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Abstract.

Using concept of an ideal phase-conjugating mirror we demonstrate that regardless

to internal physical mechanism the phase-conjugation of singular laser beam is

accompanied by excitation within mirror of internal waves which carry doubled

angular momentum in order to match angular momentum conservation. For Brillouin

hypersound wavefront-reversal mirror this means that each elementary optical vortex

in a speckle pattern emits acoustical vortex wave with doubled topological charge. The

exact spatial profiles of light intensity and intensity of hypersound in the vicinity of

phase singularity are obtained. These spiral profiles have a form of a double helix

which rotates with the speed of sound. The optoacoustic experiment is proposed for

visualization of wavefront reversal of twisted optical beams and tunable twisted sound

generation.

The conservation of angular momentum (AM) ~J stems from isotropy of space [1]. In

contrast to particles with nonzero rest mass mo, the decomposition of ~J for ”spin” ~S and

”orbital” ~L parts of photon’s AM is referred to as ambiguous procedure [1, 2]. The spin

part ~S is related to polarization, i.e. time-dependent layout of electrical ~E and magnetic
~B fields of the ”transverse” light wave. The orbital part (OAM) ~L is associated with

helical staircase wavefront [2, 3, 4, 5]. As a matter of fact a purely transverse light waves

are abstraction because of a small but inevitable projections of ~E and ~B on direction of

propagation, say Z-axis(fig.1). Indeed, the spin-orbital coupling of light occurs [6] due

to vectorial interplay between longitudinal and transversal components of the fields ~E

and ~B. The vectorial solutions of Maxwell’s equations for propagation of a light spatially

localized by a waveguide or emitted through finite aperture to free space give a strict

relationship between longitudinal and transversal field components [7, 8]. Nevertheless

the approximate decomposition in the form ~J = ~S + ~L proved to be very fruitful for

small curvatures of light wavefront, i.e. in paraxial wave approximation[2].

The propagation of light in anisotropic medium changes the polarization and

historically the spin of photon was observed firstly in Beth’s experiment where

http://arxiv.org/abs/0801.2675v5
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Figure 1. Comparison of conventional mirror (M,bottom) and wavefront reversal

mirror (PCM,upper) from the point of view of angular momentum transformation

in photon’s reflection. Upper view: The ”right” photon with plane polarization and

helical wavefront strikes PCM and decays to ”right” photon, moving to opposite

direction with momentum - h̄kz. The acoustical phonon absorbs translational recoil

momentum 2h̄kz and rotational recoil OAM 2h̄. Bottom view: The ”right” photon

with topological charge +1 strikes the conventional mirror M and transforms to ”left”

photon. In this case the OAM is not changed and rotational recoil is absent.

birefringent λ/2 plate induced the change of photon polarization from circular (Sz = +h̄)

to counter-rotating one (Sz = −h̄) [9]. The elementary act of photon’s spin change

accompanied by back action and stepwise increase of angular momentum of a plate.

The quantum-classical correspondence fulfilled by origin of a macroscopically observable

classical torque ~T = d
dt
~J = [ ~D × ~E] [2] , where | ~J| ≈ I

ω
, ω - is angular frequency and I

- is intensity of light.

The reflection of circularly polarized photon from an ideal conventional mirror

(metal of multilayer dielectric one) does not change the direction of both spin ~S and

orbital momentum ~L in the laboratory frame and mechanical torque ~T on such mirror

is absent (fig.1). This follows both from boundary conditions for Maxwell equations[8]

and from rotational symmetry of setup with respect to Z-axis[1, 10].

The current communication pays particular attention to conservation laws in

reflection of photon carrying OAM Lz = ℓh̄ from phase-conjugating mirror (PCM).

The discussion will be concentrated mainly upon Brillouin wavefront-reversal mirror

[10]. We will demonstrate the hidden anisotropy of SBS-mirror which arise due to

excitation of internal helical waves, i.e. acoustical vortices, whose existence had been

proven recently for Mhz-range sound [11]. The rotation of ultracold cesium atoms [12]

also had been suggested to occur because of OAM transfer due to backward reflection

of Laguerre-Gaussian beam (LG) with 0.001 diffractive efficiency via nondegenerate

four-wave mixing process. The OAM transfer from co-propagating circularly LG to

BEC [13]had been discussed as well.

The circularly polarized photon is called ”right” when projection of the spin Sz
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upon direction of propagation is positive(fig.1). This happens for example, when photon

moves in positive direction of Z−axis with momentum h̄~k and the fields ~E and ~B rotate

clockwise with respect to ~k. On the contrary the ”left” photon have counter-clockwise

rotation of polarization and it carries spin Sz = −h̄.

In reflection from conventional mirror the incident ”right” photon with Sz = +h̄

moving in positive direction of Z − axis with momentum pz ≈ h̄|~k| is transformed

in a ”left” photon having pz ≈ −h̄|~k| and the same spin projection Sz = +h̄ . And

vice versa, when incident ”left”(or counter-clockwise) photon strikes mirror, the sign

of Sz = −h̄ is not changed in laboratory frame and photon becomes ”right”. It is not

surprising because setup is isotropic. In this situation the only mechanical effect on

mirror is light pressure [14, 15], whose major component is normal to mirror surface.

So the conventional mirror in normal reflection accepts the momentum ∆pz ≈ 2h̄~k as a

single entity and does not change both polarization (or spin ~S) and orbital momentum
~L.

The situation is changed drastically for PCM [10]. The conservation laws

determine the energy of excited acoustical phonon h̄Ωa as a difference of energies

of incident h̄ωp and reflected h̄ωs photons. The radiation pressure also takes place

here because of net momentum transfer to sound pphonon = ∆pz ≈ 2h̄kz or ”recoil”.

The most interesting feature is the conservation of OAM ~L. Let us show that the

wavefront-reversal mirror should feel ”rotational recoil” when vortex beam carrying

OAM is reflected with ultimate phase conjugation fidelity. Indeed, because of the

basic feature of phase-conjugation the retroreflected photon passes all states of the

incident one in reverse sequence [16].This is a so-called time reversal property of

the wavefront-reversing mirror. Consequently the helicoidal phase surfaces of incident

photon and reflected photon should be perfectly matched (fig.1). The small mismatch of

the wavefronts caused by recoil frequency shift and wavenumber shift of the order 10−5

[16] does not affect the phase surfaces. Because of accurate wavefront’s match theOAM

is turned to 180o angle and OAM projection Lz = +ℓh̄ is changed to the opposite one

Lz = −ℓh̄. As a consequence the ”winding” number or topological charge ℓ does not

change the sign with respect to propagation direction ~k. Thus the conjugated photon

with ”right” OAM remains ”right”, the photon with ”left” OAM remains ”left”.

The apparent physical consequence of this fact is the necessity of excitation of

internal wave which ought to absorb the difference of angular momenta ∆Lz = +2ℓh̄

before and after retroreflection. Consequently this internal wave should have singular

wavefront unavoidably provided the PCM is ideal. At this point let us stress again upon

remarkable difference between spin ~S and orbital ~L components of angular momentum.

The electrostrictive nonlinearity in isotropic medium is scalar in paraxial approximation

at least and spin part of AM is not turned to opposite one[10]. On the contrary, the

orbital component ~L or OAM does turns, because acoustical vortices do exist[11]. It

will be shown below in details by exact analytical formulas how acoustical vortices

absorb the OAM. In fact there exist some obstacles in realization of the perfect phase-

conjugation of elementary optical vortices say in the form of LG [17]. Nevertheless
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it will be shown below how to overcome this class of difficulties using traditional and

reliable methods of the Brillouin phase-conjugation[16].

For this purpose let us separate the region of wavefront reversal via traditional

phase-conjugating mechanisms, e.g. Brillouin PCM and optoacoustic cell (OA) where

sound is excited parametrically, without back action on light(fig.2). This geometry

makes possible to visualize inside OA acoustical vortex collocated with the optical

phase singularity in a spatial region having size up to several millimeters in transverse

dimensions, i.e. in X, Y -plane[11].

The acoustical waves inside Brillouin PCM volume are highly dissipative, because

hypersound have a typical relaxation times about 10−9 sec[10]. In liquid crystals,

which are used for phase-conjugation the relaxation times are significantly longer -

10−3 sec[10]. In the second case one might expect to observe the macroscopic torque

on PCM for appropriate time scales. Or else in anisotropic artificial medium alike

Veselago’s lens [18] might appear a macroscopic rotational recoil caused by optical

torque.

Consider for definiteness the interaction of the two counter-propagating paraxial

laser beams inside Brillouin active medium. Instead of the quantized field description

by means of Heisenberg’s secondary-quantization Ψ̂ - operators [1] we choose more

intuitive approach using classical counter-propagating optical fields Ep, Es and acoustic

field Q. The linearly polarized ”pump” field Ep moves in positive direction of

Z−axis, the reflected Stockes field Es with the same polarization propagates in opposite

direction(fig.3). The acoustic field Q is excited via electrostriction. The cylindrical

system of coordinates (z, r, φ, t) is choosed for equations below. The connection with

cartesian coordinates used in figures is supposed to be evident. The ”parabolic”

equations of motion are well known[10]. The ”envelope” complex amplitude of pump

wave Ep moving from left to right (fig.1) follows to:

∂Ep(z, r, φ, t)

∂z
+

n

c

∂Ep

∂t
+

i

2kp
∆⊥Ep =

iγωp

4ρ0nc
QEs , (1)

The Stockes wave ”envelope” Es moving from right to left is controlled by:

∂Es(z, r, φ, t)

∂z
−

n

c

∂Es

∂t
−

i

2ks
∆⊥Es = −

iγωs

4ρ0nc
EpQ

∗, (2)

The acoustic wave ”envelope” Q moving from left to right obeys to:

va
∂Q(z, r, φ, t)

∂z
+

∂Q

∂t
+

ΓQ

2
=

iγka
2

16πΩa

EpEs
∗, (3)

where γ = ρ(∂ǫ/∂ρ) - is the electrostrictive coupling constant , ρ0 - is the density of

medium, n - is the index of refraction, c - is the speed of light, va - is a speed of sound[19].

The connections between ”envelope” complex amplitudes Ep, Es, Q and complete field

amplitudes Ep,Es,Q are given by [10, 19]:

Ep = exp [i(+kpz − ωpt)] Ep(z, r, φ, t);
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Figure 2. The proposal of experimental setup for twisted hypersound observation.

The laser field Ep comes through mode converter and Faraday cell FC to optoacoustic

cell OA. The transparent random phase plate is used for initiation of a high-fidelity

phase-conjugation in multimode Brillouin-active waveguide SBS . F-is focal distance

of a lens.The phase conjugated Stockes field Es interferes with pump field Ep inside

OA to produce rotating spiral interference pattern with transverse size of several

millimeters. The twisted sound phonons excited by counter-propagating fields are

expected to have OAM La = 2h̄ directed to right. The angular speed of rotation is

equal to acoustical frequency Ωa ≈ 109Hz.

Es = exp [i(−ksz − ωst)] Es(z, r, φ, t)

Q = exp [i(+kaz − Ωat)]Q(z, r, φ, t) (4)

The equations (1-3 ) are valid within both Brillouin mirror and OA (fig.2). The

solution of (1-3 ) for OA could be obtained under natural physical assumption that

amplitudes Ep and Es are small enough and acoustic field Q is excited parametrically,

by electrostrictive force in a right-hand side of (3). This assumption enables us to

solve (1-2 ) in free-space approximation, i.e. without right-hand sides. For Cauchi

propagation problem with first order Laguerre-Gaussian beam as initial condition for

Ep (from left window of OA ) and Es (from right window of OA ) we have the following

exact solutions for pump field Ep :

Ep(z, r, φ, t) ∼
Eo

p exp [ i(+kpz − ωpt) + iℓφ]

(1 + iz/(kpD2))2
rℓ exp [−

r2

D2(1 + iz/(kpD2))
], (5)

and for Stockes field Es :

Es(z, r, φ, t) ∼
Eo

s exp [ i(−ksz − ωst) + iℓφ]

(1 + iz/(ksD2))2
rℓ exp [−

r2

D2(1 + iz/(ksD2))
].(6)

The fields Ep and Es carry angular momentum ℓh̄ per photon[5], where ℓ is above

mentioned ”topological charge” or ”winding number”, D - is diameter of beam

”necklace” at full width half-maximum(FWHM), z - is distance passed along Z − axis

from beam necklace, r = |~r| - length of radius vector perpendicular to Z, φ-azimuthal

angle, Eo
s and Eo

p - are the maximal electrical field amplitudes in necklace. The

maximally simplified form of the free-space solution choosed for LG beam [20] under
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Figure 3. Interference pattern of incident (pump) Gaussian mode wave Ep with

field Es reflected from conventional mirror. Left : incident zeroth-order Gaussian

beam forms moving quasi-sinusoidal pattern with period λ/2 due to interference with

reflected beam.Four isosurfaces of interference maxima are shown. The direction of

pattern motion is changed with the change of the sign of Ω. The pattern is the same

for reflection of TEMoo beam from M and PCM. The period of acoustical grating is

equal roughly to a half of the pumping wavelength in order to satisfy Bragg reflection

condition. Right: LG beam interferes with LG reflected from conventional mirror.A

sequence of toroidal rings occurs. The OAM is not transferred to medium.

assumption that Fresnel number for OA− cell is large enough Nf = kp,sD
2/z >> 1 or

thickness of OA is much shorter than Rayleigh range kp,sD
2.

Consider first the interference patterns produced by two counter-propagating fields

Ep and Es with equal amplitudes Eo
p,s and without phase singularities, i.e. two zeroth-

order Gaussian beams or TEMoo - beams near their overlapping necklaces:

E(p,s)(z, r, φ, t) ≈ Eo
p,s exp [ − iω(p,s)t± ik(p,s)z −

r2

D2(1± iz/(k(p,s)D2))
] (7)

The isosurfaces of intensity Isurface < 2|E0|
2 as a functions of cylindrical coordinates

(z, r, φ, t) are the solutions of the following implicit equation reminiscent to basic course

of physical optics:

Iisosurface = |E(z, r, φ, t)|2 = |Ep(z, r, φ, t) + Es(z, r, φ, t)|
2

∼= 2|Eo
p,s|

2[1 + cos[ (ωp − ωs)t− (kp + ks)z]] exp [ −
2r2

D2(1 + z2/(k2
pD

4))
].(8)

Apart from familiar interference term cos[ (ωp − ωs)t+ (kp + ks)z] which describes

grating with period P = 2π(kp + ks)
−1 moving along Z − axis with acoustical speed

va = [(ωp − ωs)/(kp + ks)] the Gaussian function arosed which modulates the rolls



Angular Momentum of Photon and Phase Conjugation. 7

of interference pattern in transverse direction. Thus the isosurfaces of intensity are

pancake-like rotational ellipsoids separated by distance P (fig. 3). Such interference

pattern is in a strict agreement with the Doppler’s mechanism of Brillouin scattering:

the pump field is being reflected from grating which moves with the speed va. The

resulting Doppler shift ωp−ωs is such that optical interference pattern perfectly overlaps

with spatial profile of acoustic field. The left picture of (fig. 3) illustrates this moving

interference pattern for four periods. In conventional picture of stimulated Brillouin

scattering this moving pattern coincides with the moving profile of hypersound wave

[10]. The spatial period of this wave P = λa = 2π/(kp+ks) is such that Bragg condition

for normal reflection from moving grating ((λp)
−1 + (λs)

−1 = (λa)
−1) is satisfied.

Suppose now that first order LG is reflected from conventional, non phase-

conjugating parabolic mirror(fig. 1). Because orbital angular momentum is not changed

in such reflection in laboratory frame, the helical terms (ℓφ) have identical signs in

expressions for fields Ep and Es:

E(p,s)(z, r, φ, t) ≈ Eo
p,s rℓ

exp [ − iω(p,s)t± ik(p,s)z + iℓφ] −
r2

(D2(1± iz/(k(p,s)D2)))
] (9)

Then two counter-propagating first-order LG produce in OA more complicated

interference pattern, with a hole on the beam axis. As a result instead of sequence of

ellipsoids we have a sequence of a toroidal rings separated by period λa = 2π(kp+ ks)
−1

in order to fulfill Bragg resonant condition (fig. 3):

Iisosurface = |E(z, r, φ, t)|2 = |Ep(z, r, φ, t) + Es(z, r, φ, t)|
2 ≈

2|Eo
p,s|

2[1 + cos[ (ωp − ωs)t− (kp + ks)z]]r
ℓ exp [ −

2r2

D2(1 + z2/(k2
pD

4))
]. (10)

Again the interference pattern moves along Z − axis with acoustic speed va. The

direction of motion is determined by the sign of difference (ωp−ωs). For anti−Stockes

difference of frequencies the interference pattern moves in negative direction of Z−axis.

Phase conjugation of LG changes the interference pattern drastically. Because

orbital angular momentum is changed to opposite one in wavefront reversal process, the

helical terms ℓφ have opposite signs in expressions for fields Ep and Es and expression

for the Stockes field generated by PC - mirror reads:

E(p,s)(z, r, φ, t) ≈ Eo
p,s rℓ

exp [ − iω(p,s)t± ik(p,s)z ± iℓφ] −
r2

(D2(1± iz/(k(p,s)D2)))
] (11)

This mathematical peculiarity, namely ± before azimuthal angle φ, follows from the

physical fact that after retroreflection the ideally phase-conjugated wave passes all states

of incident wave in reverse sequence ([16] ). As a result the expression for interference

pattern is slightly different:
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Figure 4. Interference pattern of incident ”right” (pump) first order LG wave Ep

and phase-conjugated ”right” replica Es. The topological charge is ℓ = +1. Left:

The spiral distribution of intensity occurs. The only one string is shown because of

computational power limitations. Right: Actually the interference pattern have the

form of a double helix. The right plot depicts the maxima of intensity only. The

double helix rotates clockwise when the frequency difference is positive(Stockes case).

For anti-Stockes retroreflection the rotation of helix is counter-clockwise. The period

of acoustical spring is equal roughly to a half of the pumping wavelength for Brillouin

scattering.

Iisosurface = |E(z, r, φ, t)|2 = |Ep(z, r, φ, t) + Es(z, r, φ, t)|
2 ≈

2|Eo
s,p|

2[1 + cos[ (ωp − ωs)t− (kp + ks)z + 2lw φ ]] r2lw

exp [ −
2r2

D2(1 + z2/(k2
pD

4))
]. (12)

The self-similar variable (ωp − ωs)t − (kp + ks)z in the argument of cos acquires

the doubled azymuthal angle 2ℓ φ . As a consequence the interference pattern changes

from sequence of toroidal rings to double helix (fig. 4). The spiral interference pattern

has two maxima because azimuthal dependence contains doubled azimuthal angle φ.

The spatial period of the springs is again automatically adjusted in such a way that

one may say generalized Bragg condition is satisfied. The other drastical feature is

that interference pattern rotates with angular velocity equal to acoustical frequency

Ωa = (ωp −ωs). The linear, translational speed of Z − aligned motion of a helix’s turns

is exactly equal to the sonic speed va:

va =
(ωp − ωs)

(kp + ks)
(13)

The similar double-helix structures were reported recently for a Wigner crystals in

a dusty plasma [21].
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The singular acoustical fields in Mhz-range were generated and measured [11].

The helical acoustical wavefronts were recorded. Let us to obtain the exact expression

for spatial distribution of the sound intensity near optical phase singularity in

Brillouin medium using equation for acoustical field Qtwisted. The expression for

intensity of hypersound field Isound reads immediately from the general expressions for

electrostrictive nonlinearity [10, 19]:

Isound ≈ |E(z, r, φ, t)|2 = |Eo
p,s|

2[1 + cos[ (ωp − ωs)t− (kp + ks)z + 2ℓ φ ]]

r2ℓ exp [ −
2r2

D2(1 + z2/(k2
pD

4))
]. (14)

We designated this acoustic vortex field as Qtwisted having in mind helical

distribution of intensity (fig. 4). It is clear that such vortex possesses doubled angular

momentum, as it seen from doubled azimuthal angle 2ℓφ in self-similar argument of cos

in (14) . In addition the complex acoustic envelope Qtwisted could be derived in steady-

state regime due to the fact of the strong dumping of acoustical field. The lifetime

for hypersound wave Γ−1 is of the order of the several nanoseconds for typical liquid

and gaseous media[10]. Thus expression for acoustical envelope Qtwisted is obtained in

steady-state from (3) using (9) :

Qtwisted ≈ EpEs
∗ ≈ exp [ + i2ℓ φ ] r2ℓ exp [ −

2r2

D2(1 + z2/(k2
pD

4))
]. (15)

Evidently the envelope of acoustic wave Qtwisted has helical wavefront with doubled

topological charge 2ℓ. The twisted spatiotemporal acoustic field Qtwisted has the

following form:

Qtwisted ≈ EpEs
∗ ≈ exp [ i(ωp − ωs)t− i(kp + ks)z + i2ℓ φ ]

r2ℓ exp [ −
2r2

D2(1 + z2/(k2
pD

4))
]. (16)

The phase dislocation of acoustic wave rotates with acoustical frequency Ωa =

ωp − ωs. The speed of translational motion in Z − direction of rotating turns of an

acoustical spring is exactly equal to the speed of sound va. The rotating spring could

be visualized by currently available experimental tools [11], because the transverse size

of beam necklace could be easily changed e.g. by additional lenses.

The previous exact expressions (12, 14, 16) are based upon elementary exact

solutions of the parabolic wave equations in the form of the first order LG. This

simplification became possible due to geometrical separation of the OA with weak

interaction of counter-propagating beams from PCM where strong interaction of the

optical fields Ep and Es takes place. The straightforward generalization is to be made

taking into account the elongated geometry of phase singularities inside speckle pattern

within SBS-mirror volume (fig. 2) [10]. The expression for the optical fields near the

phase singularity with topological charge ℓ could be generalized in the following form:

E(p,s)(z, r, φ, t) = Eo
p,s rℓ exp [ − iω(p,s)t± ik(p,s)z ± iℓφ] ]f(r, z), (17)
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Figure 5. Comparison of acoustical (left) and optical speckle (right) fields inside

Brillouin mirror pumped by multimode random phase field. The optical vortices on

right panel are designated by white circles with one arrow. The phase is changed from

0 to ±2π in motion around optical phase singularity. The collocated acoustical vortices

on the left panel are shown by white circles with two arrows. The phase is changed

from 0 to ±4π in motion around acoustical phase singularity. The transverse X , Y

scale is 100× 100 µm.

where f(r, z) - is a smooth function elongated in Z-direction. The inequality of

the forward Ep and backward Es fields amplitudes does not affect qualitatively the

helical interference patterns (fig. 4) in the regime of weak saturation, because the

Brillouin wavefront reversal mirrors with random phase plate have sufficiently high

(approximately 0.9 ) phase-conjugating fidelity[16]:

K =
|
∫
EpE

∗
sd~r|

2

(
∫
|Ep|2d~r)(

∫
|Es|2d~r)

, (18)

The experimentally verified procedure utilizes the thin transparent glass plates with

chaotic phase modulation (fig. 2) which have transverse correlation length of about tens

of microns. Such geometry looks promising for realization of the phase-conjugation of

LG and to overcoming a difficulties reported earlier [17]. Because of high degree of

phase-conjugation fidelity of the forward Ep and backward Es fields one may consider

the transverse distributions of pump and Stockes fields near entrance window of PCM

as almost identical. Thus the above expressions (12, 14, 16) for spring interference

patterns might be valid for speckle fields as well. This enables us to plot transverse

distributions of the optical and acoustical phases in output planes of PC-mirror and

OA in a similar way, where phase-conjugated Stockes field Es is in a good correlation

with the pump field Ep. Choosing the 8× 8 random plane waves superposition for Ep

and Es ≈ E∗
p we obtained using (15) the transverse distributions of the phase of the

envelope of optical speckle field arg(Ep(~r⊥)) and for envelope of a field of collocated

acoustical vortices arg(Qtwisted(~r⊥)). The acoustical vortices have doubled topological

charges (fig. 5).
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In summary we demonstrated that the wavefront - reversal mirrors are chiral optical

antennas. The elementary consideration of conservation laws including conservation

of AM shows the existence of twisted rotating structures inside an ideal phase-

conjugator.For stimulated Brillouin scattering mirror the rotating spiral interference

pattern modulates the dielectric permittivity ǫ via electrostriction. The dynamical

equations give the exact expressions for sound intensity inside acoustical phase

singularity which is collocated with optical phase singularity. It is worth to mention

the model presented above does not take into account the several essential features of

Brillouin PCM, e.g. longitudinal dependence of optical fields and corresponding spatial

mismatch of their amplitudes. The reflection of the both elementary optical vortices

like LG and speckle fields as well is accompanied by excitation inside SBS wavefront-

reversal mirror of sonic vortices with doubled topological charge. Internal helical waves

and spiral modulation of dielectric permittivity induce local anysotropy inside the phase-

cojugating mirror and forces the exchange of angular momentum. The new experimental

geometry is proposed (fig. 2) in order to observe parametric excitation of an isolated

acoustical vortices inside OA. Interference pattern near each phase singularity in a

speckle pattern rotates clockwise with angular speed Ω = ωp−ωs regardless to the sign of

spirality of the interference spring. The rotation changes direction to counter-clockwise

for all singularities in a speckle for anti-Stockes frequency of retroreflected wave. The

angular speed Ω depends also on the physical mechanism of wavefront reversal. It could

span from units of Hz for the photorefractive crystals to terahertz range for Raman

phase-conjugators[10].

The connection of the angular momenta of the incident and reflected photons seems

to be valid for any other nonlinear PCM including photorefractive one. In order to

transfer OAM the rotating intensity springs should excite the helical waves intrinsic

to given type of phase conjugating mirror. The peculiarities of photorefractive media,

e.g. nonstationary vortex reflection, screening,vortex splitting and ”disappearance of

nonlinearity” [22] also deserves special attention. The successful wavefront reversal

of complex images obtained else the first experiments with photorefractive phase

conjugators [23] is an indirect evidence for existence of internal helical waves in the

volume of photorefractive PCM and other phase-conjugators alike liquid-crystal light

valves.

The correspondence between formulas for classical fields Ep, Es andQ and quantum

field description by means of Heisenberg’s secondary-quantization Ψ̂ - operators [1] will

be given elsewhere. Briefly in quantum picture of ideal phase conjugator (fig.1) each

incident photon with orbital angular momentum Lz = ℓh̄ decays to reflected photon

with opposite Lz = −ℓh̄ projection on propagation axis and a quantum of internal wave

with doubled OAM Lz
a = 2ℓh̄.
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