. Later on black hole entropy was derived [22] using this central charge

and Cardy’s formula. In principle this required no input from string theory. Of

course the arguments of [22] would have been less convincing without the concrete

examples supplied by string theory.

In the absence of a stringy example of de Sitter space, in this paper we will

sketch the parallel steps, beginning with an analysis of the asymptotic symmetries

along the lines of [21], toward an understanding of de Sitter space. The endpoint will

be a holographic duality relating quantum gravity on de Sitter space to a euclidean

CFT on a sphere of one lower dimension. Our steps will be guided by the analogy

to the AdS/CFT correspondence. We will see many similarities but also important

differences between the AdS/CFT and proposed dS/CFT correspondences.

One of the first issues that must be faced in discussions of quantum de Sitter is

the spacetime region under consideration. An initial reaction might be to consider

the entire spacetime, which contains two boundaries I± which are past and future
spheres. This may ultimately be the correct view, but it is problematic for several

reasons. The first is that a single immortal observer in de Sitter space can see at

most half of the space. So a description of the entire space goes beyond what can be

physically measured. Trying to describe the entirety of de Sitter space is like trying

to describe the inside and outside of a black hole at the same time, and may lead

to trouble. A second problem recently stressed in [23] is that, if enough matter is

present, a space which is asymptotically de Sitter at I− may collapse at finite time,
and there will be no future I+ de Sitter region at all. Even when collapse does
not occur, the presence of matter alters the causal structure [24]. This obscures the

relevance of the global de Sitter geometry.

A smaller region1, denoted O− herein, is the region which can be seen be a single
timelike observer in de Sitter space. It includes the planar past asymptotic region

Î−, which is I− minus a point, but not I+. Discussion of the quantum physics of
O− does not include unobservable regions and does not presume the existence of I+.
1References [7, 11, 14] advocate an even smaller causal region corresponding to the interior of

both the past and future horizons of a timelike observer. This even smaller region excludes both

I− and I+.
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In this paper we will consider the holographic duals for both this region and the full

space. One of our conclusions will be that in both cases the dual is a single euclidean

CFT, despite the two boundaries of the full space, so from the dual perspective the

two cases are not as different as they might seem.

We begin in section 2 with a discussion of the asymptotic symmetries of dS3. It is

shown that conformal diffeomorphisms of the spacelike surfaces can be compensated

for by shifts in the time coordinate in such a way that the asymptotic form of the

metric on Î− is unchanged. This is similar to the AdS3 case [21] except that time
and radial coordinates are exchanged. Hence the asymptotic symmetry group of dS3
is the euclidean conformal group in two dimensions. The global SL(2,C) subgroup is

the dS3 isometry group. In section 3 we introduce the Brown-York stress tensor [25]

for the boundary of dS3. In section 4 we determine the central charge of the CFT

(following [26]) from the anomalous variation of this boundary stress tensor. We find

c = 3`
2G
, with ` the de Sitter radius and G Newton’s constant. In section 5 we study

correlators for massive scalar fields with points on Î−. It is found that they have
the right form to be dual to CFT correlators of conformal fields on the plane, with

conformal weights determined from the scalar mass. For m2`2 > 1, the conformal

weights become complex. This means that the boundary CFT is not unitary if there

are stable scalars with masses above this bound.

In section 6 we turn to global dS3 which has two asymptotic S
2 regions. We first

show that scalar correlators with points only on I− are dual to CFT correlators on
the sphere. We then consider the case with one point on I− and one point on I+.
These have singularities when the point on I+ is antipodal to the point on I−. This
is because a light ray beginning on the sphere at I− reaches its antipode at I+, and
so antipodal points are connected by null geodesics. This causal connection relating

points on I− to those on I+ breaks the two copies of the conformal group (one each
for I±) down to a single copy. After inverting the argument of the boundary field
on I+, correlators with one point on I+ and one point on I− have the same form
as those with both points on I− (or both on I+). Hence we propose that the dual
CFT lives on a single euclidean sphere, rather than two spheres as naively suggested

by the nature of the boundary of global dS3.
2

In section 7 we return to the region O− of dS3. This region can be foliated by
asymptotically flat spacelike slices. Quantum states can be defined on these slices

and at Î− form a representation of the conformal group. Time evolution is generated
by L0+L̄0. In the dual CFT this is scale transformations. This is the de Sitter analog

of the scale-radius duality in AdS/CFT, and may have interesting implications for

cosmology. We close in section 8 with a brief discussion of generalizations to higher

than three dimensions. An appendix includes some details of dS3 geometry and

Green functions.

2Since according to this proposal, the boundary CFT lives on a sphere in any case, the question

of whether or not there is an I+ at all might then be rephrased in terms of properties of the CFT.
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It will be evident to the reader that our understanding of the proposed dS/CFT

correspondence is incomplete. A complete understanding will ultimately require an

example of de Sitter quantum gravity. We hope that the present work will help guide

us in what to look for.

The closest things we have at present to examples are Hull’s spacelike D-branes

[8, 13] and Chern-Simon de Sitter gravity [27, 28]. Hull performs timelike T-duality

to turn for example AdS5×S5 to into dS5× H5, where H5 is the hyperbolic 5-plane,
and argues that the dual is a spacelike 3-brane. As discussed in [8, 13], this example is

pathological because there are fields with the wrong sign kinetic term. Nevertheless

it may be an instructive example for some purposes. Alternately, pure gravity in

de Sitter space can be written as an SL(2,C) Chern-Simon gauge theory, which

is holographically dual to a reduced3 SL(2,C) WZW model on the boundary. This

latter theory (before reduction) was studied extensively in [30] as the complexification

of SU(2), but its status remains unclear. Both of these examples deserve further

exploration.

The notion that quantum gravity in de Sitter space may have a euclidean holo-

graphic dual, possibly related to I− and/or I+, has arisen in a number of places,
including [8, 12, 17, 20].

2. Asymptotic symmetries of dS3

The region O− comprising the causal past of a timelike observer in de Sitter space
is illustrated in figure 1.

The metric for a planar slicing of O− is given by
ds2

`2
= e−2tdzdz̄ − dt2 . (2.1)

We use Î− to denote the plane which is the past infinity ofO−. An asymptotically
past de Sitter geometry is one for which the metric behaves for t→ −∞ as

gzz̄ =
e−2t

2
+O(1) ,

gtt = −1 +O(e2t) ,
gzz = O(1) ,
gzt = O(e2t) . (2.2)

These boundary conditions are an analytic continuation of the AdS3 boundary con-

ditions of Brown and Henneaux [21]. The asymptotic symmetries of dS3 are diffeo-

morphisms which preserve (2.2). Consider the vector fields

ζ = U∂z +
1

2
e2tU ′′∂z̄ +

1

2
U ′∂t , (2.3)

3As in the AdS case [29], we expect this becomes Liouville theory after imposing the appropriate

boundary conditions. Some discussion can be found in [9].
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Figure 1: Penrose diagram for dS3. Every point in the interior of the diagram is an S
1.

A horizontal line is an S2, with the left (right) vertical boundary being the north (south)

pole. O− is the region below the diagonal, and comprises the causal past of an observer at
the south pole. The dashed lines are non-compact surfaces of constant t.

where U = U(z) is holomorphic and the prime denotes differentiation. In order to

obtain a real vector field one must add the complex conjugate, however for notational

simplicity we suppress this addition in (2.3) and all subsequent formula. In general

the metric transforms under a diffeomorphism as the Lie derivative

δζgmn = −Lζgmn . (2.4)

For ζ parametrized by U as in (2.3), (2.4) becomes

δUgzz = −`
2

2
U ′′′ ,

δUgzz̄ = δUgzt = δUgtt = 0 . (2.5)

The change (2.5) in the metric satisfies (2.2) and so (2.3) generates an asymptotic

symmetry of de Sitter space on Î−. A special case of (2.3) is

U = α + βz + γz2 , (2.6)

where α, β, γ are complex constants. In this case U ′′′ vanishes, and the metric is
therefore invariant. These transformations generate the SL(2,C) global isometries of

2+1 de Sitter.

In conclusion the asymptotic symmetry group is the conformal group of the

complex plane, and the isometry group is the SL(2,C) subgroup of the asymptotic

symmetry group.
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3. The boundary stress tensor

Brown and York [25] have given a general prescription for defining a stress tensor

associated to a boundary of a spacetime. Our treatment parallels the discussion of

AdS3 in [26]. We will be interested in the boundary t→ −∞ at Î−. In the case at
hand the stress tensor is4

T µν = − 4π√
γ

δS

δγµν
, (3.1)

where γ is the induced metric on the boundary. The action is

S =
1

16πG

∫
M
d3x
√−g

(
R− 2

`2

)
+
1

8πG

∫
∂M

√
γK+

1

8πG`

∫
∂M

√
γ+Smatter , (3.2)

K here is the trace of the extrinsic curvature defined by Kµν = −∇(µnν) = −12Lnγµν
with nµ the outward pointing unit normal. The second integral in (3.2) is the usual

gravitational surface term. The third integral is a surface counterterm required for

finiteness of T at an asymptotic boundary, and uniquely fixed by locality and general

covariance [26]. The matter action is assumed not to be relevant near the boundary

and will henceforth be suppressed.

The sign in the definition (3.1) leads to a positive mass5 for Schwarzschild-de

Sitter [32]. It would be interesting to see if (3.1) reproduces the canonical operator

product expansion for a 2D CFT stress tensor.

Using (3.2) to evaluate (3.1) we learn that, for solutions of the bulk equations of

motion,

T µν =
1

4G

[
Kµν − (K + 1

`
)γµν
]
. (3.3)

This vanishes for de Sitter space on Î− in the coordinates (2.1). For more general
asymptotically dS3 spacetimes (obeying (2.2)) (3.3) implies

Tzz =
1

4G

[
Kzz +

1

`
γzz

]
. (3.4)

4. The central charge

A central charge can be associated to dS3 by analyzing the behavior of the stress

tensor on I−. We follow related discussions for AdS3 [21, 26] (which in turn followed
the earlier work [33]). Under the conformal transformations (2.3), one finds

δUTzz = − `
8G
U ′′′ . (4.1)

4Our conventions in this section are those of [25, 26] except for a factor of −2π in this equation,
in order to conform with the more standard conventions [31] for 2D CFT stress tensor.
5More precisely, a positive value of the AD mass L0 + L̄0, as defined below in equation 7.4.
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This transformation identifies the central charge as,6

c =
3`

2G
. (4.2)

It is presumably also possible to derive c by an alternate method [34, 33, 26]

which relates it to the trace anomaly by using spherical rather than planar spatial

sections.

5. The plane and Î− correlators
In the previous sections we have seen that the conformal group of euclidean R2 has an

action on Î−. One therefore expects that appropriately rescaled gravity correlators
restricted to Î− will be those of a euclidean 2D conformal field theory. In this section
we verify this expectation for the case of a massive scalar.

Consider a scalar field of mass m with wave equation

m2`2φ = `2∇2φ = −∂2t φ+ 2∂tφ+ 4e2t∂z∂z̄φ . (5.1)

Near Î− the last term in (5.1) is negligible and solutions behave as

φ ∼ eh±t , t→ −∞ , (5.2)

where

h± = 1±
√
1−m2`2 . (5.3)

We first consider the case 0 < m2`2 < 1 so that h± are real and h− < 1 < h+. As a
boundary condition on Î− we demand

lim
t→−∞

φ(z, z̄, t) = eh−tφ−(z, z̄) , (5.4)

with corrections suppressed by at least one power of e2t. The dS3 /CFT2 correspon-

dence proposes, in direct analogy with the AdS/CFT correspondence, that φ− is dual
to an operator Oφ of dimension h+ in the boundary CFT. The two point correlator
of Oφ is (up to normalization) the quadratic coefficient of φ− in the expression7

lim
t→−∞

∫
Î−
d2zd2v[e−2(t+t

′)φ(t, z, z̄)
↔
∂ tG(t, z, z̄; t

′, v, v̄)
↔
∂ t′φ(t

′, v, v̄)]t=t′ . (5.5)

6This equation was arrived at from a different perspective in [9] and a related equation appears

in [11].
7This is equivalent to the usual expression used in AdS/CFT (except of course with a different

boundary and G), as can be readily seen from the formula for the bulk Green function G in terms

of the bulk-to-boundary Green function. A clear discussion can be found in [35] . We have avoided

use of the bulk-to-boundary Green function because in the de Sitter case we need to keep track of

both terms in (5.6).
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G here is the de Sitter invariant Green function given in the appendix. Near Î− it
reduces to

lim
t,t′→−∞

G(t, z, z̄; t′, v, v̄) =
c+e

h+(t+t′)

|z − v|2h+ +
c−eh−(t+t

′)

|z − v|2h− , (5.6)

where c± are constants. Inserting (5.4) and (5.6), (5.5) is proportional to8

∫
Î−
d2zd2vφ−(z, z̄)|z − v|−2h+φ−(v, v̄) . (5.7)

We conclude that the dual operator Oφ obeys

〈Oφ(z, z̄)Oφ(v, v̄)〉 = const.

|z − v|2h+ , (5.8)

as is appropriate for an operator of dimension h+.

It should be noted that the boundary conditions (5.4) are not the most general.

There are also solutions with the subleading behavior φ+(z, z̄)e
h+t at Î−. Including

these would lead to an additional term in (5.7) proportional to

∫
Î−
d2zd2vφ+(z, z̄)|z − v|−2h−φ+(v, v̄) , (5.9)

which might be associated with an operator of dimension h−. In the next section we
will find that this extra boundary condition can imposed on the second boundary at

I+, which is not within the coordinate patch O− covered in the planar coordinates
(2.1). Alternately this second set of independent fields might be eliminated by im-

posing a suitable boundary condition at the future horizon t→∞, which would lead
to a different Green function.9

What happens if m2`2 > 1? In that case the conformal weight h− is no longer
real. h± are complex conjugates with real part equal to unity. Of course the ap-
pearance of imaginary conformal weights suggests that the dual CFT is not unitary.

This might mean that consistent theories of de Sitter quantum gravity have no stable

scalars with m2`2 > 1. On the other hand we know of no obvious reason that the

dual CFT needs to be unitary.

The preceding discussion is reminiscent of Liouville theory and indeed suggests

that the boundary CFT has a Liouville-like form. In some discussions of Liouville

theory operators with complex dimensions are encountered. Further there are various

kinds of operators (called macroscopic and microscopic in [37]) which may or may

not be allowed depending on the context.

8Similar holographic expressions were derived for general coset spaces in [36] , but the case of

de Sitter space was not explicitly considered.
9I thank J. Maldacena for this suggestion.
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Figure 2: Lines of constant τ in global spherical coordinates are the spacelike two-spheres

indicated by dashed lines.

6. The sphere and I± correlators
An alternate form of the dS3 metric is

ds2

`2
= −dτ 2 + 4 cosh2 τ dwdw̄

(1 + ww̄)2
(6.1)

w = tan θ
2
eiφ here is a complex coordinate on the round sphere. This metric describes

dS3 as a contracting/expanding two-sphere. These coordinates cover the entire space

which has future and past S2 boundaries I±, as depicted in figure 2. In general we
can consider correlators with points on either or both of the boundaries.

We begin with the two-point correlator with both points on I−. We wish to
compute the spherical analog of (5.5), which is

lim
τ→−∞

∫
I−
d2wd2v

√
h(w)h(v)×

× [e−2(τ+τ ′)φ(τ, w, w̄)↔∂ τG(τ, w, w̄; τ ′, v, v̄)↔∂ τ ′φ(τ ′, v, v̄)]τ=τ ′ , (6.2)

where h(w) = 2(1 +ww̄)−2 is the measure on the sphere. Near I−, φ can be decom-
posed as

lim
τ→−∞

φ(τ, w, w̄) = φin+(w, w̄)e
h+τ + φin−(w, w̄)e

h−τ . (6.3)

The superscripts ”in” (”out”) are used to denote quantities on I− (I+). As seen in
the appendix, the propagator behaves as

lim
τ,τ ′→−∞

G(τ, w, w̄; τ ′, v, v̄) = c+eh+(τ+τ
′) (1 + ww̄)

h+(1 + vv̄)h+

|w − v|2h+ +

+c−eh−(τ+τ
′) (1 + ww̄)

h−(1 + vv̄)h−

|w − v|2h− . (6.4)

9
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(6.2) is then proportional to

∫
I−
d2vd2w

√
h(v)h(w)(c+φ

in
−(w, w̄)∆h+(w, w̄; v, v̄)φ

in
−(v, v̄) +

+ c−φin+(w, w̄)∆h−(w, w̄; v, v̄)φ
in
+(v, v̄)) . (6.5)

∆h± here is the two point function for a conformal field of dimension h± on the
sphere:

∆h± =

[
(1 + ww̄)(1 + vv̄)

|w − v|2
]h±
, (6.6)

including the normalization factor from the Weyl anomaly on a curved geometry.

Hence we see that, as in the planar case, the two-point scalar correlators can be

identified with correlators of conformal fields of dimension h±, except that now they
are on the sphere rather than the plane. A similar expression holds for the boundary

at I+.
Life becomes more interesting when we put one point on I− and one on I+.

Then we must compute

lim
τ→−∞

∫
I−
d2w

∫
I+
d2v
√
h(w)h(v)×

× [e2(τ−τ ′)φ(τ, w, w̄)↔∂ τG(τ, w, w̄; τ ′, v, v̄)↔∂ τ ′φ(τ ′, v, v̄)]τ=−τ ′ . (6.7)

For this case, as shown in the appendix, the relevant limit of the Green function is

lim
τ→−∞,τ ′→+∞

G(τ, w, w̄; τ ′, v, v̄) = c+ cos(πh+)eh+(τ−τ
′)∆h+

(
w, w̄;−1

v̄
,−1
v

)
+

+(h+ ↔ h−) . (6.8)

It is convenient to define the inverted boundary field at I+

φ̃out+ (v, v̄) = φ
out
+

(
−1
v̄
,−1
v

)
. (6.9)

Then (6.7) is proportional to

∫
S2
d2wd2v

√
h(w)h(v)(c+ cos(πh+)φ

in
−(w, w̄)∆h+(w, w̄; v, v̄)φ̃

out
− (v, v̄) +

+ c− cos(πh−)φin+(w, w̄)∆h−(w, w̄; v, v̄)φ̃
out
+ (v, v̄)) .(6.10)

In particular we see that φin and φ̃out have a non-trivial two point function despite

the fact that they live on widely separated boundary components.

(6.9) and (6.10) can be interpreted as follows. Bulk gravity correlators with

all points on I− are CFT correlators on the sphere. Inserting additional gravity
operators on I+ corresponds to inserting the dual CFT operator at the antipodal

10
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point of the sphere. The reason for this inversion of insertions at I+ is simple. A
singularity of a correlator between a point on I− and one on I+ can occur only if
the two points are connected by a null geodesic. A light ray beginning on the sphere

at I− reaches the antipodal point of the sphere at I+, as can be easily seen from
figure 2. Therefore there is an inversion in the map from the sphere at I+ to the one
at I−.10
This causal connection between points at I+ and I− has important consequences

for the symmetry group. Naively one might have expected two copies of the conformal

group, one for I+ and one for I−, and correspondingly two separate CFTs. However
the Green functions know about the causal connection between points and therefore

transform simply only under a subgroup of the two conformal groups. The result is

a single conformal group and a single CFT on a single sphere.

We note that only two of the four boundary fields φin± , φ
out
± are independent,

the remaining two being determined by the equation of motion (at the semiclassical

level). These relations are the much-studied [38] Bogolubov transformations relating

I+ modes to I− modes. Therefore there are at most two independent boundary
operators.

One might alternately have employed one of the other Green functions in (6.2)

or (6.7) , such as the Feynman Green function, or a Green function associated with

one of the other de Sitter invariant vacua. Such modifications remain to be explored.

7. Quantum states and Virasoro generators

A quantum state in the patch O− can be characterized by its wave function Ψ on
the plane Î−. Ψ is a functional on the space of asymptotically euclidean (on the Î−
plane) two-geometries γ. Since the complex diffeomorphisms (2.3) map this space to

itself, the states Ψ form a representation of the conformal group. That is, they are

states in a conformal field theory.

The states Ψ are most naturally described in a radial quantization of the dual

CFT as wave functions on the S1 boundary of the Î−. Radial evolution is generated
by L0 + L̄0. In the bulk description this operator generates Killing flow along z∂z +

z̄∂z̄ + ∂t, as depicted in figure 3.
11 So it generates time evolution along the planar

spacelike slices in (2.1), accompanied by a dilation. At large radius the norm of the

dilation grows and the Killing vector becomes spacelike.12 The eigenvalue of L0+ L̄0
10When back reaction is included, the geometry is perturbed, and light rays tend to pass the

antipodal point [24]. Hence this identification may be deformed in perturbation theory. I thank

R. Bousso for discussions of this point.
11We note the absence of a factor of i here. In contrast on the 2D Minkowski cylinder L0 + L̄0
generates i∂t. This may be related to the thermal nature of de Sitter space.
12An analogy would be the operator H + J , where H is an ordinary Hamiltonian and J a

rotation operator. At large radius the motion generated by this operator is spacelike, nevertheless

it generates evolution along spacelike slices.
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Figure 3: The arrows indicate the direction of the Killing flow generated by L0 + L̄0
within O−. Note that it is timelike along the worldline of an observer at the south pole
but becomes spacelike on Î−.

is (up to a constant) a conserved charge known as the AD mass [39].

As usual, the generators H(ζ) of any of the diffeomorphisms ζ(U) can be written

as a surface integral at infinity (in this case the circle zz̄ → ∞) after gauge fixing,
imposing the constraints and constructing the Dirac brackets. The full expression,

as given in [21], is

H(ζ) =
1

16πG

∫
dSµ{[√γ(γµλγνρ − γµνγλρ)(ζ tδγλρ;ν − ζ t,kδγλρ)] +

+ 2ζνδπ
µν + (2ζλπρµ − ζµπλρ)δγλρ} . (7.1)

In this expression, πµν =
√
γ(Kµν−Kγµν) is 16πG times the momentum conjugate to

γµν , and the prefix δ denotes the deviation of the metric and momentum from their

fiducial dS3 values γ0zz̄ =
`2

2
e−2t and πzz̄0 = 1. Imposing the boundary conditions

(2.2) and using expression (2.3) for ζ we find many terms (including all those in the

square parenthesis) vanish as one approaches Î−. (7.1) simplifies to

H(ζ) = − i

8πG`

∫
dz(ζzπzz̄γzz + ζ

zγzz̄π
z̄z̄) . (7.2)

In terms of the boundary stress tensor given in (3.1), this becomes

H(ζ) =
1

2πi

∫
dzTzzζ

z . (7.3)

Defining ζn = ζ(z
n+1), we have

Ln ≡ H(ζn) = 1

2πi

∫
dzTzzz

n+1 . (7.4)

Expression (7.4) can also be more directly derived in the formalism of [25] , where

for every boundary symmetry ζν, there is an associated conserved current Tµνζ
ν. The
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associated charge is then just the integral of the normal component of the current

around the contour, which is precisely expression (7.4).

It is tempting to try to compute the de Sitter entropy by applying the Cardy

formula to these states. This will be explored in [32].

8. dSD/CFTD−1 correspondence

The dS3/CFT2 correspondence discussed in the preceding sections has an obvious

generalization to higher dimensions which we briefly mention in this section. It states

that bulk quantum gravity on dSD is holographically dual to a euclidean conformal

field theory on SD−1. The planar metric for dSD is

ds2

`2
= −dt2 + e−2td~x · d~x , (8.1)

while the spherical metric is

ds2

`2
= −dτ 2 + cosh2 τdΩ2D−1 , (8.2)

with dΩ2D−1 the unit metric on S
D−1. It can be seen from (8.2) that in de Sitter space

of any dimension that a light ray on I− reaches the antipodal point of the sphere
at I+. Therefore the boundary CFT should always involve a single sphere, but the
arguments of bulk correlators on I+ should map to antipodal points on the sphere,
relative to those from I−. One also finds from the asymptotic behavior of the wave
equation that equation (5.3) for the conformal weights is generalized to

h± =
1

2
((D − 1)±

√
(D − 1)2 − 4m2`2) . (8.3)

Again we see complex conformal weights for sufficiently massive states.
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A. dS3 Geometry

dS3 is described by the hyperboloid

X2 + Y 2 + Z2 − T 2 = `2 (A.1)
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in 3+1 Minkowski space. The planar coordinates (z, t) are defined by

t = − ln Z − T
`
,

z =
X + iY

Z − T ,
Z − T = `e−t ,
Z + T = `et − `zz̄e−t ,
X + iY = `ze−t . (A.2)

These lead to the metric (2.1)

ds2

`2
= e−2tdzdz̄ − dt2 . (A.3)

The spherical coordinates (τ, w) in (6.1) are defined by

T = ` sinh τ ,

Z = `
1− ww̄
1 + ww̄

cosh τ ,

X + iY =
2`w cosh τ

1 + ww̄
. (A.4)

These give the metric

ds2

`2
= −dτ 2 + 4 cosh2 τ dwdw̄

(1 + ww̄)2
, (A.5)

where w = tan θ
2
eiφ is a complex coordinate on the round sphere. The relation

between the spherical coordinates and the planar coordinates is

z =
w(1 + e2τ )

1− ww̄e2τ ,

t = τ − ln
[
1− ww̄e2τ
1 + ww̄

]
. (A.6)

The geodesic distance d(X,X ′) between two points X and X ′ has a simple ex-
pression in terms of the Minkowski coordinates. Define

`2P (X,X ′) = XX ′ + Y Y ′ + ZZ ′ − TT ′ . (A.7)

Then

d = ` cos−1 P . (A.8)

De Sitter invariance implies that the Hadamard two point function

G(X,X ′) = const.〈0|{φ(X), φ(X ′)}|0〉 (A.9)
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in a de Sitter invariant vacuum state is a function only of d, or equivalently P . Hence

away from singularities G obeys

(P 2 − 1)∂2PG+ 3P∂PG+m2`2G = 0 . (A.10)

This equation has two linearly independent solutions (related by P → −P ), cor-
responding to the existence of a one-parameter family of de Sitter invariant vacua.

Among these only one has singularities only along the light cone P = 1. This solution

is the hypergeometric function

G(P ) = ReF

(
h+, h−,

3

2
;
1 + P

2

)
. (A.11)

In planar coordinates one finds near Î−:

lim
t,t′→−∞

P (t, z, z̄; t′, v, v̄) = −1
2
e−t−t

′ |z − v|2 . (A.12)

This diverges, so G can be evaluated with the aid of the transformation formula,

F

(
h+, h−,

3

2
; z

)
=

Γ (3/2) Γ(h− − h+)
Γ(h−)Γ(3/2− h+)(−z)−h+ ×

×F
(
h+, h+ − 1

2
, h+ + 1− h−; 1

z

)
+ (h+ ↔ h−) (A.13)

and F (α, β, γ; 0) = 1. One finds

lim
t,t′→−∞

G(t, z, z̄; t′, v, v̄) =
4h+Γ(3/2)Γ(h− − h+)
Γ(h−)Γ(3/2− h+)

eh+(t+t
′)

|z − v|2h+ + (h+ ↔ h−) , (A.14)

as given in (5.6).

In spherical coordinates one finds near I−

lim
τ,τ ′→−∞

P (τ, w, w̄; τ ′, v, v̄) = − e−τ−τ ′|w − v|2
2(1 + ww̄)(1 + vv̄)

. (A.15)

Using (A.13) then leads to equation (6.4) for G on I−. We also need G for the case
that τ ′ approaches I+ while τ approaches I−. This can be deduced from the fact
that inverting one of the arguments of P (i.e. X → −X) simply changes it sign.
Hence

P (τ, w, w̄; τ ′, v, v̄) = −P
(
τ, w, w̄;−τ ′,−1

v̄
,−1
v

)
. (A.16)

Hence P → +∞ for one point on I− and one on I+. F has a singularity at P = 1
and a branch cut extending from from P = 1 to infinity. Using the fact that G is

the real part of F then yields (6.8) .

15



J
H
E
P
1
0
(
2
0
0
1
)
0
2
9

References

[1] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.

[2] S.W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43 (1975) 199.

[3] G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and

particle creation, Phys. Rev. D 15 (1977) 2738.

[4] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029].

[5] J. Maldacena, The large-N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[6] See e.g. S. Perlmutter, Supernovae, dark energy, and the accelerating universe: the

status of the cosmological parameters, in Proc. of the 19th Intl. Symp. on Photon and

Lepton Interactions at High Energy LP99, J.A. Jaros and M.E. Peskin eds., Int. J.

Mod. Phys. A 15S1 (2000) 715.

[7] J. Maldacena and A. Strominger, Statistical entropy of de Sitter space, J. High Energy

Phys. 02 (1998) 014 [gr-qc/9801096].

[8] C.M. Hull, Timelike T-duality, de Sitter space, large-N gauge theories and topological

field theory, J. High Energy Phys. 07 (1998) 021 [hep-th/9806146].
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