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Abstract

We consider the dynamics towards the initial singularity of Bianchi type IX vacuum
and orthogonal perfect fluid models with a linear equation of state. Surprisingly few facts
are known about the ‘Mixmaster’ dynamics of these models, while at the same time most of
the commonly held beliefs are rather vague. In this paper, we use Mixmaster facts as a base
to build an infrastructure that makes it possible to sharpen the main Mixmaster beliefs.
We formulate explicit conjectures concerning (i) the past asymptotic states of type IX
solutions and (ii) the relevance of the Mixmaster/Kasner map for generic past asymptotic
dynamics. The evidence for the conjectures is based on a study of the stochastic properties
of this map in conjunction with dynamical systems techniques. We use a dynamical systems
formulation, since this approach has so far been the only successful path to obtain theorems,
but we also make comparisons with the ‘metric’ and Hamiltonian ‘billiard’ approaches.
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1 Introduction

Today, Bianchi type IX enjoys an almost mythical status in general relativity and cosmology,
which is due to two commonly held beliefs: (i) Type IX dynamics is believed to be essentially
understood; (ii) Bianchi type IX is believed to be a role model that captures the generic features
of generic spacelike singularities. However, we will illustrate in this paper that there are reasons
to question these beliefs.

The idea that type IX is essentially understood is a misconception. In actuality, surprisingly
little is known, i.e., proved, about type IX asymptotic dynamics; at the same time there exist
widely held, but rather vague, beliefs about Mixmaster dynamics, oscillations, and chaos, which
are frequently mistaken to be facts. There is thus a need for clarification: What are the known
facts and what is merely believed about type IX asymptotics? We will address this issue in two
ways: On the one hand, we will discuss the main rigorous results on Mixmaster dynamics, the
‘Bianchi type IX attractor theorem’, and its consequences; in particular, we will point out the
limitations of these results. On the other hand, we will provide the infrastructure that makes it
possible to sharpen commonly held beliefs; based on this framework we will formulate explicit
refutable conjectures.

Historically, Bianchi type IX vacuum and orthogonal perfect fluid models entered the scene
in the late sixties through the work of Belinskii, Khalatnikov and Lifshitz1 [1, 2] and Misner
and Chitré [3, 4, 5, 6]. BKL attempted to understand the detailed nature of singularities and
were led to the type IX models via a rather convoluted route, while Misner was interested in
mechanisms that could explain why the Universe today is almost isotropic. BKL and Misner
independently, by means of quite different methods, reached the conclusion that the temporal
behavior of the type IX models towards the initial singularity can be described by sequences of
anisotropic Kasner states, i.e., Bianchi type I vacuum solutions. These sequences are determined
by a discrete map that leads to an oscillatory anisotropic behavior, which motivated Misner to
refer to the type IX models as Mixmaster models [3, 4]. This discrete map, the Kasner map, was
later shown to be associated with stochasticity and chaos [7, 8, 9], a property that has generated
considerable interest—and confusion, see, e.g., [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and
references therein. A sobering thought: All claims about chaos in Einstein’s equations rest
on the (plausible) belief that the Kasner map actually describes the asymptotic dynamics of
Einstein’s equations; as will be discussed below, this is far from evident (despite being plausible)
and has not been proved so far.

More than a decade after BKL’s and Misner’s investigations a new development took place:
Einstein’s field equations in the spatially homogeneous (SH) case were reformulated in a manner
that allowed one to apply powerful dynamical systems techniques [21, 22, 23]; gradually a picture
of a hierarchy of invariant subsets emerged where monotone functions restricted the asymptotic
dynamics to boundaries of boundaries, see [10] and references therein. Based on work reviewed
and developed in [10] and by Rendall [24], Ringström eventually produced the first major proofs
about asymptotic type IX dynamics [25, 26]. This achievement is remarkable, but it does not
follow that all questions are settled. On the contrary, so far nothing is rigorously known, e.g.,
about dynamical chaotic properties (although there are good grounds for beliefs), nor has the
role of type IX models in the context of generic singularities been established [27, 28, 29, 30].

The outline of the paper is as follows. In Section 2 we briefly describe the Hubble-normalized
dynamical systems approach and establish the connection with the metric approach. For sim-
plicity we restrict ourselves to the vacuum case and the so-called orthogonal perfect fluid case,
i.e., the fluid flow is orthogonal w.r.t. the SH symmetry surfaces; furthermore, we assume a
linear equation of state. In Section 3 we discuss the levels of the Bianchi type IX so-called

1We will refer to the authors and their work as BKL.
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Lie contraction hierarchy of subsets, where we focus on the Bianchi type I and type II subsets.
In Section 4 we present the results of the local analysis of the fixed points of the dynamical
system and discuss the stable and unstable subsets of these points which are associated with
non-generic asymptotically self-similar behavior. Section 5 is devoted to a study of the network
of sequences of heteroclinic orbits (heteroclinic chains) that is induced by the dynamical system
on the closure of the Bianchi type II vacuum boundary of the type IX state space (which we
refer to as the Mixmaster attractor subset). These sequences of orbits are associated with the
Mixmaster map, which in turn induces the Kasner map and thus the Kasner sequences. We
analyze the properties of non-generic Kasner sequences and discuss the stochastic properties of
generic sequences. In Section 6 we discuss the main ‘Mixmaster facts’: Ringström’s ‘Bianchi
type IX attractor theorem’ [25, 26], Theorem 6.1, and a number of consequences that follow
from Theorem 6.1 and from the results on the Mixmaster/Kasner map. In addition, we in-
troduce and discuss the concept of ‘finite Mixmaster shadowing’. In the subsection ‘Attractor
beliefs’ of Section 7 we formulate two conjectures that reflect commonly held beliefs about
type IX asymptotic dynamics and list some open issues that are directly connected with these
conjectures. In the subsection ‘Stochastic beliefs’ we address the open question of which role
the Mixmaster/Kasner map and its stochastic properties actually play in type IX asymptotic
dynamics. This culminates in the formulation, and discussion, of two ‘stochastic’ conjectures.
In Section 8 we present the Hamiltonian billiard formulation, see [5, 6] or [31]; we demonstrate
that this approach yields a ‘dual’ formulation of the asymptotic dynamics. We point out that
the billiard approach is a formidable heuristic picture, but fails to turn beliefs into facts. We
conclude in Section 9 with a discussion of the main themes of this paper. Throughout this paper
we use units so that c = 1 and 8πG = 1, where c is the speed of light and G the gravitational
constant.

2 Basic equations

We consider vacuum or orthogonal perfect fluid SH Bianchi type IX models (i.e., the fluid 4-
velocity is assumed to be orthogonal to the SH symmetry surfaces) with a linear equation of
state; we require the energy conditions (weak/strong/dominant) to hold, i.e., ρ > 0 and

− 1
3 < w < 1 , (1)

where w = p/ρ, and where ρ and p are the energy density and pressure of the fluid, respectively.
By (1) we exclude the special cases w = − 1

3 and w = 1, where the energy conditions are only
marginally satisfied.2

As is well known, see, e.g., [10, 26] and references therein, for these models there exists a
symmetry-adapted (co-)frame {ω̂1, ω̂2, ω̂3},

dω̂1 = −n̂1 ω̂
2 ∧ ω̂

3 , dω̂2 = −n̂2 ω̂
3 ∧ ω̂

1 , dω̂3 = −n̂3 ω̂
1 ∧ ω̂

2 , (2a)

with n̂1 = 1, n̂2 = 1, n̂3 = 1, such that the type IX metric takes the form

4g = −dt⊗ dt+ g11(t) ω̂
1 ⊗ ω̂

1 + g22(t) ω̂
2 ⊗ ω̂

2 + g33(t) ω̂
3 ⊗ ω̂

3 . (2b)

2Note that the well-posedness of the Einstein equations (for solutions without symmetry) has been questioned
in the case −1/3 < w < 0, see [32]. The case w = 1 is known as the stiff fluid case, for which the speed of sound
is equal to the speed of light. The asymptotic dynamics of stiff fluid solutions is simpler than the oscillatory
behavior characterizing the models with range − 1

3
< w < 1, and well understood [26, 33]. (In the terminology

introduced below, the stiff fluid models are asymptotically self-similar.) We will therefore refrain from discussing
the stiff fluid case in this paper.
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Bianchi type n̂α n̂β n̂γ

I 0 0 0
II 0 0 +
VI0 0 − +
VII0 0 + +
VIII − + +
IX + + +

Table 1: The class A Bianchi types are characterized by different signs of the structure constants
(n̂α, n̂β , n̂γ), where (αβγ) is any permutation of (123). In addition to the above representations
there exist equivalent representations associated with an overall change of sign of the structure
constants; e.g., another type IX representation is (− −−).

Hence, the type IX models naturally belong to the so-called class A Bianchi models, see Table 1.
Let

n1(t) := n̂1
g11√
det g

, n2(t) := n̂2
g22√
det g

, n3(t) := n̂3
g33√
det g

, (3)

where det g = g11g22g33. Furthermore, define

θ = − tr k and σα
β = −kαβ + 1

3 tr k δαβ = diag(σ1, σ2, σ3)
(

⇒
∑

α
σα = 0

)

, (4)

where kαβ denotes the second fundamental form associated with (2) of the SH hypersurfaces
t = const. The quantities θ and σαβ can be interpreted as the expansion and the shear,
respectively, of the normal congruence of the SH hypersurfaces. In a cosmological context it
is customary to replace θ by the Hubble variable H = θ/3 = − tr k/3; this variable is related
to changes of the spatial volume density according to d

√
det g/dt = 3H

√
det g. Evidently, in

Bianchi type IX (and type VIII) there is a one-to-one correspondence between the ‘orthonormal
frame variables’ (H,σα, nα) (with

∑

α σα = 0) and (gαβ , kαβ); in particular, the metric gαβ is
obtained from (n1, n2, n3) via (3). (For the lower Bianchi types I–VII0, some of the variables
(n1, n2, n3) are zero, cf. (3); in this case, the other frame variables, i.e., (H,σα), are needed as
well to reconstruct the metric; see [34] for a group theoretical approach.)

In the Hubble-normalized dynamical systems approach we define dimensionless orthonormal
frame variables according to

(Σα, Nα) = (σα, nα)/H , Ω = ρ/(3H2) . (5)

In addition we introduce a new dimensionless time variable τ according to dτ/dt = H . Like the
cosmological time t, the time τ is directed towards the future; however, to make contact with
the well established convention that uses a past-directed ‘time’ for the discrete Mixmaster map,
see Section 5, it will occasionally become necessary to use an inverse time τ− = −τ instead of
τ itself.

For all class A models except type IX the Gauss constraint guarantees that H remains positive
if it is positive initially. In Bianchi type IX, however, it is known from a theorem by Lin and
Wald [35] that all type IX vacuum and orthogonal perfect fluid models with w ≥ 0 first expand
(H > 0), reach a point of maximum expansion (H = 0), and then recollapse (H < 0).3 The
variable transformation (5) breaks down at the point of maximum expansion in the type IX
case; however, the variables (Σα, Nα) correctly describe the dynamics in the expanding phase,
which we will focus on henceforth.

3In the locally rotationally symmetric case it has been proved that the range of w can be extended to w > − 1

3
,

see [36]. There are good reasons to believe that the assumption of local rotational symmetry is superfluous, but
this has not been established yet.
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When the Einstein field equations are reformulated in terms of H and the Hubble-normalized
variables (Σα, Nα) it follows for dimensional reasons that the equation for the single variable
with dimension, H ,

H ′ = −(1 + q)H , (6)

decouples from the remaining dimensionless equations [10]; here and henceforth a prime denotes
the derivative d/dτ . The equations for (Σα, Nα) form the following coupled system [10]:

Σ′
α = −(2− q)Σα − 3Sα , (7a)

N ′
α = (q + 2Σα)Nα (no sum over α) , (7b)

where

q = 2Σ2 + 1
2 (1 + 3w)Ω , Σ2 = 1

6 (Σ
2
1 +Σ2

2 +Σ2
3) , (8a)

and 3Sα = 1
3

[
Nα(2Nα −Nβ −Nγ)− (Nβ −Nγ)

2
]
, (αβγ) ∈ {(123), (231), (312)} . (8b)

Note that the ‘deceleration parameter’ q is non-negative because of the assumption w > −1/3.

Apart from the trivial constraint Σ1 +Σ2 +Σ3 = 0, there exists the Gauss constraint

Σ2 + 1
12

[

N2
1 +N2

2 +N2
3 − 2 (N1N2 +N2N3 +N3N1)

︸ ︷︷ ︸

∆II

]

+Ω = 1 , (9)

which is used to globally solve for Ω when Ω 6= 0. Accordingly, the reduced state space is given
as the space of all (Σ1,Σ2,Σ3) and (N1, N2, N3) such that Σ1 +Σ2 +Σ3 = 0 and

Σ2 + 1
12

[

N2
1 +N2

2 +N2
3 − 2 (N1N2 +N2N3 +N3N1)

]

≤ 1 , (9′)

which follows from (9) under the assumption that Ω ≥ 0 (ρ ≥ 0). It follows that the di-
mensionless state space of the Bianchi type IX orthogonal perfect fluid models with a linear
equation of state is 5-dimensional,4 while the state space of the vacuum models (i.e., Ω = 0) is
4-dimensional. The same is true for Bianchi type VIII, while the state spaces of the remaining
class A Bianchi models have less degrees of freedom; see Table 2. Once the dynamics in the
dimensionless state space is understood, H is obtained from a quadrature by integrating (6),
which allows one to reconstruct the metric.

For all class A models except type IX the constraint (9′) implies that Σ2 ≤ 1; in Bianchi
type IX, however, Σ2 > 1 is possible. For type IX, define

∆ = 1
4 (N1N2N3)

2/3 . (10)

Employing (8a) and (9) and using that

1
12

[

N2
1 +N2

2 +N2
3 − 2∆II

]

+∆ ≥ 0 , (11)

where equality holds iff N1 = N2 = N3, we find

Σ2 ≤ 1 + ∆ , Ω ≤ 1 + ∆ , 2− q ≥ 3
2 (1− w)Ω − 2∆ . (12)

The function ∆ is strictly monotonically increasing along orbits of Bianchi type IX. To see this
we use (7) and compute

∆′ = 2q∆ , ∆′′
∣
∣
∣
q=0

= 0 , ∆′′′
∣
∣
∣
q=0

= 4
3

[
3S2

1 + 3S2
2 + 3S2

3

]
∆ , (13)

4It is common to globally solve Σ1 + Σ2 + Σ3 = 0 by introducing new variables according to Σ1 = −2Σ+,
Σ2 = Σ+ −

√
3Σ−, Σ3 = Σ+ +

√
3Σ−, which yields Σ2 = Σ2

++Σ2
−. However, since this breaks the permutation

symmetry of the three spatial axes (exhibited by type IX models), we choose to retain the variables Σ1, Σ2, Σ3.
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Bianchi type Symbol Range of (Nα, Nβ, Nγ) State space D

I B I Nα = 0, Nβ = 0, Nγ = 0 Σ2 ≤ 1 2
II BII Nα = 0, Nβ = 0, Nγ > 0 Σ2 + 1

12N
2
γ ≤ 1 3

VI0 BVI0 Nα = 0, Nβ < 0, Nγ > 0 Σ2 + 1
12 [Nβ −Nγ ]

2 ≤ 1 4
VII0 BVII0 Nα = 0, Nβ > 0, Nγ > 0 Σ2 + 1

12 [Nβ −Nγ ]
2 ≤ 1 4

VIII BVIII Nα < 0, Nβ > 0, Nγ > 0 Eq. (9′) (⇒ Σ2 < 1) 5
IX BIX Nα > 0, Nβ > 0, Nγ > 0 Eq. (9′) (⇒ Σ2 ≤ 1 + ∆) 5

Table 2: The dimensionless state spaces associated with class A Bianchi models; here, (αβγ)
is any permutation of (123). In addition to the above representations there exist equivalent
representations associated with an overall change of sign of the variables (N1, N2, N3). The
quantity D denotes the dimension of the state space (in the fluid case); the dimensionality of
the state space in the vacuum cases is given by D− 1.

where we note that 3S 2
1 + 3S 2

2 + 3S 2
3 > 0 because of the constraints. In combination with (12)

it follows that Σ2 and Ω are bounded towards the past.

The right hand side of the reduced system (7) consists of polynomials of the state space variables
and is thus a regular dynamical system. Solutions of (7) of Bianchi types I–VIII are global in
τ , since (9) implies the bounds Σ2 ≤ 1 and Ω ≤ 1 which control the evolution of Nα in (7b).
Solutions of (7) of Bianchi type IX are global towards the past, since q+ 2Σα is bounded from
below; this follows from (8a), which yields q ≥ 2Σ2, so that q + 2Σα ≥ −2 + 1

2 (Σα + 2)2 +
1
6 (Σβ − Σγ)

2. The decoupled equation for H , cf. (6), yields that H → ∞ as τ → −∞, because
q is non-negative. Since q is bounded as τ → −∞, the asymptotics of H can be bounded by
exponential functions from above and below. It follows that the equation dt/dτ = H−1 can be
integrated to yield t as a function of τ such that t → 0 as τ → −∞.

In addition to (7) it is useful to also consider an auxiliary equation for the matter quantity Ω,

Ω′ = [2q − (1 + 3w)]Ω . (14)

Making use of (5) and (6) we conclude that for all orthogonal perfect fluid models with a linear
equation of state we have ρ ∝ exp (−3[1 + w]τ), and hence ρ → ∞ as τ → −∞, which yields
a past singularity. The divergence of ρ can also be directly read off from the matter equation
∇aT

ab = 0.

3 The Bianchi type IX Lie contraction hierarchy

The Bianchi type IX state spaceBIX is characterized by the conditions N1 > 0, N2 > 0, N3 > 0.
We writeBIX = BN1N2N3

. The notation is such that the subscript denotes the non-zero variables
among {N1, N2, N3}. Setting one or more of these variables to zero (which corresponds to Lie
contractions [37]) yields invariant boundary subsets which describe more special Bianchi types.
Since the type IX models exhibit discrete symmetries associated with axes permutations, the
contractions generate all possible representations of the more special (Lie contracted) Bianchi
types (which are associated with such permutations): The Bianchi type VII0 subspace BVII0

is given by the disjoint union of three equivalent sets, BVII0 = BN1N2
∪BN2N3

∪ BN3N1
, where,

e.g., BN1N2
denotes the type VII0 subset with N1 > 0, N2 > 0 and N3 = 0; the Bianchi type II

subspace BII by the union BII = BN1
∪BN2

∪BN3
; the Bianchi type I subspace B I by B I = B∅.

Note that the Bianchi type VI0 subspace does not appear as a boundary subset of BIX. A
Bianchi subset contraction diagram for type IX is given in Figure 1.
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D

2

3

4

5
PSfrag replacements

BN1N2N3

BN1N2
BN2N3

BN1N3

BN1
BN2 BN3

B∅

BIX

BVII0

BII

B I

Figure 1: Subset contraction diagram for Bianchi type IX. D denotes the dimension of the
dimensionless state space for the various models with an orthogonal perfect fluid with linear
equation of state; the associated vacuum subsets have one dimension less; see also Table 2. The
notation is such that the subscript of B⋆ denotes the non-zero variables, e.g. BN1

denotes the
type II subset with N1 > 0, N2 = 0 and N3 = 0.

Each set of the Lie contraction hierarchy is the union of an invariant vacuum subset, i.e.,
Ω = 0, and an invariant fluid subset, i.e., Ω > 0. To refer to a vacuum [fluid] subset of a
Bianchi set B⋆ we use the notation Bvac.

⋆ [Bfl.
⋆ ]. In this spirit, e.g., the type II subset decomposes

as BN1
= Bvac.

N1
∪ Bfl.

N1
.

In the following we analyze the boundary subsets to the extent needed in order to understand
the asymptotic type IX dynamics.

The Bianchi type I subset

The Bianchi type I subset is given by N1 = 0, N2 = 0, N3 = 0 and Ω = 1 − Σ2 ≥ 0; since
N1, N2, N3 vanish, we denote this subset by B∅, cf. Figure 1. The vacuum subset consists of a
circle of fixed points—the Kasner circle K#, which is characterized by Σ2 = 1. It is common
to represent different points on K# in terms of the Kasner exponents pα,

(Σ1,Σ2,Σ3) = (3p1 − 1, 3p2 − 1, 3p3 − 1) ; p1 + p2 + p3 = 1 , p21 + p22 + p23 = 1 ; (15)

each fixed point on K# represents a Kasner solution (Kasner metric) with the corresponding
exponents. The Kasner circle is divided into six equivalent sectors, denoted by permutations
of the triple (123), where sector (αβγ) is characterized by pα < pβ < pγ , see Figure 2. The
boundaries of the sectors are six special points that are associated with solutions that are locally
rotationally symmetric (LRS): Qα are given by (Σα,Σβ ,Σγ) = (−2, 1, 1) or (pα, pβ, pγ) =
(− 1

3 ,
2
3 ,

2
3 ) and yield the three equivalent LRS solutions whose intrinsic geometry is non-flat;

the Taub points Tα are given by (Σα,Σβ,Σγ) = (2,−1,−1) or (pα, pβ , pγ) = (1, 0, 0) and
correspond to the flat LRS solutions—the Taub representation of Minkowski spacetime.

The quantity p1p2p3 (or, equivalently, Σ1Σ2Σ3 = 2 + 27p1p2p3) is invariant under changes of
the axes and thus naturally captures the ‘physical essence’ of a solution independent of the
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Σ1

Σ2

Σ3

(123)

(213)

(231)

(321)

(312)

(132)

T1

T2

T3

Q1

Q2

Q3
M1

M2

M3

Start

Figure 2: The Kasner circle K# of fixed points divided into its six equivalent sectors and the
LRS fixed points Tα and Qα. Sector (αβγ) is defined by Σα < Σβ < Σγ . The sectors are
related to each other by permutations of the spatial axes.

chosen frame; however, it is typically replaced by the Kasner parameter u through

p1p2p3 =
−u2(1 + u)2

(1 + u+ u2)3
, where u ∈ [1,∞] . (16)

The Kasner parameter u parameterizes the Kasner exponents uniquely (up to the permutation
symmetry); we have

pα =
−u

1 + u+ u2
, pβ =

1 + u

1 + u+ u2
, pγ =

u(1 + u)

1 + u+ u2
, (17)

for sector (αβγ) of K#, where u ∈ (1,∞). Therefore, each point on sector (αβγ) is represented
by a unique value of u ∈ (1,∞). At the boundary points of sector (αβγ), which are Qα and Tγ ,
the Kasner parameter is u = 1 and u = ∞, respectively. Permuting (αβγ) yields a physically
equivalent state on a different sector; accordingly, each u ∈ (1,∞) represents an equivalence
class of six points on K#. In contrast, u = 1 describes the three points {Q1,Q2,Q3}; u = ∞
yields {T1,T2,T3}.
While the Bianchi type I vacuum subset coincides with the Kasner circle K#, which is given
by Σ2 = 1, the Bianchi type I perfect fluid subset is the set 1 − Ω = Σ2 < 1. From (14) it is
straightforward to deduce that there exists a central fixed point, the Friedmann fixed point F,
given by Σα = 0 ∀α, which corresponds to the isotropic Friedmann-Robertson-Walker (FRW)
solution. Solutions with 0 < Σ2 < 1 are given by radial straight lines originating from K# and
ending at F. These results rely on the assumption w < 1, see (1).

The Bianchi type II subset

Let us consider the Bianchi type II subset BNγ
given by Nα = Nβ = 0, Nγ > 0. In this

case, the γ-direction is singled out, while there exists a discrete symmetry associated with the
interchange of the α- and β-direction. The LRS subset Σα = Σβ is a subset of codimension one
which divides the state space into two equivalent parts, the subsets {Σα > Σβ} and {Σα < Σβ}
(related by permuting the α- and β-axes).
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Since the past singularity is of particular interest in our considerations, it is convenient to
choose the time direction towards the past, i.e., to use a reversed time variable τ− according to

τ− = −τ (18)

which we do in the remainder of this section; accordingly, approach to the past singularity
means τ− → ∞. (In Section 5 we will see that vacuum type II orbits are the building blocks
for the Mixmaster map and the closely related Kasner map (BKL map). It is a well established
convention that forward iterations of these maps are directed towards the singularity. To agree
with this convention the use of a past-directed time variable in a discussion of Bianchi type II
models thus suggests itself.)

On BNγ
, the Gauss constraint Σ2+ 1

12N
2
γ+Ω = 1 can be used to replace Nγ by Ω as a dependent

variable. The system (7) thus becomes

dΣα/β

dτ−
= (2− q)Σα/β + 3Sα/β ,

dΣγ

dτ−
= (2 − q)Σγ + 3Sγ ,

dΩ

dτ−
= −Ω [2q − (1 + 3w)] , (19)

where q = 2Σ2 + 1
2 (1 + 3w)Ω and 3Sα/β = −4(1 − Σ2 − Ω), 3Sγ = 8(1 − Σ2 − Ω); we have

Σ2 +Ω < 1.

Let us first consider the vacuum subset Bvac.
Nγ

, i.e., Ω = 0. There do not exist any fixed points
in the type II vacuum subset Bvac.

Nγ
, but the boundary of the vacuum subset coincides with

the Kasner circle K#. The orbits of (19) form a family of straight lines in Bvac.
Nγ

, where each

orbit connects one fixed point on K# with another fixed point on K#; hence each orbit is
heteroclinic [10]. Following the nomenclature of [30] we call these heteroclinic orbits Bianchi
type II transitions, because each orbit can be viewed as representing a transition from one
Kasner state to another. We denote these transitions by TNγ

, where each TNγ
emanates from

(γαβ)∪Qγ ∪ (γβα). If the initial point is a point of sector (γαβ), then the final point is a point
of (αγβ) ∪ {Qα} ∪ (αβγ); interchanging α and β yields the transitions emanating from (γβα);
if the initial point is Qγ , the final point is Tγ ; the points Tα and Tβ are not connected with
any other fixed point (they are ‘fixed points’ under the present ‘type II map’), see Figure 3.

Let (Σi
α,Σ

i
β ,Σ

i
γ) = (3piα−1, 3piβ−1, 3piγ−1) denote the initial fixed point on K#; this point can

be represented in terms of the Kasner parameter u = ui by using (17). The orbit (transition)
emanating from this fixed point is given in terms of an auxiliary function η = η(τ−) by

Σα/β = 2[1− η] + ηΣi
α/β , Σγ = −4[1− η] + ηΣi

γ , (20a)

where η is determined by the equation

dη

dτ−
= 2(1− Σ2)η with (1− Σ2) =

3

g
(g − η)(η − 1) and g =

1 + u+ u2

1− u+ u2
(20b)

and the conditions that limτ
−
→−∞ η = 1 and limτ

−
→+∞ η = g. The quantity g is in the interval

(1, 3) for u ∈ (1,∞); u = 1 corresponds to g = 3 and describes the orbit Qγ → Tγ ; u = ∞
corresponds to g = 1 and describes the ‘isolated’ points Tα, Tβ. Since η increases from 1 to
g as τ− goes from −∞ to +∞, g is called the growth factor [30]. In Section 5, the transitions
TNγ

, as represented by (20), will appear as the building blocks for the Mixmaster/Kasner map.

While there do not exist any fixed points in the vacuum subset of BNγ
, there exists one fixed

point in BNγ
with Ω > 0, the Collins-Stewart fixed point CSγ , which corresponds to one repre-

sentation of the LRS solutions found by Collins and Stewart [38]. CSγ is given by (Σα,Σβ,Σγ) =
1
8 (1 + 3w)(1, 1,−2) and Ω = 1− 1

16 (1 + 3w) (which yields Nγ = 3
4

√
1− w

√
1 + 3w ). The fixed

point CSγ is the source (w.r.t. τ−) for all orbits in BNγ
with Ω > 0. In the limit τ− → ∞ all

solutions in BNγ
\{CSγ} converge to fixed points on the Bianchi type I boundary of BNγ

: There
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Figure 3: The type II transitions TN1
on the BN1

subset; by definition, N1 6= 0 along TN1
,

while N2 = N3 = 0. The projections of these transition onto (Σ1,Σ2,Σ3)-space are straight
lines, which possess a common focal point M1 characterized by (Σ1,Σ2,Σ3) = (−4, 2, 2). The
transitions TN2

, TN3
on the subsets BN2

, BN3
are obtained by permutations of the axes, see

Figure 5. The arrows indicate the direction of time towards the past.

exists one orbit (which corresponds to an LRS solution) that converges to F as τ− → ∞; every
other orbit converges to a fixed point on (αγβ) ∪ {Qα} ∪ (αβγ) or (βγα) ∪ {Qβ} ∪ (βαγ) on
K#, or to Tγ (in the LRS case). For a detailed discussion of these results see [10].

The Bianchi type VII0 subset

In anticipation of Theorem 6.1 which implies that generic orbits of Bianchi type IX do not
have α-limit5 points (w.r.t. the standard future directed time variable τ) on any of the Bianchi
type VII0 subsets BN1N2

, BN2N3
, BN3N1

, we refrain from giving a detailed discussion of these
subspaces here. (However, note that in order to prove Theorem 6.1, a detailed understanding
of solutions of Bianchi type VII0 is essential; in fact, in the proof of Theorem 6.1 Bianchi
type VII0 is ubiquitous; we refer to [26] and [27].) In the present context it suffices to note that
on each subset BNαNβ

there exists a line of fixed points TLγ given by (Σα,Σβ,Σγ) = (−1,−1, 2)
and Nα = Nβ (so that Ω = 0). Since TLγ emanates from the point Tγ ∈ K# we call it the
‘Taub line.’ Like Tγ itself, each of fixed points on TLγ is associated with a representation of
Minkowski spacetime (in an LRS type VII0 symmetry foliation).

4 Asymptotic self-similarity

In the previous section we have given the fixed points associated with the system (7) on BIX. A
local dynamical systems analysis of the fixed points shows whether or not these points attract
type IX orbits in the limit τ → −∞.6 We merely state the results here and refer to [27] for
details.

5For a dynamical system on a state space X, the α-limit set α(x) of a point x ∈ X is defined as the set of all
accumulation points towards the past (i.e., as τ → −∞) of the orbit γ(τ) through x. The simplest examples of
α-limit sets are fixed points and periodic orbits.

6In this section we adapt to [10, 26] and use the normal future-directed time variable τ .
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K# Each fixed point K on K#\{T1,T2,T3} is a transversally hyperbolic saddle (one stable7

mode, see Figure 4, and three unstable modes; the stable manifold of K coincides with a
vacuum type II transition orbit, see Figure 3). The Taub points {T1,T2,T3} are center
saddles with a two-dimensional unstable manifold and a three-dimensional center mani-
fold, where Tα is excluded as an α-limit set on the center manifold, see [27]; consequently
there do not exist any type IX solutions that converge to any of the points on K# as
τ → −∞.

F The fixed point F on Bfl.
∅ is a hyperbolic saddle (with Bfl.

∅ as a two-dimensional stable
manifold and an additional three-dimensional unstable manifold). Accordingly, F attracts
a two-parametric family of type IX orbits as τ → −∞. These solutions have a so-called
isotropic singularity.

CSα The fixed points CSα (α = 1, 2, 3) on Bfl.
Nα

are hyperbolic saddles (with Bfl.
Nα

as a three-
dimensional stable manifold and an additional two-dimensional unstable manifold). The
unstable modes are associated with the equations N−1

β N ′
β |CSα

= 3
4 (1 + 3w) (for β 6= α).

Therefore, each of the fixed points CSα attracts an (equivalent) one-parameter set of
type IX orbits in the limit τ → −∞.

TLα Each fixed point on TLα on Bvac.
NβNγ

is a center saddle. On the three-dimensional center

manifold (which coincides with B vac.
NβNγ

, α 6= β 6= γ 6= α) the point acts as a (non-

hyperbolic) sink, see [27]. Since there is a two-dimensional unstable manifold, there exists,
for each fixed point on TLα, a one-parameter family of type IX orbits that converges to it
as τ → −∞; these orbits correspond to LRS solutions. (Conversely, generic LRS type IX
solutions converge to TLα, see, e.g.,[10].)
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Figure 4: This figure depicts the Kasner circle K# and the stable variables for each sector; Nα is
the stable variable in sectors (αβγ), (αγβ), and at the point Qα. Expressed in the time variable
τ−, which is directed towards the past, these variables are the unstable modes. At a given fixed
point, the associated unstable manifold orbit is a Bianchi type II transition, see Figure 3.

Collecting the results we see that the solutions whose α-limit is one of the fixed points form a
subfamily of measure zero of the (four-parameter) family of Bianchi type IX solutions. Following

7When we reverse the direction of time, i.e., when we use τ− instead of τ , we must replace ‘stable’ by
‘unstable’.
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the nomenclature of [26] we thus refer to these solutions as non-generic solutions of Bianchi
type IX. Alternatively, to capture the asymptotic behavior of these solution, we use the term past
asymptotically self-similar solutions. (Since a fixed point in the Hubble-normalized dynamical
systems formulation corresponds to a self-similar solution, see e.g. [10], solutions that converge
to a fixed point are asymptotically self-similar.)

The past asymptotically self-similar solutions comprise the LRS Bianchi type IX solutions. As
seen above, generic LRS solutions converge to TLα towards the past (and each solution that
converges to TLα is LRS), but there exist exceptional LRS solutions that converge to F or CSα.
The remaining orbits whose limit point is either F or CSα correspond to past asymptotically
self-similar solutions that are non-LRS. Clearly, every solution that converges to F or CSα is a
non-vacuum solution, since Ω 6= 0 at F and CSα.

It is natural to ask how the non-generic orbits are embedded in the state space BIX. The LRS
orbits form the three LRS subsets LRSα, which are the hyperplanes given by the conditions
Σβ = Σγ , Nβ = Nγ , where (αβγ) ∈ {(123), (231), (312)}. The orbits whose α-limit set is the
fixed point CSα (for some α) form the set CSα in BIX; we call CSα the Collins-Stewart manifold.
The local analysis of the fixed point CSα and the regularity of the dynamical system (7) imply
that the Collins-Stewart manifold CSα is a two-dimensional surface; it can be viewed as a two-
dimensional manifold with boundary embedded in BIX (where this boundary corresponds to
an orbit in BVII0). Analogously, the orbits whose α-limit set is the fixed point F form the set
F in BIX, which we call the isotropic singularity manifold, since solutions converging to F are
those with an isotropic singularity. The isotropic singularity manifold F is a three-dimensional
hypersurface; it can be viewed as a three-dimensional manifold with boundary.

Generic Bianchi type IX models are those that are not asymptotic self-similar and thus con-
stitute examples for asymptotic self-similarity breaking; for other such examples, see [39, 40].
The central theme in this paper is the past asymptotic behavior of the generic models.

5 Facts about the Mixmaster and Kasner map

The Mixmaster attractor AIX (alternatively referred to as the Bianchi type IX attractor) is
defined to be the subset of BIX given by the union of the Bianchi type I and II vacuum
subsets, i.e., AIX = B

vac.
I ∪B

vac.
II . Since the type II vacuum subset consists of three equivalent

representations we obtain
AIX = K# ∪ Bvac.

N1
∪ Bvac.

N2
∪ Bvac.

N3
. (21)

In this section we investigate the structures that the flow of dynamical system (7) induces on
AIX. In particular we discuss the Mixmaster map, the Kasner map, and the era map. To agree
with the well-established convention for these maps, the direction of time will be taken towards
the past.

The Mixmaster, Kasner, and era maps

In Section 3 we have seen that the vacuum type II orbits, i.e., the orbits on Bvac.
Nα

, α = 1, 2, 3,
are heteroclinic orbits that emanate from and converge to fixed points on the Kasner circle K#,
see Figures 3 and 5. In accord with Section 3 we refer to these orbits as transitions and denote
them by TNα

, α = 1, 2, 3.

The type II transitions are the building blocks for the analysis of the Mixmaster attractor.
By concatenating transitions we obtain a sequence of transitions, also known as a heteroclinic
chain. Since each fixed point on K# (except for the Taub points) is the initial value for one
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Figure 5: Projection of the type II transitions TN1
TN2

, TN3
on the type II subsets Bvac.

N1
,

Bvac.
N2

, Bvac.
N3

onto (Σ1,Σ2,Σ3)-space. Concatenation of these transition orbits yields sequences
of transitions. The arrows indicate the direction of time towards the past.

single transition, see Figures 4 and 5, the concatenation of transitions is unique: Each fixed
point (except for the Taub points) generates a unique sequence of transitions. Note, however,
that the ‘direction of time’ is relevant. For each fixed point P on K#, which is not one of the
Taub points, there exists one single transition emanating from P at τ− = −∞, but there are two
transitions converging to P as τ− → ∞. Therefore, concatenating transitions in the reversed
direction of time leads to ambiguities. (In terms of the standard future-directed time variable
τ we have the converse statement: It is possible to make unambiguous retrodictions, but not
predictions.)

Let l = 0, 1, 2, . . . and let Pl ∈ K# denote the initial point of the lth transition (Pl is also the
end point of the (l − 1)th transition). We refer to the sequence (Pl)l∈N of Kasner fixed points,
which is induced by the sequence of transitions, as being generated by the Mixmaster map. The
Mixmaster map can be visualized by a map in (Σ1,Σ2,Σ3)-space, obtained by inscribing K#

in a triangle with corners at (Σ1,Σ2,Σ3) = (−4, 2, 2) and cyclic permutations, from which the
(projections of the) transition orbits ‘originate’ as straight lines; see Figure 6.
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Figure 6: Concatenating type II transition orbits we obtain sequences of transitions—
heteroclinic chains. The discrete map governing the associated sequence of fixed points on
K# is the Mixmaster map. The arrows indicate the direction of time towards the past.

Let the initial Kasner state of a transition be represented by the Kasner parameter u = ui,
where we assume ui < ∞, since neither of the Taub points T1, T2, T3 can be the initial value
for a transition. Inserting (15) and (17) into (20) we find that a transition maps the Kasner
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parameter ui to the parameter uf , where

uf =

{

ui − 1 if ui ∈ [2,∞) ,

(ui − 1)−1 if ui ∈ [1, 2] .
(22)

The information contained in this Kasner map suffices to represent the collection of all transition
orbits (as a whole). However, for each particular mapping ui 7→ uf , there exist six (equivalent)
associated transitions;8 this is simply because ui characterizes the initial Kasner fixed point on
K# only up to permutations of the axes. Hence, in order to reconstruct a particular transition
from (22), we supplement (22) with information about the initial sector of the transition, which
determines the position of the axes.

In terms of the Kasner parameter, a sequence of transitions corresponds to an iteration of (22).
Let l = 0, 1, 2, . . . and let ul denote the initial Kasner state of the lth transition. This transition
maps ul to ul+1, i.e.,

ul
lth transition−−−−−−−−−→ ul+1 : ul+1 =

{

ul − 1 if ul ∈ [2,∞) ,

(ul − 1)−1 if ul ∈ [1, 2] .
(23)

We refer to this map as the (iterated) Kasner map (which is also known as the BKL map [2]).
Since each value of the Kasner parameter u ∈ (1,∞) represents an equivalence class of six
Kasner fixed points, the Kasner map can be regarded as the map induced by the Mixmaster
map on these equivalence classes via the equivalence relation.

In a sequence (ul)l=0,1,2,... that is generated by the Kasner map (23), each Kasner state ul

is called an epoch. Every sequence (ul)l=0,1,2,... possess a natural partition into pieces (which
contain a finite number of epochs each) where the Kasner parameter is monotonically decreasing
according to the simple rule ul 7→ ul+1 = ul − 1; these pieces are called eras [2]. An era begins
with a maximal value ulin of the Kasner parameter (where ulin is generated from ulin−1 by ulin =
[ulin−1−1]−1), continues with a sequence of Kasner parameters obtained via ul 7→ ul+1 = ul−1,
and ends with a minimal value ulout that satisfies 1 < ulout < 2, so that ulout+1 = [ulout − 1]−1

begins a new era.

6.29 → 5.29 → 4.29 → 3.29 → 2.29 → 1.29
︸ ︷︷ ︸

era

→ 3.45 → 2.45 → 1.45
︸ ︷︷ ︸

era

→ 2.23 → 1.23
︸ ︷︷ ︸

era

→ 4.33 → . . .
︸ ︷︷ ︸

era

(24)

Let us denote the initial (= maximal) value of the Kasner parameter u in era number s (where
s = 0, 1, 2, . . .) by us. Following [2, 7] we decompose us into its integer part ks = [us] and its
fractional part xs = {us}, i.e.,

us = ks + xs , where ks = [us] , xs = {us} . (25)

The number ks represents the (discrete) length of era s, which is simply the number of Kasner
epochs it contains. The final (= minimal) value of the Kasner parameter in era s is given by
1 + xs, which implies that era number (s+ 1) begins with

us+1 =
1

xs
=

1

{us}
.

The map us 7→ us+1 is (a variant of) the so-called era map; starting from u0 = u0 it recursively
determines us, s = 0, 1, 2, . . ., and thereby the complete Kasner sequence (ul)l=0,1,....

8In the exceptional case ui = 1 there exist only three (equivalent) associated transitions: Q1 → T1, Q2 → T2,
Q3 → T3.
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The era map admits a straightforward interpretation in terms of continued fractions. Consider
the continued fraction representation of the initial value, i.e.,

u0 = k0 +
1

k1 +
1

k2 + · · ·

= [k0; k1, k2, k3, . . . ] . (26)

The fractional part of u0 is x0 = [0; k1, k2, k3, . . . ]; since u1 is the reciprocal of x0 we find

u1 = [k1; k2, k3, k4, . . . ] . (27)

Therefore, the era map is simply a shift to the left in the continued fraction expansion,

us = [ks; ks+1, ks+2, . . . ] 7→ us+1 = [ks+1; ks+2, ks+3, . . . ] . (28)

The properties of the Kasner sequence depend on the initial value u0 = u0.

(i) If and only if the initial Kasner parameter u0 is a rational number, i.e., if and only if
u0 ∈ Q, then its continued fraction representation is finite, i.e.,

u0 = [k0; k1, k2, . . . , kn] , (29i)

where kn > 1. Therefore, there exists only a finite number of eras (where the last one
begins with un = kn), and the Kasner sequence is finite. At the end of era number n,
the Kasner parameter reaches u = 1, which subsequently terminates the recursion (23).
Since Q is a set of measure zero in R, this case is non-generic.

(ii) A quadratic irrational (quadratic surd) is an algebraic number of degree 2, i.e., an irra-
tional solution of a quadratic equation with integer coefficients. If and only if the initial
Kasner parameter u0 is a quadratic irrational, i.e., if and only if u0 = q1 +

√
q2, where

q1 ∈ Q and q2 ∈ Q is not a perfect square (i.e.,
√
q2 6∈ Q), then its continued fraction

representation is periodic, i.e.,

u0 =
[
k0; k1, . . . , kn, (k̄1, . . . , k̄n̄)

]
; (29ii)

the notation is such that the part in parenthesis, i.e., (k̄1, . . . , k̄n̄), is repeated ad infini-
tum.9 Consequently, the era map becomes periodic (after the nth era), and we thus obtain
a periodic sequence of eras and a periodic Kasner sequence (ul)l=0,1,2,.... It is straight-
forward to see that while the period of the era sequence is n̄, the period of the Kasner
sequence is (k̄1 + · · ·+ k̄n̄); see the examples below. Since the set of algebraic numbers of
degree two (or equivalently the set of equations with integer coefficients—it is a subset of
N3) is a countable set, case (ii) is also non-generic.

(iii) An irrational number is called badly approximable if its Markov constant10 is finite. If and
only if u0 is badly approximable, then the coefficients (partial quotients) in its continued
fraction representation are bounded, i.e.,

u0 =
[
k0; k1, k2, k3, . . .

]
with ki ≤ K ∀i (29iii)

for some positive constantK. Consequently, the sequence of eras and the Kasner sequence
(ul)l=0,1,2,... are bounded, i.e., ul ≤ K ∀l. Obviously, case (ii) is a subcase of case (iii).

9If u0 = q1 +
√
q2 > 1 is a quadratic irrational such that q1 −√

q2 ∈ (−1, 0), then u0 =
ˆ

(k̄1, . . . , k̄n̄)
˜

, i.e.,
the continued fraction is purely periodic without any preperiod.

10For x ∈ R, let ‖x‖ denote the distance from x to the nearest integer, i.e., ‖x‖ = minn∈Z |x−n|. The Markov
constant M(x) of a number x ∈ R\Q is defined as M(x)−1 = lim infN∋n→∞ n ‖nx‖, see [41]. It is known that
M(x) ≥

√
5 for all x ∈ R\Q.
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(Note, however, that there is probably no relationship between case (iii) and algebraic
numbers of degree greater than 2, since it is expected that these numbers are well ap-
proximable.) The set of badly approximable numbers are a set of Lebesgue measure zero,
hence this case is non-generic.

(iv) If and only if the initial Kasner parameter u0 is a well approximable irrational number,
then the partial quotients ki in the continued fraction representation

u0 =
[
k0; k1, k2, k3, . . .

]
(29iv)

are unbounded (and we can construct a diverging subsequence from the sequence of partial
quotients (ki)i∈N). This is the generic case, and hence generically the Kasner sequence
(ul)l=0,1,2,... is infinite and unbounded.

In terms of continued fractions, the Kasner sequence (ul)l∈R generated by u0 =
[
k0; k1, k2, . . .

]

is

u0 = u0 =
[
k0; k1, k2, . . .

]
→

[
k0 − 1; k1, k2, . . .

]
→

[
k0 − 2; k1, k2, . . .

]
→ . . . →

[
1; k1, k2, . . .

]

→ u1 =
[
k1; k2, k3, . . .

]
→

[
k1 − 1; k2, k3, . . .

]
→

[
k1 − 2; k2, k3, . . .

]
→ . . . →

[
1; k2, k3, . . .

]

→ u2 =
[
k2; k3, k4, . . .

]
→

[
k2 − 1; k3, k4, . . .

]
→

[
k2 − 2; k3, k4, . . .

]
→ . . .

Let us give some examples for periodic era sequences and Kasner sequences . If u0 = [(1)] =
(1 +

√
5)/2, which is the golden ratio, then us = (1 +

√
5)/2 ∀s. It follows that the Kasner

sequence is also a sequence with period 1,

(ul)l∈N : 1
2

(
1 +

√
5
)
→ 1

2

(
1 +

√
5
)
→ 1

2

(
1 +

√
5
)
→ 1

2

(
1 +

√
5
)
→ 1

2

(
1 +

√
5
)
→ . . .

If u0 = [(2)] = 1 +
√
2, then us = 1 +

√
2 ∀s; hence the era sequence is a sequence of period 1.

However, the associated Kasner sequence has period 2,

(ul)l∈N : (1 +
√
2) →

√
2

︸ ︷︷ ︸

era

→ (1 +
√
2) →

√
2

︸ ︷︷ ︸

era

→ (1 +
√
2) →

√
2

︸ ︷︷ ︸

era

→ (1 +
√
2) →

√
2

︸ ︷︷ ︸

era

→ . . .

Analogously, the initial value u0 = [(3)] = (3+
√
13)/2 generates an era sequence of period 1 and

an associated Kasner sequence of period 3. Finally let u0 = [(2, 4)] = 1+
√

3/2 ≃ 2.2247. Then
the era sequence has period 2 with un = [(2, 4)] ≃ 2.2247 for even n and un = [(4, 2)] ≃ 4.4495
for odd n. The associated Kasner sequence (ul)l∈N has period 6,

2.22 → 1.22
︸ ︷︷ ︸

era

→ 4.45 → 3.45 → 2.45 → 1.45
︸ ︷︷ ︸

era

→ 2.22 → 1.22
︸ ︷︷ ︸

era

→ 4.45 → 3.45 → 2.44 → 1.45
︸ ︷︷ ︸

era

→ . . .

In the state space description of sequences (in terms of the Mixmaster map), an epoch is simply
a point Pl on the Kasner circle. (It is one of the six points in the equivalence class associated
with the Kasner parameter ul.) Transitions connect epochs and thus generate the Mixmaster
map.

The Kasner parameter u can be employed to measure the (angular) distance of a point P on
K# from the Taub points or from the non-flat LRS points: If u ≫ 1, then P is at an angular
distance of approximately u−1 from one of the Taub points. On the other hand, in the vicinity
of the non-flat LRS points (where u− 1 ≪ 1), u− 1 is a linear measure for the angular distance
of P from the closest of the non-flat LRS points. If u < 2, then P is closer to one of the non-flat
LRS points Qα than to any of the Taub points Tα. Therefore, in the state space picture, an
era can be described as a (finite) sequence of points K# ∋ Pl, lin ≤ l ≤ lout, obtained from
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the Mixmaster map, whose angular distance from the Taub points is monotonically increasing.
The era begins with a fixed point Plin that is close to one of the Taub points Tα (the preceding
point Plin−1 was closer to one of the other two Taub points Tβ , β 6= α, than to Tα); then
the distance from the Taub point Tα monotonically increases until, for Plout , it exceeds the
distance to the non-flat LRS points; this is the terminal point for the era; it is connected by
the following transition with the initial point of the next era; a good illustration is Figure 7(d),
where each era consists of three epochs. Note that due to the equivalence of Kasner points,
there exist several realizations of one and the same Kasner sequence as Mixmaster sequences
in the state space picture; this is exemplified by the heteroclinic cycles in Figure 7(a) and 7(b).

The state space description of the cases (i)–(iv), which are characterized by the initial Kasner
parameter u0 = u0, is the following:

(i) Iff u0 ∈ Q, see (29i), the Mixmaster sequence of Kasner fixed points (Pl)l=0,1,... is finite.
After a finite number of transitions, at the end of era n, the sequence reaches one of the
LRS points Qα (where u = 1); a last transition follows, namely the transition Qα → Tα,
and the sequence terminates in one of the Taub points.

(ii) Iff u0 is a quadratic surd, i.e., u0 = q1 +
√
q2 for some q1, q2 ∈ Q where q2 is not a perfect

square, see (29ii), then the Mixmaster sequence of Kasner points (Pl)l∈N is eventually
periodic, where the period is a multiple of (k̄1 + · · · + k̄n̄); see Figure 7. Viewed as a
periodic sequence of transitions (which are heteroclinic orbits) we obtain a heteroclinic
cycle. In Figure 7 we give some of the heteroclinic cycles associated with Kasner sequences
with periods 1, 2, and 3 in their projection onto (Σ1,Σ2,Σ3)-space. Note that due to
permutation symmetry there are several cycles associated with a given periodic Kasner
sequence.

(iii) Iff u0 is a badly approximable irrational number, see (29iii), there exists a neighborhood
of the Taub points Tα such that the Mixmaster sequence of Kasner points (Pl)l∈N does
not enter this neighborhood. This is simply because there exists a maximal value of the
sequence (ul)l∈N.

(iv) Iff u0 is a well approximable irrational number, see (29iv), then the Mixmaster sequence
(Pl)l∈N comes arbitrarily close to the Taub points. This is the generic case.

In the following we analyze the generic case (iv) in more detail. Let u0 be a well approximable
irrational number, i.e., a number whose continued fraction expansion

u0 =
[
k0; k1, k2, k3, . . .

]
(30)

defines an unbounded sequence (ki)i∈N. By construction, era number i contains ki epochs
(which we call its length). A natural question to ask concerns the distribution of the partial
quotients ki. For a ‘typical’ well approximable irrational number, how often does the number
1 appear in the sequence (ki)i∈N? How often the number 2? And what about the number
1000? The answer is given by Khinchin’s law [42]. Let Pn(k=m) denote the probability that
a randomly chosen partial quotient among (k1, . . . , kn) equals m ∈ N. In the asymptotic limit,
i.e., for P (k=m) = limn→∞ Pn(k=m) we have

P (k=m) = 2log
(m+ 1

m+ 2

)
− 2log

( m

m+ 1

)
, (31)

i.e., the partial quotients of the continued fraction representation of (30) are distributed like
a random variable whose probability distribution is given by (31). (By (31), the number 1
appears in 42% of the slots, the number 2 in 17%, and the number 1000 in 1.4 ∗ 10−6% of the
slots.) Khinchin’s law applies for almost all numbers u0.
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Figure 7: Examples of heteroclinic cycles associated with era sequences with period 1. The
Kasner sequences have period 1, 2, and 3, respectively; the period of the heteroclinic cycles is
a multiple of that period. Note that the direction of time is towards the past.

For a (generic) Kasner sequence (ul)l∈N with initial parameter u0 = [k0; k1, k2, . . .] and its
associated era sequence (us)s∈N, where us = [ks; ks+1, ks+2, . . .], the expression P (k=m) of (31)
represents the probability that a randomly chosen era of (us)s∈N has length m; this corresponds
to the probability that the initial value of an era is contained in the interval [m,m+1). In this
manner, the probability distribution (31) makes possible a stochastic interpretation of generic
Kasner sequences.

The probability distribution (31) results in extraordinary properties of the Mixmaster/Kasner
map, which will be of crucial importance in the considerations of Section 7. We do not discuss
details here but refer to future work; however, we cannot refrain from giving a teaser: For a
generic Kasner sequence (ul)l∈N and its associated era sequence (us)s∈N there exist infinitely
many eras such that the length (i.e., the number of epochs) of the nth era is larger than n logn;
however, for sufficiently large n, the length is guaranteed to be bounded by n log2 n. (For a
proof of this result by Borel and Bernstein see [43]; see also [44].) Properties of this kind
underline the remarkable intricacies of the heteroclinic structures on the Mixmaster attractor.
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6 Mixmaster facts

In this section we turn to what is known about the past asymptotic dynamics of generic type IX
solutions. The main Mixmaster fact is Ringström’s ‘Bianchi type IX attractor theorem’.

The main Mixmaster fact

Consider a solution of Bianchi type IX that is either vacuum or associated with a perfect
fluid satisfying − 1

3 < w < 1. Recall that such a solution is called generic if it is not past
asymptotically self-similar, i.e., if its α-limit set is neither the point F, nor any of the points
CSα, nor a point on TLα; in other words, a generic solution corresponds to an orbit in BIX

that is neither contained in F, nor in CSα, nor in LRSα. Therefore, the set of generic Bianchi
type IX states is an open set in BIX. (To conform with [10, 26] we use the future directed time
variable τ .)

The main results concerning generic Bianchi type IX models are due to Ringström [26]; these
results rest on earlier work that is reviewed and derived in [10], and on [24, 25]. In the following
we state the main theorem in a version adapted to our purposes.

Theorem 6.1 ([26]). Let (Σ1,Σ2,Σ3, N1, N2, N3)(τ) be a generic solution of Bianchi type IX,
i.e., a generic solution of (7) in BIX. Then

∆II = N1N2 +N2N3 +N3N1 → 0 and Ω → 0 (32)

as τ → −∞.

Note that this Theorem applies to both the fluid and the vacuum case; in the latter case (32)
becomes ∆II → 0 and Ω ≡ 0.

The proof of Theorem 6.1 given in [26] is delicate. In the first part it is proved that the α-limit
set of a generic Bianchi type IX solution is non-empty and must contain a point on the Kasner
circle. The main part of the proof deals with the fact that the function ∆II(τ) is in general
not monotone. There exist times where ∆II(τ) increases (as τ → −∞); the associated growth
must therefore be controlled and shown to be negligible compared to the overall decrease in
∆II. This is done by a careful analysis of the equations and (approximate) solutions. In [27]
we give an alternative and relatively short and succinct proof of Theorem 6.1 which is based
on an in-depth understanding of the hierarchical structure of the dynamical system (7) (as
represented by Figure 1). It is important to note, however, that either of the proofs fail in
the other Bianchi types that are conjectured to exhibit an oscillatory approach towards the
singularity, i.e., the proofs fail for types VI−1/9 and VIII. This is unfortunate, since there are
reasons to believe that these models are more relevant than type IX as regards the dynamics
of generic (inhomogeneous) cosmologies, see [27].

Using the concept of the Mixmaster attractor, cf. (21), we obtain an equivalent formulation of
Theorem 6.1: Let X(τ) = (Σ1,Σ2,Σ3, N1, N2, N3)(τ) be a generic solution of Bianchi type IX.
Then

‖X(τ)−AIX‖ → 0 (τ → −∞) , (33)

where the distance ‖X −AIX‖ is given as minY ∈AIX
‖X − Y ‖.

Theorem 6.1 thus states that the attractor of generic type IX solutions resides on AIX; how-
ever, whether the past attractor is in fact AIX or merely a subset thereof remains open. (The
terminology ‘Mixmaster attractor’ is seductive but might turn out to be quite misleading.) Like-
wise, the theorem does not provide any direct information about the details of the asymptotic
behavior of solutions.
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Consequences

The prerequisite for a deeper understanding of the asymptotic behavior and the oscillatory
dynamics of generic type IX solutions is an understanding of the Mixmaster attractor. In
Section 5 we have identified the structures on the Mixmaster attractor AIX that are induced by
the flow of the dynamical system: heteroclinic cycles [case (ii)] and finite [case (i)] and infinite
heteroclinic sequences [cases (iii) and (iv)]. All these structures qualify (a priori) as possible
α-limit sets of generic type IX orbits. In conjunction with these results, the main theorem 6.1
implies a number of further facts about the attractor—‘Mixmaster attractor facts’, which we
give as a list of corollaries. (For proofs see [27], and also [26].)

1. A generic, i.e. not past asymptotically self-similar, type IX orbit possesses an α-limit
point on AIX.

2. If P ∈ AIX is an α-limit point of a type IX orbit, then the entire heteroclinic cycle/sequence
(Mixmaster sequence) through P must be contained in the α-limit set.

3. If one of the Taub points {T1,T2,T3} is an α-limit point of a type IX orbit, then the
α-limit set contains Kasner fixed points associated with arbitrarily large values of the
Kasner parameter u.

4. For generic solutions of Bianchi type IX the Weyl curvature scalar CabcdC
abcd (and there-

fore also the Kretschmann scalar) becomes unbounded towards the past.

5. Taking into account both the expanding and contracting phases of Bianchi type IX so-
lutions, generic Bianchi type IX initial data generate an inextendible maximally globally
hyperbolic development associated with past and future singularities where the curvature
becomes unbounded.

6. Convergence to the Mixmaster attractor is uniform on compact sets of generic initial data:
Let X be a compact set in BIX that does not intersect any of the manifolds F, CSα, LRSα,
so that each initial data x̊ ∈ X generates a generic type IX solution. Let X (̊x; τ) denote
the type IX solution with X (̊x, 0) = x̊. Then

‖X (̊x; τ)−AIX‖ → 0 (τ → −∞) (34)

uniformly in x̊ ∈ X.

Corollary 3 implies that the α-limit set contains an infinite set of Kasner fixed points in a
neighborhood of the Taub point(s), but this set is not necessarily a continuum of fixed points;
cf. the previous discussion about possible α-limit sets. If a Kasner point with u ∈ Q is contained
in the α-limit of an orbit, so is a Taub point. This is an immediate consequences of the results
of Section 5, case (i). On the other hand, if the α-limit set of an orbit is a heteroclinic cycle
or a heteroclinic sequence (possibly in combination with a cycle) associated with cases (ii) and
(iii) of Section 5, then there exists a neighborhood of the Taub points whose intersection with
the α-limit set is empty.

Note that the oscillatory behavior of asymptotic type IX dynamics, which we unfortunately
know no details about, constitutes an example of asymptotic self-similarity breaking [39]. In
order to make progress as regards the details of the asymptotic oscillatory behavior, it is natural
to first establish the connection between the Mixmaster/Kasner map and dynamics for a finite
time interval ∆τ , discussed next.
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Finite Mixmaster shadowing

To make contact between the Mixmaster map and Bianchi type IX asymptotic dynamics we
introduce the concept of finite Mixmaster shadowing which formalizes the following basic idea:
Given a sequence of transitions we can choose type IX initial data sufficiently close to the initial
data of the sequence so that the type IX solution generated by this data remains close to the
sequence for some ‘time’.

Let P0 be a Kasner fixed point (but P0 6∈ {T1,T2,T3}) and let u0 be the associated value of
the Kasner parameter. There exists a unique sequence of transitions (Tl)l∈N and an associated
Mixmaster sequence (Pl)l∈N with P0 as initial data; the associated Kasner sequence is (ul)l∈N.
(If u0 ∈ Q, the sequence terminates at one of the Taub points after a finite number of transi-
tions.) We shall make the definition that a type IX solution shadows a finite piece (Tl)l=0,1,...,L

of the sequence of transitions if it is contained in a prescribed (small) tubular neighborhood
of (Tl)l=0,1,...,L. However, a standard ǫ-neighborhood of the sequence fails to be a reasonable
measure of closeness, because in the vicinity of a Taub point the transitions lie so dense that
consecutive transitions are not separated from each other by their respective ǫ-neighborhoods.
Therefore, the introduction of adapted tubular neighborhoods is necessary to take into account
the sensitivity of the flow at the Taub points and to capture more accurately the intuitive idea
of shadowing.

Let ǫ > 0 be small. A ‘Taub-adapted neighborhood ’ of the Mixmaster sequence (Pl)l∈N is a
sequence (Ul)l∈N of open balls, where Ul is centered at the point Pl and has radius ǫu−2

l , i.e.,
Ul = {X ∈ BIX : ‖X−Pl‖ < ǫu−2

l }. (The radius ǫu−2
l is chosen to ensure that the intersection

of the ball Ul with the Kasner circle induces more or less a standard ǫ-neighborhood (ul−ǫ, ul+ǫ)
of the Kasner parameter ul; recall from Section 5 that u−1 measures the angular distance of
a fixed point from a Taub point.) A Taub-adapted tubular neighborhood of the sequence of
transitions (Tl)l∈N is the sequence of tubes (Vl)l∈N that linearly interpolate between Ul and Ul+1.
Based on this definition we say that a type IX solution X(τ) shadows a finite piece (Tl)l=0,1,...,L

of the sequence of transitions if it moves in a prescribed Taub-adapted tubular neighborhood
(Tl)l=0,1,...,L, i.e., if there exists a sequence of times (τl)l=0,1,...,L+1 such that X(τ) is contained
in Vl for all τ ∈ (τl+1, τl] for all 0 ≤ l ≤ L.

Making use of these concepts, a formulation of finite Mixmaster shadowing is the following:
Let ǫ > 0 and L ∈ N. Consider the sequence of transitions (Tl)l∈N emanating from an initial
Kasner point P0 and its Taub-adapted tubular neighborhood (associated with ǫ). Then there
exists δǫ > 0 such that each type IX orbit X(τ) that is generated by initial data X0 with
‖X0 − P0‖ < δǫ shadows the finite piece (Tl)l=0,1,...,L of the sequence of transitions. (A proof
of this statement—in a slightly different form—has been given by Rendall [24]. Alternatively,
one can invoke the regularity of the dynamical system, the center manifold reduction theorem
and continuous dependence on initial data.) Evidently, δǫ depends on the choice of ǫ and L.
More importantly, however, δǫ depends on the position of P0—shadowing is not uniform; in
particular, if we consider a series of initial points that approach one of the Taub points, then
δǫ necessarily converges to zero along this series—shadowing is more delicate in the vicinity of
a Taub point. We will return to this issue in some detail in the next Section.

Finite Mixmaster shadowing concerns any generic type IX orbitX(τ). Let P ∈ K# be an α-limit
point of the type IX orbit X(τ); without loss of generality we may assume that P is not one
of the Taub points. (The existence of such a point is ensured by Corollaries 1–3 of Section 6.)
For simplicity we assume that P is associated with an irrational value of the Kasner parameter,
which guarantees that the sequence (Pl)l∈N emanating from P = P0 is an infinite sequence.
Since P is an α-limit point of X(τ), there exists a sequence of times (τn)n∈N, τn → −∞
(n → ∞), such that X(τn) → P (n → ∞). Therefore, we observe a recurrence of phases, where
the orbit X(τ) shadows (Pl)l∈N with an increasing degree of accuracy, i.e., shadowing takes
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place for increasingly longer pieces of the sequence or in ever smaller neighborhoods. (If the
Kasner parameter of P is rational, then the sequence (Pl)l∈N is finite and terminates at a Taub
point. X(τ) will shadow this finite sequence recurrently with an increasing degree of precision.)
We will return to this issue in some more detail in the subsection ‘Stochastic Mixmaster beliefs’
of Section 7.

The concept of shadowing leads directly to the concept of approximate sequences which we
introduce next. Consider a generic type IX orbit X(τ) = (Σ1,Σ2,Σ3, N1, N2, N3)(τ) and the
function ‖X(τ)−K#‖, where the distance ‖X−K#‖ is given as minY ∈K# ‖X − Y ‖. When the
orbit X(τ) traverses a (sufficiently small) neighborhood of a fixed point on K#\{T1,T2,T3},
the function ‖X(τ) − K#‖ exhibits a unique local minimum. This is immediate from the
transversal hyperbolic saddle structure of the fixed point. (However, the flow in the vicinity
of the Taub points is more intricate, since these points are not transversally hyperbolic.) It
follows that the function ‖X(τ)−K#‖ can be used to partition X(τ) into a sequence of segments
in a straightforward manner:11 The local minima of ‖X(τ) − K#‖ form an infinite sequence
(τl)l∈N such that τl → −∞ as l → ∞. (This follows directly from Corollaries 1 and 2 because
X(τ) has α-limit point(s) on the Kasner circle and α-limit points on the type II subset.) A
segment of X(τ) is defined to be the solution curve between two consecutive minima, i.e., the
image of the interval (τl+1, τl]. (Note that τ → −∞ in the approach to the singularity, while
the discrete ‘time’ l is past-directed, i.e., l → ∞ towards the singularity. This convention is
chosen to agree with the standard convention for the Mixmaster and the Kasner map.) In the
asymptotic regime, i.e., in the approach to the Mixmaster attractor, finite shadowing entails
that a finite sequence of segments will resemble a finite sequence of type II transitions; this
assumes, however, that the type IX orbit does not come too close to any of the Taub points.
(In the neighborhood of a Taub point the flow of the dynamical system is much more intricate.
This might yield recurring interruptions of the ‘standard behavior’.) We call the type IX orbit
in its segmented form an approximate sequence of transitions.

In addition, we define a sequence of ‘check points’ that is associated with an approximate
sequence of transitions. Each minimum τl of ‖X(τ) − K#‖ is associated with a Kasner fixed
point P̌l (a ‘check point’) that is defined as the minimizer on K# of the distance between X(τl)
and K#. (Note that the check points (P̌l)l∈N do not lie on the type IX orbit X(τ).) Since
each check point P̌l is associated with a value ǔl of the Kasner parameter, the sequence (P̌l)l∈N

induces a sequence (ǔl)l∈N. The value ǔl+1 is in general not generated from ǔl by the exact
Kasner map (23), but differs from that value by an error of δǔl. In our terminology, the sequence
(P̌l)l∈N is an approximate Mixmaster sequence; (ǔl)l∈N is an approximate Kasner sequence, see
Figure 8.

The approximate Kasner sequence ǔl associated with a type IX orbit X(τ) does not follow
the Kasner map (23) exactly. A natural question to ask, however, is whether the errors δǔl

of the approximate Kasner sequence converge to zero as l → ∞ or not. If δǔl → 0 as l → ∞
for a type IX orbit, this means that its dynamics is completely described by an ‘asymptotic
Mixmaster/Kasner map’, i.e., by a map that converges to the Mixmaster/Kasner map towards
the singularity. However, if δǔl 6→ 0 as l → ∞, then the evolution is interrupted repeatedly—
infinitely many times—by phases where the dynamics is completely different from the Mixmas-
ter dynamics, e.g., ‘eras of small oscillations’ [2]. (In the present state space description an era
of small oscillations is associated with type VII0 behavior in the vicinity of one of the Taub lines
TLα, where Nβ and Nγ are small and of the same order; for details we refer to the discussion
of type VII0 dynamics in [27].) In the subsection ‘Stochastic Mixmaster beliefs’ of Section 7 we

11The definition of a partition of X(τ) into segments seems natural; it is important to note, however, that any
definition depends on the formulation of the problem and is to a certain extent arbitrary. For instance, instead of
using the minima of ‖X(τ)−K#‖ one might prefer to analyze the projection of the orbit onto (Σ1,Σ2,Σ3)-space
and use the extrema of Σ2(τ). However, the conclusions drawn from any construction of segments are quite
insensitive to the details of the definition.
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Figure 8: A type IX orbit decomposes into segments X(τl) → X(τl+1). The points X(τl),
l ∈ N, are the local minima of the distance between X(τ) and K#. The ‘check point’ P̌l is
the point on K# that is closest to X(τ) (for τ in a neighborhood of τl). Since each check
point P̌l is associated with a value ǔl of the Kasner parameter, the ‘approximate Mixmaster
sequence’ (P̌l)l∈N induces an ‘approximate Kasner sequence’ (ǔl)l∈N. In general, P̌l+1/ǔl+1 are
not generated from P̌l/ǔl by the exact Mixmaster/Kasner map (23), but differ by an error
δP̌l/δǔl.

will investigate the behavior of δǔl along type IX orbits in detail.

7 Mixmaster beliefs

Attractor beliefs

There remain several important open problems. In the following we will address the most
pressing questions; in particular we will transform vague beliefs into refutable conjectures, and
give arguments in their favor.

An immediate question is the following: What are the actual α-limit sets of type IX orbits?
Consider a type IX orbit γ. The α-limit set α(γ) contains a number of Kasner fixed points (and
the associated type II transitions), each of which is characterized by a particular value of the
Kasner parameter u. The set of Kasner parameters obtained in this way from α(γ) we denote
by U(γ). The question of which form U(γ) can take for different orbits γ is open, the most
significant issues being the following:

(i) Is it possible that there exists γ whose limit set U(γ) consists of rational numbers only? It
is straightforward to exclude that U(γ) coincides with Q itself (or a dense subset thereof),
the reason being that α-limit sets are necessarily closed. Another a priori constraint is
that U(γ) must contain u = ∞ (which characterizes the Taub points) if U(γ) contains
a rational number; see Section 5. Corollary 3 of Section 6 then implies that U(γ) is
unbounded, i.e., U(γ) contains arbitrarily large values of the Kasner parameter. A set
that is compatible with these basic requirements is, e.g., U(γ) = N∪{∞}. Whether there
exist orbits γ such that U(γ) takes this (or a related) form remains open.

(ii) Is it conceivable that there exist orbits γ such that α(γ) is a heteroclinic cycle, see Fig-
ure 7? In this case the set U(γ) is generated by a quadratic surd u = [(k̄1, k̄2, . . . , k̄n)]
via the Kasner map; see Section 5; in particular, U(γ) is finite. However, whether orbits
γ with this particular past asymptotic behavior really exist is an open problem.
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(iii) Can there exist orbits γ such that U(γ) is bounded but contains infinitely many u-values?
Is the Kasner sequence generated by a badly approximable number a candidate? The
Kasner sequence (ul)l∈N generated by a badly approximable number is an infinite sequence
that is bounded. However, there must be at least one accumulation point of this sequence;
if U(γ) contains (ul)l∈N, then U(γ) must contain the accumulation point of the sequence
as well (since α-limit sets are closed). If this accumulation point is a well approximable
number, U(γ) cannot be bounded; however, if the accumulation point is a quadratic surd,
no inconsistencies arise. Hence, a priori, there might exist orbits γ such that U(γ) is not
finite but still bounded. Whether this is indeed the case is doubtful, but hard to exclude
a priori.

An open problem that might be quite separate from the questions raised above concerns the
behavior of all type IX orbits save a set of measure zero.

Definition. The past attractor of a dynamical system given on a state space X is defined as
the smallest closed invariant set A− ⊆ X such that α(p) ⊆ A− for all p ∈ X apart from a set
of measure zero [45].

Conjecture (Mixmaster attractor conjecture). The past attractor of the type IX dynamical
system coincides with the Mixmaster attractor AIX (rather than being a subset thereof).

Why is this a belief and not a fact? Theorem 6.1 implies that A− ⊆ AIX; however, it is believed
that A− = AIX = K#∪Bvac.

N1
∪Bvac.

N2
∪Bvac.

N3
. (The usage of the terminology ‘Mixmaster attractor’

for the set AIX reflects the strong belief in the Mixmaster conjecture.) It is difficult to imagine
how the Mixmaster attractor conjecture could possibly be violated. For instance, it seems
rather absurd that the past attractor consists only of (a subset of) heteroclinic cycles—but
there exist no proofs. A closely related belief is the following stronger statement.

Conjecture. For almost all Bianchi type IX solutions γ the α-limit set α(γ) coincides with
the Mixmaster attractor AIX.

We use the term ‘almost all’ in a noncommittal way without specifying the measure; recall that
the word ‘generic’ already has the well-defined meaning of ‘not past asymptotically self-similar’.
(The usage of the word ‘generic’ is in accord with [26].)

Stochastic beliefs

This subsection is concerned with the (open) question of which role the Mixmaster/Kasner
map plays in the asymptotic evolution of type IX solutions. The basis for our considerations
are the results of Section 5 where we discussed the Mixmaster/Kasner map and the stochastic
aspects of (generic) Kasner sequences. The Mixmaster stochasticity conjecture supposes that
these stochastic properties carry over to almost every type IX orbit when represented as an
approximate Kasner sequence.

Conjecture (Mixmaster stochasticity). The approximate Kasner sequence (ǔl)l∈N associated
with a generic type IX orbit admits a stochastic interpretation in terms of the probability dis-
tribution associated with the Kasner map, cf. Section 5. (This holds with probability one, i.e.,
for almost every generic type IX orbit.)

The Mixmaster stochasticity conjecture is based on a rather suggestive simple idea: Type IX
evolution is like trying to follow a path of an (infinite) network of paths while the ground is
shaking randomly, and where the shaking subsides with time but never stops. A type IX orbit
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tries to follow a sequence of transitions on the Mixmaster attractor while random errors cause
the orbit to lose track. Due to the errors, the orbit is incapable of following one particular
sequence forever; after a finite time, the type IX orbit has deviated too much and it leaves the
vicinity of the sequence. Although, temporarily, the orbit is contained in a neighborhood of a
different sequence, it is bound to lose track of that sequence as well eventually. Accordingly
the type IX orbit is thrown around in the space of Mixmaster sequence with the effect that the
type IX orbit inherits the stochastic properties of generic Mixmaster sequences.

In the following we paint a heuristic picture that makes this idea a little more concrete. Con-
sider a type IX orbit (approximate sequence of transitions) and the associated approximate

Mixmaster sequence (P̌l)l∈N. Let (P
(0)
l )l∈N be the exact Mixmaster sequence with P

(0)
0 = P̌0

and consider the Taub-adapted neighborhood of this sequence associated with some prescribed
value ǫ > 0. Finite Mixmaster shadowing entails that there exists a finite piece (P̌l)l=0,1,...,L1−1

of the approximate sequence that is contained in the prescribed Taub-adapted neighborhood

of the exact sequence (P
(0)
l )l∈N. However, at l = L1, the approximate Mixmaster sequence

(P̌l)l∈N leaves the prescribed tolerance interval due to the accumulation of errors. Hence, at

l = L1 we reset the system and consider the exact Mixmaster sequence (P
(1)
l )l≥L1

with initial

data P
(1)
L1

= P̌L1
. The approximate Mixmaster sequence (P̌l)l≥L1

is contained in the Taub-

adapted neighborhood of the exact sequence (P
(1)
l )l≥L1

up to l = L2 − 1. At l = L2 another
readjustment becomes necessary. Iterating this procedure and concatenating the finite pieces

(P
(i)
l )l=Li,...,Li+1−1 we are able to construct a sequence (P̄l)l∈N with the property that the ap-

proximate sequence (P̌l)l∈N is contained within the Taub-adapted neighborhood (associated
with ǫ) of (P̄l)l∈N for all l ∈ N. The sequence (P̄l)l∈N is a piecewise exact Mixmaster sequence;
it is exact in intervals [Li, Li+1). The length δLi = Li+1 − Li of these intervals grows beyond
all bounds as i → ∞, because shadowing takes place with an increasing degree of accuracy.
The error (of the order ǫ) between the approximate sequence (P̌l)l∈N and the piecewise ex-
act sequence (P̄l)l∈N results from the accumulation of numerous small errors. This obliterates
the deterministic origin of the problem and generates a ‘randomness’ that leads to stochastic

properties. Accordingly, we expect that the exact sequences (P
(i)
l )l≥Li

from which (P̄l)l∈N is
built constitute a random sample of Mixmaster sequences and thus truly reflect the stochastic
properties of the Mixmaster map. As a consequence, although the sequence (P̄l)l∈N is only a
piecewise exact Mixmaster sequence, it possesses the same stochastic properties as a generic
Mixmaster sequence. Extrapolating this line of reasoning we are able to complete the argu-
ment and find that the approximate sequence (P̌l)l∈N itself reflects the stochastic properties
of the Mixmaster map. To emphasize this aspect of stochasticity of (P̌l)l∈N we use the term
‘randomized approximate sequence’. Some comments are in order.

In our discussion we have assumed implicitly that the approximate sequence (P̌l)l∈N we consider
can shadow any exact Mixmaster sequence for a finite number of transitions only. This is not
necessarily the case. A type IX orbit whose α-limit set is one of the heteroclinic cycles (if such
an orbit exists!) is an obvious counterexample: For every ǫ > 0 there exists L ∈ N such that P̌l

is contained in the Taub-adapted ǫ-neighborhood of the Mixmaster sequence associated with
the cycle. However, we expect that this type of ‘infinite shadowing’ holds at most for orbits of
a set of measure zero.

A more serious limitation of the intuitive picture that we have sketched is illustrated by the
following related example. Consider a type IX orbit whose α-limit set is the heteroclinic cycle
depicted in Figure 7(a) (where we note again that the existence of such an orbit is not proven).
For the associated approximate Kasner sequence (ǔl)l∈N we have ǔl → (1 +

√
5)/2 as l → ∞.

Consider the piecewise exact Kasner sequence (ūl)l∈N that is associated with the piecewise

exact Mixmaster sequence. Each piece (u
(i)
l )l=Li,...,Li+1−1 is generated from a value u

(i)
Li

=

[k0; k1, k2, . . .] = [1; 1, 1, 1, 1, . . . , 1, k
(i)
n , k

(i)
n+1, . . .]; we have n → ∞ as i → ∞. It is evident that
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these pieces do not form a random sample of Kasner sequences. At best one could conjecture

(and it is probably safe to do so) that the collection of the remainders [k
(i)
n ; k

(i)
n+1, . . .] is such a

random sample. Even so, the stochastic aspect does not carry over to the approximate sequence

(ǔl)l∈N, since the approximate sequence leaves the neighborhood of each sequence (u
(i)
l )l=Li,...

before that sequence has entered its stochastic regime (which is characterized by the remainder

[k
(i)
n ; k

(i)
n+1, . . .]). Again we invoke ‘genericity’ to save the day: We conjecture that, for almost all

approximate sequences, the sequences (u
(i)
l )l≥Li

are a true random sample of Kasner sequences
and that the associated stochastic properties indeed carry over to the approximate sequence
(ǔl)l∈N itself.

The piecewise exact sequence (P̄l)l∈N consists of pieces of length δLi = Li+1 − Li, where Li

grows beyond all bounds as i → ∞, because shadowing takes place with an increasing degree
of accuracy. However, this does not necessarily imply that δLi → ∞ as i → ∞. The latter
property is directly connected with the Kasner map convergence conjecture.

Conjecture (Kasner map convergence). Almost every generic type IX orbit is associated with
an approximate Kasner sequence (ǔl)l∈N such that δǔl → 0 as l → ∞, where δǔl describes
the error between ǔl+1 and the value of the Kasner parameter generated from ǔl by the exact
Kasner map (23).

The relevance of the Kasner map for the asymptotic evolution of type IX solutions rests on the
validity of the Kasner map convergence conjecture. Let us thus give a more detailed discussion
and present the line of arguments that leads to this conjecture.

An orbit X(τ) (with segments X(τl) → X(τl+1), l ∈ N) generates a sequence of check points
· · · 7→ P̌l 7→ P̌l+1 7→ · · · , which in turn yields a map · · · 7→ ǔl 7→ ǔl+1 7→ · · · . The parameter
ǔl+1 (associated with P̌l+1) is generated from ǔl (associated with P̌l) by the Kasner map plus
an error δǔl, see Figure 8. The magnitude of the error δǔl depends on the initial data of
the segment, i.e., on X(τl); equivalently, we may view δǔl as a function depending on (i) the
position of P̌l on K#, and (ii) the vector X(τl)− P̌l, which is orthogonal to K# at P̌l.

To obtain an estimate for δǔl we introduce the order of magnitude of the error, which we denote
by ∆ǔl. We define ∆ǔl to be the average of |δǔl| over all vectors X(τl) − P̌l of equal length
that are orthogonal to K#; alternatively, we use the somewhat ‘safer’ definition of ∆ǔl as the
maximum of |δǔl|. By design, the order of magnitude ∆ǔl of the error is a function of two
variables: (i) the position of P̌l on K#, which is invariantly represented by ǔl, and, instead of
X(τl)− P̌l itself, (ii) the (orthogonal) distance of X(τl) from P̌l (or, equivalently, from K#), i.e.,
‖X(τl)−P̌l‖ (= ‖X(τl)−K#‖), which we denote by δ̌l, see Figure 8; in brief, ∆ǔl = (∆ǔ)(ǔl, δ̌l).
In the following we investigate the behavior of the function (∆ǔ)(ǔ, δ̌) under variations of the
two arguments.

(i) (∆ǔ)(ǔ, ·). Keep ǔ fixed (and assume that ǔ lies in the interval ǔ ∈ (1,∞) so that its image
under the Kasner map is finite). Then ∆ǔ is a function of the distance δ̌ such that ∆ǔ → 0 as
δ̌ → 0 (which is a simple consequence of the regularity of the dynamical system and continuous
dependence on initial data). It is reasonable to conjecture that the relation is in fact monotone.

(ii) (∆ǔ)(·, δ̌). Keep the distance δ̌ fixed, so that ∆ǔ is a function of ǔ. The fundamental
observation is that ∆ǔ becomes unbounded as (a) ǔ → ∞, and (b) ǔ → 1. Case (a) is due
to the intricacies of the flow in the vicinity of the non-transversally hyperbolic Taub points
(where u = ∞); recall that ǔ−1 measures the angular distance of the check point from the
nearest Taub point. For (b) we consider the orbit Qα → Tα (for some α) which corresponds
to u = 1 7→ u = ∞. Suppose that P̌l coincides with Qα (i.e., ǔl = 1). In general, P̌l+1 will not
coincide with Tα (independently of the choice of δ̌ = δ̌l); therefore ∆ǔl = (∆ǔ)(ǔl, δ̌l) = ∞. If
P̌l is very close to Qα, which means that ǔl is close to 1, a small deviation of X(τ) from the
type II transition emanating from P̌l will still be small at the end point X(τl+1); however, in the
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vicinity of the Taub point Tα even a small deviation can translate to a large error δǔl between
ǔl+1 and (ǔl − 1)−1, which in turn results in the asserted blow-up of the order of magnitude of
the error. The qualitative properties of ∆ǔ as a function of δ̌ and ǔ are depicted in Figure 9.

PSfrag replacements
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∆ǔ
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Figure 9: We consider a segment of an orbit X(τ) with initial check point P̌ associated with the
Kasner value ǔ. (In accordance with the standard convention for the Mixmaster/Kasner map,
the terms ‘initial’ and ‘final’ refer to a past-directed time.) The quantity δ̌ denotes the initial
distance of the orbit from the Kasner circle, which coincides with its distance from P̌. The
final check point is not generated from P̌ via the Mixmaster map, but with an error represented
by δǔ. The figure gives a schematic depiction of the order of magnitude ∆ǔ of the error in
dependence on ǔ and δ̌. Each curve represents (∆ǔ)(·, δ̌), i.e., ∆ǔ as a function of ǔ for a
constant value of the initial distance δ̌; the lower curve is associated with a smaller value of δ̌,
the top curve with a larger value.

Consider a generic type IX orbit X(τ) and its representation as an approximate sequence of
transitions. By Theorem 6.1 each orbit converges to the Mixmaster attractor. As a consequence
the distance δ̌l = ‖X(τl) − K#‖ (= ‖X(τl) − P̌l‖) converges to zero as l → ∞. Therefore, as
δ̌l → 0 (l → ∞), the sequence of functions (∆ǔ)(·, δ̌l) of Figure 9 converges to zero. However,
this convergence is merely pointwise and not uniform; this behavior is crucial to understand
the behavior of δǔl as l → ∞.

If a type IX orbit X(τ) converges to one of the heteroclinic cycles on the Mixmaster attrac-
tor, then there exists ε such that ǔl ∈ (1 + ε, ε−1) for all sufficiently large l. On this in-
terval the function ∆ǔ of Figure 9 converges to zero uniformly. We therefore obtain that
∆ǔl = (∆ǔ)(ǔl, δ̌l) → 0 and thus δǔl → 0 as l → ∞ for this type IX orbit. However, the Mix-
master attractor conjecture suggests that almost every type IX orbit X(τ) has an associated
approximate Kasner sequence (ǔl)l∈N that is unbounded, hence the general case is not so clear.
Since (ǔl)l∈N enters the intervals [1, 1+ ε) and (ε−1,∞) for any ε, ∆ǔl = (∆ǔ)(ǔl, δ̌l) (and thus
δǔl) need not necessarily converge to zero. Let us elaborate.

Let κ > 0 be fixed. By the implicit function theorem, the inequality (∆ǔ)(ǔ, δ̌) ≥ κ is satisfied
if and only if ǔ ≤ 1+ fκ(δ̌) or ǔ ≥ gκ(δ̌) for some functions fκ, gκ, which satisfy fκ(δ̌) → 0 and
gκ(δ̌) → ∞ as δ̌ → 0. Accordingly, for a given type IX orbit (and its associated approximated
Kasner sequence ǔl), we obtain

∆ǔl = (∆ǔ)(ǔl, δ̌l) ≥ κ ⇔ ǔl ≤ 1 + fκ(δ̌l) (35)

or ǔl ≥ gκ(δ̌l). We call the union of the two intervals
(
1, 1+fκ(δ̌l)

)
and

(
gκ(δ̌l),∞

)
the ‘hazard

zone’ (associated with epoch number l); obviously, the hazard zone is decreasing with l. Hence,
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the order of magnitude of the error, ∆ǔl, is larger than κ at epoch number l if and only if the
approximate Kasner parameter ǔl falls into the hazard zone (associated with l).

In connection with the Kasner map convergence conjecture the question is how often (ǔl)l∈N

enters the hazard zone, i.e., how often (35) occurs: finitely many times or infinitely many times?

Suppose that the Mixmaster stochasticity conjecture is correct. Then almost every sequence
(ǔl)l∈N admits a probabilistic interpretation in terms of the probability distribution (31). Ac-
cordingly, we expect the question to turn into an example of a ‘0–1 law’: There exists two
alternatives: (i) Type IX orbits (i.e., sequences (ǔl)l∈N) that satisfy (35) infinitely many times
are generic (i.e., of measure 1 in the state space); type IX orbits that do not are non-generic
(i.e., of measure 0); (ii) Type IX orbits that satisfy (35) infinitely many times are non-generic;
orbits that do not are generic. (In both cases, the two sets, the ‘generic set’ and the ‘non-
generic set’, are probably non-empty.) Which of these alternatives is actually realized depends
on the rate of decay of (δ̌l)l∈N and the decay and growth of fκ and gκ, respectively, as δ̌ → 0.
Case (i) is associated with small (subcritical) rates of decay; case (ii) with large (overcritical)
decay. We conjecture that case (ii) applies, i.e., (35) is satisfied only finitely many times for
generic type IX orbits. The reason for this conjecture is the fast rate of convergence of the orbit
to the Mixmaster attractor which follows from the decay of the functions N1N2N3, cf. (10),
and N1N2 + N2N3 + N3N1, cf. [26]; this leads to the expectation that the r.h. side of (35)
represents a rapidly decaying function.12 To conclude our line of arguments in favor of the
Kasner map convergence conjecture, we note that the actual error δǔl can be estimated by
∆ǔl. Therefore, if ∆ǔl < κ for all l except for a finite set, then also δǔl < κ for all l except
for a finite set. Since κ is an arbitrary positive number, the statement of the Kasner map
convergence conjecture ensues.

We round off this section with some further remarks on the conjectures. First, we note that one
might be led to suppose that there could in fact exist type IX solutions for which the statement
of the Kasner map convergence conjecture is violated, i.e., δǔl 6→ 0 as l → ∞. In any case, the
class of these special solutions is at most of measure zero. Second, we note that the statement
of the Kasner map convergence conjecture, i.e., δǔl → 0 (l → ∞), and the statement δLi → ∞
(i → ∞), cf. the discussion on piecewise exact sequences, are expressions of one and the same
stochastic property. This emphasizes that the two ‘stochastic’ conjectures tightly intertwine.
Third, we remark that it is conceivable that ‘almost every’ in the two conjectures might be
in fact ‘every’. In that case, the non-generic examples of Kasner/Mixmaster sequences, see
Section 5, would not have any counterparts among the type IX solutions. Of particular interest
in this context would be to have an answer to question (ii) of the second subsection of Section 7.
If there do not exist type IX orbits whose α-limit set is one of the heteroclinic cycles, this would
be a strong indication in favor of ‘every’ and against ‘almost every’. If there exist type IX
orbits that converge to a cycle, ‘almost every’ is the best one can aim for in the Mixmaster
stochasticity conjecture.

Finally, let us briefly comment on claims of stochastic and chaotic properties of Bianchi type IX
asymptotic dynamics. Chaotic aspects of the Kasner map and related maps have been studied
under various aspects [7, 8, 19, 17, 20]. However, the relevance of these maps for type IX
asymptotics rests on the two conjectures in this section. If the conjectures turn out to be wrong
(e.g., if there exists a generic set of solutions that converge to heteroclinic cycles), then none of
the results on the Kasner map carry over to full type IX dynamics. Numerical investigations,
see [13] and references therein, reflect Theorem 6.1 and finite shadowing, but it is implausible
that numerics can possibly shed light on the actual asymptotic limit of type IX solutions.
Numerical errors are unavoidable and random in nature; these errors generate precisely the type
of stochasticity the simulation is looking for. Accordingly, numerical studies will necessarily

12Additional support for the conjecture comes from toy models that reflect the instability of the Kasner map
and its consequences. We will come back to this issue in future work.
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find type IX solutions to exhibit the same stochastic behavior as generic Kasner sequences and
are thus not suited to explore the validity of the conjectures.

8 Billiards and billiard beliefs

In this section we briefly review the Hamiltonian billiard approach to type IX dynamics in the
spirit of [6, 31] and make contact with the dynamical systems approach. The metric (2b) can
be written as

4g = −(det g)Ñ2dx0 ⊗ dx0 + e−2b1
ω̂

1 ⊗ ω̂
1 + e−2b2

ω̂
2 ⊗ ω̂

2 + e−2b3
ω̂

3 ⊗ ω̂
3 , (36)

where x0 is an arbitrary time variable that is related to proper time t by a densitized lapse
function Ñ according to dt =

√
det g Ñ dx0; evidently, det g = exp[−2(b1 + b2 + b3)]. The

Hamiltonian for the orthogonal Bianchi type IX perfect fluid models is given by

H = Ñ



 1
4

∑

α,β

Gαβπαπβ − 3R det g + 2ρ det g



 = 0 , (37)

where 3R is three-curvature and ρ = ρ0(det g)
−(1+w)/2, cf. the remark following (14) (where we

recall that d log(det g) = 6dτ). Gαβ is the inverse of the so-called minisuperspace metric Gαβ ,

∑

α,β

Gαβv
αwβ := −

∑

γ 6=δ

vγwδ =
∑

α

vαwα −
(∑

α

vα
)(∑

β

wβ
)

, (38)

i.e., Gαβ is a 2 + 1-dimensional Lorentzian metric. The gravitational potential UG = −3R det g
is given by

UG = 1
2

(

e−4b1 + e−4b2 + e−4b3 − 2e−2(b1+b2) − 2e−2(b2+b3) − 2e−2(b3+b1)
)

; (39)

where we have set the structure constants n̂α to one; the potential for the fluid is given by
UF = 2ρ det g = 2ρ0 exp[−(1 − w)(b1 + b2 + b3)]. For further details see, e.g., [37] or [10,
Chapter 10]; note that bα = −βα, which is used in these references; see also [30] and [31].

As argued in [4, 31], bα is expected to be timelike in the asymptotic regime, i.e.,
∑

α Gαβ b
αbβ <

0. Assuming that bα is timelike allows to introduce new metric variables instead of {b1, b2, b3}.
Defining ρ̄2 = −∑

α Gαβ b
αbβ and orthogonal angular metric variables, collectively denoted by

γ, leads to
∑

α,β

Gαβ db
αdbβ = −dρ̄2 + ρ̄2dΩ2

h , (40)

where dΩ2
h is the standard metric on hyperbolic space. Making a further change of variables,

λ = log ρ̄ = 1
2 log

(

−
∑

α,β

Gαβ b
αbβ

)

, (41)

yields
∑

α,β

Gαβ παπβ = −π2
ρ̄ + (ρ̄)−2π2

γ = (ρ̄)−2
[
−π2

λ + π2
γ

]
. (42)

Choosing the lapse according to Ñ = ρ̄2 leads to a Hamiltonian of the form

H = 1
4

[
−π2

λ + π2
γ

]
+ ρ̄2

∑

A

cA exp(−2ρ̄ wA(γ)) , (43)
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where wA(γ) denotes certain linear forms of the variables γα, i.e., wA(γ) =
∑

β wAβ γ
β ; see [31]

for details.

The essential point is that one expects that ρ̄ → ∞ towards the singularity and hence that
each term ρ̄2 exp[−2ρ̄wA(γ)] becomes an infinitely high sharp wall described by an infinite
step function Θ∞(x) that vanishes for x < 0 and is infinite for x ≥ 0. Accordingly, only
‘dominant’ terms in the potential are assumed to be of importance for the generic asymptotic
dynamics, while ‘subdominant’ terms, i.e., terms whose exponential functions can be obtained
by multiplying dominant wall terms, are neglected. In the present case there are three dominant
terms in UG (which is the minimal set of terms required to define the billiard table), the three
exponentials exp(−4bα). Dropping the subdominant terms in the limit ρ̄ → ∞ leads to an
asymptotic Hamiltonian of the form

H∞ = 1
4

[
−π2

λ + π2
γ

]
+

3∑

A=1

Θ∞(−2wA(γ)) , (44)

where only the three dominant terms appear in the sum. The correspondence between the
dynamical systems picture and the Hamiltonian picture is easily obtained by noting that the
Hamiltonian constraint (37) is proportional to the Gauss constraint (9). The dominant terms
correspond to the terms N2

α, α = 1, 2, 3, in (9); the subdominant terms are collected in ∆II.

The non-trivial dynamics described by (44) resides in the variables γ, i.e., in the hyperbolic
space. It can be described asymptotically as geodesic motion in hyperbolic space constrained by
the existence of sharp reflective walls, i.e., the asymptotic dynamics is determined by the type IX
‘billiard’ given in Figure 10. Based on the heuristic considerations the limiting Hamiltonian (44)
is believed to describe generic asymptotic dynamics.

PSfrag replacements
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Figure 10: The Bianchi type IX billiard: The disc represents hyperbolic space. The asymptotic
description of a solution is given by geodesic billiard motion inside the triangle, which acts as
a stationary infinite potential wall, yielding a ‘configuration space picture’ of the asymptotic
dynamics.

The Hamiltonian picture (as represented by the billiard) and the dynamical systems picture (as
represented by the Mixmaster attractor) are ‘dual’ to each other. In the Hamiltonian picture
the asymptotic dynamics is described as the evolution of a point in the billiard. Straight
lines (geodesics) in hyperbolic space correspond to Kasner states. Wall bounces correspond to
Bianchi type II solutions; the bounces change the Kasner states according to the Kasner map.
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Since the billiard picture emphasizes the dynamics of the configuration space variables, one
may say that the Hamiltonian billiard approach yields a ‘configuration space’ representations
of the essential asymptotic dynamics.

In the dynamical systems state space picture the motion in the Hamiltonian billiard picture
becomes a ‘wall’ of fixed points—the Kasner circle K#. The walls in the Hamiltonian billiard
are translated to motion in the dynamical systems picture—Bianchi type II heteroclinic orbits;
these type II transitions yield exactly the same rule for changing Kasner states as the wall
bounces: the Kasner map. Since the variables Σα are proportional to πα, it is natural to
refer to the projected dynamical systems picture as a ‘momentum space’ representation of the
asymptotic dynamics.

Summing up, ‘walls’ and ‘straight line motion’ switch places between the Hamiltonian formu-
lation and dynamical systems description of asymptotic dynamics, and the two pictures give
equivalent complementary asymptotic pictures.

The above heuristic derivation of the limiting Hamiltonian rests on two basic assumptions: It
is assumed that bα is timelike in the asymptotic regime and that one can drop the subdom-
inant terms. These assumptions correspond to assuming that Ω and ∆II can be set to zero
asymptotically, i.e., the procedure precisely assumes Theorem 6.1. (The Hamiltonian analysis
in [46, Chapter 2] uses the same assumptions, and hence the present discussion is of direct
relevance for that work as well.) That these assumptions are highly non-trivial is indicated by
the difficulties that the proof of Theorem 6.1 has presented; cf. [26, 27]. An alarming example
is Bianchi type VIII; in this case the heuristic procedure in this respect leads to exactly the
same asymptotic results, but so far there exist no proof that Ω and ∆II tend to zero towards
the singularity for generic solutions. We elaborate on the differences between type VIII and
type IX in [27]. Moreover, like in the state space picture there exists no proof that all of the
possible billiard trajectories are of relevance for the asymptotic dynamics of type IX solutions.
For example, there exists a correspondence between periodic orbits in the dynamical systems
picture and the Hamiltonian billiard picture, and it is not excluded a priori that solutions are
forced to one, or several, of these. We emphasize again that all proposed measures of chaos
that take billiards as the starting point, see [46] and references therein, rely the conjectured
connection between the Mixmaster map and asymptotic type IX dynamics.

The above discussion shows that there are non-trivial assumptions and subtle phenomena that
are being glossed over in heuristic billiard ‘derivations.’ Nevertheless, we do believe that the
billiard procedure elegantly uncovers the main generic asymptotic features, and it might be
fruitful to attempt to combine the dynamical systems and Hamiltonian picture in order to
prove the Mixmaster conjectures. A tantalizing hint is that in the billiard picture πλ becomes
an asymptotic constant of the motion. Rewriting this dimensional constant of the motion in
terms of the dynamical systems variables yields

πλ = 2H
√

det g
[

−(τ − τ0) +
1
12 log

(
NΣ1

1 NΣ2

2 NΣ3

3

)]

, (45)

where log
√
det g = 3(τ − τ0) and τ0 is a constant.

9 Concluding remarks

The purpose of this paper is two-fold. On the one hand, we analyze the main known results on
the asymptotic dynamics of Bianchi type IX vacuum and orthogonal perfect fluid models to-
wards the initial singularity. The setting for our discussion is the Hubble-normalized dynamical
systems approach, since this is essentially the set-up which has led to the first rigorous state-
ments on Bianchi type IX asymptotics [26]. (We choose slightly different variables to emphasize
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the permutation symmetry that underlies the problem.) The main result (‘Mixmaster fact’) is
Theorem 6.1 which is due to Ringström [26]; for an alternative proof see [27]. This theorem, in
conjunction with an analysis of the Mixmaster attractor, leads to a number of further rigorous
results which we list as consequences [27].

On the other hand, we draw a clear line between rigorous results (‘facts’) and heuristic consid-
erations (‘beliefs’). We make explicit that the implications of Theorem 6.1 and its consequences
are rather limited, in particular, the rigorous results do not give any information on the details
of the oscillatory nature of Mixmaster asymptotics. The mathematical methods required to
obtain proofs about the actual asymptotic Mixmaster oscillations are yet to be developed; it is
likely that radically new ideas are needed. This paper provides the infrastructure that might
yield the basis for further developments. Our framework enables us to transform vague beliefs
to a number of specific conjectures that describe the expected ‘complete picture’ of Bianchi
type IX asymptotics. The arguments we give in their favor are based on an in-depth analysis
of the Mixmaster map and its stochastic aspects in combination with the dynamical systems
concept of shadowing.

We conclude with a few pertinent comments. First, as elaborated in [27] there exists no cor-
responding theorem to Theorem 6.1 in other oscillatory Bianchi models such as Bianchi type
VI−1/9 or VIII; this suggests that the situation in the general inhomogeneous case is even more
complicated than expected. Furthermore, numerical studies are incapable of shedding light on
the asymptotic limit. This is mainly due to the accumulation of inevitable random numerical
errors that make it a priori impossible to track a particular type IX orbit. Finally, although the
Hamiltonian methods are a formidable heuristic tool, so far this approach has not yielded any
proofs about asymptotics. Nevertheless, it might prove to be beneficial to explore the possible
synergies between dynamical systems and Hamiltonian methods.

In this paper and in [27, 30] we have encountered remarkable subtleties as regards the asymp-
totic dynamics of oscillatory singularities; this emphasizes the importance of a clear distinction
between facts and beliefs.
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