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ABSTRACT: The methods of conformal field theory are used to compute

the crossing probabilities between segments of the boundary of a compact two-

dimensional region at the percolation threshold. These probabilities are shown to

be invariant not only under changes of scale, but also under mappings of the region

which are conformal in the interior and continuous on the boundary. This is a larger

invariance than that expected for generic critical systems. Specific predictions are

presented for the crossing probability between opposite sides of a rectangle, and

are compared with recent numerical work. The agreement is excellent.
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Conformal field theory has been very successful in determining universal quan-

tities associated with two-dimensional isotropic systems at their critical points [1,2].

The range of predictions which can be made appears to be bounded by the enthu-

siasm and industriousness of the theorist rather than by any intrinsic limitations

of the theory. However, the underlying assumptions of conformal field theory, and

their appropriateness for describing the scaling limit of critical lattice systems, are

not rigorously founded, and it remains important to perform precise numerical

tests of the theory whenever possible.

Recently [3], extensive numerical work has been carried out to estimate cross-

ing probabilities in rectangular geometries for critical percolation in very large but

finite lattices, with the principal aim of establishing their universality between dif-

ferent models. Percolation provides an important test of the ideas of conformal field

theory because large-scale numerical simulations are more readily performed. In

this letter we consider the general problem of crossing probabilities in the language

of conformal field theory, and derive exact expressions which may be compared

with the numerical work.

The most familiar way to think about percolation as a critical phenomenon is

through the q → 1 limit of the q-state Potts model [4]. In that model, spins s(r)

at the sites of the lattice are allowed to be in one of q possible states (α, β, . . .),

and the partition function is the trace of a product over links of the form

Z =
∏

(r,r′)

(

1 + xδs(r),s(r′)

)

(1)

The terms in the expansion in powers of Z in powers of x are in 1-1 correspondence

with configurations of bonds appearing in the bond percolation problem, and in

the limit q → 1 they are weighted appropriately if x = p/(1 − p). Two sites in

the same cluster are necessarily in the same state of the Potts model. Consider
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now two disjoint segments S1 and S2 of the piecewise differentiable boundary of a

simply connected compact region. Let Zαβ be the partition function of the q-state

Potts model with the constraint that all spins at lattice sites on S1 are fixed in the

state α, and all the spins on S2 are fixed in the state β. The rest of the boundary

spins are unrestricted. Then the crossing probability between S1 and S2 is given

by

π(S1, S2) = lim
q→1

(

Zαα − Zαβ

)

(2)

where, in the second term α 6= β. In fact, in the limit when q = 1, the first term

is unity.

The interior of the compact region may be mapped conformally to the upper

half plane, so that the boundary is mapped onto the real axis. If there are corners on

the boundary, the map will be singular but continuous at these points. Conformal

field theory relates the partition functions in the two geometries, in a manner to

be described later. Thus, if the images of S1 and S2 are the intervals (x1, x2) and

(x3, x4) respectively (where we may assume that the xi are placed in increasing

order), the problem reduces to that of finding the respective partition functions

Zαα and Zαβ in this geometry.

The study of boundary conditions in conformal field theory [5,6] shows that,

for a particular theory, there is a given set of boundary conditions consistent with

the conformal symmetry of the theory. In general they correspond to the possi-

ble fixed points of the renormalization group in the semi-infinite system: thus a

generic boundary condition becomes equivalent in the continuum limit to one of

those allowed by conformal symmetry. In addition, points on the boundary at

which the boundary condition changes may be identified [6] with points of inser-

tion of boundary operators, that is, scaling operators of the theory corresponding

to highest weight states of the Virasoro algebra [7,5]. Situations where more than
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one change of boundary condition occurs then correspond to correlation functions

of these boundary operators. In the case in question, let us denote the bound-

ary condition where the spins are free by (f), and those where they are fixed in

a given state by (α). Denote the boundary operator corresponding to a switch

from boundary condition (i) to (j) at the point x by φ(i|j)(x). Then the partition

functions we need are given in terms of correlators by

Zαα = Zf 〈φ(f |α)(x1)φ(α|f)(x2)φ(f |α)(x3)φ(α|f)(x4)〉

Zαβ = Zf 〈φ(f |α)(x1)φ(α|f)(x2)φ(f |β)(x3)φ(β|f)(x4)〉
(3)

where Zf is partition function with free boundary conditions all along the real axis.

Note that, in the upper half plane, all three partition functions in general diverge

in the infinite volume limit, and Eq. (3) strictly should be interpreted as being valid

only for a large but finite lattice. However, when q = 1, Zf = 1 identically, and

this problem does not arise.

In order to compute the above correlation functions using the methods of con-

formal field theory, we need to understand to which representations of the Virasoro

algebra the boundary operators belong. It has been known for some time [8,9] that

the critical q-state Potts model corresponds, in the continuum limit, to a confor-

mal field theory with conformal anomaly number [7] c = 1 − 6/m(m + 1), where

q = 4 cos2(π/m+ 1), with m ≥ 1. Thus percolation has c = 0. This is consistent

with the fact that c is related to the finite-size corrections to the free energy [10] in

certain geometries, and the free energy vanishes identically when q = 1. However,

the problem of boundary operator assignment has not been addressed so far, except

for the cases q = 2 and q = 3 [11,6,12]. However, it is not difficult to determine

the assignment for the operators φ(f |α). For minimal conformal field theories, all

the scaling operators have the property that their corresponding representations

contain null states [7]. This has the consequence that the allowed values of their
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scaling dimensions are given by the Kac formula

h = hr,s =
(r(m+ 1)− sm)2 − 1

4m(m+ 1)
(4)

where r and s are positive integer are positive integers. In addition, the correlators

involving these operators obey differential equations of order at most rs. For

unitary models, for example those with positive definite Boltzmann weights, all

allowed operators must be of this type. Although this condition is not applicable

to the q-state Potts model for general q, the fact that it does apply for q = 2

and q = 3 suggests that those operators whose position (r, s) in the Kac table

does not appear to change as a function of c(q) do correspond to representations

with null states even in the non-unitary case. Indeed, it was conjectured in Ref. 5

that the spin operator of the Potts model, when inserted at a boundary with free

boundary conditions, corresponds to (r, s) = (1, 3). This agrees with known results

for q = 2, 3 [11,6,12], and is also consistent with the known assignment of operators

in the bulk. It gives a prediction for the case q = 1 which agrees with numerical

estimates to within their accuracy [13]. There are (q − 1) independent such spin

operators.

The continuum limit of duality symmetry [14] for the critical q-state Potts

model maps the free boundary condition (f) onto a fixed boundary condition (α).

Exactly which state α is chosen is arbitrary, since just one spin on the boundary

has to be assigned a given value in order to make the duality mapping 1-1. An

insertion of the spin operator at the point x on the free boundary is mapped

into an insertion of the disorder operator φ(α|β)(x) where β 6= α. There are just

(q − 1) such operators, for a fixed α. This duality symmetry implies that that the

correlators of φ(α|β) are simply related to those of the boundary spin operator

with free boundary conditions, and hence that it also corresponds to (r, s) = (1, 3)
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in the Kac table. However, we are interested in the operators φ(α|f). Consider

the insertion of two such operators φ(α|f)(x)φ(f |β)(x
′) as the points x, x′ approach

each other. This is given by the operator product expansion, which symbolically

must have the structure

φ(α|f) · φ(f |β) ∼ δαβ 1+ φ(α|β) + · · · (5)

where 1 is the identity operator (no change in boundary condition). According

to the fusion rules of conformal field theory [7], there is one such operator in the

Kac table which has such a simple operator product expansion with itself, namely

(r, s) = (1, 2). We therefore conjecture that this is the correct assignment for the

operators φ(f |α), for general q. This agrees with the known results for q = 2 and

q = 3 [11,6,12]. It implies that the correlators involving these operators satisfy

second order differential equations. From the Kac formula Eq. (4), we see that, in

the limit q → 1, their scaling dimensions are given by

h = h1,2(0) = 0 . (6)

This vanishing of the scaling dimension will turn out to have remarkable conse-

quences when the result is transformed back into the original geometry. In fact, it

has a natural explanation. Consider a compact region on whose boundary there is

a single segment S1 on which the Potts spins are fixed into the state α. On the

remainder of the boundary, the spins are free. In the limit q → 1, the partition

function in this geometry is equal to unity, and equal to Zf , since in either case

any spin can only be in a single state. But the ratio of these partition functions

is equal to the correlation function 〈φ(f |α)φ(α|f)〉, which in general will scale like

distance to the power 2h. This is only consistent if h = 0. However, the form of the

four-point functions, although simplified by this result, is nontrivial. Consider the
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half plane geometry, when the points lie along the real axis. Conformal invariance

implies [7] that they are of the form F (η), depending only on the invariant cross-

ratio η = (x4 − x3)(x2 − x1)/(x3 − x1)(x4 − x2). The absence of other prefactors

multiplying F is a consequence of h = 0. The fact that the correlators satisfy

second order differential equations implies that F (η) satisfies a Riemann equation,

whose general solution is [7,5]

F = P

{

0 ∞ 1
0 −4h1,2 0 η

h1,3 −4h1,2 + h1,3 h1,3

}

(7)

Which solution is chosen depends on whether we calculate Zαα or Zαβ . Although

is straightforward to solve this problem for arbitrary q, we restrict ourselves to

q = 1 for simplicity. In that limit, one of the solutions of the Riemann equation

reduces to a constant, and the second solution is proportional to η1/32F1(
1
3 ,

2
3 ,

4
3 ; η).

The combination corresponding to Zαβ is determined by the requirement that as

(x3− x2) → 0, that is η → 1, the operator product expansion Eq. (5) requires that

the solution vanish like (1 − η)1/3. In addition, in the opposite limit η → 0, we

expect that Zαβ → Zαα = 1. Using simple identities on hypergeometric functions,

we then find for the crossing probability

π((x1, x2), (x3, x4)) =
3Γ(23)

Γ(13)
2
η1/32F1(

1
3 ,

2
3 ,

4
3 ; η)

= 1−
3Γ(23)

Γ(13)
2
(1− η)1/32F1(

1
3 ,

2
3 ,

4
3 ; 1− η)

. (8)

Now consider the transformation of the upper half plane onto the interior of a

simply connected compact region by a conformal mapping z → w. If the boundary

of the region is a differentiable curve, this mapping may be taken to be confor-

mal also on the boundary. In that case, correlation functions of operators on the
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boundary transform in the standard manner summarized by the formula

〈φ1(w1)φ2(w2) . . .〉 =
∏

i

|w′(zi)|
−hi〈φ1(z1)φ2(z2) . . .〉 (9)

where the correlation functions on the left and right hand sides refer to the new

and the old geometry respectively, and hi is the scaling dimension of φi. In our

case, however, since h = 0, no such prefactors arise, and the correlation function is

truly invariant. For a general critical system, the partition function for a compact

region (without any operator insertions) is not itself scale invariant, but picks up

a factor (L/L0)
ac where L has the dimensions of length and gives the overall size

of the region, L0 is some non-universal microscopic scale (e.g. the lattice spacing),

and a is geometry dependent [10]. However, for the case of percolation, c = 0

and Z = 1, so such effects are absent. In general, there is a further complication

when the boundary of the compact region is only piecewise differentiable, and

boundary operators happen to sit at the corners. In this case Eq. (9) does not

apply. Instead there appear additional non-scale invariant factors of the form

(L/L0)
−(π/γ)h, where γ is the interior angle at the corner. Such factors have

been treated explicitly for the Ising model with various boundary conditions [15].

However, once again, since h = 0 for the problem at hand, such factors are absent.

We conclude that crossing probabilities are indeed invariant under mappings which

are conformal in the interior and are piecewise conformal on the boundary, but that

this is not generic for all critical systems, for example when q 6= 1.

As an example, consider the case treated in Ref. 3 of the crossing probability

between opposite sides of a rectangle of aspect ratio r. This is the image of the

upper half plane under a Schwartz-Christoffel transformation. Taking the points

xj to be at (−k−1,−1, 1, k−1), the aspect ratio of the rectangle is given by r =

K(1 − k2)/2K(k2), where K(u) is the complete elliptic integral of the first kind.
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The prediction is then that the crossing probability is given by Eq. (8), with η =

((1 − k)/(1 + k))2. The results of this are illustrated in Figs. 1,2, and compared

with the numerical data obtained in Ref. 3 for bond percolation on square lattices

with approximately 4 · 104 sites. It is seen from Fig. 2 that the deviations between

the numerical experiment and the theory are consistent with the internal scatter

of the data, although there appears also to be a systematic difference which may

be due to finite-size effects.

It is possible to generalize the above methods to treat the case of correlations

between different crossing events. As long as the segments involved are not ad-

jacent, such probabilities may always be related to correlation functions of φ(f |α)

operators, and they should have the same invariance properties as the simple cross-

ing probabilities considered here. The fact that they enjoy these properties, which

are not expected to hold for analogous quantities in generic critical systems, sug-

gests that some of the ideas of conformal invariance might usefully be reformulated

for the percolation problem without invoking the mapping to the Potts model.

The author is grateful to R. P. Langlands for providing a copy of Ref. 3 before

publication, and the numerical data shown in Figs. 1,2. He also thanks T. Spencer

and M. Aizenman for stimulating his interest in this problem, and P. Kleban for

communicating the results of Ref. 15. This work was supported by NSF Grant

PHY 86-14185.
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Figure Captions

1) Theory vs. the numerical data of Ref. 3 for the horizontal crossing probabilities

πh(r) for rectangles of aspect ratio r. In the figure, Ln ((1− πh)/πh) is plotted

against Ln r. The numerical data is represented by by points, and the solid

curve is the theoretical prediction.

2) Deviation between numerical estimates and theoretical predictions of crossing

probabilities πh(r) and 1− πv(r).
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