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Abstract: We present an improvement to the Classical Effective Theory approach to the

non-relativistic or Post-Newtonian approximation of General Relativity. The “potential

metric field” is decomposed through a temporal Kaluza-Klein ansatz into three NRG-

fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the

gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-

Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman

diagram providing a clear physical interpretation. Spin interactions are dominated by the

exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the

3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit

interaction are presented.
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1. Introduction

In 2004 Rothstein and Goldberger [1] suggested a novel approach to describe gravity (within

Einstein’s theory) for extended objects. Their method uses effective field theory and re-

places the extended object by a point particle, whose interactions (or effective world-line

action) encode all of its physical properties, such as reaction to tidal gravitational forces,

ordered by a certain natural order of relevancy. This method has the advantage of apply-

ing to General Relativity (GR) tools which are normally associated with Quantum Field

Theories including Feynman diagrams, dimensional regularization and effective actions. In

particular action methods are more efficient than studying the equations of motion.

Later that method was applied [2] to determine the thermodynamics of “caged black

holes”, namely small black holes in the presence of compact extra dimensions. Caged

black holes were previously analyzed by means of Matched Asymptotic Expansion (MAE)

[3, 4, 5, 6] due to their part in the black-hole black-string phase transition [7, 8, 9] associ-

ated with the black string instability of Gregory-Laflamme [10]. The effective field theory

approach, while formally identical to MAE, typically economizes the computation signifi-

cantly. Recently an improved Classical Effective Field Theory (ClEFT) approach to caged

black hole appeared [11].

The original main application of [1] was the non-relativistic motion of a binary sys-

tem also known as the Post-Newtonian (PN) approximation. In this paper we apply the

improvements of [11] to this case, and especially the stationary decomposition of fields.

In section 2 we start by recalling the evolution from Newtonian gravity to Einstein’s.

In section 3 we consider Non-Relativistic Gravity (NRG), expanding Einstein’s theory as

Newton’s plus corrections.1 We describe the proposal of [1] for an effective field theory

1The limit v ≪ c which is non-relativistic from the point of view of Einstein’s fully relativistic theory,

corresponds to relativistic corrections from the post-Newtonian perspective, and it is also known by this

latter name in the literature.
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of NRG and we proceed to suggest an improvement via transforming to NRG-fields. Fi-

nally in section 4 we discuss two applications: to the first post-Newtonian correction of the

two body problem, known as the Einstein-Infeld-Hoffmann (EIH) Lagrangian, and to spin

interactions.

Note added (v2). This published version includes several relatively minor improve-

ments. We detail the value of each individual diagrammatic contribution to the EIH action

(4.1). We added details about the diagrams for the spin interactions. Signs were changed

in the spin vertices (3.6,3.7) to reflect current conventions. Finally, references were added

and updated.

Version 3. The generalization of the EIH Lagrangian to an arbitrary dimension was

computed recently in [28] using the EFT approach introduced in [1]. We add a subsection

(4.1.1) where the computation is done through the use of our improved version of ClEFT.

Our result confirms all terms except for one which is to be corrected in a revision of [28].

2. From Newton to Einstein

Consider the motion of several masses whose sole interaction is through gravity. Without

loss of generality we will write the actions for two masses. The Newtonian equations of

motion [12] are concisely encoded by the action

S =

∫

dt

[

2
∑

a=1

ma

2
~̇r 2
a +

Gm1 m2

r

]

(2.1)

where ~r1, ~r2 are the locations of the two masses, and r := |~r| := |~r1 − ~r2|.
Introducing the gravitational field φ, the familiar equations of motion are encoded by

an action which replaces the direct gravitational potential in (2.1) by a coupling of the

masses to φ, together with a kinetic term for φ

S =

∫

dt

2
∑

a=1

[ma

2
~̇r 2
a − ma φ(~ra)

]

− 1

8πG

∫

dt d3x
(

~∇φ
)2

. (2.2)

In Einstein’s theory of gravity [13] the gravitational field is promoted to a space-time

metric gµν . The two body dynamics is given by the Einstein-Hilbert action together with

the relativistic action of point particles

S = − 1

16πG

∫ √−g d4xR[g] −
2

∑

a=1

ma

∫

dτa . (2.3)

where xµ(τ) is the particle’s trajectory, the proper time is defined by τ2 := gµν dxµ dxν , and

for clarity we used c = 1 units. Here the two body problem becomes a 4d field dynamics

which is fully non-linear, and no closed solution is known or believed to exist.

3. Non-Relativistic Gravity: Stationary decomposition

Consider the two body problem in General Relativity (GR) in the case where both velocities

are small with respect to the speed of light. This problem applies to a binary inspiral process
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at its early stages, which is a conjectured source for the widely sought gravitational waves.

The more traditional approach to the limit within GR is known as “the Post-Newtonian

(PN) approximation”.

In 2004 Goldberger and Rothstein [1] (see also [14] and a pedagogical introduction

in [15]) pioneered an Effective Field Theory approach to this problem. Denote a typical

separation between the masses by r, and a typical (small) velocity by v. Accordingly the

typical variation time for all fields is r/v. In space, however, there are two typical lengths:

r and r/v. Accordingly [1] decomposes the metric into

gµν = Hµν + ḡµν (3.1)

where Hµν has length scale r and since the time variation scale is r/v, Hµν is off-shell

and it is called the potential component, while ḡµν is of length scale r/v, it is on-shell and

represents the radiation component. This approach is referred to as “Non-Relativistic GR”

(NRGR) and can also be called “Non-Relativistic Gravity” (NRG).

In this paper we concentrate on the potential component Hµν . According to [1] its

propagator includes only the spatial frequencies and not the temporal frequencies, which

are subleading in the non-relativistic limit and hence treated as a perturbation. As H is

considered static for the purposes of the propagator, it is natural to transform the fields

through performing a temporal Kaluza-Klein dimensional reduction as in [11]

ds2 = e2φ(dt − Ai dxi)2 − e−2φ γij dxidxj . (3.2)

This relation defines a change of variables from gµν to (γij , Ai, φ), i, j = 1, 2, 3 which we

call “NRG-fields”.

The action, when translated into NRG-fields, and within the static approximation,

namely when all fields are t-independent becomes

S = − 1

16πG

∫

dt dx3√γ

[

R[γ] + 2 (∂φ)2 − 1

4
e4φF 2

]

, (3.3)

where (∂φ)2 = γij ∂iφ∂jφ = (~∇φ)2 + . . . and the term with the field strength F is conven-

tionally defined by F 2 = FijF
ij , Fij = ∂iAj − ∂jAi.

Let us discuss the physical meaning of the new fields φ,Ai, γij . Comparing the kinetic

term for φ in the action (3.3), with the Newtonian field action (2.2) we find it natural to

identify φ with the Newtonian potential (this is obvious when the 3-metric is flat γij = δij).

In this sense we are back to Newton (plus correction terms). The constant pre-factor 2 in

this kinetic term is related to the polarization dependence of the g propagator (the original

graviton): if we were to compute the Newtonian potential in the original action, prior to

dimensional reduction, this same factor would have emerged from the graviton propagator

in the standard Feynman gauge.

The vector potential Ai has an action which resembles the Maxwell action in 3d, and

accordingly it is natural to call F the gravito-magnetic field. This name originates in a

certain similarity between gravity and electro-magnetism. The strong similarity between

Newton’s gravitational force and Coulomb’s static electrical force, together with the obser-

vation that the transition from electro-statics to electro-dynamics requires to supplement
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the scalar electric potential by a vector potential, promoted already in the 19th century

suggestions to add a vector potential to the gravitational degrees of freedom. It is in fact

known how to obtain such a vector potential in the weak gravity/ Post-Newtonian ap-

proximation to GR, a point of view known as “Gravito-Electro-Magnetism (GEM)” (see

[16] and references within). We note the reversed sign of the kinetic term for F . This is

directly related to the fact that the spin-spin force in gravity has an opposite sign relative

to electro-dynamics, namely “north poles attract” [17].

Finally the 3-metric tensor γij comes with a standard Einstein-Hilbert action in 3d

(this is achieved through the Weyl rescaling factor in front of γij in the ansatz).

Once time-dependence is permitted, the action contains time derivatives. Of particular

interest are terms quadratic in the fields (including time derivatives) which are considered

as vertices rather than being part of the propagator as mentioned above. The only such

term which will be required here is

S ⊃ 1

16πG

∫

dt dx3 2φ̇2 (3.4)

rendering the φ2 sector Lorentz invariant. It is obtained after decoupling φ and A at the

quadratic level through the use of a Lorentz invariant gauge-fixing term. In addition we

note that the definition of φ,Ai, γij (3.2) is given here in the t-independent case, and when

time dependence is incorporated it is conceivable that it should be supplemented by terms

with time derivatives.

In the new variables (3.2) the point-particle action which appears in (2.3) becomes

Spp ≡ −m0

∫

dτ = −m0

∫

dt eφ
√

(1 − ~A · ~v)2 − e−4φ γij vi vj =

= −m0

∫

dt

(

1 − 1

2
v2 + φ − ~A · ~v +

3

2
φ v2 + . . .

)

(3.5)

where ~v ≡ ~̇r is the velocity vector. The change of variables has the advantage that the

propagator is diagonal with respect to the field φ which couples to the world-line at lowest

order (through the interaction (−)m0 φ ).

For a spinning object the lowest order interaction, found in [18] and translated to

NRG-fields in [11] reads (in the conventions of [11])

S ⊃ 1

4

∫

dt J ij
0 Fij =

1

2
~J · ~B (3.6)

where we denoted the angular momentum vector Ji = ǫijkJ
jk/2 and the gravito-magnetic

field strength Bi = ǫijkF
jk/2. Additional terms come with additional fields

S ⊃
∫

dt J ij
0

(

Fij φ − 1

2
Ai ∂jφ − 1

4
δγ k

j Fik

)

(3.7)

Yet other terms come with powers of v (by departing from stationarity).

4. Applications

Here we apply the new NRG-fields to obtain valuable insight into the Einstein-Infeld-

Hoffmann Lagrangian and into spin interactions within NRG.

– 4 –



4.1 Einstein-Infeld-Hoffmann

When passing from electro-statics to electro-dynamics we may integrate out the electro-

magnetic field and obtain an action for two interacting charged particles which depends

on their velocities as well as their locations thus including the effects of both electric and

magnetic forces. The analogous 1PN correction to the Newtonian gravitational action (2.1)

is called Einstein-Infeld-Hoffmann (EIH) [19]

LEIH =
1

8

2
∑

a=1

ma ~v4
a +

Gm1m2

2r

[

3(~v1
2 + ~v2

2) − 8~v1 · ~v2 + ~v1⊥ · ~v2⊥

]

− G2 m1m2(m1 + m2)

2 r2

(4.1)

where ~vi⊥ := ~vi − ~r (~vi · ~r)/r2. From an intuitive Newtonian perspective, this correction

represents the contribution to the gravitational interaction from both kinetic and potential

energies, as well as a correction accounting for the finite speed of light.

In [1] the calculation of this action, whose associated equations of motion required

some 36 pages of traditional GR methods in 1938, was reduced to the computation of 5

Feynman diagrams over less than 2 pages.2 After translation into NRG-fields we obtain

the Feynman diagrams shown in figure 1. The first pay-off is that the triple vertex diagram

(5(a) of [1]) gets eliminated, since there is no cubic vertex for φ in our action (3.3). Noting

that both figures 5(a) and 5(b) of [1] are proportional to the last term in the EIH action

(4.1), it is not surprising that they can be replaced by the single diagram in fig. 1(c). This

is especially fortunate since the eliminated diagram was the only one to use the awkward

3-graviton vertex and the only one including a loop. As a result of this economization, each

diagram in figure 1 is responsible for precisely one term in (4.1): the v4 term comes from

the kinetic part of (3.5); the next 3 terms all proportional to v2 come from the diagrams

in figure 1(b): the v2
1 + v2

2 term comes from the top diagram, the ~v1 · ~v2 term comes from

the middle diagram and the ~v1⊥ · ~v2⊥ comes from the bottom diagram where the vertex

(3.4) is used; finally the last term of (4.1) comes from the top diagram of figure 1(c).

Additional pay-off comes in terms of insight into the fields which propagate in the

diagram. Almost all of them are the gravitational potential φ. An exception is the second

from top diagram in fig. 1(b) , where the vector potential propagates and it is responsible

for the v1 v2 factor coming from both vertices.

4.1.1 In higher dimensions

Following the recent generalization of the EIH Lagrangian to an arbitrary space-time di-

mension d [28] using the EFT approach introduced in [1], we perform the computation

within the improved version of ClEFT discussed above, and compare the results.

The d-dimensional analogs of (3.2, 3.3, 3.4) and (3.5) are

ds2 = e2φ(dt − Ai dxi)2 − e−2φ/(d−3) γij dxidxj , (4.2)

2Obviously quite a number of works touched upon the EIH result since 1938 and we shall not attempt to

provide a comprehensive list. At the suggestion of a referee we would like to mention the “ADM Hamiltonian

approach” [20] which yielded the two body Hamiltonian up to 2PN through “tedious calculations”. For

field theoretic approaches which predate [1] see references therein.
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+ +

( )a ( )b ( )c

2v

Figure 1: Feynman diagrams contributing to the Newtonian two body Lagrangian (2.1) and the

1PN Einstein-Infeld-Hoffmann Lagrangian (4.1). Double lines represent the masses and do not

carry propagators. Solid lines represent φ, the Newtonian potential, dashed lines represent Ai, the

vector potential, while spring-like lines are non-discriminating notation for all the polarizations of

the original graviton g. A power of v near a vertex denotes that the vertex was expanded in v,

while a circled cross denoted v-dependent correction to the (static) propagator. A dot vertex for a

dashed line represent the ~v · ~A vertex of the world-line action (3.5). Diagram (a) is the Newtonian

potential. Each diagram in (b,c) matches a specific terms in the EIH Lagrangian (4.1) as described

in the text. Diagrams in (b) represent the v dependent EIH terms, while (c) are v-independent.

Note that the relatively complicated triple vertex diagram, fig. 5(a) of [1], disappeared.

S = − 1

16πG

∫

dt dd−1x
√

γ

[

R[γ] +
d − 2

d − 3
(∂φ)2 − 1

4
e2(d−2)φ/(d−3)F 2

]

(4.3)

S ⊃ 1

16πG

∫

dt dd−1x
d − 2

d − 3
φ̇2 . (4.4)

and

Spp ≡ −m0

∫

dτ = −m0

∫

dt eφ
√

(1 − ~A · ~v)2 − e−2(d−2)φ/(d−3) γij vi vj =

= −m0

∫

dt

(

1 − 1

2
v2 + φ − ~A · ~v +

d − 1

2(d − 3)
φ v2 + . . .

)

(4.5)

The Feynman diagrams contributing to the 1PN correction to the Newtonian gravita-

tional action are the same diagrams as in 4d, namely those shown in figure 1. The triple

vertex diagram gets eliminated as previously. As a result the d-dimensional generalization

– 6 –



of EIH Lagrangian is given by

LEIH =
1

8

2
∑

a=1

ma ~v 4
a

+
1

2
UN (r)

[

d − 1

(d − 3)
(~v1

2 + ~v2
2) − 4(d − 2)

d − 3
~v1 · ~v2 + (~v1 · ~v2 − (d − 3)(~v1 · r̂)(~v2 · r̂))

]

− m1 + m2

2m1m2
UN (r)2 (4.6)

where UN (r) is the Newtonian potential energy corresponding to figure 1(a)

UN (r) = 2
d − 3

d − 2

Γ(d−3
2 )

π(d−3)/2

Gm1m2

rd−3
=

8π

(d − 2)Ωd−2

Gm1m2

rd−3
, (4.7)

and Ωd−2 denotes the volume of the d − 2 dimensional sphere. The v4 term originates

from the correction to the kinetic energy and comes from the expansion of (4.5); the terms

on second line are of order v2 and come from the diagrams in figure 1(b): the first term

proportional to v2
1 +v2

2 comes from the top diagram, the second term proportional to ~v1 · ~v2

comes from the middle diagram while the last terms come from the bottom diagram; finally

the term on the third line comes from the top diagram of figure figure 1(c).

A comparison with [28] reveals that our computation confirms theirs for all diagrams

but one: the numerical coefficient in the term corresponding to figure 1(c) is different. We

are told that it will be corrected in a revision of [28].

4.2 Spin interactions

NRG-fields will significantly simplify the computation of spin interactions, and stress the

role of the gravito-magnetic field. Here we limit ourselves to a discussion of the relevant

diagrams in terms of NRG-fields, leaving for the future the detailed calculation which

involves issues such as the spin supplementary condition (the relation between J ij
0 and ~v)

whose current presentation in the literature leaves room for improved understanding, in

our opinion.

The leading spin-spin interaction

Sss = G

∫

dt
~J1 · ~J2 − 3( ~J1 · r̂)( ~J2 · r̂)

r3
(4.8)

where r̂ := ~r/r, is given by the Feynman diagram in figure 2(a) and is seen to consist of

an exchange of the gravito-magnetic field Ai at order 2PN.

The next to leading spin-spin interaction was computed in [21] (see also [22, 23, 24]) in

terms of 5 diagrams (fig. 1 and fig.2 of [21]) which are quite analogous to the 5 diagrams

for EIH in [1]. In terms of NRG-fields we obtain the diagrams of figure 3. The pay-off

is that the “voluminous” 3-graviton vertex in fig. 2(a) of [21] is replaced by the compact

φF 2 cubic vertex which can be read from the dimensionally reduced action (3.3) avoiding

the need for a symbolic manipulation program. Actually a similar diagram appeared in

the calculation of the vanishing renormalization of the angular momentum in [11]. Follow-

ing the appearance of the first arXiv version of this paper, the next to leading spin-spin
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+v v

2v

2v

v v

( )a

+

( )b ( )c

Figure 2: Diagrams representing spin-spin interactions. The cross vertex represents the ~J · ~B

vertex (3.6). Unlike the previous figure, here the spring-like line represents the 3-tensor γ. Other

notation remains the same. Diagram (a) represents the leading order at 2PN, in terms of the

gravito-magnetic field. The other diagrams represent the next to leading contributions at 3PN: (b)

represent v2 corrections, while (c) represent Gm/r corrections.

2v

2v

( )a

+ +v

( )b ( )c

Figure 3: Diagrams representing contributions to the spin-orbit interaction. Diagrams (a) repre-

sent the leading order at 1.5PN. The diagrams in (b) and (c) are a sample of those representing the

first correction at 2.5PN. The notation is the same as in the previous figures.

interaction was computed with NRG-fields [25] and was found to considerably simplify the

calculations.

The situation for the spin-orbit interaction seems to be quite similar. The leading

contribution is given now by the two diagrams in figure 3(a), which are related through

Galilei invariance. The next to leading terms at order 2.5PN were computed in [26] in

terms of equations of motion and in [27] in terms of a Hamiltonian. Here we limit ourselves

to pointing out some of the diagrams which would appear at this order in figures 3(b,c).
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