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Abstract

The critical exponents of the four-state Potts model are directly derived from

the exact expressions for the latent heat, the spontaneous magnetization, and

the correlation length at the transition temperature of the model.
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The q-state Potts model [1,2] is a generalization of the Ising model that is the two-

state Potts model. Although the Potts model has not been solved exactly, there have been

several exact results at the critical point for this model in two dimensions. In 1952 Potts

[1] conjectured the exact critical temperatures of his model on the square lattice for all q

by a Kramers-Wannier [3] type duality argument. In 1971 Temperley and Lieb [4] showed

that the Potts model can be expressed as a staggered six-vertex model. Following the

equivalence [5] between the Potts model and a staggered six-vertex model, in 1973 Baxter

[6] calculated the free energy of the Potts model at the critical temperature, and showed

that the model has a continuous phase transition for q ≤ 4, and has a first-order phase

transition (i.e. has latent heat) for q > 4. In 1979 den Nijs [7] conjectured the thermal

scaling exponent for q ≤ 4 by considering relation between the eight-vertex model and the

Potts model. In 1980 Nienhuis et al. [8] and Pearson [9] conjectured independently the

magnetic scaling exponent for q ≤ 4 from numerical results. In 1981 Black and Emery

[10] showed the den Nijs conjecture to be asymptotically exact by using the Coulomb-gas

representation [11] of the Potts model and renormalization-group methods. In 1982 Baxter

[12] calculated the spontaneous magnetization of the model at the transition point for q > 4.

In 1983 den Nijs [13] verified a conjecture for the magnetic scaling exponent for q ≤ 4 from

the scaling behavior of the correlation function in the Coulomb-gas representation. In 1984

Dotsenko [14] again verified the conjectures for the thermal and magnetic scaling exponents

for q ≤ 4 using conformal field theory. Recently Buffernoir and Wallon [15] obtained an

exact expression for the correlation length of the Potts model at the critical temperature for

q > 4 by using Temperley-Lieb algebra [5] and a Bethe ansatz [16]. In this paper we derive

the critical exponents of the four-state Potts model directly from the three main exact results

of the Potts model which are Baxter’s calculation of the latent heat and the spontaneous

magnetization and Buffernoir and Wallon’s calculation of the correlation length.

The Hamiltonian for the q-state Potts model on the isotropic square lattice is

H = −J
∑

<i,j>

δ(σi, σj), (1)
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where

δ(σi, σj) =







1, if σi = σj ,

0, if σi 6= σj ,

and σi, σj = 1, 2, ..., q. The latent heat at the critical temperature Tc is given by [6]

L = 2J(1 + q−
1

2 ) tanh
θ

2

∞
∏

n=1

(tanh nθ)2, q > 4, (2)

where θ is defined by

2 cosh θ = q
1

2 .

The zero-field (spontaneous) magnetization at Tc is [12]

M0 =
∞
∏

n=1

1 − x2n−1

1 + x2n
, q > 4, (3)

where x = e−2θ. The correlation length, ξ, at Tc is given by [15]

ξ−1 = 2 ln
cosh 3

2
v

cosh 1
2
v

+ 4
∞
∑

n=1

(−1)n

n
e−2nv(sinh nv)(tanh 2nv), q > 4, (4)

where v is defined by

2 cosh v = (2 + q
1

2 )
1

2 .

The behaviors of the latent heat, the zero-field magnetization, and the correlation length

near the limit q = 4 are expressed by the following:

L ∼ 2πJ(1 + q−
1

2 )e−
π2

2
(q−4)−

1

2

, (5)

M0 ∼ 2e−
π2

8
(q−4)−

1

2

, (6)

and

ξ−1 ∼ 8√
2
e−π2(q−4)−

1

2

. (7)

All three expressions have the same limiting behavior.

In the spirit of scaling theory, the singular behavior in the latent heat and the spontaneous

magnetization can be expressed in terms of the correlation length:
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L ∼ ξ−
1

2 , (8)

and

M0 ∼ ξ−
1

8 . (9)

Note that in (8) the latent heat and in (9) the spontaneous magnetization vanish as q−4 →

0+. The four-state Potts model can be considered the critical end point of a sequence

of models (q > 4) with finite latent heats and finite spontaneous magnetizations. From

standard scaling theory [17], the internal energy per site is

e(t, h = 0) = ξ−d+ 1

ν ft(tξ
1

ν , h = 0),

where the subscript, t, means differentiation with respect to the reduced temperature. The

latent heat is given by

L = ξ−d+ 1

ν ∆ft,

where ∆ft = ft(0
+, 0)−ft(0

−, 0). Near the second-order transition point, i.e., near the limit

q = 4, we have

L ∼ ξ−d+ 1

ν . (10)

Comparing (8) and (10), we obtain

d − 1

ν
=

1

2
. (11)

Similarly, for the spontaneous magnetization per spin

M0 = ξ−d+yhfh(0, 0)

= ξ−
β

ν fh(0, 0). (12)

Comparing this with (9) we see that

β

ν
=

1

8
. (13)
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For d = 2, from (11) and (13), the exact values for the scaling and critical exponents of the

four-state Potts model are yt = 3
2
, yh = 15

8
, α = 2

3
, β = 1

12
, γ = 7

6
, δ = 15, ν = 2

3
, and η = 1

4
in

agreement with values [18] derived for q ≤ 4 from the Coulomb-gas representation [10,11,13]

and conformal field theory [14].

The critical properties of the four-state Potts model have been studied extensively as

the limiting case of a sequence (q ≤ 4) of models with continuous phase transitions. As is

often the case, the limit of such a sequence, q = 4, exhibits strong corrections to scaling.

It is, therefore, of interest to approach this problem from the opposite side, and regard the

four-state Potts model as the limit of a sequence of models (q > 4) with a discontinuous,

or first-order, transition. As q → 4+, the latent heat and spontaneous magnetization at Tc

vanish, and the correlation length diverges. We have shown that by applying simple scaling

arguments to exact calculations of L, M0, and ξ at Tc, one can derive the exact critical

exponents and that they agree with those obtained for q ≤ 4.
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