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ON THE LOCATION OF THE SNOW LINE IN A PROTOPLANETARY DISK
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ABSTRACT

In a protoplanetary disk, the inner edge of the region where the temperature falls below the condensation tem-
perature of water is referred to as the snow line. Outside the snow line, water ice increases the surface density of
solids by a factor of 4. The mass of the fastest growing planetesimal (the isolation mass) scales as the surface density
to the 3/2 power. It is thought that ice-enhanced surface densities are required to make the cores of the gas giants
(Jupiter and Saturn) before the disk gas dissipates. Observations of our solar system’s asteroid belt suggest that the
snow line occurred near 2.7 AU. In this paper we revisit the theoretical determination of the snow line. In a minimum-
mass disk characterized by conventional opacities and a mass accretion rate of 10~8 M yr~!, the snow line lies at
1.6—1.8 AU, just past the orbit of Mars. The minimum-mass disk, with a mass of 0.02 M., has a lifetime of 2 million
years with the assumed accretion rate. Moving the snow line past 2.7 AU requires that we increase the disk opacity,
accretion rate, and/or disk mass by factors ranging up to an order of magnitude above our assumed baseline values.

Subject headings: planetary systems: formation — planetary systems: protoplanetary disks

1. INTRODUCTION

Most of the extrasolar planets that have been detected so far
are Jupiter-like gas giants. The most widely accepted theory for
the formation of gas giants is the core accretion model (e.g.,
Pollack et al. 1996; Rafikov 2004), which requires a core of 5—
15 M, (Guillot 2005). Some of the extrasolar planets seem to
have masses in this range (McArthur et al. 2004; Santos et al.
2004); they would serve as cores if there were gas for them to
accrete.

In the minimum-mass solar nebula (MMSN), the surface
density of refractory materials is about 0.64 g cm™2 at 5 AU.
The surface density of all condensable material increases to
2.7 g ecm~2 once the volatiles (ices) freeze out. The isolation
masses of the early planetary embryos, after they have swept
up all the material in their annular feeding zones in the parent
disk, are proportional to the 3/2 power of the surface density.
Taking the radial width of the feeding zone to be 2+v/3 Hill radii
(Gladman 1993), and using the ice-enhanced surface density,
we find that the isolation mass at Jupiter’s distance is about the
mass of the Earth. These embryos then merge to form the 5—
15 M, cores of the gas giants. It has been traditionally believed
that the surface density needs to be enhanced by ices to form the
cores of the giant planets before disk gas dissipates.

Ice forms at (and beyond) the snow line, where the temper-
ature falls below 145—-170 K, depending on the partial pressure
of nebular water vapor. Previous work (Hayashi 1981; Sasselov
& Lecar 2000) neglected the dependence of the sublimation tem-
perature on the gas density. Podolak & Zucker (2004) showed
that for the densities in the MMSN, the sublimation temperature
can be as low as 145 K.

In an earlier paper (Sasselov & Lecar 2000), we found that the
midplane temperature dropped to 170 K at a distance of 1.5 AU
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(the heliocentric distance of Mars) for a disk heated purely by
incident starlight (a “passive” disk that does not accrete). The
intent of that paper was to see if close-in extrasolar planets
could be formed in situ, i.e., if cores weighing a few Earth masses
could be formed at the distance of Mercury. We were content
to show that they could not. However, in our solar system, the
snow line was definitely outside the orbit of Mars. The evidence
points to about 2.7 AU, in the outer asteroid belt where icy
C-class asteroids abound (Abe et al. 2000; Morbidelli et al. 2000;
Rivkin et al. 2002). Comets are more water-rich by about a factor
of 4, while the inner asteroid belt is largely devoid of water.
While this evidence has been questioned and alternatives pro-
posed (e.g., Grimm & McSween 1993), it appears that the solar
nebula at the time of planetesimal formation was hotter than the
models discussed by Sasselov & Lecar (2000).

In this paper we revisit the issue of the snow line. We aim
to find out how global disk parameters (surface density, mass
accretion rate, opacity) affect the location where the snow tran-
sition occurs. We are concerned with large-scale disk proper-
ties and ignore here local perturbations due to protoplanets
discussed by Jang-Condell & Sasselov (2004). In § 2 we describe
our model for protoplanetary disks, and in § 3 we calculate
the temperature and density-dependent rates of ice sublima-
tion and condensation. We present our results and conclusions
in § 4.

2. THE MODEL

Our model is that of a disk that is heated not only by steady
mass accretion at rate M, but also by absorption of light emit-
ted by the central star. We work with a disk whose surface den-
sity is that of the MMSN: X(r) = So(r/AU) 32, where r is the
disk radius, X is the total surface density in gas and condens-
ables, and ¥y = 1700 g cm~2. We avoid explicitly accounting for
the usual dimensionless viscosity parameter « (e.g., Frank et al.
1992) by fixing the value of M and using our prescribed surface
density law. These choices define an « that is not constant with
radius.

To estimate the midplane temperature, we first neglect absorp-
tion of starlight and consider accretional heating only. The flux
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emitted by a disk that steadily accretes mass at rate M in a po-
tential due to a central star of mass M, and radius R, is (Lynden-
Bell & Pringle 1974)

Here T.g(r) is the effective temperature corresponding to the
total flux released by accretional heating. We use this effective
temperature to evaluate the midplane temperature of the disk
under the assumption that the accretional energy is transported
radiatively from the midplane to the surface. Treating radiative
diffusion in an optically thick medium, we can safely adopt the
Eddington approximation. We employ the Rosseland optical
depth,

TR :/ kp(r, z)dz,
0

to derive the midplane temperature due to accretional heating
only,

3 2
Trﬁid,acc = Z (TR + 3) Teéltf’ (2)

Here p(r, z) is the total mass density at radius  and vertical height
z above the midplane, and « is the Rosseland opacity. The latter
quantity is taken from D’Alessio et al. (2001); it is dominated by
particle condensates and is a function of temperature. It is un-
certain insofar as the properties of the condensates—their min-
eral composition, allotropic state, and distribution with size—are
uncertain. We make use of the dependence of the opacity on
whether the temperature is above (300 K) or below (100 K) ice
sublimation as given by D’Alessio et al. (2001), but point out
that the effects due to that dependence on the temperature struc-
ture of the disk are small and continuous, as discussed by Jang-
Condell & Sasselov (2004).

Next, we restore irradiation from the central star. The true
midplane temperature is

Tr‘r‘lid = Tnﬁid,acc + Tlértr (3)

For details on computing T}, see Sasselov & Lecar (2000) and
Jang-Condell & Sasselov (2004). For the central star, we used
model parameters for stars of 1 M, with ages of 1 and 2 Myr
from the models of Siess et al. (2000). The models are with a
mild overshoot parameter. We note that models of such young
stellar objects are notoriously uncertain. The span of ages that
we consider provides a wide range of stellar irradiation fluxes
and, we hope, covers some of this uncertainty.

3. THE ICE CONDENSATION/
SUBLIMATION TEMPERATURE

Although the commonly followed rule of thumb for comput-
ing the position of the snow line is simply to take it where the gas
temperature drops to 170 K (see, e.g., Sasselov & Lecar 2000),
this procedure is too naive. As pointed out by Podolak & Zucker
(2004), ice grains are unstable whenever the grain temperature
is high enough that the rate of water vapor sublimation from the
grain exceeds the rate of water vapor condensation from the
surrounding gas. The grain temperature, in turn, is determined
by balancing the relevant heating and cooling processes. For the
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case of ice grains in a gas disk, the grain is heated by the ambient
radiation field and by the release of latent heat when water vapor
condenses on the surface. The grain is cooled by reradiation and
by the removal of latent heat when ice sublimates. Gas and grains
also exchange energy by gas-grain collisions. The details of the
model have been presented elsewhere (Mekler & Podolak 1994;
Podolak & Mekler 1997). In all the calculations presented in this
section, we assume a fixed gas temperature, T, and calculate
the resulting grain temperature, Tgpin.

We consider grains in the optically thick midplane of the disk.
The radiative heating flux (energy absorbed per unit area of the
grain) is given by

Erag n = 77/ QabsB/l(Tgas) di, (4)
0
while the radiative cooling flux is given by

Erade = 71'/ QemisBZ(Tgrain) di. (5)
0

Here B,(T) is the Planck function, and Q,ps and Qepis are the
efficiency factors for absorption and emission of radiation. We
compute Qs = Oemis from Mie theory; values depend on grain
size and the complex refractive index of the constituent mate-
rial. In this model we considered mixtures of ice and some
generic absorbing material. The complex refractive index for
ice was taken from the work of Warren (1984). Since ice is es-
sentially transparent in the visible, where there is a peak in the
solar spectrum, the temperatures of pure ice grains exposed to
solar heating can be substantially different from grains with a
small admixture of material that absorbs in the visible. As
shown in Podolak & Mekler (1997), the results are not sensitive
to the details or amount of absorbing material, provided it pro-
duces some absorption in the visible. For grains in the mid-
plane, where the optical depth to the sun is high, the difference
in temperature between pure and dirty ice grains is negligible.

To compute the heating by water vapor condensation, we
assume that every molecule of water vapor that hits the grain
condenses and releases a latent heat of g. If nyy,0 is the number
density of water molecules and my,o is the mass of a water
molecule, the energy flux into the grain due to water conden-
sation is

nH,0 2kTgas

(6)

Econd, h — )
2q TMH,0

where k is Boltzmann’s constant. We assume that the number
density of water molecules never exceeds the number density
for saturation at the ambient gas temperature or the solar ratio
to H,, whichever is lower.

The evaporative cooling is given by

Pvap (Tgrain)

q )
iV, '/Tml-lekTgrain

where Py, is the vapor pressure over ice at the grain temperature.
Finally, the heat flux into the grain from the ambient gas is

given by
Eou = ny, ZkTgaS jk(Tgas - Tgrain) (8)
gas, h 2 Tmy, B ’

(7)

Eevap,c =
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Fic. 1.—Grain temperature as a function of gas density for gas temperatures
of 150 and 170 K. Solid curves are for 10 ym pure ice grains; dotted curves are
for 0.1 um pure ice grains.

where ny, is the number density of hydrogen molecules, and j
is the number of molecular degrees of freedom (j = 5 for H,).
We assume a value for Ty, equate the total heating and cool-
ing rates, and solve for Typ,in. The condition that the grain be
stable against evaporation is that Econg 5 > Eevap, c-

Figure 1 shows the temperature of pure ice grains as a func-
tion of the ambient gas density for Ty, = 150 and 170 K. The
solid curves are for grains of 10 pum radius, and the dashed
curves are for grains of 0.1 ym radius. While grains in the 150 K
gas are all at nearly the same temperature, independent of the
gas density, the grains in the 170 K gas have a temperature that
varies both with gas density and grain size. To explain these
results, we first note that if Econd s = Egas,n = 0, Tgrain < Tgas
due to Eeyapc. At Tgas = 170 K, the rise in Tyrin with gas density
reflects the increasing importance of Econd, s and Eggs 5. The rise
is even more pronounced for 0.1 um grains than for 10 pum
grains, since the optical absorption and emission efficiencies of
the former are lower than those of the latter by 2 orders of mag-
nitude; nonradiative terms are especially important for small
grains. At Ty, = 150 K, the vapor pressure of water is so low
that evaporative cooling and condensation heating are never
important compared to radiation heating and cooling, and Tgrain
equilibrates to Tiy.

Figure 2 shows the energy fluxes due to condensation and sublima-
tion for 0.1 um (dotted curve) and 10 um (dashed curve) ice grains
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Fic. 2.—Energy fluxes due to condensation (so/id line) and sublimation for
10 pm (dashed line) and for 0.1 pum (dotted line) pure ice grains. The back-
ground gas density is fixed at 510" g cm™.
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Fic. 3.—Gas temperature at the snow line as a function of gas density. The
result is insensitive to grain size and composition.

for a background gas density of pgs = 5x 107! g cm™>. Grains
become unstable when the temperature goes above 154 K. Note
how this sublimation temperature is insensitive to grain size.
For lower gas densities, the snow line appears at even lower
temperatures, dropping to 150 K at pgss = 2% 10~ and to 145K
at pgas = 1x 107" g cm~3. This is shown in Figure 3, where the
gas temperature at the snow line is shown for different values
of the gas density. These values are insensitive to the size of the
grain and its composition (e.g., pure water ice or ice with an ad-
mixture of some other absorber). In fact, at the snow line, where
the condensation heating of a grain is almost exactly balanced
by the evaporative cooling, a much simpler model is possible if
the optical depth to the star is high. In this case, the radiative
heating and radiative cooling of the grain also balance, and the
temperature is given simply by the condition that the saturation
vapor pressure equals the local partial pressure of the water
vapor. For computing the snow-line temperature in the optically
thick midplane, the difference between this simple model and
the detailed model is too small to be discernible in the figure.

4. RESULTS AND CONCLUSIONS

By adding a modest amount of accretion, 1078 M, yr~! ~
1073 My yr~!, to our standard model of the MMSN at age
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Fic. 4—Midplane temperatures for disks with masses of 0.1, 1, and 10 times
the MMSN, and the snow-line locations indicated for each of them (solid lines).
The disks have a steady M = 10~ My, yr~!, (r) o< 732, and their central
stars are 1 Myr old. Also shown is a MMSN disk model in which the opacity has
been boosted fivefold and M = 4x10~% M, yr~' (dotted line). The tempera-
ture gradient becomes shallow where the snow transition occurs, because vis-
cous and irradiation heating exchange dominance at those radii for disk models
considered here.



1118

LECAR ET AL.

TABLE 1
SNow-LINE LocaTions AND Disk MIDPLANE TEMPERATURES AT 1 Myr AGE FOR FOUR MAss ACCRETION RATES

0.1 x MMSN T MMSN T MMSN (high-«) T 10 x MMSN T

M r(AU) (K) r(AU) (K) r(AU) (K) r(AU) (K)
1x1078 e, 1.6 151 1.7 174 2.20 172 2.1 185
2% 1078, 1.8 150 2.0 172 2.55 170 25 172
451078, 2.0 150 23 170 3.00 167 3.1 168
8x 1078 ..., 22 149 2.7 166 3.45 162 3.5 174

Note.—High-x stands for a fivefold opacity increase.

1 Myr, we move the snow transition outward to 1.6—1.8 AU,
beyond the orbit of Mars, as can be seen in Figure 4. Obser-
vations suggest, however, that the snow line in our solar sys-
tem was located even farther out, near the outer asteroid belt at
2.7 AU, where C-class asteroids contain some water, albeit a
factor of 4 less than comets at 5 AU (see § 1). In Table 1, we
document the ways in which we can further increase disk mid-
plane temperatures so as to push the snow line outward.

We can increase the temperature of the disk by increasing the
accretion rate, but the disk temperature varies only as the fourth
root of M, while the lifetime of the disk varies as 1/M. In other
words, increasing the temperature by 10% comes at the cost of
decreasing the lifetime of the disk by 40%. The mass of the
MMSN is about 2% of a solar mass. Therefore, the lifetime
of the MMSN disk with an accretion rate of 1078 M, yr~! is
taisk = Mgig/M = 0.02 M/1078 My yr—' = 2x10° yr.

Increasing the surface density of the disk is another possi-
bility, although more problematic. The optical depth increases
linearly with the surface density, but the midplane temperature
scales only as the fourth root of the optical depth. And higher
densities are accompanied by higher pressures, which demand
higher sublimation temperatures. For a fixed accretion rate
(10~% M., yr™1), varying the disk surface density from 0.1 to
10 times that of the MMSN moves the snow line from 1.6 to

only 2.1 AU (see Fig. 4). Also, one gains only slightly from
using a flatter density profile (say ¥ o #~1). It is worth noting
that Kuchner (2004) derived a oc~2 disk for the minimum-
mass extrasolar nebula.

Perhaps the most natural resolution to the problem is to boost
the opacity in the disk. The Rosseland mean opacities increase
10-fold for a 10-fold decrease in the maximum grain radius; the
same effect is accomplished by increasing the power-law ex-
ponent of the dust size distribution from 3.0 to 4.0 (e.g., Table 1
of D’Alessio et al. 2001). However, such change of grain size
properties might be difficult to justify given recent observations
of 1-2 Myr old disks (Rodmann et al. 2006). The range of pos-
sible values of « should be explored further. )

In summary, accounting for an accretion rate of M =
108 M., yr~" in our standard MMSN disk succeeds in moving
the snow line past Mars. However, moving it out past 3 AU re-
quires, for example, that we simultaneously increase M, ¥, and
k by factors of 2—5 above our assumed baseline values.
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Science Foundation in support of this work. We thank the referee
for a careful reading of our paper and very helpful suggestions.
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