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The Poynting vector is an invaluable tool for analysing electromagnetic problems. However, even a rigorous
stress-energy tensor approach can still leave us with the question: is it best defined as~E×~H or as~D×~B? Typical
electromagnetic treatments provide yet another perspective: they regard~E× ~B as the appropriate definition,
because~E and~B are taken to be the fundamental electromagnetic fields. The astute reader will even notice the
fourth possible combination of fields: i.e.~D× ~H. Faced with this diverse selection, we have decided to treat
each possible flux vector on its merits, deriving its associated energy continuity equation but applying minimal
restrictions to the allowed host media. We then discuss eachform, and how it represents the response of the
medium. Finally, we derive a propagation equation for each flux vector using a directional fields approach; a
useful result which enables further interpretation of eachflux and its interaction with the medium.
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I. INTRODUCTION

The correct definition of electromagnetic flux has long been con-
troversial, with the main competition being between the Abraham
~E× ~H [1, 2] and Minkowski~D×~B [3] forms. Pfeifer et al. [4] gave
an excellent discussion and historical review of the situation, with an
analysis based on energy-momentum tensors. In contrast, the Poynt-
ing theorem [5] and Poynting vector~S= ~E× ~H, in concert with the
electromagnetic energy density, lead us to an energy continuity equa-
tion. This equation is easily interpreted when consideringonly fields
in the vacuum or in nondispersive linear media [6]. Further alterna-
tives exist where the Poynting vector is generalized to include extra
terms and so generate other equally valid flux vectors and energy
densities [7–11]; however all these were based on~E× ~H.

However, outside the context of energy-momentum tensor defi-
nitions, but nevertheless common in electromagnetic usage, is the
~E×~B form [12, 13]. Curiously, comparison or contrast of the Abra-
ham/ Minkowski forms with~E×~B is hard to find – e.g. [4] does not
remark on the different origins of~E×~B at all. Further, even though
(e.g.) both~E× ~H and~E×~B appear in [14], this is outside the context
of magnetic media, so that~H ≡ ~B/µ0 in any case.

In this paper we address the question: if we construct electromag-
netic flux vectors (“Poynting vectors”) using the cross product of two
fields, what do the results look like, and what might we apply them
to? How should non-trivial polarization and magnetizationeffects be
interpreted? Also, does the alternative~D× ~H combination of field
vectors give interesting results? We allow for reasonably general
propagation media, with potentially dispersive and nonlinear proper-
ties affectingbothelectric and magnetic fields. Such complications
mean that we do not derive continuity equations with a perfectly bal-
anced flux and energy density, but they also include extra “residual”
terms: e.g. the standard~E×~B derivation produces a residual “work
done” term~E · ~J, where~J is the total current [13, 15]. We show that
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in each case the residuals contain either temporal or spatial deriva-
tives, and that they can be interpreted in terms of currents;we further
show how they affect the propagation of the flux vector.

Since typical response models for a propagation medium, espe-
cially in the nonlinear case, are likely to be non-covariant, we tie our
description to the medium rest frame without further loss ofgeneral-
ity. Although this is a restriction we might prefer to avoid,as done for
negative refraction by McCall [16], it usually has few consequences.
Further, since our interest is primarily on propagating fields in non-
trivial media, we leave consideration of interfaces, as well as surface
and volume integrals, for later work; likewise we do not address the
uses of the vector potential~A (or its dual [17, 18]) in this context.

The paper is organized as follows: in section II we introduce
Maxwell’s equations in the forms in which they are used in this pa-
per, in section III we briefly remark on continuity equations, and in
section IV we define our four electromagnetic flux vectors andtheir
associated continuity equations. In section V we show how the resid-
ual terms modify the underlying propagation of the flux vectors, and
we discuss all the results in section VI. Finally, in sectionVII we
present our conclusions.

Our presentation is pedagogic in that most of the discussionis at
the level of an undergraduate course in electromagnetism. The ma-
terial presented could form extension work at the point whenPoynt-
ing’s theorem is introduced. Those aspects concerning the propaga-
tion of the flux vector will be of most interest to specialists.

II. MAXWELL’S EQUATIONS

Maxwell’s equations for the electric field~E and magnetic field~B
in a medium are

∇ ·~E =
1
ε0

ρb+
1
ε0

ρ f =
1
ε0

ρ (1)

∇ ·~B= 0 (2)

∇×~E =−∂t~B (3)

∇×~B= µ0~Jb+µ0~Jf +µ0ε0∂t~E, (4)

where (ρb, ~Jb) and (ρ f , ~Jf ) are respectively the bound and free
(charge, current) densities. As an alternative, we can define an elec-
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tric polarization~P and magnetization~M, and

~Jb = ~JP+ ~JM = ∂t~P+∇×~M (5)

ρb =−∇ ·~P (6)

~D = ε0~E+~P (7)

~H =
1
µ0

~B− ~M. (8)

These allow us to rewrite Maxwell’s equations as

∇ ·~D = ρ f (9)

∇ ·~B= 0 (10)

∇×~E =−µ0∂t

(

~H + ~M
)

(11)

∇×~H = ~Jf +∂t~D = ~Jf +∂t

(

ε0~E+~P
)

. (12)

We can even rewrite eqn. (11) in the unconventional form

∇×~D =−ε0µ0∂t

(

~H + ~M
)

+∇×~P (13)

=−ε0µ0∂t ~H − ε0µ0~Kb, (14)

where we have defined

~Kb = ~KP+ ~KM =− 1
ε0µ0

∇×~P+∂t ~M, (15)

σb =−∇ ·~M. (16)

This ~Kb appears in the same place as a monopole current would if
such were allowed;σb is theboundmagnetic pole density. Note that
~Kb andσb are merely a way of representing the (local) material re-
sponse; we are not claiming that some process actually generates true
magnetic monopoles inside the material [14]2. Strictly speaking, this
is also true of the bound electric charge and its currents – they are a
mechanism used solely to represent the behaviour of the medium.
Further, and just as for the ficticious bound electric chargedensity,
the ficticious bound monopole density necessarily integrates to zero
over all space. Thus the material response could, in principle, be
re-represented as magnetic dipoles instead of monopoles. Note that
in using this effective monopole current, we are not going asfar as
Carpenter [19], who posits a complementary universe dominated by
magnetic monopoles and with no charge in order to clarify some con-
ceptual difficulties. If we were to include free magnetic monopoles
and free magnetic monopole currents, then the continuity equations
given below would exhibit a great deal more symmetry on exchange
of electric and magnetic effects.

At this point is is worth noting that the equations above repre-
sent the effect of electric polarization in one of two ways: either as
a current of bound charges (i.e.~JP = ∂t~P), or as a result of bound
monopole current loops (i.e.~KP = ∇×~P). They also represent the
effect of magnetization similarly: either as a current of bound mono-
ples (i.e. ~KM = ∂t ~M), or as a result of bound electric current loops
(i.e. ~JM = ∇×~M). Our aversion to free magnetic monopoles, and the
widespread acceptance of free electric charges may bias many read-
ers toward an electric current picture involving~JP and~JM – but since
these compriseboundcharges which are merely a convenientfiction,
there is no physical reason not to consider using bound monopoles,
or even a mix of the two, if we have sufficient reason. Indeed, if

2 Chapter 9, section 3

we (microscopically) model the magnetization as arising from some
field-induced or environmental distortion of a unit cell or molecule,
there is littlea priori reason not to model the magnetization as in-
duced magnetic dipoles – we need not take the extra step of assuming
the dipoles arise from some induced current loop.

III. CONTINUITY EQUATIONS

One of the major uses of flux (Poynting) vectors is in energy con-
tinuity equations, where we can examine the balance betweenflux
and local storage of the energy in a medium. In electromagnetism,
the flux vector that is usually chosen is the Abraham form of the
Poynting vector~E× ~H, although in some contexts the Minkowski
form ~D× ~B is chosen. Some authors prefer an~E× ~B form for the
Poynting vector (e.g. the recent [15]); but only in media with a mag-
netic response does this differ from the Abraham form in anything
but scaling.

Our starting point is just a cross-product of two selected fields,
one electric (~E or ~D) and one magnetic (~H or ~B). In concert with
Maxwell’s equations, such cross-products result in continuity equa-
tions of the form

∇ ·~S= ∂tU+δ . (17)

Here~S is an energy flux based on our chosen pair of field vectors.
The energy densityU is a function of the fields used to construct
the energy flux vector, and will in general contain all the terms that
can be expressed as a simple time derivative of some function. The
remaining termδ is some residual contribution. One way of avoiding
these residual terms is to use an energy flux vector of the Umovform,
i.e. as an energy density multiplied by a velocity vector, and not
the traditional cross-product of fields (see e.g. [20]). In the Umov
approach, any terms that are not part of the defined energy density
are attributed to the behaviour of the energy flux.

We might now assume that the fields and medium are in some
nearly steady state, where the time dependence ofU is either zero,
or its rapid oscillations average to zero; but that the residual terms
remain significant. Here, any change in energy flow~S is balanced by
the residual termsδ which would most simply be a rate of energy
removal or supply. However, it is perfectly possible for there to be
more complicated responses, with a dependence on either time or
space; e.g. an in-effect temporary storage of energy givingrise to an
oscilliatory behaviour. This is treated more rigorously insection V.

IV. FLUX VECTORS

Here we will use the different forms of Maxwell’s equations given
above to generate four different electromagnetic energy continu-
ity equations. The way we generate these continuity equations is
straightforward: we take our chosen flux vector as defined by across
product of an electric field and a magnetic field and take the diver-
gence, using the standard vector identity

∇ ·
(

~X×~Y
)

=−~X ·
(

∇×~Y
)

+~Y ·
(

∇×~X
)

. (18)

Then, by substituting in appropriate Maxwell’s equations into the
RHS to substitute for the curl terms, we generate continuityequations
of the general form given in eqn. (17). With this style of derivation,
there are some subtleties regarding the role of total and self-field con-
tributions, as has been discussed by Campoz and Jimènez [21].
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Lastly, if we so wish, we might also apply the modifications toour
chosen~SXY = ~X×~Y flux vector that have been applied to the (bare)
Abraham~E× ~H form [7–11] – e.g. adding terms of zero divergence
to~SXY.

A. Abraham ~E× ~H

This Abraham form of electromagnetic flux (Poynting) vectoris
the most widely used of all, consisting of the fields~E and~H. Insert-
ing ~E× ~H into the identity eq. (18), and using eqns. (3) and (12)
gives us a continuity equation, i.e.

∇ ·
(

~E× ~H
)

=−~E ·
(

∇×~H
)

+ ~H ·
(

∇×~E
)

(19)

=−~E ·∂t~D−~E · ~Jf − ~H ·∂t~B. (20)

This is in itself a widely used expression, but we proceed further to
get

∇ ·
(

~E× ~H
)

=−~E ·
(

~Jf + ε0∂t~E+∂t~P
)

− ~H ·µ0

(

∂t ~H +∂t ~M
)

(21)

=−1
2

∂t

(

ε0~E ·~E+µ0~H · ~H
)

−~E · ~Jf −~E ·∂t~P−µ0~H ·∂t ~M (22)

∇ ·~SEH =−∂tUEH −~E · ~Jf −~E ·∂t~P−µ0~H ·∂t ~M, (23)

where~SEH = ~E× ~H and 2UEH = ε0~E ·~E+µ0~H · ~H.
Because we chose the fields~E and ~H to generate our flux vec-

tor, we necessarily find thatboth of these local residual excitations
depend only on the temporal response of the medium (i.e. theyare
dispersive). This means we can replace∂t~P with the ordinary electric
current~JP, and∂t ~M with a monopole current contribution~KM:

∇ ·~SEH =−∂tUEH −~E · ~Jf −~E · ~JP−µ0~H · ~KM . (24)

We cannot somehow introduce~JM = ∇×~M here without making as-
sumptions:~JM because that relies on a pre-existing magnetization
that varies in space.

In optics, researchers work from a starting point that is primarily
concerned with dispersion; even if that dispersion has usually been
purely dielectric in origin. It is natural, therefore, for the optics com-
munity to prefer the~E× ~H form, because it treats material polariza-
tion and magnetization in a purely temporal manner – although we
see here that we are then forced to represent any magnetic response
by bound monopoles. In the introduction we suggested that the ~E
and~H fields could be regarded as the bare fields – and it is this optics
inspired temporally-centric view in which this is true. Another nice
feature of this choice is that the LHS is a purely spatial derivative
(being a divergence∇ ·), whereas on the RHS both the non-~Jf terms
(i.e. energy density term and residuals) are temporal derivatives.

Instantaneous responses

For the case of a medium with an instantaneous scalar response,
we have~P= χP~E, so that~E · ∂t~P≡ (∂t~E ·~P)/2, and so the polariza-
tion ~P can be incorporated into the energy density; the same can be

done for the magnetization~M. Hence we have

∇ ·
(

~E× ~H
)

=−1
2

∂t

[

ε0(1+χP)~E ·~E+µ0 (1+χM) ~H · ~H
]

−~E · ~Jf (25)

=−1
2

∂t

[

~E ·~D+ ~H ·~B
]

−~E · ~Jf . (26)

A consequence of this is that we can move any instantaneous linear
part of the medium response into the energy density, leavingonly
the dispersive contributions to remain as residual terms. In practical
terms, we can replaceε0 and µ0 in eqn. (23) and associated def-
initions by instantaneous-response parametersεi = ε0(1+ χP) and
µi = µ0(1+ χM), then only the non-instantaneous or nonlinear re-
sponses will remain in~P and~M.

B. Electric current: ~E×~B

This definition uses the electric field~E and the magnetic field~B
(see e.g. [12, 13]), and has been recently favoured by some authors
for use in complex media [15, 22–24]. However, one instance [23]
has suffered significant (although initially disputed) comment [25–
27] as to its validity in certain situations. Leaving aside this dispute,
we can still use the vector identity above to get a continuityequation;
this will still be physically valid, even if using it in complex media
may mislead the unwary.

To reiterate our earlier point – rather than attempting to justify a
particular choice of flux vector with respect to some external criteria,
we simply set up the definition(s), and determine what can be done
on that basis. The continuity equation for~E×~B is based on eqns. (3)
and (4), and is

∇ ·
(

~E×~B
)

=−~E ·
(

∇×~B
)

+~B·
(

∇×~E
)

(27)

=−~E ·
(

µ0~J+µ0ε0∂t~E
)

−~B·∂t~B (28)

=−µ0

2
∂t

(

ε0~E ·~E+
1
µ0

~B·~B
)

−µ0~E · ~J (29)

∇ ·~SEB =−∂tUEB−~E · ~J, (30)

where of course~J = ~Jf + ∂t~P+∇×~M; this is just the total current
density; alsoµ0~SEB = ~E×~B and 2UEB = ε0~E ·~E+~B·~B/µ0.

The simple representation of the residual terms above (i.e.as~E ·~J)
is presumably the underlying reason why~E×~B is preferred by many
authors: the material response is represented in terms of anelec-
tric current, and~E · ~J can be interpreted simply as the work done
on charges. However, from a more general point of view,~E×~B is
not the “correct” form of the Poynting vector, it just is one of many,
each of which may (or may not) be more convenient in a particular
situation. Note that here only the polarization residual excitation de-
pends on the temporal response (i.e. dispersion); the magnetic part
is purely spatial: both forms combine to generate a bound electric
current. This is obviously an advantage to those who prefer to think
only in terms of electric charges, whether real or ficticious; certainly
~E×~B is the obvious choice for anymicroscopicmodel involving real
charges (and no real monoples). However, the time response (disper-
sion) of the magnetization is no longer explicit, as it was for ~E× ~H,
but has become hidden inside the bound magnetization current ~JM .

In the previous subsection, we suggested that the~E and~H fields
could be regarded as the bare fields. This is a point of view often
taken in optics, and is consistent with the~E× ~H choice of Poynt-
ing vector. However, choosing~E×~B gives us an alternative electric
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charge (or current) centric view, in which case it is the~E and~B fields
which are regarded as the bare fields, indeed they are alreadywidely
regarded as the fundamental electromagnetic fields [12]3 and [13]4.

Instantaneous and pointlike responses

In the case of instantaneous polarization response and pointlike
magnetic response, we find that eqn. (27) can be directly reduced to
the same result as in eqn. (26), but scaled byµ0, since~H has been
replaced by~B in the flux vector. A consequence of this is that we
can move such components of the medium response into the energy
density, leaving only the dispersive polarization and spatial magnetic
parts as residual terms.

C. Magnetic current: ~D× ~H

This alternate, and little (or never) used definition comprises the
magnetic induction field~H and the displacement field~D as its basic
components. Note that the historical review of Buchwald [28] makes
some discouraging remarks as regards choosing~D and~H as funda-
mental fields at the end of chapter 2 (p.18), but makes no reference
to a flux generated from them. Alternatively, the projectionapproach
taken to pulse propagation by Kolesik et al. [29, 30] relied on the~D
and~H fields, although they did not consider media with a magnetic
response. The~D× ~H continuity equation is based on eqns. (12),
(14), and is

∇ ·
(

~D× ~H
)

=−~D ·
(

∇×~H
)

+ ~H ·
(

∇×~D
)

(31)

=−~D ·
(

~Jf +∂t~D
)

− ~H ·
(

ε0µ0∂t~H + ε0µ0∂t ~M−∇×~P
)

(32)

=− ε0

2
∂t

(

1
ε0

~D ·~D+µ0~H · ~H
)

−~D · ~Jf − ε0µ0~H ·∂t ~M+ ~H ·∇×~P (33)

∇ ·~SDH =−∂tUDH − 1
ε0

~D · ~Jf −µ0~H ·∂t ~M+
1
ε0

~H ·∇×~P,

(34)

whereε0~SDH = ~D× ~H and 2UDH = ~D · ~D/ε0 + µ0~H · ~H. Note that
only the magnetization residual excitation depends on the temporal
response (i.e. dispersion); the polarization part is purely spatial; as
a result the material response can be encoded solely by meansof the
bound monopole current~Kb defined in eqn. (15):

∇ ·~SDH =−∂tUDH − 1
ε0

~D · ~Jf −µ0~H · ~Kb, (35)

although the free current part still mimics the~E · ~J form.
This~D× ~H form, therefore, is the natural complement to the elec-

tric current based~E×~B form, because the material response in both
is completely encoded by means of a current: but one is a mag-
netic monople current~Kb, and one an ordinary electric current~Jb.
It is probably unsurprising, therefore, that~D× ~H has been neglected,

3 Chapter 27, section 3
4 Chapter 1, section 1

because it treats material polarization and magnetizationpurely as
monopole currents – even though these are fictitious monopoles,
bound in dipole pairs, introduced solely to represent (model) the ma-
terial response. Indeed, the description here is a purely continuum
one, and the use of a monopole current is not contingent on theexis-
tence of fundamental particles carrying magnetic charge.

The~E× ~H Poyting vector gave us a time-centric viewpoint, and
was compatible with regarding~E and~H as the bare fields, similarly
the electric-current centred viewpoint of~E×~B led us to insist that~E
and~B are the bare fields. Here we have seen that a monopole-current
centred viewpoint might encourage the idea that~D and~H are the bare
electromagnetic fields!

Pointlike and instantaneous responses

In the case of pointlike polarization response and instantaneous
magnetic response, we find that eqn. (31) can be directly reduced to
the same result as in eqn. (26), but scaled byε0. A consequence of
this is that we can move such components of the medium response
into the energy density, leaving only the dispersive magnetic and spa-
tial polarization parts as residual terms.

D. Minkowski ~D×~B

This uses the usual definition of the Minkowski Poynting vector,
which contains the displacement and magnetic fields~D and~B. Its
continuity equation is based on eqns. (4) and (14), along with eqns.
(5) and (7), and is

∇ ·
(

~D×~B
)

=−~D ·
(

∇×~B
)

+~B·
(

∇×~D
)

(36)

=−~D ·µ0

(

~Jf +∇×~M+∂t~D
)

+~B·
(

−ε0∂t~B+∇×~P
)

(37)

=−µ0ε0

2
∂t

(

1
ε0

~D ·~D+
1
µ0

~B·~B
)

−µ0~D ·
(

~Jf +∇×~M
)

+~B·∇×~P (38)

∇ ·~SDB =−∂tUDB− 1
ε0

~D ·
(

~Jf +∇×~M
)

+
1

ε0µ0
~B·∇×~P,

(39)

whereε0µ0~SDB = ~D×~B and 2UDB = ~D ·~D/ε0+~B·~B/µ0.
Note that neither residual excitation depends on the temporal re-

sponse (i.e. dispersion); the polarization and magnetization parts are
purely spatial. This means that we might replace∇×~M with the
electric current~JM , and∇×~P with the monopole current~KP/ε0µ0:

∇ ·~SDB =−∂tUDB−
1
ε0

~D ·
(

~Jf + ~JM

)

−~B · ~KP. (40)

This form, therefore, treats material polarization and magnetiza-
tion in a purely spatial manner; as such it promotes a picturewherein
it is the~D and~B fields which look like the bare fields.

Pointlike responses

In the case of pointlike magnetic and polarization responses, we
find that eqn. (36) can be directly reduced to the same result as in eqn.
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(26), but scaled byε0µ0, since~E and~H have been replaced by~D and
~B. A consequence of this is that we can move such components of the
medium response into the energy density, leaving simplifiedresidual
terms.

V. PROPAGATION OF FLUX

We can now show how these residual terms affect a propagating
wave, by deriving propagation equations for the Poynting vectors
themselves. To do this we use the concept of directional electromag-
netic fields [31–33], and as a result do not need to resort to restric-
tive approximations, such as e.g. assuming plane wave or harmonic
fields. Notably, we will not need to resort to ad-hoc time averaging of
fast-oscillating terms, as done in this kind of context by e.g. Markel
and others [24, 34]; neither do we need to introduce pulse envelopes,
co-moving frames, or make smoothness assumptions [35–38].

First we note that each of our electromagnetic continuity eqns.
(22), (29), (33), (38), has the general form

−c∇ ·
(

~X×~Y
)

=
1
2

∂t

[

~X ·~X+~Y ·~Y
]

+~R. (41)

Now assume transverse fields propagating in the direction given by a
unit vector~u, so that~X ·~u=~Y ·~u= 0. This means we can construct
directional fields [31, 32] by defining

~G± = ~X∓~u×~Y; (42)

where e.g. for plane polarized fields we might useXx =
√ε0Ex =

Dx/
√ε0 andYy =

√µ0Hy = By/
√µ0; however note that we need not

be restricted to scaling by the vacuum values ofε0 and µ0. Thus
since~X×~Y =~u(|~G+|2−|~G−|2)/4, we can write

−c∇ ·~u
[

∣

∣

∣

~G+
∣

∣

∣

2
−
∣

∣

∣

~G−
∣

∣

∣

2
]

=
1
4

∂t

[

∣

∣

∣

~G+
∣

∣

∣

2
+
∣

∣

∣

~G−
∣

∣

∣

2
]

+~R, (43)

which is easily rearranged to

[∂t −c∇ ·~u]
∣

∣

∣

~G+
∣

∣

∣

2
+[∂t +c∇ ·~u]

∣

∣

∣

~G−
∣

∣

∣

2
=−4~R. (44)

This contains two counter-propagating components, each evolved by
its own wave operator∂t ∓c∇ ·~u, with the residual terms remaining
on the RHS. If we are only interested in unidirectional propagation
we can set~G− = 0, and with~u ‖ ẑ, we get

[∂t −c∂z]
∣

∣

∣

~G+
∣

∣

∣

2
=−4~R. (45)

This is a simple first order wave equation for the intensity, and we can
easily see that loss-like residual terms~R will cause that intensity to
diminish; similarly those dependent on the past can cause dispersion.
However, in the same way as with standard directional fields [31] or
factorization approaches [39, 40], we require that the residual terms
only have a small effect over the scale of one wavelength in order for
~G− to stay negligible [41–43].

Note that a considerable amount of detail is hidden in the total
residual term~R; the various residual components are summarized in
table I for each combination of field vectors. If we wanted to solve
eqn. (45) (or perhaps even (44)), we would need to rewrite those
residual components in terms of~G±; the approximation~G− = 0
helps in this respect since it allows the field choice~X to be expressed
in terms of~Y. In any case, we can see that the components of~R will
act as source terms that drive and modify the otherwise simple linear
wave propagation.

TABLE I: Summary of flux vectors and their corresponding energy densities, along with the residual terms and their corresponding bound
currents.

Flux Energy density Temporal Spatial Currents
~E× ~H ε0~E ·~E+µ0~H · ~H ~E ·∂t~P+ ~H ·∂t ~M 0 ~JP, ~KM

~E×~B ε0~E ·~E+µ−1
0

~B·~B ~E ·∂t~P +~E ·∇×~M ~Jb

~D× ~H ε−1
0

~D ·~D+µ0~H · ~H ~H ·∂t ~M −~H ·∇×~P ~Kb
~D×~B ε−1

0
~D ·~D+µ−1

0
~B·~B 0 −~B·∇×~P+~D ·∇×~M ~KP, ~JM

VI. DISCUSSION

Here we compare and contrast the residual terms, which neither
appear in the form of an energy flux nor an energy density; theyare
summarized in table I. The Abraham~E× ~H form has residuals that
are purely dispersive, i.e. depend on the temporal derivatives of the
medium responses via~P and ~M. In contrast, the Minkowski~D× ~B
form has residuals that are purely spatial i.e. depend on thecurl of
the medium responses. The lesser used forms~E×~B and~D× ~H have
mixed residuals – the~E×~B residuals conveniently match the form of
the usual definition of the total current; whereas the~D× ~H residuals
match the less conventional picture of a material response described

by bound monopoles.
Let us now consider the effects of these residual terms in allfour

cases, where we assume that~Jf = 0.

For ~E × ~H, the continuity eqn. (22) shows that the flux vs en-
ergy density balance is modified by two residual terms, i.e. the local
dielectric excitation~E · ∂t~P, and local magnetic excitation~H · ∂t ~M.
Both of these are temporal, so if we choose to propagate forward in
space, which is a common choice when considering propagation in
optics (see e.g. [35, 39]), during each step forward in space, the fields
~E(t), ~H(t) will be modified according to their time derivatives.

For ~E × ~B, the continuity eqn. (29) shows that the flux vs en-
ergy density balance is modified by two residual terms, one temporal
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~E · ∂t~P, and one spatial~E ·∇×~M; in concert they represent the local
electrical work done on the charges comprising the current~J. Un-
like in the optics~E× ~H picture, here a propagation step forward in
space would be complicated by the spatial term; likewise thealter-
nate choice of a time propagation step would be complicated by the
temporal term.

For~D× ~H, the continuity eqn. (33) shows that the flux vs energy
density balance is modified by two residual terms, one spatial ~H ·
∇×~P, and one temporal−~H ·∂t ~M; in concert they represent the local
magnetic work done on the monople current~K. Just as for the~E×~B
picture, this leads to complicated methodology for propagation of the
fields.

For ~D×~B, the continuity eqn. (38) shows that the flux vs energy
density balance is modified by two residual terms, both spatial: −~B·
∇×~P, and~D ·∇×~M. Just as for the~E× ~H picture, both residuals
are of the same type (albiet spatial, not temporal), so that making the
“causal” choice [44] to propagate in time gives us the simplecase
where the fields~D(~r),~B(~r) will be modified according to their spatial
derivatives [45]. Despite this, propagation treatments that evolve the
fields forward in time (e.g. FDTD [46], or [30, 47]) generallytend to
persist with the use of~E and~H.

VII. CONCLUSION

We have summarized four distinct electromagnetic continuity
equations, each being derived from (and being consistent with)

Maxwell’s equations and the standard constitutive relations. Each
handles the electric or magnetic response of the medium in a slightly
different way, so the most appropriate form needs to be chosen ac-
cording to the system under study.

Not only have we presented the different interpretations motivated
by each of the Abraham (~E× ~H), Minkowski (~D×~B), and standard
electromagnetic (“electric current”)~E × ~B forms, but we also con-
sider the alternative (“magnetic current”)~D× ~H form as well. Fi-
nally, we showed how a directional fields approach [31] couldbe
used to generate a propagation equation for each flux vector.This
propagation equation makes a relatively small number of assump-
tions, and so not only enables further interpretation of each flux and
its interaction with the medium, but has potential applications in its
own right – even in materials with a complex response [48], and for
wideband or ultrafast optical pulses [49].
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