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ABSTRACT

Much of the dynamical structure of the Kuiper Belt can be explained if Neptune migrated over several AU, and/or
if Neptune was scattered to an eccentric orbit during planetary instability. An outstanding problem with the existing
formation models is that the distribution of orbital inclinations they predicted is narrower than the one inferred
from observations. Here we perform numerical simulations of Kuiper Belt formation starting from an initial state
with Neptune at < <a20 30N,0 AU and a dynamically cold outer disk extending from beyond aN,0 to 30 AU.
Neptune’s orbit is migrated into the disk on an e-folding timescale 1⩽ τ⩽ 100Myr. A small fraction (∼10−3) of
the disk planetesimals become implanted into the Kuiper belt in the simulations. By analyzing the orbital
distribution of the implanted bodies in different cases we find that the inclination constraint implies that t 10
Myr and a 25N,0 AU. The models with t < 10 Myr do not satisfy the inclination constraint, because there is not
enough time for various dynamical processes to raise inclinations. The slow migration of Neptune is consistent
with other Kuiper Belt constraints, and with recently developed models of planetary instability/migration.
Neptune’s eccentricity and inclination are never large in these models ( <e 0.1N , < i 2N ), as required to avoid
excessive orbital excitation in the >40 AU region, where the Cold Classicals presumably formed.
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1. BACKGROUND

The Kuiper Belt is a diverse population of trans-Neptunian
bodies (Figure 1). Based on dynamical considerations, the
Kuiper Belt Objects (KBOs) are classified into several groups:
the resonant populations, classical belt, scattered/scattering
disk, and detached objects (also known as the fossilized
scattered disk). See Gladman et al. (2008) for a formal
definition of these groups. The resonant populations are a
fascinating feature of the Kuiper Belt. They give the Kuiper
Belt an appearance of a bar code with individual bars centered
at the resonant orbital periods. While Pluto and Plutinos in the
3:2 resonance with Neptune (orbital period250 years) are the
largest and the best-characterized resonant group, nearly every
resonance hosts a large population of bodies. The resonant
bodies are long-lived, because they are phase-protected by the
resonance from close encounters with Neptune. The orbits of
the scattered/scattering disk objects, on the other hand, evolved
and keep evolving by close encounters with Neptune. These
objects tend to have long orbital periods and to be detected near
their orbital perihelion when the heliocentric distance is
∼30 AU. Their neighbors, the detached objects, have a slightly
larger perihelion distance than the scattered/scattering objects
and semimajor axes beyond the 2:1 resonance ( >a 47.8 AU).
The detached objects probably suffered close encounters with
Neptune in the past, were scattered to orbits with large
semimajor axes and eccentricities ( >e 0.24 defines them in
Gladman et al. 2008), but then they became “detached” from
Neptune when some process increased their perihelion distance
(or when Neptune’s orbit circularized; Levison et al. 2008).

The classical belt is a population of trans-Neptunian bodies
dynamically defined as having non-resonant orbits with
perihelion distances that are large enough to avoid close
encounters with Neptune. They can be thought of as being
related to the detached objects but having orbits with modest
orbital eccentricities ( <e 0.24 according to Gladman et al.

2008). Here we consider the main classical belt located
between the 3:2 and 2:1 resonances with Neptune
( < <a39.4 47.8 AU), because this is where most known
classical objects reside. It is useful to divide the main belt into
the dynamically “cold” and “hot” components, mainly because
the inclination distribution of the main belt orbits is bimodal
(Brown 2001), hinting at different dynamical origins for these
components. Here we adopt an approximate separation, with
Cold Classicals (CCs) being defined as having < i 5 and Hot
Classicals (HCs) as > i 5 . Note that this definition is
somewhat arbitrary, because the continuous inclination dis-
tribution near = i 5 indicates that mixing between the two
components must have happened (e.g., Morbidelli et al. 2008;
Volk & Malhotra 2011).
While the HCs share many similarities with other dynamical

classes of KBOs (e.g., scattered disk, Plutinos), the CCs have
several unique properties. Specifically, (1) the CCs have
distinctly red colors (e.g., Tegler & Romanishin 2000) that
may have resulted from space weathering of surface ices, such
as ammonia (Brown et al. 2011), that are stable beyond
∼35 AU. (2) A large fraction of the 100 km-class CCs are wide
binaries with nearly equal size components (Noll et al. 2008a,
2008b). (3) The albedos of the CCs are generally higher than
those of the HCs (Brucker et al. 2009). And finally, (4) the size
distribution of the CCs is markedly different from those of the
hot and scattered populations, in that it shows a very steep
slope at large sizes (e.g., Bernstein et al. 2004; Fraser
et al. 2014), and lacks very large objects (Levison & Stern
2001). The most straightforward interpretation of these
properties is that the CCs formed and/or dynamically
evolved by different processes than other trans-Neptunian
populations.
Following the pioneering work of Malhotra (1993, 1995),

studies of Kuiper Belt dynamics first considered the effects of
outward migration of Neptune that can explain the prominent
populations of KBOs in major resonances (Hahn &
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Malhotra 1999, 2005; Chiang & Jordan 2002; Chiang
et al. 2003; Gomes 2003; Levison & Morbidelli 2003;
Murray-Clay & Chiang 2005, 2006). With the advent of the
notion that the early solar system may have suffered a
dynamical instability (Thommes et al. 1999; Tsiganis
et al. 2005), the focus broadened, with the more recent theories
invoking a transient phase with an eccentric orbit of Neptune
(Levison et al. 2008; Morbidelli et al. 2008; Batygin et al.
2011; Wolff et al. 2012).

The emerging consensus is that the HCs, together with the
resonant, scattered, and detached populations, formed in a
massive planetesimal disk at 30 AU, and were dynamically
scattered onto their current orbits by migrating (and possibly
eccentric) Neptune, while the CCs formed at >40 AU and
survived Neptune’s early “wild days” relatively unharmed
(Batygin et al. 2011; Wolff et al. 2012). The main support
for this model comes from the unique properties of the CCs,
which would be difficult to explain if the HCs and CCs had
similar formation locations (and dynamical histories). For
example, the wide binaries observed among the CCs would

not survive scattering encounters with Neptune (Parker &
Kavelaars 2010). Moreover, if the CCs evolved from the
high-eccentricity Neptune-crossing orbits, this process
should produce a gradient in e with more orbits having
large e and fewer orbits having small e. The CCs do not
show such a trend. Instead, low eccentricities prevail in that
population.

2. THE INCLINATION PROBLEM

The inclination distribution of various populations in the
Kuiper Belt can be represented by =N i di( )

s-i i disin exp( 2 )i
2 2 , where si is a parameter (Brown 2001).

In the main belt, the inclination distribution is bimodal and
two components are needed: s  2i for the low-i CCs and
s = 8i −17° for the high-i HCs (Brown 2001; Kavelaars
et al. 2008, 2009). The low inclinations of CCs are in line with
the expectation that they formed from a dynamically cold disk
at >40 AU, and their orbits were never excited too much by
subsequent dynamical processes. The high inclinations of the
HCs, on the other hand, are more challenging to explain (see
below). Moreover, there is some evidence from high-latitude
surveys that s-i isin exp( 2 )i

2 2 may be somewhat inadequate,
because the drop-off at large values of i is probably steeper than
expected from this functional dependence (Petit et al. 2015).
For this reason, it is possible that =N i di( )

s- -i i i disin exp( ( ) )i0
2 2 with  i 50 may better represent

the underlying distribution.
The HC distribution with relatively high orbital inclinations

is shared among several other Kuiper Belt populations as well,
including Neptune Trojans (NTs), and the resonant and
scattered objects. Eight NTs are currently known. Four of
them have orbital inclinations < i 10 , and four have

< < i25 30 . This could mean that the distribution is bimodal,
but Parker (2015) showed that the bimodality of the underlying
inclination distribution cannot be demonstrated with confidence
from the existing data. If the distribution is parametrized by a
single term, s= -N i di i i di( ) sin exp( 2 )i

2 2 , the NTs are
inferred to have s > 11i with a 95% confidence (Parker 2015).
Plutinos in the 3:2 resonance with Neptune are well represented
by a single term with s  11i according to Gulbis et al.
(2010), or s  15i according to Kavelaars et al. (2008, p. 59)
and Gladman et al. (2012). Interestingly, the CC-like
component with low orbital inclinations is not found in the
Plutino population.
The wide inclination distribution of the HCs, NTs, Plutinos,

and other resonant populations poses an important constraint
on dynamical models of Kuiper Belt formation.1 It implies that
some dynamical process must have increased the inclinations
by 10°–15° on average, and by ;30° at least in some cases. For
example, the inclination constraint can be used to rule out a
model in which these populations arise from a dynamically
cold planetesimal disk at >30 AU, simply because the orbital
inclinations are not excited in this region during Neptune’s
migration (passing mean motion resonances do not affect
inclinations much). Hahn & Malhotra (2005) investigated this
issue in detail and found that starting with moderately excited
orbits of planetesimals (e.g., < i 10 ) does not resolve the
problem, because the final inclination distribution is still not

Figure 1. The orbital elements of KBOs observed in three or more oppositions.
Various dynamical classes are highlighted. The HCs with > i 5 and NTs are
denoted by larger dots, and the CCs are denoted by smaller dots. Note the wide
inclination distribution of the HCs in panel (b) with inclinations reaching
above 30 . The solid lines in panel (a) follow the borders of important mean
motion resonances. For the NTs, we show the approximate location of stable
librations from Nesvorný & Dones (2002). The low-inclination orbits with

< <a40 42 AU are unstable due to secular resonance overlap (n7 and n8;
Kněžević et al. 1991; Duncan et al. 1995).

1 Assuming the current configuration of planets, long-term orbital dynamics
in the Kuiper Belt region cannot explain the high inclinations of the KBOs
(Kuchner et al. 2002; Li et al. 2014).
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wide enough.2 The only way to make things work in the
context of the Hahn & Malhotra model would be to assume that
the inclinations were already high before Neptune’s migration,
but that seems unsatisfactory, because it is not clear how the
inclinations could have been excited beforehand. Lykawka &
Mukai (2008) considered dynamical effects of an additional
planet in the trans-Neptunian region. They found that this
putative planet could help to excite inclinations, but the
inclination distribution obtained in their model was not wide
enough to match observations well. It lacked orbits in the
classical belt with > i 15 , while these orbits are in fact
common.

Given the difficulties described above, various theoretical
models considered the formation of the HCs and resonant
populations from a massive planetesimal disk at <30 AU. The
outer edge of the massive disk is constrained to 30 AU by
Neptune’s present orbit (Gomes et al. 2004). The disk could
have been truncated, for example, by photoevaporation or a
close stellar encounter (e.g., Adams 2010; Kretke et al. 2012).
To reach >40 AU, planetesimals must be radially displaced.
Levison & Morbidelli (2003) considered a scenario in which
objects were pushed out by the 2:1 resonance with Neptune.
This could work only if Neptune was initially inside 19 AU,
such that the 2:1 resonance fell inside the massive disk’s outer
boundary at 30 AU. Gomes (2003), on the other hand,
suggested that bodies were first scattered to >40 AU by having
close encounters with Neptune, and became dynamically
decoupled from Neptune while Neptune was still migrating.
If so, the HCs and resonant populations would be close
relatives of the scattered disk objects. The exact nature of the
decoupling process for the HCs is uncertain (Gomes 2003;
Levison et al. 2008; Dawson & Murray-Clay 2012), but recent
work suggests that capture into mean motion resonances with
Neptune (2:1, 5:3, 7:4, etc.), and secular/Kozai cycles inside
the resonances may have played an important role (Brasil
et al. 2014b).

These results could help to resolve the inclination problem
discussed above, because the orbital inclinations can be excited
when bodies undergo a series of close encounters with Neptune
(Gomes 2003). In addition, inclinations are increased for orbits
that suffer Kozai cycles, because to decouple from Neptune, the
eccentricity must drop, and the inclination would therefore rise
(due to the anticorrelated behavior of e and i caused by the
Kozai cycles; Kozai 1962). It remains to be shown, however,
how these processes operated to affect the Kuiper Belt, and
how the early evolution of planetary orbits is constrained by the
dynamical structure of the Kuiper Belt.

As demonstrated in Figure 2, the inclination problem is not
resolved by simply postulating that much of the Kuiper Belt
has been implanted from <30 AU (e.g., see discussion in Petit
et al. 2011). Here we choose to illustrate the inclination
problem with Plutinos, because the 3:2 resonance population is
characterized much better than any other resonant population

(e.g., Gladman et al. 2012). Also, Plutinos do not show the
bimodal inclination distribution of the classical belt, so we do
not need to worry about the overlap of different groups. The
parameters of the numerical model from Figure 2 are similar to
those used in Levison et al. (2008). We used a fast migration
regime with an exponential e-folding timescale t = 1Myr (see
next section for our model description) to illustrate that such a
fast migration of Neptune leads to an implausible result. There
is simply not enough time in this case to substantially raise the
orbital inclinations.
Here we perform numerical simulations to investigate the

inclination problem in detail. Our method and constraints are
described in Sections 3 and 4, and the results are presented in
Section 5. We find that bodies starting with <a 30 AU can be
implanted into the Kuiper Belt by first being scattered by
Neptune to >30 AU, and then decoupling from Neptune by
various resonant effects while Neptune is still migrating (see
Section 5.2). We show that the inclination constraint implies a
prolonged phase during which Neptune slowly migrated (e-
folding migration timescale t 10 Myr) before reaching its
current orbit at a = 30.1 AU.3 The main effect of slow
migration is that orbits are allowed to decouple from Neptune
relatively late during the migration process. Consequently,
Neptune is given more time to act, via scattering encounters, on
the source population, thus increasing the orbital inclinations of
bodies before they are implanted into the Kuiper Belt. The
model with Neptune’s slow migration is also consistent with

Figure 2. The cumulative inclination distribution of Plutinos in the 3:2
resonance with Neptune. The distribution of 29 Plutinos detected by CFEPS
(dashed line, Petit et al. 2011) is compared to a model distribution (solid line).
The K–S test applied to these distributions shows that the likelihood that they
can be obtained from the same underlying distribution is 2 × 10−13. This rules
out the model. The model distribution is a result of a numerical simulation
where we considered Neptune’s migration into a dynamically cold disk
(s = 0.1e and s = 2i ) at <a 30 AU. See Section 3 for a description of the
model. Here we used =a 28N,0 AU, =e 0.1N,0 , and = ◦i 0. 67N,0 . The radial
migration and eccentricity damping were applied to Neptune’s orbit on an e-
folding timescale t = 1 Myr. To compare apples with apples, the CFEPS
simulator (see Section 4) was used to compute the detection statistics from the
population of bodies that survived in the 3:2 resonance at the end of the
simulation. Thus, both distributions shown in this plot include the observa-
tional bias of CFEPS. The inclination distribution obtained for larger values of
eN,0 (Levison et al. 2008 used =e 0.3N,0 ) is similar to the one shown here for

=e 0.1N,0 .

2 Hahn & Malhotra (2005) started with 104 particles at < <a20 80 AU, and
a a1 2 surface density profile. This means that they had 3000 particles in the
inner disk between 20 and 30 AU. With the 10−3−10−4 capture probability,
typical for the disk particles starting at 20–30 AU (see Section 5.4), the
expected number of particles implanted in the Kuiper Belt from the inner disk
in their simulations is 0.3–3. This shows that the statistics in Hahn & Malhotra
(2005) was not good enough to investigate capture from the disk at 20–30 AU.
Instead, their results were controlled by particles starting at>30 AU. Hahn &
Malhotra (2005) were aware of the previous work of Gomes (2003) and
correctly pointed out the possibility that a more successful model can be
constructed from a massive disk below 30 AU.

3 A correlation between the width of the inclination distribution and the
migration timescale/time of capture were previously reported by Malhotra
(1995) and Levison et al. (2008).
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other Kuiper Belt constraints (Section 5). Various implications
of this result are discussed in Section 6.

3. THE INTEGRATION METHOD

Our numerical integrations track the orbits of four planets
(Jupiter to Neptune) and a large number of test particles
representing the outer planetesimal disk. To set up an
integration, Jupiter, Saturn, and Uranus were placed on their
current orbits. The dependence of the results on the orbital
behavior of Jupiter, Saturn, and Uranus was found to be minor.
We determined this by comparing our nominal results with
fixed orbits to those obtained when these planets were forced to
radially migrate. Neptune was placed on an orbit with
semimajor axis aN,0, eccentricity eN,0, and inclination iN,0. To
cover the parameter space, we set =a 22N,0 , 24, 26, or 28 AU,

=e 0N,0 , 0.1, or 0.3, and = i 0 or 5°. We tested many
different combinations of these parameters to understand their
role in Kuiper Belt formation. The cases with =a 22N,0 AU or
24 AU, =e 0N,0 and = i 0 are a good proxy for the initial
conditions of Hahn & Malhotra (2005), who studied a long-
range migration of Neptune, and for the instability/migration
models developed in Nesvorný & Morbidelli (2012). The case
with =a 28N,0 AU and =e 0.3N,0 is similar to runs A, B, and
C in Levison et al. (2008), whose choice was motivated by the
strong planetary instability occurring in the Nice model
(Tsiganis et al. 2005; Morbidelli et al. 2007). The cases with

e 0.1N,0 were favored by Dawson & Murray-Clay (2012)
from the CC-related constraints.

The swift_rmvs4 code (Levison & Duncan 1994) was
used to follow the evolution of planets and disk particles. The
swift_rmvs4 code was modified to include fictitious forces
that mimic Neptune’s radial migration and damping. These
forces were parametrized by exponential e-folding timescales
ta, te, and ti, where ta controls the radial migration rate, and te
and ti control the damping rates of e and i. Here we set
t t t~ ~a e i t=( ), because such roughly comparable timescales
were suggested by previous work. Specifically, we used t = 1,
3, 10, 30, and 100Myr, where t = 1Myr corresponds to the
case considered by Levison et al. (2008), while t 10 Myr is
preferred from the instability simulations of Nesvorný &
Morbidelli (2012). By finetuning the migration parameters, the
final semimajor axis of Neptune was set to be within 0.05 AU
of its current mean =a 30.11N AU, and the orbital period ratio,
P PN U, where PN and PU are the orbital periods of Neptune and
Uranus, was adjusted to end up within 0.5% of its current value
( =P P 1.96N U ).

Each simulation included one million disk particles dis-
tributed from just outside Neptune’s initial orbit to 30 AU.
Their radial profile was set such that the disk surface density
S µ r1 , where r is the heliocentric distance. The large number
of disk particles was needed because the capture probability in
different parts of the Kuiper Belt is expected to be ∼10−3−10−4.
With 106 disk particles initially, this yields ∼100–1000
captured particles, and allows us to perform a detailed
comparison of the model results with observations (Section 4).
The disk particles were assumed to be massless such that their
gravity does not interfere with the migration/damping routines.
This means that the precession frequencies of planets are not
affected by the disk in our simulations, while in reality they
were. This is an important approximation, because the orbital
precession of Neptune during its high-eccentricity phase can

influence the degree of secular excitation of the CCs (Batygin
et al. 2011).
All simulations were run to 1 Gyr. The interesting cases were

extended to 4 Gyr with the standard swift_rmvs4 code
(i.e., without migration/damping in the 1–4 Gyr interval). We
performed 18 simulations in total. Three of these runs were
designed to test the reproducibility of the results. While the
results concerning the orbital distribution of bodies implanted
into the Kuiper Belt (Sections 5.1–5.3) were found to be
strictly reproducible, the efficiency of capture in the Kuiper
Belt can vary by a factor of a few depending on the behavior of
Neptune’s eccentricity during the simulation (see discussion in
Section 5.4).
An additional uncertain parameter concerns the dynamical

structure of the original planetesimal disk. It is typically
assumed that the disk was dynamically cold with orbital
eccentricities e 0.1 and orbital inclinations  i 10 . Some
dynamical excitation could have been supplied by scattering off
of Pluto-sized and larger objects that presumably formed in the
disk (Stern & Colwell 1997; Kenyon et al. 2008).4 The
magnitude of the initial excitation is uncertain, because it
depends on several unknown parameters (e.g., the number of
massive objects in the disk). Here we operate under the
assumption that the orbital inclinations of disk particles were
relatively small initially, and were excited during the main
stage of planetary instability/migration, when bodies were
implanted into the Kuiper Belt. This is a reasonable assump-
tion, given that the notion of planetary instability/migration was
developed, among other reasons, to explain the complex orbital
structure of the Kuiper Belt. It would thus seem unsatisfactory
to “resolve” the inclination problem discussed in Section 2 by
postulating that the inclinations were already large initially
(unless it is explained how that happened). The initial
eccentricities and initial inclinations of disk particles in our
standard simulations were distributed according to the Rayleigh
distribution with s = 0.05e and s = 2i , where σ is the usual
scale parameter of the Rayleigh distribution (the mean of the
Rayleigh distribution is equal to p s2 ). For completeness,
we also tested s = 0.1e and s = 0.2e , and s = 5i and s = 10i
in several cases.

4. CONSTRAINTS AND THE CANADA–FRANCE
ECLIPTIC PLANE SURVEY (CFEPS) DETECTION

SIMULATOR

The results of the simulations described in the previous
section were compared to observations. We paid special
attention to the inclination problem described in Section 2,
but also made sure that the best models identified here are
consistent with other Kuiper Belt constraints. Our primary
constraints were:

1. The capture efficiency and orbital distribution of HCs.
According to Fraser et al. (2014), the HCs contain a mass

M 0.01HC ME, where = ´M 6 10E
27 g is the Earth’s

mass. With =M 20disk ME, the capture probability of
HCs would therefore be = ´ -P 0.01 20 5 10HC

4.
This estimate is probably at least a factor of ∼2 uncertain,
because both MHC and Mdisk are somewhat uncertain. The
inclination distribution of HCs obtained in the model is

4 The escape velocity from Pluto is 1.2 km s−1, about 20% of the Keplerian
orbital speed at 25 AU. Therefore, eccentricities up to0.2 and inclinations up
to ;12° can be expected from a surface-grazing flyby near a Pluto-class object.
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required to be similar to the wide inclination distribution
inferred from observations. A detailed comparison is
done with the CFEPS detection simulator (see below).
The distribution of a and e follows a trend seen in
Figure 3, where larger values of a correspond to larger
values of e. This trend, which can be an important
diagnostic of the implantation mechanism, must be
reproduced in a successful model. Also, the eccentricities
of objects captured in the main belt must reach below
0.05, as they do in reality.

2. The CCs at < <a42 45 AU must survive and their
orbits cannot be excited too much. Dawson & Murray-
Clay (2012) suggested that the eccentricities of CCs were
not excited above 0.05 in the inner part of the main belt
( < <a42 43.5 AU) and above 0.1 in the outer part
( < <a43.5 45 AU), because there appears to be a
stable but unpopulated region above these limits.
Morbidelli et al. (2014) demonstrated, however, that
the 7:4 and 9:5 resonances could have depleted the region
in question if Neptune was on a somewhat eccentric orbit
( e 0.1N ), when it reached =a 28N AU, and migrated
slowly. Our results, discussed in Section 5, are in line
with these findings. We do not explicitly discuss the CCs
in the following text, because our main results were
obtained with ⩽e 0.1N . We checked that the CCs are not

excessively excited in this case, in agreement with
Dawson & Murray-Clay (2012); also see Wolff
et al. 2012.

3. The capture efficiency and orbital distribution of the
resonant objects. According to the CFEPS survey, there
are ∼3.5 as many HCs as Plutinos with absolute
magnitude <H 8 (diameter >D 150 km for 0.05
albedo) (Petit et al. 2011; Gladman et al. 2012; B.
Gladman 2015, private communication). This suggests a
capture probability into the 3:2 resonance of

´ -P 1.5 103:2
4 (estimate at least a factor of ∼2

uncertain). The orbits of Plutinos show moderate to high
inclinations, similar to those found for the HCs, and
eccentricities mainly in the 0.1–0.35 interval. The
populations in the 2:1 and 5:2 resonances with Neptune
are probably somewhat smaller (∼2–4 times) than
Plutinos (e.g., Gladman et al. 2014). The population of
NTs is much smaller (Alexandersen et al. 2014),
indicating a capture probability of the order of

~ -P 101:1
6. All resonant populations have a wide

inclination distribution (e.g., s > 11i for NTs;
Parker 2015).

4. The existence and orbits of the detached objects. The
detached objects have stable non-resonant orbits with
semimajor axes beyond Neptune’s 2:1 mean motion
resonance ( >a 47.8 AU) and perihelion distances up to
q 40 AU. These objects cannot be placed on their

orbits in the current configuration of the planetary orbits
and thus provide an important constraint on any
formation model. Levison et al. (2008) suggested that
the detached disk was created during a phase when
Neptune had a substantial orbital eccentricity ( ~e 0.3N )
and was capable of scattering objects up to q 40 AU.
Here we show that the detached disk can be obtained
even for e 0N , assuming that t 10 Myr (consistent
with the condition required from the inclination con-
straint). The dynamical mechanism responsible for the
formation of the detached disk (and HCs) is found to be a
three-step process related to the capture of scattered
bodies in migrating Neptune resonances (Section 5.2;
Gomes 2003; Gomes et al. 2005; Brasil et al. 2014a).

We used the CFEPS detection simulator (Kavelaars
et al. 2009) to compare the orbital distributions obtained in
our simulations with observations. CFEPS is one of the largest
Kuiper Belt surveys with published characterization (currently
169 objects; Petit et al. 2011). The simulator was developed by
the CFEPS team to aid the interpretation of their observations.
Given intrinsic orbital and magnitude distributions, the CFEPS
simulator returns a sample of objects that would have been
detected by the survey, accounting for flux biases, pointing
history, rate cuts, and object leakage (Kavelaars et al. 2009). In
the present work, we input our model populations in the
simulator to compute the detection statistics. We then compare
the orbital distribution of the detected objects with the actual
CFEPS detections using the Kolmogorov–Smirnov (K–S) test
(Press et al. 1992).
This is done as follows. The CFEPS simulator takes as an

input: (1) the orbital element distribution from our numerical
model, and (2) an assumed absolute magnitude (H) distribu-
tion. As for (1), the input orbital distribution was produced by a
short integration starting from the final model state of the
Kuiper Belt. The orbital elements of each object were recorded

Figure 3. The same as Figure 1 but without labeling of different populations.
This plot is useful for a visual comparison with the model results.
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at 100 year intervals during this integration until the total
number of recorded data points reached ;105. Each data point
was then treated as an independent observational target. We
rotated the reference system such that the orbital phase of
Neptune in each time frame corresponded to its ecliptic
coordinates at the epoch of CFEPS observations. This
procedure guaranteed that the sky positions of the objects in
Neptune’s resonances were correctly distributed relative to the
pointing direction of the CFEPS frames.

The magnitude distribution was taken from Fraser et al.
(2014). It was assumed to be described by a broken power law
with = a -N H dH dH( ) 10 H H( )1 0 for <H HB and

= a a a- + - -N H dH dH( ) 10 H H H H( ) ( )( )2 0 1 2 B 0 for >H HB,
where a1 and a2 are the power-law slopes for objects brighter
and fainter than the transition, or break magnitude HB, and H0

is a normalization constant. Fraser et al. (2014) found that
a = 0.91 , a = 0.22 , and =H 8B for the HCs. In the context of
a model where the HCs formed at<30 AU, and were implanted
into the Kuiper Belt by size-independent processes (our
integrations do not have any size-dependent component), the
HC magnitude distribution should be shared by all populations
that originated from <30 AU (Morbidelli et al. 2009b; Fraser
et al. 2014). We varied the parameters of the input magnitude
distribution to understand the sensitivity of the results to
various assumptions. We found that small variations of a1, a2,
and HB within the uncertainties given in Fraser et al. (2014)
have essentially no effect.

5. RESULTS

5.1. A Reference Case

We first discuss a reference simulation with slow migration
of Neptune (t = 30 Myr, =a 24N,0 AU, =e 0N,0 , =i 0N,0 ) to
illustrate that the results of this model match the orbital
structure of the Kuiper Belt, including the wide inclination
distribution of the HCs and resonant populations. Later, in
Section 5.3, we will explain how the results differ from the
reference case when various model parameters, such as τ and
aN,0, are varied.

5 Figure 4 shows the orbital distribution of the
model orbits obtained with =a 24N,0 AU and t = 30 Myr.
This figure can be compared to Figure 3, but note that some
caution needs to be exercised in this comparison, because
Figure 3 includes various observational biases, while Figure 4
does not. Also, the total number of points in the two plots is
different (known KBOs with good orbits in Figure 3 and a
fraction of the initial 106 disk particles in Figure 4).

The model results in Figure 4 show a remarkable similarity
to Figure 3. The orbital structure obtained in the model shows
all main components of the Kuiper Belt, including the resonant
populations, classical belt, scattered, and detached disks. The
resonances such as the 5:4, 4:3, 5:3, 7:4, and 5:2 are also
populated. The model orbits in the detached disk have
perihelion distances reaching toward q 40 AU, as they do
in reality. Note that the CCs are not shown in Figure 4, because
the model discussed here does not account for objects that
formed beyond 30 AU (see discussion of the CCs in Section 1
and the description of the model in Section 3).

The model distribution of orbital inclinations in Figure 4
covers the whole interval between 0° and 40 . This is a

notable result because the original disk orbits had s = 2i .
The orbital inclinations have therefore been significantly
excited during the implantation process. The dynamical
processes responsible for the implantation of objects in the
Kuiper Belt and their effects on the orbital inclination are
discussed in Section 5.2. Here we first more carefully
compare the model distribution with observations. To do
this, the model distribution shown in Figure 4 was passed
through the CFEPS detection simulator. Figure 5 shows how
the model detections compare with the actual CFEPS
detections. The comparison is done separately for the 3:2
resonance and HCs. The reason for this is that the
implantation process and stability properties can, and indeed
do, produce differences between these populations. We do
not show a similar comparison for other resonances, because
the number of actual CFEPS detections in the 1:1, 2:1, and
other resonances is very small (one to five objects detected)
and a rigorous comparison is therefore not possible at
this time.
Figure 5 shows that the orbital distribution of the detected

objects in the 3:2 resonance agrees with the distribution of the
CFEPS detections. The K–S test indicates that the model and
observed distributions shown in Figures 5(a) (eccentricity) and
5(b) (inclination) have 67% and 84% probabilities,

Figure 4. The orbital elements of bodies captured in the Kuiper Belt in a model
with =a 24N,0 AU and t = 30 Myr. The HCs and NTs are denoted by larger
symbols.

5 These results are strictly reproducible. There is enough information given in
Section 3 for anyone to repeat our simulations and confirm the results.
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respectively, of being derived from the same underlying
distribution. This is very good agreement.6 The model
distribution of inclinations obtained with t = 30 Myr is much
wider than the one obtained for t = 1Myr (Figure 2), and
matches observations very well. The eccentricity distributions
are also very similar. Most Plutinos have >e 0.15 (>80% of
detections). This characteristic is a consequence of the
implantation mechanism, where orbits are deposited into the
3:2 resonance from the scattered disk and retain large
eccentricities (see Section 5.2). Note that, with =a 24N,0
AU, the 3:2 resonance is initially outside the outer boundary of
the planetesimal disk. Plutinos are therefore not captured in our
model from the low-eccentricity orbits as in, for example, Hahn
& Malhotra (2005).

The agreement for the HCs is also good. The K–S test
applied to the eccentricity and inclination distributions shown
in Figures 5(c) and (d) gives 37% and 75% probabilities,
respectively. As for the inclination distribution of the HCs, our
model with t = 30 Myr and =a 24N,0 AU predicts that about

10% of the CFEPS detections should have > i 30 , while no
object was thus far detected by CFEPS with such a high
inclination. This is not a problem, however, because the CFEPS
detected only 10 HCs with > i 10 , and the statistical
constraints for > i 30 are very weak. For < i 10 , on the
other hand, there are concerns with contamination from the
CCs, which are not modeled here. The CCs should clearly have
the dominant contribution to the statistics for < i 5 . For
 < < i5 10 , the situation is unclear. There are 11 CFEPS
detections in this intermediate inclination range, which is
similar to the number of detections for > i 10 . In our model
with t = 30 Myr, however, these intermediate inclinations are
not populated as much (we get about half of the expected
detections). We believe this issue arises because our model
with smooth migration of Neptune and a fixed value of τ is a
somewhat inadequate approximation of the real evolution (see
discussion in Section 6).

5.2. The Implantation Mechanism

We examined the orbital histories of test particles in the
reference simulation and found that the implantation of bodies
from <30 AU into the Kuiper Belt is in general a three-step
process. The first two steps are common for the HCs and
resonant populations; the third step is what distinguishes them.
We first describe these steps and then illustrate them with a few
examples. Specifically:

Figure 5. The cumulative distribution of eccentricities (left) and inclinations (right) for Plutinos (upper) and HCs (lower). The dashed lines show the actual CFEPS
detections (29 Plutinos and 10 HCs with > i 10 ). The solid lines show the distributions of model bodies ( =a 24N,0 AU and t = 30 Myr) detected by the CFEPS
simulator. Both the observed and model distributions plotted here therefore contain the CFEPS observational bias. For the HCs, we compare the distributions for
> i 10 to avoid any potential contamination of the detection statistics from the CCs, which are not modeled here.

6 To be more precise, a K–S probability of 0.67 (or 0.84) means the
following. Assume that there was a single parent distribution for both the
model and the observations. In particular, the model was a random sample
containing, say, J entries, while the observations contained K entries. If we
were to generate two random representations of this parent population, one
with J entries and one with K, there would be a 67% (or 84%) chance that the
comparison between these random populations would be worse than what we
have in Figure 5(a) (or Figure 5(b)). This holds despite the fact that these new
distributions were directly derived from the parent. Therefore, the agreement
between our model and the observations is very good. Indeed, any comparison
with a K–S probability greater than ∼0.1 should be considered acceptable.
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Step 1: the disk planetesimals are scattered by Neptune from
<30 AU to >30 AU. Their distribution resembles that
of the scattered disk in that they populate the region
with >a 30 AU and q a t( )N , where a t( )N is the
semimajor axis of migrating Neptune. Here we
define the Intermediate Source Region or ISR as
the orbital region with ⩽q Q t( )N , where

= +Q t a e( ) (1 )N N N is Neptune’s aphelion dis-
tance, and < <a40 47 AU. Most bodies implanted
into the main belt evolved onto their present orbits
via the ISR.

Step 2: the scattered bodies evolve onto orbits with large
libration amplitudes in mean motion resonances.
The secular dynamics inside the mean motion
resonances is complex, including large-amplitude
Kozai, apsidal, and nodal cycles (e.g., Morbidelli
et al. 1995; Nesvorný & Roig 2000, 2001). These
effects can act to decrease the orbital eccentricity,
thus decoupling the orbit from Neptune, on a
characteristic timescale that is comparable to the
period of the secular oscillations (>1Myr).

Step 3: if Neptune were not migrating, the evolution
described in Step 2 would be reversible and bodies
would be released, sooner or later, back to the
scattered disk. With Neptune’s migration, however,
two additional alternatives can happen: (1) the orbit
can evolve to a smaller libration amplitude and
stabilize inside the resonance, or (2) it can be
released from the resonance with low eccentricity
and can end up on a stable, HC-like orbit with
>q 35 AU.

The three-step implantation mechanism described above was
originally proposed in Gomes (2003) and Gomes et al. (2005).
We will therefore call it the Gomes mechanism in the
following. The Gomes mechanism was previously shown to
work in several self-consistent simulations of the planetary
instability/migration, where the disk particles carried actual
mass (e.g., Gomes 2003). Because a relatively small number of
disk particles was used, however, the statistics was not
sufficient for a careful comparison with observations. Also,
Neptune’s migration was unrealistically grainy in their
simulations. Here we show that the Gomes mechanism works,
with lower efficiency, even if Neptune’s migration is smooth.

Figure 6 shows an example of a disk particle that was
captured on a high-inclination and low-eccentricity orbit in the
main belt. This case is a clear illustration of the three-step
Gomes mechanism described above. Initially, the particle starts
with a = 28.5 AU, e = 0.04, and = ◦i 3 . 5. It is scattered by
Neptune and evolves into the scattered disk, where it remains
until roughly t = 13Myr after the start of the simulation.
During this first stage, the eccentricity and inclination are
excited by encounters with Neptune. The orbit is then captured
in the 2:1 resonance and remains in the resonance until
t = 22Myr (see the libration of the resonant argument in panel
(f)). Once captured, it undergoes Kozai oscillations (see the
libration of the perihelion argument in panel (e)). The
eccentricity drops from 0.4 to 0.06 during this phase (13 to
22Myr), while the inclination further increases from 18 to 28 .
Finally, about 22Myr after the start of the simulation, the
particle is released from the 2:1 resonance (see panels (b) and
(f)) and lands on a main-belt orbit with a = 42.8 AU, e = 0.05
and = i 28 . This orbit is stable for 4 Gyr.

Figure 7 shows an example of a disk particle that was
captured on a high-inclination orbit in the 3:2 resonance. In this
case, the scattering phase lasted until about t = 65Myr. Both
the eccentricity and inclination were strongly excited during
this phase. At t 65 Myr, the orbit entered into the 3:2
resonance. The resonant libration amplitude was initially
variable but later evolved to become ;100° (panel (f)). The
3:2 resonant orbits with such amplitudes are stable (Nesvorný
& Roig 2000). Indeed, the orbit stayed in the 3:2 resonance for
the whole duration of our integration (4 Gyr). During the
capture into the 3:2 resonance the orbit started showing Kozai
cycles (ω started librating in panel (e) while e and i in panels
(c) and (d) exhibited signs of correlated oscillations). The
Kozai oscillations with (full) amplitude of about 80° remained
for the whole duration of the simulation. This case is
reminiscent of Pluto, whose orbit also has Kozai cycles, but
the final orbital inclination of this particle is considerably
higher ( = i 36 versus Pluto’s i 17 ).
Figure 8 is a case of Neptune Trojan. Akin to the example of

the captured Plutino discussed above, the scattering phase lasts
very long (62 Myr). The eccentricity is excited but the
inclination remains relatively low (<15°). Then, around
t = 50Myr, the orbit starts showing signs of the Kozai
resonance (panel (e)) and undergoes two brief periods during
which the 1:1 resonant angle librates (about t= 54Myr and
t= 60Myr). The inclination rises and eccentricity drops in an
anti-correlated pattern. The orbit is caught into the 1:1
resonance at t 62 Myr, eventually stabilizes with a very
small libration amplitude ( 30 ) around the leading Lagran-
gian point L4, and remains there for 4 Gyr.
The three examples discussed above were selected from

hundreds of similar cases to illustrate the Gomes mechanism
for capture in the main belt and resonances, and the high
inclinations that these orbits can reach, if the migration of
Neptune is slow and the scattering phase lasts for a long time.
We found that the 2:1 resonance was typically involved in
capture of orbits in the main belt, but resonances such as 7:4 or
9:5 also contributed. The orbits of the detached objects
produced in our simulations follow a similar pattern, but the
resonances responsible for raising their perihelia are different
(e.g., 5:2, 7:3, 3:1). Moreover, relatively strong resonances
such as the 3:1 are capable of producing the detached orbits
with very large perihelion distances, and some of these orbits
are reminiscent of that of 2004 XR190 (Buffy) (a = 57.7 AU,
q = 51.5 AU; Allen et al. 2006; see Figure 4; also
Gomes 2011).

5.3. The Inclination Distributions Obtained in Different Models

The results of our simulations show that the inclination
distribution of bodies implanted in the Kuiper belt depends
both on τ and aN,0, but the main effect is that on τ. This is
because the implantation of bodies in the Kuiper Belt happens
on a timescale comparable to τ. With short τ, the implantation
must be fast and Neptune does not have much time to raise the
inclinations of the scattered bodies. Consequently, the inclina-
tion distribution of the implanted bodies is narrow and
clustered toward ~i 0. If, on the other hand, τ is long, the
orbital inclinations of scattered objects can be substantially
excited by Neptune encounters before these bodies are
implanted into the Kuiper Belt. The inclination distribution of
the implanted bodies is thus wide in this case. Figures 2 and 5
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illustrated the dependence on τ for t = 1Myr and t = 30 Myr.
Figure 9 show this dependence for several additional cases.

The inclination distribution of Plutinos obtained with
different migration timescales is shown in Figure 9(a). The
results obtained for t < 10 Myr and any aN,0 are clearly a poor
fit, because they indicate s 5i , while Plutinos have s > 10i
(Kavelaars et al. 2008; Gulbis et al. 2010; Gladman
et al. 2012). The best-fit distribution for the case with
t = 10 Myr and =a 24N,0 AU is obtained for s  10i . When
this case is compared to the CFEPS via the CFEPS detection

simulator (Figure 10(b)), we find that it can be ruled out with
99.6% confidence. The results with t = 10 Myr and >a 24N,0
AU can be ruled out at even higher confidence levels, because
the inclination distributions of Plutinos obtained in those cases
are narrower than the one obtained with t = 10 Myr and

=a 24N,0 AU. We conclude that fast migration timescales with
t 10 Myr do not work for Plutinos.
Longer timescales produce better results. The case with

t = 30 Myr and =a 24N,0 AU was discussed in Section 5.1
and clearly matches observations very well (Figure 5).

Figure 6. An illustration of the Gomes implantation mechanism. The panels show the (a) path of a disk particle in the (a, e) projection; the two red dots show the
initial and final orbits, (b) semimajor axis, (c) eccentricity, (d) inclination, (e) perihelion argument ω, and (f) 2:1 resonant angle s l l v= - -22:1 N , where λ and
lN are the particle’s and Neptune’s mean longitudes, and ϖ is the particle’s perihelion longitude. After being scattered by Neptune and experiencing Kozai cycles
inside the 2:1 mean motion resonance, the disk particle ends up on a high-inclination orbit in the main belt.
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Interestingly, the inclination distribution obtained in the model
also depends on aN,0. For example, the inclination distributions
obtained with t = 30 Myr and =a 26N,0 AU or =a 28N,0 AU
are much narrower (s  10i ) than the one obtained with
t = 30 Myr and =a 24N,0 AU (s = 15i –20°). When com-
pared to the CFEPS detections, these cases can be ruled out at a
>99% confidence level. This happens because bodies tend to be
captured relatively early in these simulations when Neptune’s
migration rate is still substantial. In contrast, the long-range
migration with a 25N,0 AU offers more opportunity for

capture at late times, and therefore leads to a wider inclination
distribution that is more in line with observations. We therefore
conclude from the inclination distribution of Plutinos that
Neptune’s migration was slow ( t 30 Myr) and long range
( a 25N,0 AU).
An additional argument that favors a long migration

timescale comes from the eccentricity distribution of Plutinos.
With t ⩽ 10 Myr, the model eccentricity distribution is skewed
toward large values of e when compared to observations. This
can be demonstrated by comparing the model to the CFEPS

Figure 7. Capture of a disk particle on a stable, high-inclination orbit in the 3:2 resonance. The panels show the (a) path of the disk particle in the (a, e) projection; the
two red dots show the initial and final orbits, (b) semimajor axis, (c) eccentricity, (d) inclination, (e) perihelion argument ω, and (f) 3:2 resonant angle
s l l v= - -3 23:2 N .
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detections via the CFEPS detection simulator. For example, for
t = 10 Myr and =a 24N,0 AU (Figure 10(a)), the K–S test
applied to the eccentricity distributions of the detected Plutinos
gives only a 0.3% probability that the two distributions are the
same. This mismatch is a consequence of step 2 of the capture
process, discussed in Section 5.2, where there is not enough
time available with rapid migration to decrease eccentricities.
The eccentricities of captured objects therefore end up being
too large.

We now move to discussing the HC inclination distribution.
The HCs are deposited into the main belt ( < <a40 47 AU)
by mean motion resonances such as the 2:1 and 7:4. With

=a 28N,0 AU, these resonances are located in the main belt
with a = 44.4 AU and a = 40.7 AU, respectively. Therefore, in
this case, the implantation of HCs into the main belt begins
almost immediately after the start of a simulation (with a short
delay required for Neptune to scatter bodies to the ISR;
Section 5.2). The bodies implanted into the main belt during
the initial stages will have small orbital inclinations and will
skew the inclination distribution of HCs toward small values.
Thus, even if long migration timescales are used in this case
(e.g., t = 30 or 100Myr), the inclination distributions
obtained in the model end up being incorrect. See, for example,
the case with =a 28N,0 AU and t = 30 Myr in Figure 9(b).

Figure 8. Capture of a disk particle on a high-inclination Neptune Trojan orbit. The panels show the (a) path of the disk particle in the (a, e) projection; the two red
dots show the initial and final orbits, (b) semimajor axis, (c) eccentricity, (d) inclination, (e) perihelion argument ω, and (f) 1:1 resonant angle s l l= -1:1 N.
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This specific case indicates s = 6i –10°; it can be ruled out at a
99.8% confidence level from the CFEPS detections.

For =a 24N,0 AU, on the other hand, the 2:1 and 7:4
resonances are at 38.1 and 34.9 AU. These resonances
therefore cannot deposit bodies into the main belt during the
initial stages of migration (because they are not located in the
main belt during these initial stages). This means that the
orbital inclinations in the ISR region can be excited by
Neptune’s encounters before the main phase of the implanta-
tion starts. It starts when the 2:1 resonance moves beyond
;40 AU, or equivalently, when Neptune moves beyond

=a 40 2 25.22 3 AU. When exactly this happens depends
both on aN,0 and τ. For example, with =a 24N,0 AU and
t = 30 Myr, Neptune moves past 25.2 AU at t 10 Myr after
the start of migration. This delay is long enough to raise the
mean orbital inclination in the ISR region to ;10°. This
explains why the orbital inclinations of HCs are generally
higher when aN,0 is smaller.

Figure 10 shows the eccentricity (panel (c)) and inclination
(panel (d)) distributions of HCs obtained for =a 24N,0 AU
and t = 10 Myr. While the eccentricity distribution is

(slightly) discrepant when compared to the CFEPS detections,
the inclination distribution looks good (K–S probability 29%).
Unlike in Figure 5(d), panel (d) of Figure 10 compares the
inclination distributions all the way down to 5°. The CFEPS
inclination distribution is steep from 5° to 10°, and shallow
above 10°. This may suggest that the underlying distribution is
bimodal, perhaps because it resulted from capture at two
different stages of Neptune’s migration (see discussion in
Section 6). The model distribution obtained with =a 24N,0

AU and t = 10 Myr is a good proxy for the overall shape of
the CFEPS curve. We conclude from the inclination distribu-
tion of HCs that Neptune’s migration was slow ( t 10 Myr)
and long range ( a 25N,0 AU).
Figure 11(a) shows the mean orbital inclination of bodies in

the ISR as a function of time. The mean inclination of the ISR
population steadily increases with time. It is ;5° at 106 years,
;10° at 107 years, ;15° at 3 × 107 years, and ;20° at
108 years. This makes it obvious that bodies captured in the
main belt late will have, on average, larger orbital inclinations
than bodies captured early, and explains the trends discussed
above (see also Figure 12). Note, however, that the number of
bodies available in the ISR drops for >t 10 Myr
(Figure 11(b)). This is because bodies in the scattered disk
evolve to very long orbital periods, or move to short orbital
periods and are subsequently ejected from the solar system by
Jupiter. This means that the number of bodies available for
capture at very late times is relatively small. The very late
captures ( >t 108 years) are therefore not very important for
the overall statistics.
In summary, we find that the inclination distribution of the

HCs is a reflection of the inclination distribution in the ISR,
weighted by the number of bodies in the ISR, and time
integrated over the capture window that depends both on aN,0
and τ. In addition, the inclination distribution becomes
modified by the dynamical processes involved in step 2 of
the capture process (see Section 5.2). Our main conclusion
from the inclination constraint is that Neptune’s migration was
long-range ( a 25N,0 AU), and that the migration timescale
was long ( t 10 Myr). The case with =a 24N,0 AU and
t = 10 Myr works relatively well for the HCs, but it fails for
Plutinos (Figure 10). The case with =a 24N,0 AU and t = 30
Myr works for HCs with >i 10 deg and Plutinos. As we
discuss in Section 6, the somewhat different timescales
indicated by the HCs and Plutinos may be related to a two-
stage migration of Neptune, with faster migration (t  10
Myr) during the first stage and slower migration (t  30 Myr)
during the second.

5.4. The Implantation Efficiency

The efficiency of implantation of the disk bodies into the
Kuiper Belt is a product of partial efficiencies of the three steps
described in Section 5.2. During the first step, bodies from the
disk at <30 AU are scattered by Neptune to >30 AU, where
they can be captured into resonances. The number of scattered
bodies available for capture is a function of time
(Figure 11(b)). The capture efficiency in a resonance mainly
depends on the resonance strength (e.g., the strong 3:2
resonance is expected to capture more bodies) and Neptune’s
migration speed. In step 2, the resonant bodies can evolve to
orbits with lower eccentricities assuming there is enough time
for the secular cycles to act. This depends on how Neptune’s
migration timescale compares with the period of secular cycles

Figure 9. The dependence of the inclination distribution on τ and aN,0: (a)
Plutinos and (b) HCs. These distributions are the intrinsic distributions
obtained in the model (i.e., they do not include any observational bias). The
inclination distribution of Plutinos in panel (a) is sensitive to the assumed
migration timescale. The labels in panel (a) denote the distributions obtained
for different values of τ. In panel (b), we show the inclination distribution of
HCs obtained with t = 30 Myr. The two lines correspond to different starting
positions of Neptune ( =a 24N,0 –26 and 28 AU; the cases with =a 24N,0 and
26 AU were similar and were put together in this plot).
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in a specific resonance. Also, since the secular cycles depend
on Neptune’s eccentricity, this stage is affected by Neptune’s
eccentricity behavior during migration. Finally, whether a
resonant orbit is or is not released from a resonance during step
3, is mainly influenced by Neptune’s migration speed (more
bodies are released for higher speeds). Moreover, the
implantation of bodies into the main belt occurs only when
the relevant resonances are present in the < <a40 47 AU
region. For implantation via the 2:1 resonance, this requires
that Neptune is beyond 25 AU.

Some of the trends can be identified in our results. For
example, with =a 24N,0 AU, the efficiency of implantation

on a stable orbit in the 3:2 resonance is = ´ -P 9.2 103:2
4 for

t = 10 Myr, = ´ -P 5.3 103:2
4 for t = 30 Myr, and =P3:2

´ -2.0 10 4 for t = 100 Myr. Also, for t = 30 Myr,
= ´ -P 5.3 103:2

4 for =a 24N,0 AU, = ´ -P 1.2 103:2
3 for

=a 26N,0 AU, and = ´ -P 2.3 103:2
3 for =a 28N,0 AU. Thus,

a longer migration timescale leads to lower P3:2, and larger aN,0

leads to higher P3:2. The trends for the implantation in the
HC region are similar. For example, with t = 30 Myr,

= ´ -P 1.9 10HC
4 for =a 24N,0 AU, = ´ -P 2.1 10HC

4 for

=a 26N,0 AU, and =PHC ´ -1.1 10 3 for =a 28N,0 AU.7

In our preferred case ( =a 24N,0 AU and t = 10 or 30Myr),
the main-belt capture efficiency is P 2HC –4 × 10−4 for each
initial particle in the original disk. With =M 20disk ME, the
total mass of the hot population would therefore be

=M 0.004HC –0.008 ME. This is satisfactory when compared
to M 0.01HC ME estimated by Fraser et al. (2014), especially
because Fraser’s estimate has a considerable uncertainty. Also,
scaling from Jupiter Trojans, there should have been (3–

´4) 107 planetesimals with absolute magnitude <H 9 in the
original disk (Nesvorný et al. 2013). With P 2HC –4 × 10−4,
our model would predict ∼7000–14,000 HCs with <H 9,
while Adams et al. (2014) give 19,000 ± 5,000 from the Deep
Ecliptic Survey (DES) for the whole population of the classical
belt. This agreement is reasonable. (We note that the model
estimates discussed here were obtained with =e 0N,0 and
whenever eN stayed low during the migration. The cases with

=e 0.1N,0 and/or the ones where the mean motion resonances
between Uranus and Neptune acted to temporarily increase eN
during the migration tend to produce larger PHC, by a factor of a
few, but more simulations would need to be done to establish
this trend convincingly. The trend can be related to the
dependence of the secular cycles inside the mean motion
resonances on eN,0.)
A major problem is identified when we consider the capture

probability of the resonant objects. With ´ -P 5 103:2
4 for

the preferred case with =a 24N,0 AU and t = 30 Myr, we
would predict that the 3:2 resonance population should host
∼1.5–3 times more objects than the hot population in the main

Figure 10. The cumulative distributions of eccentricities (left) and inclinations (right) for Plutinos (upper) and HCs (lower). The dashed lines show the actual CFEPS
detections (29 Plutinos and 21 HCs with > i 5 ). The solid lines show the distributions of model bodies ( =a 24N,0 AU and t = 10 Myr) detected by the CFEPS
simulator. Both the observed and model distributions plotted here therefore contain the observational bias of CFEPS. For the HCs we compare the distributions for
> i 5 to avoid contamination of the detection statistics from the CCs, which are not modeled here.

7 P3:2 (or PHC) is the probability that an original disk object ends up on a
stable orbit in the 3:2 resonance (or in the HC region). We compute this
probability by dividing the number of 3:2 resonant (or HC) bodies at the end of
our simulations (4 Gyr) by the number of bodies in the original disk (106).
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belt, while according to the CFEPS survey there are ∼3.5 times
as many HCs as Plutinos (with absolute magnitude <H 8; B.
Gladman 2015, private communication). This would indicate

P P 0.33:2 HC (this estimate has a <50% formal uncertainty).
The 3:2 resonance is thus obviously overpopulated in our
simulations, roughly by a factor of 5–10. We call this the
resonance overpopulation problem. This problem was already
noted in many previous dynamical models of Kuiper Belt
formation (e.g., Hahn & Malhotra 2005; Levison et al. 2008;
Morbidelli et al. 2008).
There are several potential solutions to this problem. For

example, we performed several simulations with t = 100 Myr
and found that PHC tends to be higher, and P3:2 tends to be
lower, than in the cases with t = 30 Myr. For example, with

=a 26N,0 AU and t = 100 Myr (see Figure 13 for the orbital
distribution of bodies obtained in this simulation), we found
that ´ -P 9 10HC

4 and = ´ -P 1.6 103:2
4, thus indicating

P P 5.63:2 HC . Also, with =a 28N,0 AU and t = 100 Myr,

´ -P 3.2 10HC
3 and = ´ -P 1.4 103:2

3, so P P 2.33:2 HC .
These ratios are more similar to the value ~P P 3.53:2 HC
inferred from observations. The case with =a 26N,0 AU

Figure 11. The mean orbital inclination and number of objects in the
Intermediate Source Region (ISR), defined as < <a40 47 AU and <q QN.
The lower panel shows that it takes 106–107 years to build up the ISR
population, which then decays by about an order of magnitude over the next
108 years. The mean orbital inclination of the ISR population in panel (b)
steadily increases with time. The different lines in panels (a) and (b)
correspond to models with different τ and aN,0. The overall shape of the lines is
insensitive to these parameters.

Figure 12. The inclination distribution of objects in the IRS for t = 1, 10, 30,
100, and 300 Myr after the start of Neptune’s migration. The plot shows how
the orbital inclinations in the ISR increase as a result of encounters with
Neptune. Here we used =a 24N,0 AU and t = 30 Myr.

Figure 13. The orbital elements of bodies captured in the Kuiper Belt in a
model with =a 26N,0 AU and t = 100 Myr. The HCs and NTs are denoted by
larger symbols. Note that the number of bodies captured in the HC region is5
times larger than in Figure 4. The detached disk beyond 50 AU is also more
populated and extends to >q 40 AU. Both these results are a consequence of
the very slow migration of Neptune assumed in this simulation.
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produces a slightly wider inclination distribution than indicated
by observations, while the one with =a 26N,0 AU produces a
much narrower inclination distribution, thus suggesting the
possibility that an intermediate value of aN,0 26–27 AU
would give the correct result. We do not give much emphasis to
the cases with t = 100 Myr in this paper, because it is not clear
how these cases relate to our current models of the planetary
instability and migration (e.g., they may require a very low
mass of the planetesimal disk). New planetary instability
simulations, with a focus on very slow migration timescales,
will need to be performed. Another solution of the resonance
overpopulation problem, which will also require additional
modeling effort that goes beyond the scope of this paper, is
discussed in Section 6.

We point out that the overpopulation problem is not specific
to the 3:2 resonance. Instead, nearly all resonances are
overpopulated. On the other hand, when we compare, relative
to each other, the number of bodies captured in different
resonances in our simulations, we find that these populations
have roughly the right proportions. For example, for =a 24N,0

AU and t = 30 Myr, we find that P P 33:2 2:1 and
P P 73:2 2:1 . This is comparable to the resonance population

statistics in the 3:2, 2:1 and 5:2 resonances discussed in
Gladman et al. (2014) (even though the population in the 5:2
resonance was previously thought to be comparable to that in
the 3:2 resonance; Gladman et al. 2012).

Another notable result obtained from our simulations
concerns the NTs. Two problems were identified in previous
modeling of the NT capture: (1) the capture efficiency obtained
in the previous simulations was ∼2 orders of magnitude too
high, and (2) the inclination distribution was too narrow (e.g.,
Nesvorný & Vokrouhlický 2009; Parker 2015). Related to (1),
only five NTs were captured out of the original 106 disk
particles for =a 24N,0 AU and t = 30 Myr. This indicates the

capture probability ~ ´ -P 5 10NT
6 and is more in line with

observations (Alexandersen et al. 2014). As for (2), four of
five stable NTs produced by the reference run have inclinations
> 20 (Figure 4). This is encouraging, but better statistics will
be needed to compare things more carefully.

6. DISCUSSION AND CONCLUSIONS

To summarize, here we investigated various models of
Kuiper Belt formation by performing numerical integrations
starting from an initial state with Neptune at < <a20 30N,0
AU and a dynamically cold outer disk extending from beyond
aN,0 to 30 AU. Neptune’s orbit was migrated into the disk on an
e-folding timescale t⩽ ⩽1 100 Myr. By analyzing the
inclination distribution of bodies implanted into the Kuiper
Belt in different cases we found that the inclination constraint
implies that t 10 Myr (slow migration) and a 25N,0 AU
(long-range migration). The models with t < 10 Myr (fast
migration) did not satisfy the inclination constraint, because
there was not enough time for various dynamical processes to
raise inclinations. The main assumption of this work is that the
massive planetesimal disk (mass ∼20 ME) was truncated at
30 AU, as constrained by the present orbit of Neptune
(Gomes et al. 2004). If the massive disk continued beyond
30 AU, Neptune would migrate past 30 AU, and the distant
disk would leave behind a large population of bodies on low-
inclination orbits. This population would not look like the HCs,
because of the problem with orbital inclinations, or the CCs,
because the CCs only contain an estimated mass of 0.0003

ME (Fraser et al. 2014). The disk could have been truncated at
30AU by photoevaporation or a close stellar encounter
(Adams 2010). The low mass continuation of the disk beyond
30 AU, a presumed source of the CC population, is considered
in a companion paper (Nesvorný 2015).
The Gomes mechanism was identified here to have

fundamental importance for the origin of dynamical structures
in the Kuiper Belt. The basic requirement for the Gomes
mechanism to work is that the migration timescale τ is
comparable to, or longer than, the secular cycles inside the
mean motion resonances such as 2:1, 3:2, 7:3, etc. With

a 25N,0 AU, the 2:1 resonance is initially below 40 AU,
sweeps over the main belt location at < <a40 47 AU during
Neptune’s migration, and is responsible for the delivery of
most objects into the main belt. Since the secular cycles in the
2:1 resonance have a several-Myr period, τ needs to be at least
several Myr for this to work. If, instead, t ~ 1 Myr, objects can
still be captured in the main belt region, assuming that Neptune
had an orbit with substantial orbital eccentricity (Levison et al.
2008). In this case, orbits evolve from the scattered disk to the
main belt by normal secular cycles outside the mean motion
resonances (Dawson & Murray-Clay 2012). These cycles have
a shorter period and work for shorter migration timescales.
A major problem with the high-eccentricity ( >e 0.1N )

phase of Neptune is the opposing constraints from the hot and
cold populations, as explained in Dawson & Murray-Clay
(2012). Specifically, to preserve the CCs, the eccentricity of
Neptune cannot be large and/or must be damped fast (Batygin
et al. 2011; Wolff et al. 2012). To capture the HCs by the
normal secular cycles outside the mean motion resonances,
however, Neptune’s initial eccentricity must be relatively high
at some point during Neptune’s migration. While these two
constraints rule out most of parameter space, Dawson &
Murray-Clay (2012), working under the assumption that the
HCs were captured by the normal secular cycles, found
solutions that satisfy both. This niche of parameter space is

e 0.1N,0 and >a 28N,0 AU, essentially meaning that Nep-
tune’s migration would have to be short range.
The beauty of the Gomes mechanism is that it works even if

Neptune’s eccentricity was never large. This is because this
mechanism does not rely on the normal secular eccentricity
oscillations forced by eccentric Neptune on orbits outside the
mean motion resonances. Instead, it appears as a product of
large eccentricity oscillations due to the existence of large-
amplitude secular cycles inside the mean motion resonances,
akin to those first pointed out for the 3:1 Jupiter resonance in
the asteroid main belt (Wisdom 1982). Here we showed that
the Gomes mechanism is the dominant implantation mechan-
ism from<30 AU in a regime where eN is low. Therefore, the
argument of Dawson & Murray-Clay (2012) that >e 0.12N,0
is required to explain the HCs does not apply. On a related
note, Levison et al. (2008) suggested that the existence of the
detached disk with orbital perihelia extending to ;40 AU is a
consequence of an eccentric phase of Neptune, for Neptune to
be capable of scattering objects to q 40 AU, and used

=e 0.3N in their simulations. Here we showed that the Gomes
mechanism can produce the correct orbital architecture of the
detached disk even if eN stays low, assuming that the migration
timescale was long (e.g., Figures 4 and 13).
In this work, we stressed the importance of the inclination

distribution of the KBOs. This is because the inclination
distribution has been relatively well characterized from
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observations and can therefore be used to constrain models. We
showed that the Gomes mechanism is capable of producing the
observed wide inclination distribution from a dynamically cold
disk at <30 AU, assuming that Neptune’s migration was long-
range ( a 25N,0 AU) and slow ( t 10 Myr).8 The slow
migration of Neptune is also consistent with other Kuiper belt
constraints (e.g., Morbidelli et al. 2014) and with the present
obliquity of Saturn (e.g., Boué et al. 2009; Vokrouhlický &
Nesvorný 2015). Since the Gomes mechanism is insensitive to
Neptune’s eccentricity, the eccentricity could have been
negligible during Neptune’s migration in much the same way
as originally proposed by Malhotra (1993, 1995) and later used
by Hahn & Malhotra (1999, 2005) to model the origin of the
Kuiper Belt from a disk at >30 AU.

How does this fit with the present ideas about planetary
instability/migration occurring in the Nice model? The original
Nice model, as proposed in 2005 (Tsiganis et al. 2005), was
already shown to suffer from several fundamental limitations.
For example, Jupiter’s migration cannot be smooth, because
that would violate constraints from the terrestrial planets
(Brasser et al. 2009, 2013; Agnor & Lin 2012), asteroid belt
(Morbidelli et al. 2010), and the structure of secular modes in
Jupiter’s orbit (Morbidelli et al. 2009a). A potentially more
viable instability model, known as the jumping-Jupiter model,
was later developed to avoid these problems (e.g., Brasser et al.
2009; Morbidelli et al. 2009a). In the jumping-Jupiter model,
the four outer planets start in a compact resonant configuration
at ;5–12 AU and suffer a strong dynamical instability, during
which Jupiter has encounters with Uranus and/on Neptune, and
radially jumps. This turns out to resolve the problems of the
original Nice model mentioned above. The main problem of the
jumping-Jupiter model, as originally proposed, is that it is
difficult to stabilize and circularize the orbits of Uranus and
Neptune while matching other constraints as well (Nesvorný &
Morbidelli 2012).

Levison et al. (2008) investigated the consequences of the
strong instability model for the Kuiper Belt. They assumed that
Neptune was scattered to28 AU during the instability, where
its initially eccentric orbit ( e 0.3) was stabilized and
circularized by a massive planetesimal disk. Subsequently,
Neptune was assumed to migrate to 30 AU with t = 1Myr.
The results of our work rule out this model. This is because, as
we discussed above, the short-range migration of Neptune
( >a 25N,0 AU) into a dynamically cold disk at<30 AU would
lead to a narrow distribution of orbital inclinations, in
contradiction to observations. Moreover, to stabilize eccentric
Neptune at >25 AU, the disk would have to be massive (50
MEarth; Nesvorný & Morbidelli 2012; hereafter NM12), and
would produce fast migration of Neptune, thus leading to a
double contradiction, because both τ and aN,0 would be out of
the plausible range identified here (Neptune’s migration needs
to be slow, not fast, to explain the inclination distribution).

A new model of planetary instability has recently been
proposed (Nesvorný 2011; Batygin et al. 2012; NM12). The
model postulates that the early solar system had an extra ice
giant, which was ejected into interstellar space during the
instability. Figure 14 illustrates this possibility. In this model,
five outer planets start in a relatively relaxed configuration with

Neptune at 22 AU. The first thing that happens in the
simulation is that Neptune migrates into the outer disk located
at 24–30 AU. After Neptune reaches ;28 AU, the instability
happens, during which the extra ice giant has encounters with
all the other outer planets, and is subsequently ejected by
Jupiter. The main features of this model which are most
relevant for the Kuiper Belt are (1) Neptune’s eccentricity and
inclination are never large ( <e 0.1 and < i 2 ), (2) the initial
mass of the outer disk at <30 AU is relatively small (15–20
MEarth, NM12), therefore implying a slow migration of
Neptune, (3) Neptune’s semimajor axis discontinuously
changes (by ;0.2–0.5 AU) when Neptune is at 28 AU, as a
result of one or two very close encounters with the ejected ice
giant; the migration rate is slower after the jump than it was
during the previous migration stage, and (4) the ejected ice
giant briefly overlaps with the Kuiper Belt (Batygin
et al. 2012).
As for (4), we carefully looked into several instability cases

from NM12 and found that the relevant period during which
the ice giant’s orbit overlaps with the Kuiper Belt is too brief to
significantly affect the orbits in the Kuiper Belt. Batygin et al.
(2012), who found larger effects in about 50% of studied cases,
did so probably because their work covered a broad range of
possibilities, with some of their instability cases being some-
what too cataclysmic, in our opinion, to produce the solar
system as we know it now. Items (1) and (2) present the right
conditions for the Gomes mechanism to work and play a
dominant role over other implantation mechanisms.
Unlike in the idealized case studied here, Neptune’s

migration in Figure 14, and other cases reported in NM12,
happens in two stages. During the first stage, that is, before the
instability happens, Neptune migrates with t  10 Myr for

=M 20disk MEarth or t  20 Myr for =M 15disk MEarth (these
are the best exponential fits in the NM12 cases we looked at).
During the second stage, that is, after the instability, Neptune
migrates with t  30 Myr for =M 20disk MEarth or t  50
Myr for =M 15disk MEarth. These best-fit τ values are only
approximate, because the real migration is not exactly
exponential, and the effective τ is typically longer as time
progresses.
These timescales, and the long-range nature of Neptune’s

migration in NM12, agree quite nicely with the constraints on
Neptune’s migration derived from the Kuiper Belt in this work.
This shows that the NM12 instability model, which was
developed entirely from constraints unrelated to the Kuiper
Belt, may have some relevance for the early evolution of the
solar system.
The inclination distribution of the HCs may provide some

evidence for the two stage migration of Neptune in the NM12
model. This is because the HCs can be captured into the main
belt both during the first phase, when Neptune’s migration was
faster, and during the second phase, when the migration was
slower. The main implication of this is that the HCs can be a
composite of two populations captured at two different stages.
From the discussion in this paper, these populations are
expected to have different inclination distributions, thus
potentially explaining why the CFEPS detections of the HCs
show different slopes for  < < i5 10 (captures during the
first stage) and > i 10 (second stage). Also, Plutinos and
other resonant populations, captured during the first stage,
would be released when Neptune jumped during the NM12
instability. This could relieve the resonance overpopulation

8 Using an initially strongly excited disk is counterproductive, because this
has the consequence, as shown by our additional simulations of Neptune
migrating into a pre-heated disk, that the implantation efficiency in the main
belt drops by a factor of several.
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problem discussed in Section 5.4. The present resonant
populations would then have to be captured entirely during
the second phase, when the migration of Neptune was slower.
This could explain why we are seeing a preference in our
results for slightly longer τ values for Plutinos than for HCs
(e.g., the case with t = 10 Myr is works well for the HCs but
does not really work for Plutinos; Figure 10).

Much work has yet to be done to fully understand the
dynamics of the KBOs during Neptune’s migration, and how
the history of Neptune’s orbit is constrained by the dynamical
structure of the Kuiper Belt. Clearly, the idealized migration
model studied here is a major simplification. We used it to
highlight several interesting results that can be obtained within
the framework of this model. We now plan to increase the
realism of the model by considering the two-stage migration
from NM12. We believe that this will be a crucial step toward
resolving the resonance overpopulation problem that plagued
previous studies of Kuiper Belt formation. In a companion
paper, we study the implications of the NM12 instability model
for the cold classical belt.
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thank W. F. Bottke, L. Dones, B. Gladman, H. F. Levison, A.
Morbidelli, D. Vokrouhlický, and an anonymous reviewer for
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