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Abstract

We show that the anomalous couplings of D-brane gauge and gravitational fields to

Ramond-Ramond tensor potentials can be deduced by a simple anomaly inflow argument

applied to intersecting D-branes and use this to determine the eight-form gravitational

coupling.
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1. Introduction

Consider a Weyl fermion on a 2n-dimensional manifold B equipped with Yang-Mills

and gravitational connections A, ω. If the fermions transform in a representation ρ of

a gauge group the anomalous variation of the action log Z(A, ω) is given by the famous

descent formula [1,2,3,4,5]

δΛ log Z(A, ω) = 2πi

∫

B

[

chρ(F )Â(R)

](1)

(1.1)

where

chρ(F ) = Trρ exp(
iF

2π
) = dim ρ + ch1(F) + ch2(F) + · · · (1.2)

(chj is a 2j-form) and

Â(R) = 1 −
p1

24
+

7p1(R)2 − 4p2(R)

5760
+ · · · = 1 + Â4(R) + Â8(R) + · · · (1.3)

is the A-roof genus 1. In (1.1) we have used the standard notation where for any closed

gauge invariant form I we have I − I0 = dI(0), where I0 is the leading constant term,

and the first order gauge variation is given by δI(0) = dI(1). The descent procedure is

ambigous, reflecting the ability to add local counterterms to the action. We will comment

later on this ambiguity in our context.

The formula (1.1) was given the following simple physical interpretation in [7]. Con-

sider a p-brane soliton in a gauge/gravity theory in an s+1-dimensional spacetime X . If p

is odd it can happen that the soliton carries chiral fermions transforming in an anomalous

representation of the gauge/gravity theory on the soliton with an anomaly determined by

(1.1) with B the p-brane world volume. In this case the effective theory on the soliton

violates charge conservation and (if p = 1 mod 4) energy-momentum conservation. The

apparent charge violation - in a selfconsistent theory - is accounted for by an inflow of

charge from the external nonanomalous theory. Equivalently, the gauge variation of the

low-energy effective action on the p-brane is cancelled by a bulk term whose gauge variation

is localized on the p-brane.

In this situation the bulk theory has a (p+1)-form coupling to B, i.e., there is a source

term in the equations of motion:

d ∗ Hp+2 = dH̃s−p−1 = δs−p(B → X) . (1.4)

1 Our conventions for curvatures and connections follows [6]. Thus, ch2 is negative for an ASD

connection on a Euclidean 4-fold.
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Here δs−p(B → X) is a delta-function supported Poincare dual form of degree s − p. The

nonanomalous theory on X has a corresponding anomalous coupling 2:

Ianom
bulk =

∫

X

H̃ ∧

[

chρ(F )Â(R)

](0)

. (1.5)

We then see that the anomalous variation of Ianom
bulk cancels the anomalous variation of the

effective action for the fermions on B after using the equation of motion (Bianchi identity)

(1.4)

δΛIanom
bulk =

∫

B

[

chρ(F )Â(R)

](1)

. (1.6)

Note that this construction requires a correlation between the charge carried by the

p-brane and the number of fermion zero modes. Put another way, given the fermion zero

mode structure one can use this argument to determine the quantum of charge carried by

the p-brane.

This simple argument can be used to deduce the presence of chiral fermion zero modes

on the worldvolume given the presence of the correct anomalous couplings, or it can be

used, as we do here, to deduce the presence of anomalous couplings given a knowledge of

the fermion zero mode structure.

This construction also gives a satisfying picture of the role played by consistent and

covariant anomalies [8]. The extension of this mechanism to theories with Green-Schwarz

anomaly cancellation was discused in [9] and the relation between this mechanism of anom-

aly cancellation and the Green-Schwarz mechanism was described in [10]. These couplings

have played a crucial role in the study of certain string dualities. For example both Type

IIA string theory and M theory have fivebranes with a chiral and anomalous spectrum [11].

Cancelling this anomaly on the fivebrane by a bulk inflow determines a coupling between

the potential coupling to the fivebrane and an 8-form polynomial in curvature [12], [13] as

can be verified in the IIA theory by a direct string calculation [14].

In this note we show how the same line of argument determines the anomalous cou-

plings of gauge brane fields with bulk fields and verifies Polchinski’s calculation of the

quantum of Ramond-Ramond charge carried by D-branes [15]. For N coincident D p-

branes on Bp we find the anomalous couplings

ICS =

∫

Bp

C ∧ TrN exp(
iF

2π
)

√

Â(R) (1.7)

2 In the literature such terms are sometimes called Chern-Simons couplings and sometimes

called WZ terms. We will simply adopt the name “anomalous couplings.”
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with
√

Â(R) = 1 +
1

2
Â4 + (

1

2
Â8 −

1

8
Â2

4) + · · · (1.8)

where F is the U(N) gauge field strength localized on the brane and R is the 10-dimensional

Riemann curvature 2-form pulled back to the brane worldvolume and the RR field strength

H = dC + · · · is a bispinor, equivalent to a sum of even (odd) forms for IIA (IIB) string

theory.

The gauge field terms in (1.7) were first found in [16] using the results of [17,18] and

have a number of applications to string duality [19,20]. The Â4 term was deduced in [21]

using a “duality chasing” argument and plays a crucial role in IIA-heterotic duality. We

will verify these terms below. The result for the degree eight gravitational coupling is new.

In (1.7) the Neveu-Schwarz potential, B, has been set to zero for convenience although

non-zero B can easily be included in the following.

2. Derivation

Consider two orthogonally intersecting type II Dirichlet p-branes of dimensions p1, p2,

multiplicities N1, N2, and filling worldvolumes B1,B2. We will assume they lie along coor-

dinate subspaces and intersect in an I p12-brane B12 = B1 ∩ B2 (We use the nomenclature

I-brane to indicate the brane occuring at the interesection of two D-branes. The I-brane

zero modes differ from those of a D-brane of the same dimension). Accordingly, we may

split up the spacetime coordinates into mutually disjoint sets {0, . . .9} = S12∐S1∐S2∐T .

String endpoints in B1 have Neumann (N) boundary conditions in S12 ∐ S1 and Dirichlet

(D) boundary conditions in S2∐T while enpoints in B2 have Neumann boundary conditions

in S12 ∐ S2 etc. The I-brane B12 lies along the coordinate plane defined by S12.

We are interested in the case when the I-brane possesses chiral, anomalous zero modes.

It is not hard to see that this happens when there are chiral unbroken supersymmetries on

the I-brane. Unbroken supersymmetries will exist if there exist SO(1, 9) MW spinors ǫ, ǫ̃

such that [22]:

ǫ = ΓS12ΓS1 ǫ̃

ǫ = ±ΓS12ΓS2 ǫ̃
(2.1)

Each equation in (2.1) has solutions iff p1, p2 are both even (odd) in the IIA (IIB) theory.

Moreover, each linearly independent solution of ǫ = ηΓ12ΓT ǫ (where η is a sign depending

on S12, S1, S2) gives a linearly independent supersymmetry. Solutions exist iff |S1|+ |S2| =
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0 mod 4. This may be proved by squaring the Γ-matrix or by noting that |S1| + |S2| is

invariant under T -duality transformations along all coordinate axes. Therefore we may

map one configuration to a D-instanton and apply the result of [22]. The supersymmetry

can only be chiral for p12 = 1 mod 4 and T = ∅. Up to T -duality there are exactly

two distinct cases with chiral supersymmetry. We can have two 5-branes intersecting on

a string: S12 = {0, 1}, S1 = {2, 3, 4, 5}, S2 = {6, 7, 8, 9} or we can have two 7-branes

intersecting on a 5-brane: S12 = {0, 1, 2, 3, 4, 5}, S1 = {6, 7}, S2 = {8, 9}.

The excitation spectrum of the brane theory is easily derived using the techniques

explained in [22]. There are four sectors with boundary conditions:

S12 S1 S2 T
σ = 0 N N D D
σ = π N N D D

S12 S1 S2 T
σ = 0 N D N D
σ = π N D N D

S12 S1 S2 T
σ = 0 N D N D
σ = π N N D D

S12 S1 S2 T
σ = 0 N N D D
σ = π N D N D

(2.2)

The first two sectors lead to U(Ni) SYM on Bi. The second two sectors provide super-

multiplets in the (N1, N̄2) and (N̄1, N2) of the gauge group U(N1) × U(N2). These fields,

corresponding to the two orientations of DN strings, give fields related by complex con-

jugation. Evidentally, these “mixed sector” fields only have zeromodes along B12. There

are always massless states in the Ramond sector and, by the GSO projection, they will

be chiral fermions if and only if p12 is odd (regardless of whether we work in IIA or IIB

theory). Since the states confined to B12 only come from open strings we never encounter

chiral bosons or gravitini. In short, the massless spectrum on the I-brane consists of one

Weyl fermion in the (N1, N̄2) and one in the (N̄1, N2).

In four or eight world-volume dimensions this spectrum is not chiral since complex

conjugation flips the chirality and there is thus no anomaly on the I-brane. In two or six

world-volume dimensions there is an anomaly determined by descent from the four-form

or eight-form part of

I = (ch(N̄1,N2)(F ) + ch(N1,N̄2)(F ))Â(R) ∼= 2chN1
(F1)chN2

(F2)Â(R) (2.3)

where we have used the fact that in two or six dimensions only even powers of the gauge

field strength appear so that traces in the N and N̄ are equal.
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Now let us compare the anomalous charge violation (2.3) on the I-brane with the

variation coming from the bulk terms on the two intersecting branes. We will follow

the convention of [15] with two parameters µ, α appearing in the normalization of the

RR kinetic terms and the coupling of the RR potential to D-branes, and we also take

4π2α′ = 1. We provisionally assume a coupling on each brane of the form

µ

∫

B

C ∧ Y (F, R) (2.4)

where Y (F, R) is a gauge invariant polynomial of mixed degree with Y (F, R) = N + · · ·.

Strictly speaking, the coupling (2.4) is not well-defined in the presence of branes since

the RR potentials C are not single valued or mutually local. This can be remedied by

integrating by parts all terms except for the top RR potential. Thus (2.4) is more properly

written as

µ

∫

B

NC + Y (0)H . (2.5)

Since H and dC differ in the presence of branes (H is gauge invariant) (2.5) in fact differs

from (2.4). We consider (2.5) as the correct expression of the brane anomalous coupling.

The equation of motion (Bianchi identity) for the RR field strength is: 3

dH =
µ

α

∑

branes

δ(Bp → M10)Y (F, R). (2.6)

The RR potential C thus has an anomalous variation in the presence of branes given by

δC = −
µ

α

∑

branes

δ(Bp → M10)Y
(1)(A, ω) (2.7)

where A is the brane gauge field.

We can now compute the variation of (2.5) for two intersecting branes using (2.6) and

(2.7) and find a variation on the I-brane of

−
µ2

α

∫

B12

[

Y (1)Y (1)(2) + Y (2)Y (1)(1) + N1Y
(1)(2) + N2Y

(1)(1)

]

(2.8)

where Y (i) indicates that it is a function of ω and the gauge fields on the ith brane. The

anomalous variation (2.8) follows from descent from the polynomial

−
µ2

2πα
2Y (1)Y (2). (2.9)

3 In order to avoid factors of
√

−1 we work in Minkowski space for IIB and Euclidean space

for IIA.
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Symmetry between the two branes fixes the local counterterm ambiguity to give:

(2Y (1)Y (2))(0) = Y (1)(0)Y (2) + Y (1)Y (0)(2) + N1Y
(0)(2) + N2Y

(0)(1). (2.10)

Comparing this to the anomaly on the I-brane (2.3) we see that the anomaly is cancelled

provided that

Y (F, R) = chN (F )

√

Â(R),

µ2/α = 2π,
(2.11)

thus verifying (1.7) as well as the quantum of RR charge found in [15].

Quantization of µ constrains, in particular, the nine-form potential whose source is

the eight-brane, and the Romans mass of type IIA ten-dimensional supergravity. However,

when this mass is non-zero there are extra terms in (2.11) that should be easy to incorporate

following [23] and [24]. Likewise it is easy to include a non-zero Neveu–Schwarz potential

which was set equal to zero in the above.

It is natural to wonder about the inflow mechanism for multiply intersecting branes.

However, since open strings have only two ends all charge violation is already accounted

for by considering pairs of branes.
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