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Abstract.

We suggest a pseudospectral method for solving the three-dimensional time-
dependent Gross-Pitaevskii (GP) equation and use it to study the resonance dynamics
of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic
scattering length. When the frequency of oscillation of the scattering length is an
even multiple of one of the trapping frequencies along the x, y, or z direction, the
corresponding size of the condensate executes resonant oscillation. Using the concept
of the differentiation matrix, the partial-differential GP equation is reduced to a set of
coupled ordinary differential equations which is solved by a fourth-order adaptive step-
size control Runge-Kutta method. The pseudospectral method is contrasted with the
finite-difference method for the same problem, where the time evolution is performed
by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable
for a three-dimensional standing-wave optical-lattice trapping potential.
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1. Introduction

The experimental realization [1] of Bose-Einstein condensates (BECs) in dilute weakly-
interacting trapped bosonic atoms at ultra-low temperature initiated intense theoretical
effort to describe the properties of the condensate [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
The properties of a condensate at zero temperature are usually described by the time-
dependent, nonlinear, mean-field Gross-Pitaevskii (GP) equation [14]. The effect of the
interatomic interaction leads to a nonlinear term in the GP equation which complicates
the solution procedure. Also, to simulate the proper experimental situation one should
be prepared to deal with an anisotropic trap [15].

A numerical study of the time-dependent GP equation is of interest, as this
can provide solution to many stationary and time-evolution problems. The time-
independent GP equation yields only the solution of stationary problems. As our
principal interest is in time evolution problems, we shall only consider the time-
dependent GP equation in this paper. There are many numerical methods for the
solution of the GP equation [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

http://arxiv.org/abs/cond-mat/0210177v2
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Here we suggest a pseudospectral time-iteration method [16,17] for the solution of
the three-dimensional GP equation with an anisotropic harmonic trap and contrast it
with the finite-difference method [18, 19]. In the pseudospectral method the unknown
wave function is expanded in terms of a set of N orthogonal polynomials. When this
expansion is substituted into the GP equation, the (space) differential operators operate
on a set of known polynomials and generate a differentiation matrix operating on the
unknown coefficients. Consequently, the time-dependent partial-differential nonlinear
GP equation in space and time variables is reduced to a set of N coupled ordinary
differential equations (ODEs) in time which is solved by a fourth-order adaptive step-size
control Runge-Kutta method [20] using successive time iteration. In the pseudospectral
method we use the Hermite polynomials to expand the wave function. In references [11]
pseudospectral methods have been employed for the solution of the GP equation, where a
variable step forth order Runge-Kutta time propagator was used, as in the present work.
In [11] a pseudospectral fourier-sine basis was used for finite traps, and a corresponding
complex pseudospectral basis was used for systems with periodic boundary conditions.
However, the present study seems to be the first systematic study in dealing with the
GP equation in three space dimensions using the pseudospectral and finite-difference
approaches.

In the finite-difference method the time iteration is implemented by the split-
step Crank-Nicholson scheme. The first approach will be termed pseudospectral-
Runge-Kutta (PSRK) method and the second finite-difference-Crank-Nicholson (FDCN)
method in the following. Here pseudospectral and finite-difference refer to the space
part and Runge-Kutta and Crank-Nicholson refer to the time part. However, it should
be noted that the temporal and the spatial parts in the GP equation can be dealt
with in independent fashions. One can combine the pseudospectral or finite difference
approach with a specific algorithm for time stepping which can be Runge-Kutta or
Crank-Nicholson (with or without time-splitting) scheme, or any other. In fact it is
quite common to implement some version of the pseudospectral method with Crank-
Nicholson time stepping when solving the Navier-Stokes equation.

The PSRK method is illustrated by calculating the wave function and energy
eigenvalue of the GP equation for different nonlinearity and trap symmetries in three
dimensions as well as by studying a resonance dynamics. We find that in both cases
the PSRK method presented here turns out to be a practical and efficient one for the
solution of the time-dependent GP equation.

Resonance is an interesting feature of an oscillation under the action of an external
periodic force manifesting in a large amplitude, when the frequency of the external force
equals a multiple of the natural frequency of oscillation. Although, the phenomenon
of resonance is well-understood in linear problems, in nonlinear dynamics it is far
more nontrivial. Hence, it is worthwhile to study the dynamics of resonance using
the nonlinear GP equation. The possibility of generating a resonance in a BEC subject
to an oscillating trapping potential has been explored previously [21]. Here, using the
PSRK approach we study the resonance dynamics of a three-dimensional BEC subject
to a periodic variation in the scattering length. One can have resonant oscillation in the
x, y, and z directions, when the frequency of oscillation of scattering length equals an
even multiple of the trapping frequency in the respective direction. Such a variation in
the scattering length is possible near a Feshbach resonance by manipulating an external
magnetic field [22]. There have been recent studies on this topic in one [23] and two
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space [24] variables.
Next we consider the FDCN method for the numerical solution of the time-

dependent GP equation [4, 5, 6, 7, 8]. In this approach the time-dependent GP equation
is first discretized in space and time using a specific rule [18, 19] and the resultant set
of equations is solved by time iteration with an initial input solution [4, 5, 6, 7]. This
procedure leads to good result in the effective one- [4] and two-space-variable [6, 5, 7, 8]
cases and we extend it here to the full three-dimensional case. In the two-space-variable
case a three-step procedure [8] is first used to separate the Hamiltonian into three
parts before applying the Crank-Nicholson scheme in two directions. In the three-space
variable case we consider a four-step procedure where the Hamiltonian is broken up into
four parts. We illustrate the FDCN method in three dimensions for the solution of the
GP equation with a three-dimensional standing-wave optical-lattice potential.

In section 2 we describe briefly the three-dimensional, time-dependent GP equation
with an anisotropic trap. The PSRK and FDCN methods are described in section 3. In
section 4 we report the numerical results for the wave function and energy for different
symmetries and nonlinearities as well as an account of our study of resonance in the
anisotropic case due to an oscillating scattering length. In section 5 we present the
solution of the GP equation for an optical-lattice potential using the FDCN method
and finally, in section 6 we present a discussion of our study.

2. Nonlinear Gross-Pitaevskii Equation

At zero temperature, the time-dependent Bose-Einstein condensate wave function
Ψ(r; τ) at position r and time τ may be described by the following mean-field nonlinear
GP equation [2, 14]

[

− h̄
2∇2

2m
+ V (r) + gN0|Ψ(r; τ)|2 − ih̄

∂

∂τ

]

Ψ(r; τ) = 0.

Here m is the mass and N0 the number of atoms in the condensate, g = 4πh̄2a/m
the strength of interatomic interaction, with a the atomic scattering length. The
normalization condition of the wave function is

∫

dr|Ψ(r; τ)|2 = 1.
The three-dimensional trap potential is given by V (r) = 1

2
m(ω2

0x̄
2 + ω2

y ȳ
2 + ω2

z z̄
2),

where ωx ≡ ω0, ωy, and ωz are the angular frequencies in the x, y and z directions,
respectively, and r ≡ (x̄, ȳ, z̄) is the radial vector. The wave function can be written as
Ψ(r; τ) = ψ(x̄, ȳ, z̄, τ). After a transformation of variables to dimensionless quantities

defined by x =
√
2x̄/l, y =

√
2ȳ/l, z =

√
2z̄/l, t = τω0, l ≡

√

(h̄/mω0) and

φ(x, y, z, t) = ψ(x̄, ȳ, z̄, τ)(l3/
√
8)1/2, the GP equation becomes

[

− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+
x2 + κ2y2 + ν2z2

4
+N |φ(x, y, z, t)|2 − i

∂

∂t

]

φ(x, y, z, t) = 0,(2.1)

where N = 8
√
2πn, κ = ωy/ω0 and ν = ωz/ω0 with nonlinearity n = N0a/l. The

normalization condition for the wave function is
∫

∞

−∞

dx
∫

∞

−∞

dy
∫

∞

−∞

dz|φ(x, y, z, t)|2 = 1. (2.2)
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3. Numerical Methods

3.1. Pseudospectral Runge-Kutta (PSRK) method

First we describe the PSRK method [16, 17] for the one-dimensional GP equation in
some detail and then indicate the necessary changes for the three-dimensional case.
The one-dimensional GP equation is obtained by eliminating kinetic energy (derivative)
terms in y and z, setting κ = ν = 0 and eliminating the y and z dependence of φ in
(2.1), e.g.,

[

− ∂2

∂x2
+
x2

4
+N |φ(x, t)|2 − i

∂

∂t

]

φ(x, t) = 0, (3.1)

with the normalization
∫

∞

−∞
dx|φ(x, t)|2 = 1.

In this method the unknown function φ(x, t) ≡ φ(x) is expanded in terms of a set
of N known interpolating orthogonal functions {fj(x)}N−1

j=0 as follows [16]

φ(x) ≈ pN−1(x) =
N−1
∑

j=0

α(x)

α(xj)
fj(x)φj , (3.2)

where {xj}N−1
j=0 is a set of distinct interpolation nodes, φj ≡ φ(xj), α(x) is a weight

function, and the functions {fj(x)}N−1
j=0 satisfy fj(xk) = δjk (the Kronecker delta) and

involve orthogonal polynomials of degree (N − 1), so that φ(xk) = pN−1(xk), k =
0, 1, ..., N − 1. In this work the interpolating functions {fj(x)}N−1

j=0 are the Hermite
polynomials Hj(x): fj(x) = Hj(x). However, one could use other polynomials, such
as, Chebyshev, Laguerre, and Legendre. One could also consider a Fourier (spectral)
expansion of the wave function in terms of periodic cosine and sine functions. The
Hermite polynomials are the eigenfunctions of the linearized GP equation and hence
already satisfy the boundary conditions of the wave function of the GP equation [3].
Consequently, by choosing the Hermite polynomials in the expansion, (3.2) satisfies the
proper boundary conditions by construction.

For obtaining the numerical solution, the GP equation (3.1) is defined and solved
on the set of grid points xj . The solution at any other point is obtained by using the
interpolation formula (3.2), or any other convenient interpolation rule. The advantage
of the expansion (3.2) is that when it is substituted in the GP equation, the space
derivatives operate only on the known analytic functions α(x) and fj(x), so that one
can define a matrix for the second-order space derivative [16]:

D2

k,j =
d2

dx2

[

α(x)

α(xj)
fj(x)

]

x=xk

, (3.3)

and the numerical differentiation process may therefore be performed as the matrix-
vector product:

∑N−1

j=0 D
2
k,jφj . Consequently, the partial differential equation (3.1) is

reduced to a set of coupled ODEs in the time variable t involving φj, j = 0, 1, ..., (N−1).
In this way we obtain a set of ODEs by considering the original equations on a suitable
set of discretization points (the roots of Hermite polynomials). One could have also
used a Galerkin procedure [12] and projected the equations, essentially by integrating
them against Hermite polynomials for that purpose. However, we do not explore this
possibility in this paper.

For solving the set of ODEs we use the adaptive step-size control based on the
embedded Runge-Kutta formulas due to Fehlberg [20], which gives a definite clue about
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how to modify the step size in order to achieve a desired accuracy in a controlled way.
For orders M higher than four of the Runge-Kutta formula, evaluation of more than M
functions (though never more thanM+2) is required. This makes the classic fourth order
method requiring the evaluation of four functions more economic. Fehlberg suggested
a fourth-order and a fifth-order method each requiring the evaluation of six functions.
The difference between the results of these two gives the error δ in the fourth-order
method with a step size h, where δ scales as h5 : δ ∝ h5. This scaling immediately
gives the factor by which the step size h should be reduced, so that a desired δ can be
obtained. The detailed fourth-order and fifth-order Runge-Kutta formulas of Fehlberg
are given in [20]. We use these formulas with the constants given by Cash and Karp also
tabulated in [20]. For the present problem we find that the use of Cash-Karp constants
in the Fehlberg formulas leads to more accurate results than the original constants due
to Fehlberg.

Next we specialize to the case of Hermite polynomials used to generate the solution.
Hermite polynomials are very convenient in this case [25] as the solutions of the linear
GP equation (3.1) withN = 0 are Gaussian-type functions. They also satisfy the correct
boundary conditions of the wave functions. In this case xj are the roots of HN−1(x):
HN−1(xj) = 0, j = 0, 1, ..., N − 1. The roots can be found by diagonalizing a tridiagonal
symmetric Jacobi matrix as described in [16] or otherwise. The weight functions are
taken as α(x) = exp(−x2/2), such that expansion (3.2) becomes

pN−1(x) =
N−1
∑

j=0

exp(−x2/2)
exp(−x2j/2)

fj(x)φj, (3.4)

where fj(x) are taken as

fj(x) =
HN−1(x)

H ′

N−1(xj)(x− xj)
, (3.5)

where prime refers to derivative with respect to x. Consequently, the differentiation
matrix can be obtained from

D2

k,j =
1

α(xj)H ′

N−1(xj)

d2

dx2

[

exp(−x2/2)HN−1(x)

(x− xj)

]

x=xk

(3.6)

and calculated using an algorithm described in [16].
Using the differentiation matrix (3.6), the GP equation is discretized. The grid

points are the roots of the Hermite polynomial HN−1(xj) = 0. However, the actual xj
values employed are obtained by scaling these roots by a constant factor so that most
of the roots fall in the region where the condensate wave function is sizable and only
a few points are located in the region where the wave function is negligible. For the
spherically symmetric case ω0 = ωy = ωz, the discretization mesh in the three directions
are identical. For the anisotropic cases, in general, the discretization points in the three
directions are different from each other.

Though the passage from the one-dimensional to three-dimensional PSRK method
is formally straightforward, it involves nontrivial computational steps. The unknown
function φ(x, y, z, t) ≡ φ(x, y, z) is expanded in terms of a set of N known interpolating
orthogonal functions {fj(x)}N−1

j=0 as follows [16]

φ(x, y, z) ≈ pN−1(x, y, z) =
N−1
∑

i=0

N−1
∑

j=0

N−1
∑

k=0

α(x)

α(xi)

α(y)

α(yj)

α(z)

α(zk)
fi(x)fj(y)fk(z)φijk, (3.7)
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where {xj}N−1
j=0 is a set of distinct interpolation nodes, φijk ≡ φ(xi, xj , xk), and the

functions α and f are defined as in the one-dimensional case, so that φ(xi, yj, zk) =
pN−1(xi, yj, zk). The differentiation matrices along x, y and z directions can be defined
via (3.6) as in the one-dimensional case. Consequently, the partial differential GP
equation (2.1) in three space variables is transformed to a set of ODEs in time variable
on the grid points xi, yj and zk, which is solved by the adaptive step-size controlled
Runge-Kutta method. The wave function at any point is then calculated using the
interpolation formula (3.7).

3.2. Finite-difference Crank-Nicholson (FDCN) method

The GP equation (2.1) has the form of the following nonlinear Schrödinger equation

i
∂φ

∂t
= Hφ, (3.8)

where the Hamiltonian H contains the different linear and nonlinear terms including
the spatial derivatives. We solve this equation by time iteration after discretization in
space and time using the finite difference scheme [18, 19, 8]. This procedure leads to a
set of algebraic equations. In the present split-step method the iteration is conveniently
performed in four steps by breaking up the full Hamiltonian into different derivative
and nonderivative parts: H = H1 +H2 +H3 +H4, where

H1 =
x2 + κ2y2 + ν2z2

4
+N|φ(x, y, z, t)|2, (3.9)

H2 = − ∂2

∂x2
, H3 = − ∂2

∂y2
, H4 = − ∂2

∂z2
. (3.10)

The time variable is discretized as tn = n∆ where ∆ is the time step. The solution is
advanced first over the time step ∆ at tn by solving (3.8) with H = H1 to produce an
intermediate solution φn+1/4 from φn, where φn is the discretized wave function at tn.
This propagation is performed essentially exactly for small ∆ via

φn+1/4 = Ond(H1)φ
n ≡ exp(−i∆H1)φ

n, (3.11)

where Ond(H1) denotes time evolution with H1 and the suffix ‘nd’ refers to non-
derivative terms. Next we perform the time propagation corresponding to the operators
Hi, i = 2, 3, 4 successively via the following semi-implicit Crank-Nicholson schemes [8]:

φn+2/4 = OCN(H2)φ
n+1/4 ≡ 1− i∆H2/2

1 + i∆H2/2
φn+1/4 (3.12)

φn+3/4 = OCN(H3)φ
n+2/4 ≡ 1− i∆H3/2

1 + i∆H3/2
φn+2/4 (3.13)

φn+1 = OCN(H4)φ
n+3/4 ≡ 1− i∆H4/2

1 + i∆H4/2
φn+3/4, (3.14)

where OCN(Hi) denotes time evolution with Hi and the suffix ‘CN’ refers to Crank-
Nicholson. Hence the final solution at time tn+1 is obtained from

φn+1 = OCN(H4)OCN(H3)OCN(H2)Ond(H1)φ
n. (3.15)

The details of the Crank-Nicholson discretization scheme can be found in [8]. The
advantages of the above split-step method are the following. First, the error involved
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in splitting the Hamiltonian is proportional to ∆2 and can be neglected for small ∆. A
considerable fraction H1 of the Hamiltonian is treated fairly accurately without mixing
with the Crank-Nicholson propagation. This method can deal with a large nonlinear
term accurately and lead to stable and accurate converged result.

3.3. Calculational Details

In both the FDCN and PSRK methods the time iteration is started with the following
normalized ground-state solution of the linear GP equation (2.1) with N = 0:

φ(x, y, z) =
[

κν

8π3

]1/4

exp [−(x2 + κy2 + νz2)/4]. (3.16)

The norm of the wave function is conserved after each iteration due to the unitarity of
the time evolution operator. However, it is of advantage to reinforce numerically the
proper normalization of the wave function after several (100) time iterations in order
to improve the precision of the result. Typical time step employed in the calculation
is ∆ = 0.001. During the iteration the coefficient n = N0a/l of the nonlinear term is
increased from 0 at each step by ∆1 = 0.001 until the final value of nonlinearity n is
attained. This corresponds to the final solution. Then several thousand time iterations
of the equation were performed until a stable result is obtained.

For large nonlinearity, the Thomas-Fermi (TF) solution of the GP equation is a
better approximation to the exact result [2] than the harmonic oscillator solution (3.16).
In that case it might be advisable to use the TF solution as the initial trial input to the
GP equation with full nonlinearity and consider time iteration of this equation without
changing the nonlinearity. This time iteration is to be continued until a converged
solution is obtained. However, in all the calculations reported in this paper only (3.16)
is used as trial input. The use of initial TF solution did not lead to satisfactory result.

4. Numerical Results with the PSRK Method

4.1. Wave Function and Energy

The present method relies on time evolution and is suitable for both stationary and
time-evolution problems. The stationary problems are governed by a wave function
with trivial time dependence φ(x, y, z, t) = φ(x, y, z) exp(−iµt), where µ is a real energy
parameter. Thus the stationary wave function φ and the parametric energy µ (the
chemical potential) can be extracted from the evolution of the time-dependent GP
equation over a macroscopic interval of time [4, 5]. Here we present results for the
chemical potential of several BECs in three dimensions for spherically symmetric, axially
symmetric and anisotropic cases. These traps with different geometries for 23Na have
been employed in experiments as well as in a time-independent solution of the three-
dimensional GP equation [9]. The completely anisotropic trap employs the parameters
ωA
0 = 354π rad/s, κ =

√
2, ν = 2 as in the experiment of Kozuma et al. [15]. The

cylindrically symmetric trap parameters are ωC
0 = 33.86π rad/s, κ = ν = 13.585 as

in [26]. The spherically symmetric trap parameters are ωS
0 = 87 rad/s, κ = ν = 1 [27].

We employ the scattering length of a = 52a0 of Na, where a0 is the Bohr radius [2].
In all calculations reported in this section we used 21 Hermite polynomials each in

x, y and z directions so that we shall be dealing with a wave function in the form of
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Table 1. The chemical potential µ corresponding to spherical, cylindrical and
anisotropical geometries, respectively, for various numbers of condensate atoms N0 =
2q: present (†), reference [9] (‡).

Spherical Cylindrical Anisotropical
q n µ† µ‡ n µ† µ‡ n µ† µ‡
10 0.50 1.82 1.825 0.55 17.39 17.384 1.77 3.55 3.572
11 1.00 2.05 2.065 1.10 19.32 19.392 3.54 4.32 4.345
12 1.98 2.42 2.435 2.19 22.27 22.359 7.09 5.39 5.425
13 3.97 2.95 2.970 4.38 26.66 26.620 14.18 6.86 6.904
14 7.93 3.69 3.719 8.77 32.41 32.682 28.35 8.83 8.900
15 15.86 4.71 4.743 17.54 41.61 41.055 56.70 11.55 11.572

a cubic array of dimension 21 × 21 × 21. The maxima of x, y and z in discretization
were chosen consistent with the trap parameters. Typical maxima |x|max, |y|max, and
|z|max are of the order of 8 for the spherical and anisotropical cases, although a smaller
|y|max and |z|max (∼ 3) together with a larger |x|max (∼ 10) have been used in
the axially symmetric case because of large distortion of trap parameters in that case
(κ = ν = 13.585).

In table 1 we list the chemical potentials for different symmetries obtained from
the PSRK approach as a function of number of atoms N0 = 2q in the condensate and
compare them with those of a calculation based on a discrete variable representation of
the time-independent GP equation [9]. In the present calculation the chemical potentials
are extracted from results of time evolution of the GP equation. The results were
evaluated at a space point near the center of the BEC and averaged over several samples
of calculation. The error (standard deviation) of the time averaged chemical potential
is typically of the order of 0.2%. Considering that the present approach is based on
time evolution, the precision is quite satisfactory − about less than a percentage point
of discrepancy when compared to results of [9]. It was most difficult to obtain good
convergence in the cylindrical case with highly distorted trap (κ = ν = 13.585). A more
carefully chosen values of the maxima |x|max (∼ 10), and |y|max = |z|max (∼ 3) were
needed in this case.

In the following we study the convergence of the PSRK method in the anisotropical
case with q = 12 calculated with |x|max = 9, |y|max = 6.5 and |z|max = 5 which
seems to be optimal and were found after some experimentation. These values were
taken to be roughly five times the root mean square (rms) sizes 〈x, y, z〉rms in the
respective directions. Here we consider the convergence of these rms sizes. After the
proper nonlinearity is introduced in the GP equation, if we continue to integrate using
the Runge-Kutta ODE solver routine the wave function and the rms sizes fluctuate
a little. This type of fluctuation is common to time stepping methods for a partial
differential equation. To quantify this fluctuation we calculate the rms sizes over 250
successive samples generated after 20 time steps of 0.01 each in the Runge-Kutta ODE
routine. This corresponds to a total time interval of 250×20×0.01 or 50 units. Then we
calculate the mean rms sizes and the standard deviations which we show in table 2 for
different number of expansion points N in (3.2). The numerical error in the rms sizes
is typically less than one percent for N > 10 and the convergence is quite satisfactory.
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Table 2. The convergence of the rms sizes 〈x, y, z〉rms calculated with the PSRK
method for the anisotropical q = 12 case for various number of space discretization
points N .

N 〈x〉rms 〈y〉rms 〈z〉rms
7 1.767± 0.029 1.295± 0.028 0.981± 0.015
8 1.707± 0.025 1.277± 0.018 0.959± 0.015
9 1.654± 0.022 1.251± 0.010 0.957± 0.004
10 1.690± 0.015 1.257± 0.008 0.959± 0.006
11 1.701± 0.002 1.263± 0.005 0.960± 0.007
12 1.691± 0.015 1.263± 0.005 0.960± 0.007
13 1.689± 0.004 1.262± 0.012 0.961± 0.008
14 1.691± 0.003 1.262± 0.013 0.962± 0.008
15 1.693± 0.006 1.263± 0.013 0.961± 0.009
16 1.692± 0.005 1.263± 0.013 0.962± 0.009

Considering that we are solving a partial differential equation in four variables this
error is small. It will be difficult to obtain similar precision in the FDCN method in this
problem even with a significantly larger number of space discretization points (N > 100)
in each direction. The FDCN method is no match to the PSRK method in this problem
with a smooth potential. However, the FDCN method seems to be very suitable for
a rapidly varying potential, such as the optical-lattice potential considered in section
5, which requires a large number of equally distributed spatial discretization points for
a faithful reproduction of the potential. Although, the present PSRK method yields
satisfactory result for the stationary problem, its main advantage lies in its ability to
tackle time-dependent problems as we shall see in the following.

4.2. Resonance Dynamics

The appearance of a resonance in the oscillation of a BEC due to a periodic variation
of the scattering length has been postulated recently in spherically [23] and axially
symmetric traps [24]. Here we extend this investigation to the more realistic and
complicated case of an anisotropic trap.

In the case of a damped classical oscillator under the action of an external periodic
force a resonance appears when the frequency of the external force is equal to or a
multiple of the natural frequency of oscillation of the system. The natural frequency
of oscillation of a trapped three-dimensional BEC along a certain direction (x, y, or z)
is twice the trapping frequency in that direction [8, 28]. For a trapped BEC subject
to a nonlinear external force due to a periodic variation in the scattering length given
by n = n0 sin(Ωt), in analogy with the damped classical oscillator a resonance in the
oscillation of the BEC along a particular direction is expected when Ω equals the natural
frequency of oscillation in that direction or a multiple of this frequency. In the present
numerical study of the anisotropic case we find that this is indeed the case.

To investigate the phenomenon of resonance we solve (2.1) with N =
8π

√
2n0 sin(Ωt) with n0 = 0.3. Actually, n0 has to be less than a critical value ncrit

(∼ 0.55) in order to avoid collapse for attractive interaction [2, 7]. The actual critical
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Figure 1. The rms sizes 〈x〉rms, 〈y〉rms, and 〈z〉rms vs. time for a BEC in a harmonic

trap with κ =
√
2, ν = 2 subject to a sinusoidal variation of nonlinearity n = 0.3[sin(Ωt)

with (a) Ω = 2, (b) Ω = 2
√
2, and (c) Ω = 4.

value depends on the asymmetry parameters κ and ν of the harmonic trap. For the
spherically symmetric case κ = ν = 1, ncrit = 0.575 [2]. To study the resonance
dynamics we use 31 Hermite polynomials in each of x, y, and z directions. The maximum
values of |x|, |y|, and |z| employed in space discretization are each 15. The resonance
is best studied by plotting the rms sizes 〈x, y, z〉rms vs. time. In this study we employ
the trap parameters ωx ≡ ω0 = 354π rad/s, κ =

√
2 and ν = 2 [9, 15], so that the
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unit of time is ω−1
0 = 0.9 ms and of length is l/

√
2 = 1.115 µm. For values of Ω off

the resonance the rms sizes exhibit oscillation of very small amplitude. For resonance
frequencies Ω, the rms sizes execute oscillation of large amplitude.

To illustrate the resonance we plot in figures 1 (a), (b), and (c) 〈x, y, z〉rms vs.
time for Ω = 2, 2

√
2, and 4, respectively. These values of Ω correspond to the

natural frequency of oscillation of the condensate along the x, y, and z directions,
respectively [8, 28]. In addition, Ω = 4 is also twice the natural frequency of oscillation
of the condensate along the x direction. So for Ω = 2 and 2

√
2 the rms values of x

and y execute resonance oscillation as shown in figures 1 (a) and (b), respectively. At
resonance in a particular direction, the corresponding dimension increases with time in
a oscillatory fashion. The rms values of the other components do not show resonance.
For Ω = 4, rms values of both x and z exhibit resonance. In case of 〈z〉rms this
corresponds to the lowest harmonic and for 〈x〉rms this corresponds to the first excited
state. However, the behavior of 〈x〉rms and 〈z〉rms are different in this case.

5. Numerical Results with the FDCN Method

For a smooth trapping potential the PSRK method discussed in the last section yields
excellent result with a smaller number of spatial discretization points which are unevenly
distributed (at the scaled roots of the Hermite polynomial) compared to the FDCN
method employing a relatively large number of evenly distributed spatial discretization
points. For smooth potentials the CPU time in the PSRK method could be even an order
of magnitude smaller than that in the FDCN method. However, the FDCN method has
advantage in the case of a rapidly varying trapping potential requiring a large number of
evenly distributed spatial discretization points for a proper description of the trapping
potential. One such potential is the optical-lattice trapping potential recently used in
BEC experiments in one [29] and three [30] dimensions.

The optical-lattice potential created with the standing-wave laser field of wavelength
λ is given by Vopt = V0ER

∑

3
i=1 sin

2(kLxi), with ER = h̄2k2L/(2m), kL = 2π/λ, and V0
the dimensionless strength of the optical-lattice potential governed by the intensity of
the laser [30]. In terms of the dimensionless laser wave length λ0 =

√
2λ/l and the

dimensionless standing-wave energy parameter ER/(h̄ω) = 4π2/λ20, Vopt is given by

Vopt
h̄ω

= V0
4π2

λ20

3
∑

i=1

sin2

(

2π

λ0
xi

)

. (5.1)

In the actual experiment [30] this dimensionless standing-wave optical-lattice potential
is superposed on the harmonic trapping potential of (2.1) and we present the solution
of (2.1) under the action of spherically symmetric harmonic (κ = ν = 1) as well as the
optical-lattice potential (5.1).

To calculate the wave function we discretize the GP equation with time step 0.001
and space step 0.1 along x, y, and z directions spanning the cubic region−4 < x, y, z < 4.
Consequently, the wave function is defined on a cubic array of dimension 80× 80× 80.
Starting the time iteration with the known harmonic oscillator solution for nonlinearity
n = 0 and V0 = 0, the nonlinearity n and the optical-lattice strength V0 are slowly
increased by equal amount in 1000n steps of time iteration until the desired values of
n and V0 are obtained. Then without changing any parameters the solution is iterated
several thousand times so that a converged solution independent of the initial inputs
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(b)(a)

Figure 2. Three-dimensional contour plot of the interior part of the BEC ground
state wave function under the combined action of the harmonic and the optical trap
for n ≡ N0a/l = 10, λ0 = 1 and V0 = 10 on a cubic lattice of size 3 × 3 × 3
(−1.5 < x, y, z < 1.5): (a) view along the diagonal of the cube and (b) along one
of the axes of the cube.

is obtained. To illustrate the present method we calculate the wave function for the
ground state for nonlinearity n ≡ N0a/l = 10, laser wave length λ0 = 1 and optical-
lattice strength V0 = 10. Two views of the three-dimensional contour plot of the central
part of the wave function on a cubic lattice of size 3 × 3 × 3 are shown in figures 2
(a) and (b) as seen from two different angles. The droplets of BEC at each pit of the
optical-lattice potential can be identified in figures 2. There are about 10 occupied cites
in each of x, y, and z directions of which the central part is shown in figure 2.

6. Conclusion

In this paper we propose and implement a PSRK method [16] and contrast it with
the FDCN method [8] for the numerical solution of the time-dependent nonlinear
GP equation under the action of a three-dimensional trap by time iteration. In the
PSRK method the unknown wave function is expanded in a set of known polynomials
(Hermite). Consequently, the partial differential GP equation in three space and time
variables becomes a set of coupled ODEs in time for the unknown coefficients, which
is solved by a fourth-order adaptive step-size control Runge-Kutta method [20]. In the
FDCN method the full Hamiltonian is split into the derivative and nonderivative parts.
In this fashion the time propagation with the nonderivative parts can be treated very
accurately. The time derivative part is treated by the Crank-Nicholson scheme in three
independent steps. Both methods lead to stable and accurate results. The final result
remains stable for thousands of time iteration of the GP equation.

We applied the PSRK method for the numerical study of certain stationary and
time-evolution problems. We solved the GP equation for spherically symmetric, axially
symmetric and anisotropic cases and calculated the chemical potential for different
nonlinearities. The results compare well with those obtained by a time-independent
approach [9]. The two sets of energy values agree to within a fraction of a percentage



Bose-Einstein condensation dynamics 13

point. The numerical error in the method is found to be less than one percent with
a small number of expansion functions (N ∼ 20). The PSRK method was also used
to study the resonance dynamics of an anisotropic BEC under the action of periodic
sinusoidal variation of the scattering length. When this period of oscillation coincides
with the natural frequency of oscillation of the BEC along x, y, or z directions or a
multiple thereof the corresponding rms size executes resonant oscillation [23,24]. Using
the FDCN method we study the ground state of a BEC under the combined action of
a harmonic and a periodic optical-lattice trapping potential in three space dimensions.

The domain of applicability of the PSRK and FDCN methods seems to be
complementary rather than overlapping. The PSRK method is more efficient and
economic for smooth potentials where a relatively small number of expansion functions
and unevenly distributed spatial discretization points seems to be adequate. The FDCN
method employs a large number of evenly distributed spatial discretization points and
is suitable for a rapidly varying potential, such as the optical-lattice potential, favoring
such a distribution.
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