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Università dell’Aquila, I-67100 L’Aquilac, Italy
51 University of Salerno, 84084 Fisciano (Salerno), Italy
52 Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
53 The University of Sheffield, Sheffield S10 2TN, UK
54 Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
55 Southern University and A&M College, Baton Rouge, LA 70813, USA
56 University of Minnesota, Minneapolis, MN 55455, USA
57 INFN, Gruppo Collegato di Trentoa and Università di Trentob, I-38050 Povo, Trento; INFN,
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Abstract
We present an up-to-date, comprehensive summary of the rates for all types
of compact binary coalescence sources detectable by the initial and advanced
versions of the ground-based gravitational-wave detectors LIGO and Virgo.
Astrophysical estimates for compact-binary coalescence rates depend on a
number of assumptions and unknown model parameters and are still uncertain.
The most confident among these estimates are the rate predictions for coalescing
binary neutron stars which are based on extrapolations from observed binary
pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1

per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly
range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004
Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)).
We convert coalescence rates into detection rates based on data from the LIGO
S5 and Virgo VSR2 science runs and projected sensitivities for our advanced
detectors. Using the detector sensitivities derived from these data, we find a
likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers,
with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary
neutron–star detection rate for the Advanced LIGO–Virgo network increases
to 40 events per year, with a range between 0.4 and 400 per year.

PACS numbers: 04.30.Tv, 04.80.Nn, 97.60.−s, 97.80.−d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ground-based detectors LIGO, Virgo and GEO 600 (see [2–5] for recent status reports) are
rapidly improving in sensitivity. The search of data from the last science run (LIGO S5, Virgo
VSR1) of the initial versions of these detectors is still ongoing (see [6, 7] for upper limits on
rates of low-mass binary mergers from the first part of the run). By 2015, advanced versions
of these detectors should be taking data with a sensitivity approximately ten times greater than
the initial sensitivity, so that the detection volume will grow by a factor of about a thousand.
Such improvements in detector sensitivity mean that the first gravitational-wave signature of
a compact-binary coalescence (CBC) event could be detected in the next few years.

Theoretical predictions of astrophysical event rates represent a crucial input into the
development and assessment of the detection process. For example, Advanced LIGO can
be tuned to increase its sensitivity in some frequency bands, and the relative event rates for
different types of sources can aid the decision-making process for selecting the best detector
configuration. Additionally, as detector sensitivities improve, even upper limits will start to
become astrophysically interesting. They will begin to rule out the models that predict the
highest detection rates, thereby allowing us to place stricter constraints on astrophysically
interesting quantities such as compact-object natal kick velocities, the strength of massive-star
winds and the parameters of dynamically unstable mass-transfer processes in binary stars (e.g.
accretion during the common-envelope phase) [8–10].

The primary goal of this review is to provide an accessible, up-to-date, comprehensive
summary of the detection rates for gravitational waves from coalescences of compact
binaries, specifically those involving neutron stars (NSs), stellar-mass black holes (BHs)
and intermediate-mass black holes (IMBHs). This review aims to be a reference source for
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rate predictions for the gravitational-wave astrophysics community. It gives an introduction to
the literature on compact-binary coalescence rate estimates. No new merger rate derivations
are presented here, but we do provide a consistent conversion of merger rates into detection
rates for the LIGO–Virgo network using the most up-to-date sensitivities of the Initial and
Advanced LIGO detectors.

Much work has been done in the field of predicting astrophysical rates for compact binary
coalescences since classic papers by Phinney [11] and Narayan et al [12] appeared in 1991.
We do not attempt a complete review of the entire body of literature on the subject. Rather,
we focus on a selection of papers representative of different approaches to rate prediction,
emphasizing those papers which not only predict rates for CBCs but also evaluate the systematic
uncertainties in rate estimates. We include the most recent papers from each group, and only
those which appeared after 2000. Additional background information can be found in the
detailed review by Postnov and Yungelson [13]. In particular, see table 4 of [13] and tables 3
and 4 of [8] for a partial list of historical CBC rate predictions.

New papers in the field are coming out at an ever-increasing pace, as better theoretical
understanding allows more sophisticated models to be built, while additional electromagnetic
observations of binaries with compact objects (pulsars and x-ray binaries) provide tighter
constraints on those models (see, e.g., [14]). This review is by necessity a snapshot of the
field; only papers that have appeared in print by 1 October 2009 are included here.

This review is organized as follows. Section 2 consists of a summary of the main results.
It contains the coalescence rates for various CBC sources per Milky Way Equivalent Galaxy
(MWEG), per L10

83 or per Mpc3 for NS–NS, NS–BH and BH–BH84 binaries, or per globular
cluster (GC) for IMBH–IMBH binaries and intermediate-mass-ratio inspirals (IMRIs) into
IMBHs. Upper limit, plausible optimistic, likely, and plausible pessimistic rate estimates
are given where available, all referenced to the existing literature. Detection rates are also
provided for fiducial values of the horizon distance (see section 3 for definition) for both Initial
and Advanced LIGO–Virgo networks. Section 3 describes how rates per galaxy are converted
into detection rates. Section 4 on individual sources provides a comprehensive list of currently
available estimates in the published literature, including a brief description of the methods by
which these estimates were obtained.

2. Summary

At present, there are significant uncertainties in the astrophysical rate predictions for compact
binary coalescences. These arise from the small sample size of observed galactic binary
pulsars, from poor constraints for predictions based on population-synthesis models and from
the lack of confidence in a number of astrophysical parameters, such as the pulsar luminosity
distribution. The uncertainties in the coalescence rates, which can reach ∼1–2 orders of
magnitude in each direction from the most likely prediction, make it difficult to quote a
single rate for a given source type. Instead, the summary tables in this section contain
several different rate statements, where available: plausible pessimistic, likely, and plausible
optimistic predictions, along with upper limits. These rate statements, which are defined in
table 1, can be interpreted as follows: plausible rate estimates for (merger type) mergers
range from Rlow to Rhigh with a likely rate estimate of around Rre. Tables 2, 3 and 4 contain,
respectively, coalescence rate predictions per Myr per MWEG, per Myr per L10 and per Myr per
Mpc3. Table 5 contains similar statements about detection rates expected for each generation

83 L10 ≡ 1010LB,�, where LB,� = 2.16 × 1033 erg s−1 is the blue solar luminosity [15].
84 BH–BH rates quoted in section 2 do not include the contribution from dynamical interactions in dense stellar
environments; see section 4.3.2 for details.
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Table 1. Rate statement terminology.

Abbreviation Rate statement Physical significance

Rmax, Ṅmax
a Upper limit Rates should be no higher than . . .

Rhigh, Ṅhigh Plausible optimistic estimate Rates could reasonably be as high as . . .

Rre, Ṅre Realistic estimate Rates are likely to be . . .

Rlow, Ṅlow Plausible pessimistic estimate Rates could reasonably be as low as . . .

a The symbols Rmax, Rhigh, etc, refer to rates per galaxy; the symbols Ṅmax, Ṅhigh, etc, refer to detection
rates.

Table 2. Compact binary coalescence rates per Milky Way Equivalent Galaxy per Myr.

Source Rlow Rre Rhigh Rmax

NS–NS (MWEG−1 Myr−1) 1 [1]a 100 [1]b 1000 [1]c 4000 [16]d

NS–BH (MWEG−1 Myr−1) 0.05 [18]e 3 [18]f 100 [18]g

BH–BH (MWEG−1 Myr−1) 0.01 [14]h 0.4 [14]i 30 [14]j

IMRI into IMBH (GC−1 Gyr−1) 3 [19]k 20 [19]l

IMBH-IMBH (GC−1 Gyr−1) 0.007 [20]m 0.07 [20]n

a Lower end of 95% confidence interval for the pulsar luminosity distribution yielding the lowest rate
(model 14) in table 1 of [1].
b Peak rate for the reference pulsar luminosity distribution (model 6) in table 1 of [1].
c Upper end of 95% confidence interval for the pulsar luminosity distribution yielding the highest rate
(model 15) in table 1 of [1].
d Mean rates plus 2σ for Type Ib/Ic supernova [16], values from [17].
e The left edge of the probability distribution peak for NS–BH in figure 6 of [18].
f The center of the probability distribution peak for NS–BH in figure 6 of [18].
g The right edge of the probability distribution peak for NS–BH in figure 6 of [18].
h The left edge of the probability distribution peak for BH–BH in figure 15 of [14].
i The center of the probability distribution peak for BH–BH in figure 15 of [14].
j The right edge of the probability distribution peak for BH–BH in figure 15 of [14].
k Estimate from binary hardening via three-body interactions assuming the inspiraling object is a
neutron star (section 2.1 of [19]).
l Upper limit of 300 M�/m per 1010 years per cluster (section 3.3 of [19]), assuming the inspiraling
object m = 1.4 M� is a neutron star.
m Assumes that 10% of all globular clusters are sufficiently massive and have a sufficient binary
fraction to form an IMBH-IMBH binary once in their lifetime, taken to be 13.8 Gyr [20].
n Assumes that all globular clusters are sufficiently massive and have a sufficient binary fraction to form
an IMBH-IMBH binary once in their lifetime, taken to be 13.8 Gyr [20].

Table 3. Compact binary coalescence rates per L10 per Myra.

Source Rlow Rre Rhigh Rmax

NS–NS (L−1
10 Myr−1) 0.6 60 [1] 600 [1] 2000 [16]

NS–BH (L−1
10 Myr−1) 0.03 [18] 2 [18] 60 [18]

BH–BH (L−1
10 Myr−1) 0.006 [14] 0.2 [14] 20 [14]

a See footnotes in table 2 for details on the sources of the values in this table.

of the LIGO–Virgo network. The configuration of future detectors is not yet fully specified, so
one should be mindful that these detection rates were computed for a given horizon distance,
provided in the first footnote to table 5.
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Table 4. Compact binary coalescence rates per Mpc3 per Myra.

Source Rlow Rre Rhigh Rmax

NS–NS (Mpc−3 Myr−1) 0.01 [1] 1 [1] 10 [1] 50 [16]
NS–BH (Mpc−3 Myr−1) 6 × 10−4 [18] 0.03 [18] 1 [18]
BH–BH (Mpc−3 Myr−1) 1 × 10−4 [14] 0.005 [14] 0.3 [14]

a See footnotes in table 2 for details on the sources of the values in this table.

Table 5. Detection rates for compact binary coalescence sources.

IFO Sourcea Ṅlow yr−1 Ṅre yr−1 Ṅhigh yr−1 Ṅmax yr−1

NS–NS 2 × 10−4 0.02 0.2 0.6
NS–BH 7 × 10−5 0.004 0.1

Initial BH–BH 2 × 10−4 0.007 0.5
IMRI into IMBH <0.001b 0.01c

IMBH-IMBH 10−4 d 10−3 e

NS–NS 0.4 40 400 1000
NS–BH 0.2 10 300

Advanced BH–BH 0.4 20 1000
IMRI into IMBH 10b 300c

IMBH-IMBH 0.1d 1e

a To convert the rates per MWEG in table 2 into detection rates, optimal horizon distances of
33 Mpc/445 Mpc are assumed for NS–NS inspirals in the Initial/Advanced LIGO–Virgo networks. For
NS–BH inspirals, horizon distances of 70 Mpc/927 Mpc are assumed. For BH–BH inspirals, horizon
distances of 161 Mpc/2187 Mpc are assumed. These distances correspond to a choice of 1.4 M� for
NS mass and 10 M� for BH mass. Rates for IMRIs into IMBHs and IMBH–IMBH coalescences are
quoted directly from the relevant papers without conversion. See section 3 for more details.
b Rate taken from the estimate of BH–IMBH IMRI rates quoted in [19] for the scenario of BH–IMBH
binary hardening via three-body interactions; the fraction of globular clusters containing suitable
IMBHs is taken to be 10%, and no interferometer optimizations are assumed.
c Rate taken from the optimistic upper limit rate quoted in [19] with the assumption that all globular
clusters contain suitable IMBHs; for the advanced network rate, the interferometer is assumed to be
optimized for IMRI detections.
d Rate taken from the estimate of IMBH-IMBH ringdown rates quoted in [20] assuming 10% of all
young star clusters have sufficient mass, a sufficiently high binary fraction, and a short enough core
collapse time to form a pair of IMBHs.
e Rate taken from the estimate of IMBH-IMBH ringdown rates quoted in [20] assuming all young star
clusters have sufficient mass, a sufficiently high binary fraction, and a short enough core collapse time
to form a pair of IMBHs.

Where posterior probability density functions (PDFs) for rates are available, Rre refers
to the PDF mean, Rlow and Rhigh are the 95% pessimistic and optimistic confidence intervals,
respectively, and Rmax is the upper limit, quoted in the literature based on very basic limits set
by other astrophysical knowledge (see table 1). However, many studies do not evaluate the
rate predictions in that way, and for some speculative sources even estimates of uncertainties
may not be available at present. In these cases, we assign the rate estimates available in the
literature to one of the four categories, as described in detail in section 4. The values in all
tables in this section are rounded to a single significant figure; in some cases, the rounding
may have resulted in somewhat optimistic predictions.
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In the simplest models, the coalescence rates are assumed to be proportional to the stellar
birth rate in nearby spiral galaxies, which can be estimated from their blue luminosity85.
We therefore express the coalescence rates per unit L10 (i.e. 1010 times the solar blue-light
luminosity LB,�) in table 3, using the conversion factor of 1.7 L10/MWEG [22]. There is
a danger of using blue-light luminosity as a conversion factor, however: although blue-light
luminosity is a reasonable indication of the current star-formation rate in spiral galaxies,
it does not accurately track star-formation rates in the past. In particular, scaling to blue-
light luminosity ignores the contribution of older populations in elliptical galaxies [23]. In
the future, when the contribution of elliptical galaxies is properly included in published
studies, merger rates will be more naturally quoted per-unit volume, rather than per MWEG
or per L10. We therefore include rates per Mpc3 in table 4; however, this table still includes
only the contribution from spiral galaxies like the Milky Way, using the conversion factor
0.0198 L10/Mpc3 from section 3.1 of [15].

3. Conversion from coalescence rates to detection rates

Although some publications quote detection rates for Initial and Advanced LIGO–Virgo
networks directly, the conversion from coalescence rates per galaxy to detection rates is not
consistent across all publications. Therefore, we choose to re-compute the detection rates as
follows86.

The actual detection threshold for a network of interferometers will depend on a number
of factors, including the network configuration (the relative locations, orientations and
noise power spectral densities of the detectors), the characteristics of the detector noise (its
Gaussianity and stationarity) and the search strategy used (coincident versus coherent search)
(see, e.g., [24]). A full treatment of these effects is beyond the scope of this paper. Instead, we
estimate event rates detectable by the LIGO–Virgo network by scaling to an average volume
within which a single detector is sensitive to CBCs above a fiducial signal-to-noise ratio (SNR)
threshold of 8. This is a conservative choice if the detector noise is Gaussian and stationary
and if there are two or more detectors operating in coincidence87. Event rates for searches
with an optimal horizon distance (see below) greater than the local over-density (�30 Mpc)
but less than the scale on which cosmological effects become significant (�1 Gpc) scale
linearly with the sensitive volume and thus the cube of the inverse SNR threshold. Readers
can, therefore, appropriately adjust the quoted rates when considering detector networks with
different sensitivities.

85 Blue-light luminosity may not be a perfect tracer of the current star-formation rate (see, e.g., [21]); however, it
was useful for scaling the observations of early interferometers because it allowed Kopparapu et al [15] to compile a
galaxy catalog that is relatively complete out to �30 Mpc.
86 Rates of IMRIs into IMBHs and IMBH–IMBH coalescences are an exception: because of the many assumptions
involved in converting rates per globular cluster into LIGO–Virgo detection rates, we quote detection rates for these
sources directly as they appear in the relevant publications.
87 The real detection range of the network is a function of the data quality and the detection pipeline, and can only
be obtained empirically. However, we can argue that our choice is not unreasonable as follows. We compute below
that the NS–NS horizon distance for the initial-era interferometers is Dhorizon = 33 Mpc. According to equation (5),
this corresponds to an accessible volume of ∼150 MWEGs or ∼250 L10. Meanwhile, the 90%-confidence upper
limit on NS–NS rates from a year and a half of data (including approximately half a year of double-coincident data
between Hanford and Livingston interferometers) in the fifth LIGO science run was 1.4 × 10−2 yr−1 L−1

10 [7]. The
probability of observing zero events is 10% with a Poisson distribution with mean 2.3, so this 90%-confidence upper
limit corresponds to a detection volume of ∼160 L10 in 1.5 years, which is somewhat less than our estimate of
250 L10. However, this was the detection volume obtained with two LIGO 4 km detectors and one 2 km detector,
H2, co-located with H1; the detection volume should be increased when using the two 4 km LIGO detectors and the
Virgo detector in a network, yielding a better match with the estimated volume.
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The detection rate for a given CBC type in a LIGO–Virgo search is equal to

Ṅ = R × NG, (1)

where R is the coalescence rate of that type of binary per galaxy (given in table 2) and NG is
the number of galaxies accessible with a search for the relevant binary type.

The reach of a given search is characterized by the optimal horizon distance Dhorizon. For
a single detector, the optimal horizon distance is defined as that distance at which an optimally
oriented, overhead source can be detected with a signal-to-noise ratio (SNR) ρ(Dhorizon) = 8,
where

ρ =
√

4
∫ fISCO

0

|h̃(f )|2
Sn(f )

df , (2)

Sn(f ) is the noise power spectral density (PSD), |h̃(f )| is the frequency-domain waveform
amplitude

|h̃(f )| = 2c

D

(
5Gμ

96c3

)1/2 (
GM

π2c3

)1/3

f −7/6, (3)

D is the luminosity distance to the source, M is the total mass, μ is the reduced mass
and the frequency f ISCO of the innermost stable circular orbit (ISCO) is set to fISCO =
c3/(π61.5 G M) ∼ 4396/(M/M�) Hz. This calculation is a conservative estimate of the
SNR, since it includes the inspiral portion of only the waveform and ignores the merger and
ringdown, which will not contribute significantly to the SNR for low-mass binaries. Note that
these expressions do not include the cosmological redshift, which is neglected in this review88.

The number NG of galaxies accessible with that particular search is a function of the
horizon distance, Dhorizon. The bottom curve of figure 1, reproduced from [15], shows the
amount CL of accessible blue-light luminosity in units of L10 as a function of Dhorizon.89 To
convert this blue-light luminosity into the number NG of accessible MWEGs), a conversion
factor of

NG (MWEGs) = 1.7 CL (L10) (4)

should be used. (This conversion factor follows from the discussion in [22].)
The following formula is a good approximation to NG(Dhorizon) once the local over-density

is averaged out at larger distances Dhorizon � 30 Mpc:

NG = 4

3
π

(
Dhorizon

Mpc

)3

(2.26)−3 (0.0116). (5)

Here, 1/2.26 is the correction factor included to average over all sky locations and
orientations90 [26], and 1.16 × 10−2 Mpc−3 is the extrapolated density of MWEGs in space
[15]. We use equation (5) for all rate conversions in this review.

The Initial LIGO noise PSD Sn(f ) is based on the typical detector sensitivity as measured
from data taken during the S5 run [28]. Specifically, the noise spectrum corresponds to a time

88 The effect of cosmological redshift will only be significant for BH–BH binaries in Advanced LIGO, where the
horizon distance will correspond to a redshift of z ∼ 0.4. Redshift scales the masses in equation (3) by a factor
of 1 + z, thus increasing the waveform amplitude, but decreases the ISCO frequency in equation (2) by the same
factor, thus reducing the bandwidth of low-frequency signals. These competing effects are further compounded by
the redshift dependence of astrophysical quantities like metallicities and star formation rates [25].
89 See section 2 for a discussion of the limitations of scaling merger rates to blue-light luminosity.
90 The so-called sensemon range is the radius of a sphere whose volume is equal to the volume in which an
interferometer could detect a source at ρ � 8, taking all possible sky locations and orientations into account. The
factor of 1/2.26 for the ratio between the optimal horizon distance and the sensemon range is computed in [26]. This
factor neglects cosmological redshift corrections, which could be included using the framework described in [27].
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Figure 1. The total blue-light luminosity within a sphere of a given radius (top curve) and
the accessible blue-light luminosity for a given horizon distance Dhorizon, taking location and
orientation averaging into account (bottom curve). Gray-shaded lines are cubic extrapolations.
The inset shows the ratio between the top and bottom curves, which asymptotes to 2.263, as
discussed in the text. Reproduced from [15] by permission of the AAS.

when the Hanford 4 km detector is operated near its S5-run mode for the 1.4–1.4 M� inspiral
horizon. The Advanced LIGO noise PSD is based on the zero detuning, high laser power
configuration as described in the public LIGO document T0900288 [29]. This configuration,
also known as Mode 1b, assumes 125 W input laser power, 20% signal recycling mirror
(SRM) transmissivity and no detuning of the signal-recycling cavity. We emphasize that the
Advanced LIGO noise PSD is merely a prediction, and actual noise PSDs may differ from it.
In particular Advanced LIGO has several possible configurations with different laser powers,
SRM transmissivity and detuning of the signal-recycling cavity, producing different PSDs.
The LIGO noise amplitude spectral densities (ASDs) are plotted in figure 2 together with the
noise ASDs for Initial Virgo, as measured on 20 October 2009 during Virgo’s Second Science
Run [30], and Advanced Virgo, as described in the Advanced Virgo Baseline Design document
[31]. We note that confusion noise from a background of unresolved CBCs is not expected to
be a problem even for Advanced LIGO and Virgo detectors [32].

For the purpose of calculating the NS–NS, NS–BH, and BH–BH rates in table 5, we
assumed that all NSs had a mass of 1.4 M� and all BHs had a mass of 10 M�.91 Although
we know that neutron stars and black holes will cover a range of masses (see, e.g., [10, 18]),
our knowledge of the mass distribution is not sufficient at present to warrant more detailed
models, and the uncertainties in the coalescence rates dominate errors from the simplified
assumptions about component masses. For a single interferometer and a detection threshold
of ρ = 8, this assumption yields Initial LIGO Dhorizon values 33 Mpc/70 Mpc/161 Mpc for
NS–NS/NS–BH/BH–BH searches, respectively. For Advanced LIGO, the three Dhorizon values
are 445 Mpc/927 Mpc/2187 Mpc, respectively.

91 These are different from the masses of (1.35 ± 0.04)M� and (5 ± 1)M� assumed for NSs and BHs, respectively,
when placing upper limits on rates in LIGO result papers to date, e.g. [7].

12



Class. Quantum Grav. 27 (2010) 173001 Topical Review

10
1

10
2

10
3

10
−23

10
−22

10
−21

10
−20

10
−19

f, Hz

S
n
( f

) ,
1/
√

H
z

Initial LIGO
Initial Virgo
Advanced LIGO
Advanced Virgo

Figure 2. Noise amplitude spectral densities (ASDs) as a function of frequency. The Initial LIGO
noise ASD (solid red curve) corresponds to the typical detector sensitivity as measured from data
taken during the S5 run [28]. The Advanced LIGO noise ASD (dashed magenta) represents a
possible Advanced LIGO configuration with high laser power and zero detuning [29]. The Initial
Virgo noise ASD (dotted blue) was measured during Virgo’s VSR2 run [30]. The Advanced Virgo
noise ASD (dash-dotted green) is based on the Advanced Virgo Baseline Design [31].

Again, we reiterate that these horizon distances are computed using the noise PSD of a
single interferometer and that the cosmological redshift is not included. On average, if the noise
is Gaussian and stationary and the search is optimal, X detectors with the same noise power
spectral density will increase the SNR and the horizon distance by a factor of

√
X relative to a

single detector for a fixed network detection threshold ρ. On the other hand, detection pipelines
which have to contend with non-Gaussian, non-stationary noise in the detectors may require
higher SNR thresholds for detection in order to achieve desired false alarm rates than what was
assumed here. Thus, although we have used the noise PSDs of a single LIGO interferometer
in the calculation, the detection rates are intended to approximate the performance of the
LIGO–Virgo network. Readers of this review can compute their own rates for different noise
PSDs, typical masses, etc, by recomputing Dhorizon and scaling the rates in table 5 by a factor
of NG(Dhorizon)

/
NG

(
D0

horizon

)
or

(
Dhorizon/D

0
horizon

)3
for Dhorizon � 30 Mpc.

4. Derivation of compact binary coalescence rates

4.1. NS–NS rates

There are two distinct methods for estimating NS–NS merger rates. The first method is based
on extrapolating from the observed sample of NS binaries detected via pulsar measurements;
the second method is based on population-synthesis codes, in which some of the unknown
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Table 6. Estimates of NS–NS inspiral rates.

Rlow Rre Rhigh Rmax

(MWEG−1 (MWEG−1 (MWEG−1 (MWEG−1

Rate model Myr−1) Myr−1) Myr−1) Myr−1)

Extrapolation: model 6 of [33]a 16.9 83.0 292.1
Extrapolation: model 14 of [33]a 1.0 3.8 13.2
Extrapolation: model 15 of [33]a 43.1 223.7 817.5
O’Shaughnessy et al pop. synth. [18]b 5 30 300
Voss and Tauris pop. synth. [34]c 0.54 1.5 17
Belczynski et al pop. synth.: model A of [35]d 12
Belczynski et al pop. synth.: model B of [35]d 7.6
Belczynski et al pop. synth.: model C of [35]d 68
Nelemans pop. synth. [36]e 0.5 25 1250
‘Double-core’ scenario: Dewi et al [37]f 0.91 12.10
With ellipticals: de Freitas Pacheco et al [23]g 34
Supernova Ib/Ic limit [16]h 3900

a The estimates, based on an extrapolation from known NS–NS systems observed as binary pulsars, are
taken from table I of [1]. The model numbers refer to various pulsar luminosity distribution models
(see [33] for an explanation). Model 6 is the reference model: Lmin = 0.3 mJy kpc2, p = 2. Model 14
yields the lowest, and model 15 the highest rate estimates. All values are based on additional
assumptions about the pulsar lifetimes, beaming factors, etc, which could lead to significant systematic
errors in the extrapolated rates.
b Predictions from constrained population-synthesis models [18]. A visual estimate of the center of the
NS–NS probability distribution peak of figure 6 is used as the value of Rre; a visual estimate of the left
and right edges of this peak are used as the values of Rlow and Rhigh.
c Predictions from the population-synthesis study of Voss and Tauris [34]. The realistic estimate is
taken from model A and the plausible pessimistic/optimistic rates are based on the lowest (model I)
and highest (model B) predictions from table 7 of [34]; the range may significantly underestimate the
true uncertainty.
d Predictions from the population-synthesis studies of Belczynski et al [35], which analyze the impact
of assumptions about common-envelope evolution. See section 4.3 for details regarding models A, B,
and C. Values are taken from table 2 of [35].
e Predictions from population-synthesis models of Nelemans [36]. The realistic estimate is taken from
the merger rate quoted in table 1 of [36]. The plausible pessimistic / optimistic estimates are obtained
by dividing / multiplying that realistic estimate by the uncertainty factor of 50 quoted in that table.
f Predictions for NS-NS binaries that form through the ‘double-core’ scenario. The plausible pessimistic
and realistic rates are taken to be the lowest and highest merger rates in table 1 of Dewi et al [37].
g This prediction from de Freitas Pacheco et al [23] is the first to include the contribution of elliptical
galaxies to CBC rates. In the absence of stated uncertainties in this contribution, the quoted mean local
coalescence rate is taken as the realistic rate.
h The upper limit comes from the assumption that the formation of a NS-NS system requires a type Ib/c
supernova [16]. This upper limit is given as the mean SN Ib/c rate plus 2σ , which is quoted as
1100 ± 600 per Myr per L10 in [17].

model parameters are constrained by observations and others are constrained by theoretical
considerations. We quote rate estimates from both of these methods in table 6.

The most recent references for the first method, extrapolating double neutron–star merger
rates from observed merging binary pulsars in the galaxy, are those by Kalogera et al [1] and
Kim et al [16]. These studies differ from the previous work in statistically accounting
for the small-number sample by using the Poisson distribution. This empirical method
has significantly fewer free parameters than the population-synthesis models. However, it
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does suffer from a small sample of observed merging NS–NS systems in the galaxy92, and
the implicit assumption that these form a good representation of the total double neutron–
star population. Moreover, as described in [33], the reconstruction of the galactic neutron
star binary population relies on an understanding of the pulsar survey selection effects
and, therefore, on the pulsar luminosity distribution. This distribution is described by
two variables: the minimum pulsar luminosity Lmin and the negative slope p of the pulsar
luminosity distribution power law. Different choices of these variables, still consistent with
the overall pulsar population observations, could change the merger rates by an order of
magnitude. An attempt has been made to fold in the distribution of Lmin and p into the rate
calculation [16], yielding a likely NS–NS merger rate of 13 Myr−1 MWEG−1; however, this
attempt suffered from out-of-date constraints on Lmin. Therefore, the rates quoted here do not
incorporate uncertainties in the pulsar luminosity function directly. Instead, for the plausible
optimistic/plausible pessimistic estimates, we quote rates at the upper/lower end of the 95%
confidence interval for the model yielding the highest/lowest rates from table 1 of [1]. For
the likely estimate, we quote the rates at peak probability for the preferred pulsar luminosity
distribution model 6 (Lmin = 0.3 mJy kpc2, p = 2) from table 1 of [1], because this value of
Lmin is the lowest luminosity of all currently known pulsars. Several additional assumptions
are made which could systematically bias the rate estimates, e.g. the age of the pulsar at the
time of detection, which could change rates by no more than a factor of 2, and the beaming
fraction, which has not yet been measured directly for all systems.

The most recent reference for the second method, in which binary merger rates are obtained
from population-synthesis codes, is [18]. Other population-synthesis studies carry out a much
more limited exploration of the model parameter space and/or do not quantitatively apply
empirical constraints from pulsar observations. The population-synthesis code StarTrack
[9] used in [18] contains a number of free parameters; seven of them have been selected
as having the most significant impact on the model outcome and these are allowed to vary
over a large range of values. In the absence of firm empirical guidance, flat priors are used
on these seven parameters, which include birth kick velocities, common-envelope efficiency
and the companion mass distribution. However, narrower choices of these parameters could
significantly impact rates: for example, if kicks are preferentially aligned with pre-supernova
spin, NS–NS coalescence rates could decrease by up to a factor of 5 [38]. Additional constraints
from observations are applied to select only those choices of models that are consistent with
observations. In [18], five such constraints are used: (i) the observed sample of merging
binary pulsars; (ii) the observed sample of wide binary pulsars; (iii) the observed sample of
white dwarf–pulsar systems; (iv) the empirically derived Type II supernova rate and (v) the
empirically derived Type Ib/Ic supernova rate. However, the supernova rates do not provide
strong constraints (see figure 1 of [18]), so the meaningful constraints come from observed
galactic compact object binaries involving pulsars. In this way, the rate estimates obtained
via the second method after applying observational constraints are not truly independent
from the estimates obtained via the first method, since the same observations are used.
Moreover, the second method suffers from some of the same uncertainties as the first method,
particularly the need to estimate the pulsar luminosity distribution in order to reconstruct
the galactic pulsar population; the values Lmin = 0.3 mJy kpc2, p = 2 are used in [18].

92 The rates quoted in the top three lines of table 6 are based on extrapolation from three binary-pulsar systems:
B1913+16, B1534+12 and J0737-3039. Two additional field binary pulsars have been confirmed since these rates
were computed in [1]: J1756-2251 and J1906+0746. According to Kim et al [16], carefully including J1756-2251 in
the rates estimates is non-trivial because of different selection effects of the acceleration search which found it, but
should increase the rate predictions by only ∼4%. Meanwhile, the inclusion of J1906+0746, a relatively short-lived
system, would increase the rates by almost a factor of 2 [16]. Therefore, the rates listed in table 6 may be a conservative
estimate.
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Table 7. Estimates of NS–BH inspiral rates.

Rlow Rre Rhigh Rmax

(MWEG−1 (MWEG−1 (MWEG−1 (MWEG−1

Rate model Myr−1) Myr−1) Myr−1) Myr−1)

O’Shaughnessy et al pop. synth. [18]a 0.05 3 100
Voss and Tauris pop. synth. [34]b 0.2 0.58 5
Belczynski et al pop. synth.: model A of [35]c 0.07
Belczynski et al pop. synth.: model B of [35]c 0.09
Belczynski et al pop. synth.: model C of [35]c 3.2
Nelemans pop. synth. [36]d 0.2 10 500
‘Double-core’ scenario: Dewi et al [37]e 0.14 6.32

a Predictions from constrained population-synthesis models [18]. A visual estimate of the center of the
NS–BH probability distribution peak of figure 6 is used as the value of Rre; a visual estimate of the
left/right edge of this peak is used as the values of Rlow/Rhigh.
b Predictions from the population-synthesis study of Voss and Tauris [34]. The realistic estimate is
taken from model A and the plausible pessimistic/optimistic rates are based on the lowest (model D)
and highest (model B) predictions from table 7 of [34]. The values for BHNS and NSBH rates are
summed. The range may significantly underestimate the true uncertainty.
c Predictions from the population-synthesis studies of Belczynski et al [35], which analyze the impact
of assumptions about common-envelope evolution. See section 4.3 for details regarding models A, B
and C. Values are taken from table 2 of [35].
d Predictions from population-synthesis models of Nelemans [36]. The realistic estimate is taken from
the merger rate quoted in table 1 of [36]. The plausible pessimistic and optimistic estimates are
obtained, respectively, by dividing and multiplying that realistic estimate by the uncertainty factor of 50
quoted in that table.
e Predictions for NS–BH binaries that form through the ‘double-core’ scenario. The plausible
pessimistic and realistic rates are taken to be the lowest and highest merger rates in table 2 of Dewi et al
[37].

The rate estimates are sensitive to the choice of observational constraints imposed on the
parameters in the population-synthesis models; for instance, the rates changed by a factor
of ∼5 between [39] and [18] (other reasons for this difference include better accounting for
systematic errors in the observations of wide NS–NS binaries and a more extensive coverage
of the model parameter space). On the other hand, the population-synthesis method is the
only one available for estimating NS–BH and BH–BH rates (see below), since they have not
been observed electromagnetically. For the optimistic/pessimistic galactic rates we estimate
the location of the right/left edge of the rate probability distribution peak in figure 6 of [18],
while for the likely rate we take the location of the maximum.

The binary evolution models in the population-synthesis study of Voss and Tauris [34]
differ in several significant ways from the models of O’Shaughnessy et al; for instance,
they do not allow for hypercritical accretion to occur during a common envelope phase.
They qualitatively confirmed that their models match the observed galactic binary-pulsar
distribution. Voss and Tauris investigate their models by varying one astrophysical parameter
at a time, which limits parameter-space coverage and makes it difficult to estimate the range of
uncertainty in rate predictions. For the realistic NS–NS galactic merger rate, we used the value
of their default model A in table 7 (see also table 4); for the plausible pessimistic/optimistic
rates, we used the lowest (model I) and highest (model B) predictions from table 7 of [34],
respectively, with the understanding that since only one parameter was varied at a time, this
may significantly underestimate the true uncertainty.
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Belczynski et al [35] specifically examined how the treatment of common-envelope
evolution affects CBC rate predictions. These effects are most striking for BH–BH rates,
and are therefore discussed in more detail in section 4.3. The authors report results for three
specific models, A, B and C, in table 2 of [35], which we list as realistic rates here, since
quantitative estimates of uncertainties in the rate predictions are not available.

Rate estimates obtained by Nelemans and collaborators on the basis of population-
synthesis studies [36, 40] are also included. The likely estimate is taken directly from the
‘merger rate’ column of table 1 of [36], while plausible optimistic/pessimistic estimates are
obtained by multiplying/dividing this value by the uncertainty factor of 50 quoted for NS–NS
binaries in the same table. These estimates, however, do not include model constraints on the
basis of pulsar observations.

Dewi et al [37] model the ‘double-core’ scenario, in which two nearly equal-mass stars
form an NS–NS binary through a double common-envelope phase which they enter after both
stars have already evolved off the main sequence (see also [41]). The authors find that even
limiting their attention to NS–NS binaries formed from two helium stars in close orbit yields
merger rates between 0.91 and 12.10 per MWEG per Myr, depending on assumptions about
mass transfer and common-envelope efficiency. Since other NS–NS formation scenarios are
not included, we use these values, taken from table 1 of [37], as the plausible pessimistic and
realistic merger rates.

The first effort to include the contribution of elliptical galaxies to the detection rates
was undertaken by de Freitas Pacheco et al [23]. The authors used a mixture of population-
synthesis techniques and fitting to observational data on galactic pulsars; they calibrated their
galactic merger rate with a sophisticated model of the star formation history of the galaxy.
The authors found that the inclusion of elliptical galaxies, which have little present-day star
formation but could still contribute to CBC rates through delayed mergers, approximately
doubled the local (to redshift z < 0.01) merger rate to 34 NS–NS mergers per Myr. The
uncertainty in the merger rate in ellipticals was not explored, so we list the quoted mean local
coalescence rate of 34 per Myr as the realistic rate prediction.

We note that all realistic rate estimates quoted above fall in the range set by the top three
lines of table 6, which is the range used in the summary tables in section 2.

Since current theoretical understanding predicts that the second neutron star in an NS–NS
system should be born in a Type Ib/Ic supernova, the rate of such supernovae provide an
upper limit on NS–NS rates [16]. We quote the upper limit as the mean SN Ib/Ic rate plus
2σ from table 4 of [17], taking care to convert from a rate per L10 to a rate per MWEG. Note
that population-synthesis codes predict that only O(5%) of all SN Ib/Ic are involved in the
formation of NS–NS systems [9].

Dynamical interactions in globular clusters are not expected to contribute significantly to
the total rate of NS–NS coalescences [42, 43] and are not included in the results in this section.
For example, Grindlay et al [44] estimate the combined NS–NS merger rate in all globular
clusters in the galaxy at 40 per Gyr, which is three orders of magnitude less than the predictions
for field mergers. Additional discussion of the contribution of dynamical interactions to rates
for binaries containing neutron stars can be found in section 4.2.1, while the contribution of
dense stellar environments to BH–BH rates is described in section 4.3.2.

4.2. NS–BH rates

Because of the lack of observations of coalescing compact-object binaries containing black
holes, NS–BH rates can only be based on predictions from population-synthesis models, as
discussed in section 4.1.
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The O’Shaughnessy et al rates that we quote are based on the same constrained population-
synthesis models as the NS–NS rates described earlier. For the plausible pessimistic/optimistic
galactic rates we estimate the location of the left/right edge of the rate probability distribution
peak in figure 6 of [18], while for the likely rate we take the location of the PDF maximum.

Voss and Tauris population-synthesis results are taken from table 7 of [34]. Voss and
Tauris differentiate BHNS and NSBH merger rates based on which the binary component was
the first to evolve; however, we add their BHNS and NSBH values for this review. For the
realistic NS–BH galactic merger rate, we used the value of their default model A in table 7
(see also table 4); for the plausible pessimistic/optimistic rates, we used the lowest (model D)
and highest (model B) predictions from table 7 of [34], respectively, with the understanding
that since only one parameter was varied at a time, this may significantly underestimate the
true uncertainty.

Belczynski et al [35] have examined the effect of the treatment of common-envelope
evolution, as described in more detail in section 4.3. The authors report results for three
specific models, A, B and C, in table 2 of [35], which we list as realistic rates here, since
quantitative uncertainties in the rate predictions are not available.

Rate estimates obtained by Nelemans and collaborators via population-synthesis studies
[36, 40] are also included. The ‘merger rate’ column of table 1 of [36] is used for the
likely estimate. We divide/multiply this value by the uncertainty factor of 50 quoted for this
source type in the same table to obtain the plausible pessimistic/optimistic estimates. These
estimates, however, do not include model constraints on the basis of empirical observations.

Dewi et al [37] applied their ‘double-core’ scenario (see section 4.1) to the formation of
NS–BH binaries, in which the carbon–oxygen core of the primary collapses to form a black
hole after the contact phase. Depending on assumptions about common–envelope efficiency,
final black-hole mass and black-hole birth kick velocity, they found NS–BH merger rates
between 0.14 and 6.32 per MWEG per Myr. Since other NS–BH binary formation scenarios
are not included, we use these values, taken from table 2 of [37], as the plausible pessimistic
and realistic merger rates.

All realistic estimates quoted above fall in the range set by [18] (see the top line of
table 7), which is the range used in the summary tables in section 2.

We note that there have been a number of studies of binaries composed of a black hole
and a recycled pulsar (e.g. [45, 46]). However, since such systems likely form only a small
subset of all NS–BH systems, where the NS may or may not be a recycled pulsar [46], we do
not include them here.

4.2.1. Short gamma-ray bursts. Recently, several authors have attempted to extract rates
for NS–NS and NS–BH coalescences from the rates of observed short hard gamma-ray bursts
(SGRBs). In particular, some models favor dynamical formation scenarios in globular clusters
for at least some of the SGRB progenitors [44, 47]. According to some estimates, extrapolating
the rates of SGRBs could yield higher overall rates for NS–NS and NS–BH coalescences than
those described above [48, 49]. However, most simulations indicate that dynamical effects
are not a significant contribution to coalescence rates for binaries containing neutron stars,
largely because more massive black holes are expected to sink to the centers of dense stellar
environments and substitute into binaries during dynamical interactions [42]. Extrapolations
from GRB measurements suffer from many uncertainties regarding the selection biases in
SGRB observations, such as the unknown beaming fraction of SGRBs [50], which may be
different for binaries formed in clusters and in the field [44]. Additionally, such estimates
rely on the assumption that all SGRBs arise from coalescences of NS–NS or NS–BH systems
following inspirals driven by gravitational-wave emission; however, this is not the only possible
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formation scenario for SGRBs (see [51, 52] for some of the suggested alternatives). We also
note that, given the current observational and theoretical uncertainties, the observed SGRB
rates broadly agree with predictions of NS–NS and NS–BH merger rates from isolated binary
evolution alone [53, 54]. In view of the above, we choose to not include rates extrapolated
from SGRB observations at this time; however, this approach is a very promising one and
could yield interesting CBC rate estimates once SGRB formation channels are well understood
and selection effects are accounted for.

4.3. BH–BH rates

There are two distinct scenarios for the formation of double black-hole binaries close enough
to coalesce through gravitational-wave emission. The first is the isolated binary-evolution
scenario, which is expected to be the dominant scenario for NS–NS and NS–BH systems
described above. The second scenario, which can be significant for BH–BH systems because
of their higher mass, is the dynamical formation scenario, in which dynamical interactions in
dense stellar environments play a significant role in forming and/or hardening the black-hole
binary before coalescence driven by the radiation reaction (see section 4.3.2). This scenario
can be particularly important in globular clusters [42, 55] and nuclear star clusters with [56]
or without [57] a massive black hole; however, because of the uncertainties involved in the
dynamical formation scenario predictions, and the difficulty of assigning ranges given the
limited number of models considered thus far, we do not currently include these predictions
in the summary tables in section 2.

4.3.1. BH–BH rates via the isolated binary-evolution scenario. Because of the lack of
observations of coalescing binaries containing black holes, BH–BH rates can only be based
on predictions from population-synthesis models, constrained as discussed in section 4.1. The
most recent published constrained population-synthesis results [18] do not include BH–BH
rates, because BH–BH mergers can be significantly delayed relative to binary formation, so
that elliptical galaxies with little current star formation and low blue-light luminosities can
contribute significantly to BH–BH rates. In the meantime, we use results from [14], which
do not properly account for the delay between star formation and merger. For the plausible
pessimistic/optimistic galactic rates we estimate the location of the left/right edge of the rate
probability distribution peak in the top panel of figure 15 of [14], while for the likely rate we
take the location of the center of the peak. Note that an older population-synthesis study [39]
only applies the observed galactic double neutron–star population as a constraint and does not
properly include systematics for wide NS–NS binaries.

Voss and Tauris population-synthesis results are taken from table 7 of [34]. For the
realistic BH–BH galactic merger rate, we used the value of their default model A in table 7
(see also table 4); for the plausible pessimistic/optimistic rates, we used the lowest (model D)
and highest (model B) predictions from table 7 of [34], respectively, with the understanding
that since only one parameter was varied at a time, this may significantly underestimate the
true uncertainty.

Belczynski et al [35] found that many potential BH–BH progenitors enter a common-
envelope phase while the donor star is evolving through the Hertzsprung gap. Contrary
to earlier studies (e.g. [58]), they indicate that such systems may very likely merge in the
common-envelope phase, thereby inhibiting the formation of tight compact-object binaries.
They also find that accretion during the common-envelope phase should lead to considerably
smaller mass gain. The combined effect of these changes may strongly suppress the merger
rates for BH–BH systems, and somewhat lowers other CBC rates. Model A is the default
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model which includes both new effects; model B allows for the full hypercritical accretion
during the common envelope phase, but still assumes that entering the common envelope while
the donor crosses the Hertzsprung gap leads to merger; and model C is the model that does not
include either effect and is closest to [58]. Quantitative uncertainties in the rate predictions
are not available, so we list all three models as the realistic rates here, taking the lower value
(corresponding to normalization by the star formation rate) from table 2 of [35].

Rate estimates obtained by Nelemans and collaborators via population-synthesis studies
[36] are also included. The likely estimate is taken directly from the ‘merger rate’
column of table 1 of [36], while plausible pessimistic/optimistic estimates are obtained by
dividing/multiplying this value by the uncertainty factor of 50 quoted for BH–BH binaries in
the same table. These estimates, however, do not include model constraints on the basis of
empirical observations.

Dewi et al [37] applied their ‘double-core’ scenario (see section 4.1) to the formation
of BH–BH binaries. Depending on assumptions about common-envelope efficiency, final
black-hole mass and black-hole birth kick velocity, they found BH–BH merger rates between
0.19 and 19.87 per MWEG per Myr. Since other BH–BH binary formation scenarios are not
included, we use these values, taken from table 2 of [37], as the plausible pessimistic and
realistic merger rates.

Again, all realistic BH–BH merger rate estimates quoted for the isolated binary evolution
scenario fall in the range set by [14] (see the top line of table 8), which is the range used in
section 2.

4.3.2. BH–BH rates via the dynamical formation scenario. O’Leary, O’Shaughnessy and
Rasio [55] use N-body simulations to analyze the dynamics leading to BH–BH mergers in
globular clusters. Building on the results of [59], they consider a number of models of stellar
clusters that differ in the assumptions about cluster histories, star formation, velocity dispersion
and other properties to compute present-day merger rates of ≈gevapgcl Mpc−3 Myr−1, where
gcl is the fraction of total star formation that occurs in clusters and gevap is the fraction of all
cluster-forming mass that possesses the birth conditions necessary to lead to the formation of a
dense black-hole subcluster through gravitational segregation and cluster evaporation. Based
on weak constraints from globular-cluster observations, the authors argue that the fraction
gevapgcl should be larger than 10−4 (plausible pessimistic value), is likely 5 × 10−2 (likely
value) and could be as high as 1 (upper limit). The plausible optimistic value yields one event
every 2 years with Initial LIGO.

Sadowski et al [42] use a combination of a Monte Carlo code for dynamical interactions
and the StarTrack code for stellar evolution to estimate the BH–BH merger rates in a globular
cluster. Unlike O’Leary et al [55], they assume that the black holes at the core of the cluster
do not decouple into a subcluster but remain in thermal equilibrium with other stars in the
core and continuously interact with them through binary–single and binary–binary encounters.
The authors find that if the fraction of stellar mass initially contained in clusters (relative to
the mass of stars in the field) is significant yet plausible, then the rate of dynamical BH–BH
binary formation in clusters may exceed the rate of BH–BH binary formation through isolated
binary evolution in the field. They find rates of 2.5 BH–BH coalescences per Gyr for globular
clusters of mass 4.8 × 105 M�. Depending on the mass fraction in clusters, they conclude that
overall Initial LIGO detection rates could range from 0.01 to 1, and Advanced LIGO rates
could range from 25 to 3000 detections per year. However, the authors have evolved only
five clusters with identical choices for other parameters (e.g. a low metallicity Z = 0.001), so
that it is difficult to estimate the uncertainties in their predictions and determine a plausible
range.

20



Class. Quantum Grav. 27 (2010) 173001 Topical Review

Table 8. Estimates of BH–BH inspiral rates.

Rate model Rlow Rre Rhigh Rmax

O’Shaughnessy et al pop. synth. [14]a (MWEG−1 Myr−1) 0.01 0.4 30
Voss and Tauris pop. synth. [34]b (MWEG−1 Myr−1) 1.3 9.7 76
Belczynski et al pop. synth.: model A of [35]c (MWEG−1 Myr−1) 0.02
Belczynski et al pop. synth.: model B of [35]c (MWEG−1 Myr−1) 0.01
Belczynski et al pop. synth.: model C of [35]c (MWEG−1 Myr−1) 7.7
Nelemans pop. synth. [36]d (MWEG−1 Myr−1) 0.1 5 250
‘Double-core’ scenario: Dewi et al [37]e (MWEG−1 Myr−1) 0.19 19.87
Globular cluster dynamics [55]f (Mpc−3 Myr−1) 10−4 0.05 1
Globular cluster dynamics and pop. synth. [42]g (GC−1 Gyr−1) 2.5
Nuclear cluster w/MBH [56]h (NC−1 Myr−1) 2 × 10−4 1.3 × 10−3 0.015
Nuclear cluster w/out MBH [57]i (NC−1 Myr−1) 0.3

a Predictions from constrained population-synthesis models [14]. A visual estimate of the center of the
BH–BH probability distribution peak in the panel of figure 15 is used as the value of Rre; visual
estimate of the left/right edges of this peak are used as the values of Rmin/Rhigh.
b Predictions from the population-synthesis study of Voss and Tauris [34]. The realistic estimate is
taken from model A and the plausible pessimistic/optimistic rates are based on the lowest (model D)
and highest (model B) predictions from table 7 of [34]. The range may significantly underestimate the
true uncertainty.
c Predictions from the population-synthesis studies of Belczynski et al [35], which analyze the impact
of assumptions about common-envelope evolution. See below for details regarding their models A, B
and C. Values are taken from table 2 of [35].
d Predictions from population-synthesis models of Nelemans [36]. The realistic estimate is taken from
the merger rate quoted in table 1 of [36]. The plausible pessimistic/optimistic estimates are obtained
by dividing/multiplying that realistic estimate by the uncertainty factor of 50 quoted in that table.
e Predictions for BH–BH binaries that form through the ‘double-core’ scenario. The plausible
pessimistic and realistic rates are taken to be the lowest and highest merger rates in table 2 of Dewi et al
[37].
f Predictions for BH-BH merger rates in dense BH subclusters at the cores of stellar clusters [55]. The
predicted rates are ≈gevapgcl Mpc−3 Myr−1, where gevapgcl should be larger than 10−4 (plausible
pessimistic value), is likely 5 × 10−2 (realistic value), and could be as high as 1 (upper limit).
g Predictions for BH-BH merger rates in globular cluster cores in thermal equilibrium [42]. The
predicted rate for a globular cluster of mass 4.8 × 105 M� is 2.5 BH-BH coalescences per Gyr,
according to section 3.3.
h Predictions from models of 2-body BH-BH dynamical scattering in galactic nuclei [56]. The plausible
pessimistic, realistic, and plausible optimistic rates per nuclear cluster are taken from models Aβ3, E2,
and F1 of table 1 of [56].
i Predictions from models of nuclear clusters of small galaxies without massive black holes [57]. The
realistic rate is quoted based on the prediction of a ‘merger rate of >0.1 × a few’ per Myr per galaxy
(see section 3 of [57]).

O’Leary et al argue in [56] that stellar-mass black holes in galactic nuclei with a
supermassive black hole can create steep-density cusps with enough scattering interactions
to form a significant number of tight BH–BH binaries through direct two-body scattering.
Because these are initially hyperbolic encounters that lead to capture through energy loss
during the first periapsis passage, these binaries have the distinguishing feature of being
eccentric; the binaries then coalesce on a timescale of hours. The plausible pessimistic, likely
and plausible optimistic rates per nuclear cluster are taken from models Aβ3, E2 and F1 of
table 1, as the lowest, intermediate and highest rates reported in that table. These may be
based on optimistic assumptions regarding the fraction of black holes in galactic nuclei and
the extrapolation of the number density of galaxies to low masses. Note that these are average
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rates per galactic center, not per MWEG; the authors extrapolate the distribution of massive
black holes to 104 M� to obtain predictions for Advanced LIGO of 1 to 1000 detections per
year, based on optimistic assumptions about the Advanced LIGO detection thresholds.

Meanwhile, Miller and Lauburg consider nuclear clusters of small galaxies that do not have
massive black holes as possible sources of BH–BH coalescences [57]. In these environments,
the tightening of BH–BH binaries is driven primarily by three-body interactions, with eventual
inspiral due to radiation reaction. Although rates for these processes, as well as for the two
processes discussed above, depend heavily on the poorly constrained mass function of black
holes in the dense cores of clusters, the authors argue for a ‘merger rate of >0.1 × a few’ per
Myr per galaxy (see section 3 of [57]), so we quote 0.3 per Myr per nuclear cluster as the
likely rate estimate. Miller and Lauburg translate this rate into a prediction of several tens of
detectable BH–BH inspiral events per year with Advanced LIGO.

Because of the uncertainties involved in the dynamical formation scenario predictions,
and the difficulty of assigning ranges given the limited number of models considered thus far,
we do not currently include these predictions in the summary tables in section 2. However,
as can be seen from table 8, the dynamical formation scenario could significantly increase the
rates for BH–BH coalescences, particularly if the actual isolated binary-evolution rates fall
on the low side of the predicted range while the dynamical rates are closer to the claimed
upper limits of the range. As additional confidence is gained through improved analytical
understanding and numerical modeling, the dynamical formation rates will, of course, need to
be included in the overall BH–BH rate predictions.

4.4. Rates of IMRIs into IMBHs

The very existence of intermediate-mass black holes is still debatable [60], so intermediate-
mass-ratio inspirals (IMRIs) into IMBHs are an uncertain class of sources for the LIGO–Virgo
network. However, as described in [19], IMRIs of NSs or BHs into IMBHs in globular
clusters could, under optimistic conditions, present an interesting Advanced LIGO–Virgo
source. (They are not likely to be a significant source for the Initial LIGO–Virgo network,
because of both its lower detection range and higher low-frequency cutoff.)

The upper limits are obtained by assuming that most of the IMBH mass in a globular
cluster comes from minor mergers that are potentially detectable as IMRIs in the LIGO–
Virgo band. The plausible optimistic estimates in table 9 are obtained by considering the
timescales of binary formation, subsequent binary tightening through three-body interactions
and merger through radiation reaction from the emission of gravitational waves. However,
even these optimistic rates are highly uncertain; for example, the fraction of globular clusters
containing an IMBH of a suitable mass range (∼50 to a few hundred solar masses for Advanced
LIGO–Virgo) is assumed to be 10% without justification [19]. Detection rates for Initial and
Advanced LIGO in table 5 are quoted directly from [19]; a detection SNR threshold of 8 was
assumed. These rates assume that the IMBH mass is ∼100 M�. While IMRIs into IMBHs
more massive than ∼400 M� will be outside the Advanced LIGO–Virgo frequency band, the
ringdowns following such coalescences may be detectable (see appendix B of [19]).

4.5. IMBH–IMBH rates

As mentioned above, the existence of intermediate-mass black holes is still uncertain, as is
their prevalence and mass distribution if they do exist. If the binary fraction in a young
dense cluster exceeds ∼10%, and the deep core collapse timescale is shorter than ∼3 Myr,
IMBH–IMBH binaries could form via collisional runaway in young dense stellar clusters [20].
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Table 9. Rate estimates for intermediate-mass-ratio inspirals into intermediate-mass black holes.

Rlow Rre Rhigh Rmax

Rate model (GC−1 Gyr−1) (GC−1 Gyr−1) (GC−1 Gyr−1) (GC−1 Gyr−1)

Mandel et al, NS–IMBH IMRI 3a 20c

Mandel et al, BH–IMBH IMRI 5b 3c

a The rate for inspirals of 1.4 M� NSs into a 100 M� IMBH via three-body hardening (section 2.1 of
[19]).
b The rate for inspirals of 10 M� BHs into a 100 M� IMBH via three-body hardening (section 2.1 of
[19]).
c Upper limit based on the growth of an IMBH by 300 M� in 1010 years exclusively through IMRIs of
1.4 M� NSs or 10 M� BHs (section 3.3 of [19]).

Table 10. Estimates of IMBH–IMBH coalescence rates.

Rlow Rre Rhigh Rmax

Rate model (GC−1 Gyr−1) (GC−1 Gyr−1) (GC−1 Gyr−1) (GC−1 Gyr−1)

Fregeau et al 0.007a 0.07b

a Assumes that 10% of star clusters are sufficiently massive and have a sufficient binary fraction to form
an IMBH–IMBH binary once in their lifetime, taken to be 13.8 Gyr [20].
b Assumes that all star clusters are sufficiently massive and have a sufficient binary fraction to form an
IMBH–IMBH binary once in their lifetime, taken to be 13.8 Gyr [20].

For IMBH masses considered in [20], the inspiral frequency would be too low for the inspiral
to be detectable; however, the LIGO–Virgo network could detect the merger and ringdown
waveforms. The fraction of clusters with a sufficient mass and binary fraction is scaled to
10% without justification in [20]; it obviously cannot exceed 1. Because of the uncertainties
involved, these results are listed as plausible optimistic estimates and upper limits in table 10.
Detection rates for Initial and Advanced LIGO in table 5 are quoted directly from [20]; a
detection SNR threshold of 8 was assumed.

Another proposed mechanism for forming IMBH–IMBH binaries is the collision of two
globular clusters, each of which contains an IMBH [61]. No LIGO–Virgo detection rates are
provided in [61].
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