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H. K. Eriksen
1,2,3

Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway; h.k.k.eriksen@astro.uio.no

A. J. Banday
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ABSTRACT

We apply the recently defined multipole vector framework to the frequency-specific first-yearWMAP sky maps,
estimating the low-lmultipole coefficients from the high-latitude sky by means of a power equalization filter. While
most previous analyses of this type have considered only heavily processed (and foreground-contaminated) full-
sky maps, the present approach allows for greater control of residual foregrounds and therefore potentially also for
cosmologically important conclusions. The low-l spherical harmonic coefficients and corresponding multipole
vectors are tabulated for easy reference. Using this formalism, we reassess a set of earlier claims of both cosmo-
logical and noncosmological low-l correlations on the basis of multipole vectors. First, we show that the apparent
l ¼ 3 and 8 correlation claimed by Copi and coworkers is present only in the heavily processed map produced
by Tegmark and coworkers and must therefore be considered an artifact of that map. Second, the well-known
quadrupole-octopole correlation is confirmed at the 99% significance level and shown to be robust with respect to
frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-l alignment with respect
to the ecliptic claimed by Schwarz and coworkers is nominally confirmed in this analysis, but also shown to be very
dependent on severe a posteriori choices. Indeed, we show that given the peculiar quadrupole-octopole arrange-
ment, finding such a strong alignment with the ecliptic is not unusual.

Subject headinggs: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

Since the first-year Wilkinson Microwave Anisotropy Probe
(WMAP) data release (Bennett et al. 2003a), a great deal of effort
has been spent on analyzing the higher order statistical prop-
erties of the sky maps. This effort has resulted in several reports
of both non-Gaussianity and statistical anisotropy (de Oliveira-
Costa et al. 2004; Eriksen et al. 2004b, 2004c, 2005; Hansen et al.
2004a, 2004b; Jaffe et al. 2005; Larson &Wandelt 2004; Vielva
et al. 2004), established by means of many qualitatively differ-
ent methods. Since such findings would contradict the currently
popular inflationary-based cosmological paradigm, it is of great
importance to determine both their origin and significance.

To aid this work, several new methods have been devised. In
particular, one method was pioneered by Copi et al. (2004), who
rediscovered a particular decomposition of a given multipole into
a geometrically more meaningful set of objects, the so-called
(Maxwell) multipole vectors. Whereas the standard spherical
harmonics expansion is coordinate-dependent, these objects

are rotationally invariant, providing a somewhat more intuitive
interpretation of the object. Specifically, the multipole vector
set corresponding to a multipole of order l consists of l unit
vectors and one overall magnitude.
Since the first paper by Copi et al. (2004), several other groups

have advanced the method significantly. Choosing a mathemati-
cally more stringent approach, Katz & Weeks (2004) and Weeks
(2004) both proved uniqueness of the multipole vector decom-
position and established efficient methods for computing it. Land
&Magueijo (2005) focused on the importance of distinguishing
between non-Gaussianity and anisotropy and introduced the no-
tion of a multipole frame. Finally, a mathematically elegant ap-
proach was taken by Slosar & Seljak (2004), who used a Markov
chain Monte Carlo algorithm to map out the complete probability
distribution of the low-l components and subsequently used these
results to study multipole vector anomalies.
All groups applied their methods to the first-year WMAP data

with various results. However, by far most of the effort was spent
on analyzing a small set of heavily processed full-sky maps (the
WMAP internal linear combination map [WILC]; Bennett et al.
2003a, the Lagrange internal linear combination [LILC] map;
Eriksen et al. 2004a, and the Tegmark, de Oliveira-Costa, and
Hamilton [TOH] cleaned map ; Tegmark et al. 2003), which are
known to have serious problems with residual foregrounds
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(Eriksen et al. 2004a). In fact, with the exception of Tegmark
et al., the creators of these maps explicitly warn against using
them for cosmological analysis.

A notable exception among the analyses quoted above is that
of Slosar & Seljak (2004). Their approach is statistically sound,
in that it supports partial-sky analysis and proper foreground
marginalization, but it is also computationally demanding. Its
application is therefore somewhat limited. Further, their par-
ticular choices and treatment of data make a direct comparison
between their results and the ones presented by other groups
somewhat unclear.

It should also be noted that Land & Magueijo (2005) did
analyze the proper WMAP maps as well, by applying a sky cut
to the data directly. However, they did not attempt to reconstruct
the full-sky multipole coefficients, and their analysis therefore
suffers from multipole-mode coupling and increased error bars.

The popularity of the full-skymaps listed above comes from the
fact that they appear free of foregrounds by visual inspection. The
multipole coefficients may therefore formally be estimated by a
straightforward spherical harmonics expansion, without refer-
ence to any sky cut and subsequent mode decoupling. Never-
theless, even though it may be difficult to see the foreground
residuals by eye, they are certainly present, and an analysis that
fully relies on these maps will necessarily be cosmologically
dubious. In this paper we address this issue by combining a
previously introduced power equalization (PE) filter method
for estimating the full-sky spherical harmonic coefficients from
partial-sky data with the ordinary multipole vector method. This
allows us to analyze the data frequency by frequency and region
by region. In other words, the multipole vector method may
finally be used for cosmological studies.

The latter analysis takes a very conservative approach to fore-
ground uncertainties, and, while statistically very robust, the
results are not necessarily directly comparable to the ones ob-
tained by other groups, primarily due to choice and treatment of
the involved data.

The paper is organized as follows: In x 2 we briefly review the
methods used both for estimating the full-sky harmonic co-
efficients from cut-sky data and for computing the multipole
vector decomposition from these. Next, in x 3 we describe the
data and simulations used in the analysis. In x 4 we study the
efficiency of the PE filter method for reconstructing the multi-
pole components, and compare it with the full-sky cleaning
methods. Then we apply our methods to the first-year WMAP
data in x 5, seeking to reproduce earlier claims found in the lit-
erature. Concluding remarks are made in x 6. For easy reference,
we also tabulate the low-l multipole coefficients for the three
cosmologically interesting WMAP Q, V, and W bands in the
Appendix.

2. METHODS AND STATISTICS

The following subsections briefly review the methods used in
this paper. We refer the interested reader to the original papers
for full details (Bielewicz et al. [2004] for partial-sky analysis
by power equalization [PE] filtering and Copi et al. [2004] for
multipole vector decomposition).

2.1. Partial-Sky Analysis by PE Filtering

For a given analysis of cosmic microwave background (CMB)
data to be cosmologically interesting, great care must be taken
to exclude noncosmological foregrounds. In the future it may
be possible to perform component separation efficiently, but at
present, the only reliable approach is to apply a sky cut and ex-
clude contaminated pixels from the analysis.

While the effect of this operation is transparent in pixel space,
it is more complicated in spherical harmonics space, as the
spherical harmonics are no longer orthogonal on a cut sky. In
order to estimate the full-sky harmonics decomposition from
partial-sky data, one must therefore decouple the coefficients
taking into account the coupling matrix. PE filtering as de-
scribed by Bielewicz et al. (2004) is one method for doing so.

The first step in this approach is to introduce a new basis set
of functions,  , that is orthogonal on the cut sky (Górski 1994).
In this new basis, the vector4 of decomposition coefficients, c,
is related to the vector of decomposition coefficients of the true
signal full-sky map a through the relation

c ¼ LT = aþ n ; ð1Þ

where L is the matrix derived by the Cholesky decomposition
of the coupling matrix,

K ¼ LLT ;

K
i(l;m); j(l 0;m 0) ¼

Z
cut sky

Y �
lm(n̂)Yl 0m 0 (n̂) d�n̂;

and n is the vector of noise coefficients in the  basis.
The sky cut causes the coupling matrix K to be singular, as

there is no information in the data about the spherical harmonic
modes that lies fully within the sky cut. Hence, it is impossi-
ble to reconstruct all modes from c. However, for low-order
multipoles, small sky cuts, and a high signal-to-noise ratio, it is
a good approximation to simply truncate the vectors and cou-
pling matrix at some multipole lmax and then reconstruct the
multipole coefficients up to multipole lrec by filtering of the data
vector cL,

âL ¼ F = cL: ð2Þ

Here the subscript L denotes the range of indices i ¼ 1, : : :,
(lrec þ 1)2, and the filter F may be chosen such that the solution
âL satisfies a desired set of conditions. In this paper we consider
the so-called PE filter defined by

âL = â
T
L

� �
¼ aL = a

T
L

� �
: ð3Þ

To construct the filter for the WMAP data we make the usual
assumption that both the CMB and noise components are Gauss-
ian stochastic variables. Further, the CMB field is assumed to be
isotropic, and the variance of each mode therefore only depends
on l: Cl ¼ a2lm

� �
. In this paper, we choose the best-fit (to CMB

data alone) WMAP power spectrum with a running spectral
index5 (Bennett et al. 2003a; Spergel et al. 2003; Hinshaw et al.
2003) as our reference spectrum. The rms noise level in pixel
p is given by �( p)noise ¼ �0/ Nobs( p)½ �1=2, where Nobs( p) is the
number of observations per pixel and �0 is the rms noise per
observation.

Dependence on the assumed power spectrum might seem to
be a disadvantage of this filtering method. However, it was
shown by Bielewicz et al. (2004) that the multipole estimate
does not depend significantly on the assumed power spectrum
in the case of the first-yearWMAP data. The same applies to the
choice of lrec and lmax. We have chosen lrec ¼ 10 and lmax ¼ 30,

4 Mapping from an index pair (l, m) into a single index i is given by
i ¼ l 2 þ l þ mþ 1.

5 Available at http:// lambda.gsfc.nasa.gov.
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but the multipole coefficients do not show strong dependence
on these parameters.

2.2. Multipole Vector Decomposition

The multipole vector formalism was introduced to CMB anal-
ysis by Copi et al. (2004), who showed that a multipole moment
can be represented in terms of l unit vectors and an overall
magnitude. As later pointed out by Weeks (2004), the formal-
ism was in fact first discovered by Maxwell (1892). Maxwell
showed that for a real function fl (x, y, z) that is an eigenfunction
of the Laplacian on the unit sphere with eigenvalue �l(l þ 1)
(i.e., spherical harmonic function Ylm), there exists l unit vectors
v1, : : : , vl such that

fl(x; y; z) ¼ A(l)9v1 : : :9vl

1

r
; ð4Þ

where 9vi ¼ vi = : is the directional derivative operator and
r ¼ x2 þ y2 þ x2ð Þ1=2. A more useful form of this representa-
tion was given by Dennis (2004):

fl(r) ¼ A(l)(v1 = r): : :(vl = r)þ Q: ð5Þ

Here A(l ) is an overall magnitude, and Q is a term fully defined
by the components of vi that include components of angular mo-
menta l � 2 , l � 4, : : : . (This term is needed to take into ac-
count the fact that the product of l vectors contains terms with
angular momenta l � 2 , l � 4, : : : .) Returning to the usual
language of CMB analysis, each multipole Tl may therefore
be uniquely expressed by l multipole vectors v(l,1), : : : , v(l,l )

and a magnitude A(l ). In the notation of Copi et al. (2004), this
reads

Tl êð Þ �
Xl

m¼�l

almYlm êð Þ ¼ A(l) v(l;1) = ê
� �

: : : v(l;l) = ê
� �

þ Q;

ð6Þ

where ê is the radial unit vector in spherical coordinates. Strictly
speaking, the multipole vectors are headless, thus the sign of each
vector can always be absorbed by the scalar A(l ). We use the con-
vention that all vectors point toward the northern hemisphere.

Algorithms for computing the multipole vectors given a set
of alm coefficients were proposed by Copi et al. (2004) and Katz
& Weeks (2004). We have implemented the algorithm of Copi
et al. (2004) in our codes.6

2.3. Multipole Vector Statistics

Having computed the multipole vectors, we seek to test a
given CMB data set with respect to either internal correlations
between different multipoles or external correlations with some
given frame. In order to do so, we follow Copi et al. (2004) and
define the following set of simple statistics.

The first statistic is based on the dot product, which is a
natural measure of vector alignment. Since the multipole vec-
tors are only defined up to a sign, we choose the absolute value
of the dot product as our statistic. Second, we also consider
cross products of the multipole vectors, w(l;i ) ¼ (v(l; j ) < v(l;k))
[where j 6¼ k, j; k ¼ 1, : : : , l, and i ¼ 1, : : : , l(l � 1)/2], in

order to test for correlations between multipole planes. Both
normalized and unnormalized cross products are considered,
the latter corresponding to the oriented area statistic of Copi
et al. (2004). Thus, inspired by Copi et al. (2004) and Schwarz
et al. (2004), we study the following three statistics for any two
multipoles l1 and l2 (l1 6¼ l2):

Svv ¼
Xl1

i¼1

Xl2

j¼1
v(l1; i) = v(l2; j)
���

���;
Svc ¼

Xl1

i¼1

Xl2(l2�1)=2
j¼1

v(l1; i) = w(l2; j)
���

���;
Scc ¼

Xl1(l1�1)=2
i¼1

Xl2(l2�1)=2
j¼1

w(l1; i) = w(l2; j)
���

���:

These are referred to as ‘‘vector-vector,’’ ‘‘vector-cross’’ (or
‘‘cross-vector’’), and ‘‘cross-cross’’ statistics, respectively.
We use Monte Carlo (MC) simulations to determine the like-

lihood of these statistics given the isotropic and Gaussian null
hypothesis (see x 3). As pointed out by Katz & Weeks (2004)
and Schwarz et al. (2004), we also note that the multipole vec-
tors of any given multipole is not internally ordered and neither
are the dot products. Therefore, the sum of dot products is a
better statistic than, for instance, the M rank-ordered dot prod-
ucts for each multipoles pair, as defined by Copi et al. (2004).
We nevertheless follow the prescription of Copi et al. (2004) in
one particular case, to numerically verify their results. For full
details on this algorithm, we refer the interested reader to the
original paper.

3. DATA AND SIMULATIONS

In this paper, we consider the first-year WMAP sky maps
(Bennett et al. 2003a) in several forms. Specifically, we analyze
both the template-corrected Q-, V-, andW-band frequencymaps,
imposing various masks (Kp0, Kp2: Bennett et al. 2003b; the
extended DMR cut, 20+: Banday et al. 1997) by means of the PE
filter method described above, and also four heavily processed
(and known to be foreground-contaminated) full-sky maps: the
WILCmap (Bennett et al. 2003b); the LILCmap7 (Eriksen et al.
2004a); the TOH map (Tegmark et al. 2003); and the TOH map
from which the Doppler quadrupole (DQ) term was subtracted
(Schwarz et al. 2004). The templates used in the foreground cor-
rection process were those described by Finkbeiner et al. (1999),
Finkbeiner (2003), and Haslam et al. (1982).
The Doppler term merits some discussion. In principle, this

term should be subtracted from all WMAP sky maps prior to
analysis. However, its magnitude is very small indeed, smaller
than both the map-making and foreground-induced uncertainties
(G. Hinshaw 2005, private communication), and a result that
strongly depends on this term must therefore necessarily be con-
sidered somewhat dubious. We choose to subtract this term only
from the TOH map, in order to assess its impact.
One goal of this paper is to compare the full-sky ILC method

with the partial-sky PE method. The efficiency of each method is
assessed through simulation, as we plot the true CMB-only sta-
tistic value against the reproduced value after complete process-
ing. The amount of scatter about the diagonal represents the
processing-induced uncertainty.

6 The routines of Copi et al. (2004) are available at http://www.phys
.cwru.edu/projects /mpvectors.

7 Note that the WILC map is not algorithmically well defined, as the con-
vergence criterion used for its construction was chosen too liberally, and
therefore the resulting map depends on the initial point for the nonlinear search.
Such problems may be avoided by solving the problem using Lagrange mul-
tipliers, and this is done for the LILC map.

BIELEWICZ ET AL.752 Vol. 635



A set of 10,000 ILC simulations were produced using the
pipeline described by Eriksen et al. (2004a). For the PE method,
we used the simulations described by Bielewicz et al. (2004).

4. ALGORITHMIC EFFICIENCY
AND RESIDUAL FOREGROUNDS

As pointed out in x 1, the main shortcoming of previous mul-
tipole vector analyses is the fact that they relied on full-skymaps. In
this paper we remedy this problem by using the PE filter method of
Bielewicz et al. (2004) to estimate the full-sky harmonics com-
ponents from partial-sky data. The goal of this section is to study
the relative performance of the PE and the full-sky approaches.

To do so, we apply the above formalism first to 10,000 LILC
simulations (Eriksen et al. 2004a) and then to 10,000 PE simu-
lations (Bielewicz et al. 2004). For each single simulation,we also
compute the same statistic from the pure CMB input full-sky map
and make a scatter plot of the reconstructed value against the
known input value. For a hypothetical method that is able to
reconstruct the input CMB field perfectly, all points would ob-
viously lie on the diagonal in such a plot.

Since the PEmethod supports partial-sky analysis, we use the
template-correctedWMAP sky maps for our analysis in the next
sections. This ensures that residual foregrounds are kept at a
minimal level (Bennett et al. 2003b), and the PE simulations are
therefore made without including foregrounds. Nevertheless,
the real template-corrected maps are certainly not free of re-
siduals, and the direct comparison between the LILC and the PE
simulations may therefore be considered somewhat unfair.

To quantify the effect of such residuals, we analyze two ad-
ditional sets of simulations. For the first set, we add the templates
with the amplitudes given by Bennett et al. (2003b) (assuming
fixed free-free and synchrotron spectral indices) and then fit for
the amplitudes using the approach described by Górski et al.
(1996). We then estimate the low-l alm terms with the PE filter-
ing method. For the second set, we add the templates with 30%
of the amplitudes to each simulation and reanalyze the simula-
tions. Since we do not attempt to correct for the foregrounds at
all in this case, the latter set of simulations grossly overesti-
mates the residual foregrounds present in the template-corrected
maps.

Fig. 1.—Comparison of the accuracy of the vector-vector, vector-cross, and cross-cross statistics for various methods of the multipoles estimation. The abscissae
give the true input values of the statistic for multipoles l1 ¼ 2 and l2 ¼ 3. The ordinates give output values of the statistic determined after application one of the method.
The contours indicate 68% and 95% probability regions as computed from 10,000 simulations. The horizontal lines indicate values of the statistic for the observed
WMAP data. In the left column, the lines show the LILC results (solid lines), the WILC results (dotted lines), and the TOH results (dashed lines). In the three remaining
columns, the lines show the PE-filter results as obtained from the V-band WMAP sky maps combined with the Kp2 sky cut.
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The results from these exercises are shown in Figure 1. From
left to right, the columns show (1) the LILC results, (2) the clean
PE results, (3) the moderately contaminated PE results, and
(4) the heavily contaminated PE results. The rows show the four
different statistics for multipoles l1 ¼ 2 and l2 ¼ 3 based on
normalized cross products.

Clearly, the PE filter approach is superior to the ILC approach.
Even in the unrealistic case of 30% residual foregrounds, the
scatter is smaller for the PE filter than for the ILC method. Re-
alistically, the PE filter performs somewhat worse than the sec-
ond column, but slightly better than the third.

We now quantify the scatter observed in each panel both by
the Pearson linear correlation coefficient and by the standard
deviation as measured orthogonal to the diagonal in each plot.
The results from these computations are summarized in Table 1.
The visual impression from Figure 1 is confirmed by these num-
bers: the PE filtering method clearly outperforms the ILC method
even in the presence of unrealistically strong residuals.

Finally, we take the opportunity to once again emphasize
that the full-sky ILC map (and variations thereof ) should not
be used for cosmological purposes if it is at all possible to avoid.
Such maps are highly contaminated by residual foregrounds,
which are likely to have a significant impact on any moderately
sensitive statistic. This is particularly true on large angular scales,
such as the ones discussed in this and related papers. Themassive
scatter seen in the left column of Figure 1 should serve as a clear
indication of this fact.

5. ANALYSIS OF FIRST-YEAR WMAP DATA

We now apply our methods to the first-year WMAP data, fo-
cusing on three specific claims found in the literature. First, using
the multipole vector approach, Copi et al. (2004) found some
peculiar correlations in the l ¼ 3, : : : , 8 range in the TOH map.
These correlations manifested themselves in terms of a number
of significant values of the (normalized and unnormalized) Scc
statistic. Here we seek to reproduce these results in the official
template-corrected WMAP maps8 using the PE filter method.

Second, numerous authors have reported a strong alignment be-
tween the quadrupole and the octopole moments (e.g., de Oliveira-
Costa et al. 2004; Copi et al. 2004; Katz & Weeks 2004) using
various methods, for instance, multipole vector alignments. In
x 5.2 we confirm these findings with our improved method.
Finally, a highly surprising claim was made by Schwarz et al.

(2004), who found a nominally strong alignment of the quad-
rupole and octopole planes with the ecliptic, and even with the
vernal equinox. If confirmed real, this finding would suggest that
the low-l anisotropy pattern seen in the WMAP data could be of
a solar system origin. This claim is considered in some detail in
x 5.3.
We note thatwe have also analyzed our own template-corrected

maps (using the method of Górski et al. 1996) and found very
similar results to those presented here. Details in the template
correction process are therefore not likely to have a major im-
pact on our results, assuming that the templates do indeed trace
the real foregrounds satisfactorily.

5.1. Internal Correlations among the l ¼ 2, : : : , 8 Multipoles

The first analysis of theWMAP data based onmultipole vectors
was performed by Copi et al. (2004). The main conclusion from
this work was a claim of correlations among the low-l multi-
poles in contradiction with the currently preferred Gaussian and
isotropic cosmological model. This claim was based on two ob-
servations. First, the normalized cross-cross multipole vector
statistic indicated a very strong correlation between the l ¼ 3
and 8 modes, and second, the unnormalized cross-cross statistic
revealed five or eight (depending on likelihood threshold) mod-
erately strong correlations within the l ¼ 2–8 modes.
While the nominal significance of their detection was rea-

sonably high (roughly at the 99% level), two problems could be
identified with the analysis. First, as subsequently pointed out
by several authors (Katz & Weeks 2004; Schwarz et al. 2004),
their statistics were based on a rather elaborate rank-ordering
scheme with a somewhat unclear interpretation. It is not clear
how robust this method is. Second, and more importantly, only
the foreground-contaminated WILC and TOH maps were con-
sidered in the analysis.
In this paper, we first repeat the original analysis of Copi et al.

(2004) based on rank ordering to see if the results (at least
nominally) hold when applied to the template-correctedWMAP
maps. However, we also analyze the same multipole pairs with
the S-statistics in order to study the statistical robustness of the
detection. For specifics on the procedure, we refer to Copi et al.
(2004); our main target in this paper is robustness with respect
to foregrounds, not algorithmic consistency.
The results from the rank-ordering analysis are summarized

in Table 2. Columns (2)–(5) are to be compared with column (8)
of Table 1 of Copi et al. (2004), while columns (6)–(9) are to be
compared with columns (10) and (12). While the agreement be-
tween our TOH-DQ numbers and their numbers is not perfect,
it is quite good overall. Tracking down the cause of the small
differences would require having access to both codes; minor
details such as the bin size used for estimating the likelihoods
do have an impact, in particular on probabilities not in the tails
of the distributions. However, we note that we observe perfect
agreement with previously published S-statistic results (Schwarz
et al. 2004; Katz & Weeks 2004; Weeks 2004) for all published
cases, so all codes appear to be working as expected.
As mentioned above, the conclusions of Copi et al. (2004)

can be summarized in terms of two different anomalies. First, a
high significance was observed for the rank-ordered normalized
cross-cross statistic when applied to the l ¼ (3; 8) pair. This

TABLE 1

Signal Reconstruction Efficiency

Method Vector-Vector Vector-Cross Cross-Vector Cross-Cross

Pearson Linear Correlation Coefficient

LILC.......... 0.750 0.746 0.712 0.698

PE (1) ........ 0.962 0.953 0.955 0.943

PE (2) ........ 0.911 0.904 0.889 0.877

PE (3) ........ 0.811 0.807 0.759 0.754

Standard Deviation

LILC.......... 0.325 0.411 0.277 0.355

PE (1) ........ 0.126 0.178 0.109 0.154

PE (2) ........ 0.193 0.253 0.171 0.226

PE (3) ........ 0.281 0.358 0.253 0.321

Notes.—The correlation coefficients and standard deviation of the S-statistic for
the LILC and PEmethods. The rowmarked PE (1) shows results for the PEmethod
applied to clean V-band input maps with Kp2 sky coverage, row PE (2) shows
results for input maps with subtracted foreground templates with fitted coefficients,
and row PE (3) shows results for the input maps with added foreground templates
with 30%of the fit coefficients given byBennett et al. (2003b). (See text for details.)

8 Unless explicitly stated otherwise, all PE results in this section refer to the
V-band data alone, which are the cleanest of the threeWMAP bands. Noise is not
an issue on the scales of interest, and therefore we do not co-add the data.
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result is confirmed in Table 2, but only for the TOHmap. For the
other three maps, this particular value is highly insignificant.
Therefore, if this detection does signify a real feature, it is only
present in the foreground-contaminated TOH map and not in
the more trustworthyWMAP V-band map. It can therefore not be
taken as representative of the first-year WMAP data as a whole.

The second anomaly was defined in terms of an unusually
large number of high unnormalized cross-cross values for the
TOH map: five of 21 ranks for the TOH map were found to be
larger than 0.9, and eight of 21 values were larger than 0.8.
Once again, we see that this conclusion only holds for the TOH
map, and not for the PE-filtered V-band map. Quite on the con-
trary, the V-band PE filter results appear completely uniform,
and no anomalies can be readily identified.

Even though the above results appear to refute the original
claims of low-l correlations, we compute the more robust Scc
statistic for the same low-l pairs for completeness. The results
from these calculations are shown in Table 3. Again, the results
appear quite uniform [with the exception of l ¼ (2; 3), to which
we return in x 5.2], and even the l ¼ (3; 8) pair does not appear
anomalous for any of the maps.

On the basis of this analysis, we conclude that the results of
Copi et al. (2004) are due to a combination of a poorly defined
statistic and unreliable data. The anomaly does not survive when
subjected to a more careful statistical analysis.

5.2. Quadrupole and Octopole Correlations

A similar type of anomaly was reported by de Oliveira-Costa
et al. (2004). They found that the octopole (l ¼ 3 mode) of the
WMAP data spans a plane on the sky and, further, that the
normal to this plane is strongly aligned with the quadrupole
plane. This anomaly has since then been extensively studied with

TABLE 2

Low-l Multipole Correlations by Rank Ordering

Normalized Cross-Cross Unnormalized Cross-Cross

(l1, l2)

(1)

LILC

(%)

(2)

WILC

(%)

(3)

TOH-DQ

(%)

(4)

PE

(%)

(5)

LILC

(%)

(6)

WILC

(%)

(7)

TOH-DQ

(%)

(8)

PE

(%)

(9)

(2, 3)..................... 1.73 5.04 2.19 1.45 1.75 1.38 0.11 3.62

(2, 4)..................... 28.16 55.78 58.73 43.21 25.28 83.86 89.44 57.50

(2, 5)..................... 79.97 77.17 23.15 34.36 99.22 91.30 66.77 76.92

(2, 6)..................... 81.53 88.36 87.40 37.27 64.73 96.36 78.55 19.57

(2, 7)..................... 91.08 99.56 93.20 79.47 91.54 94.03 86.24 68.07

(2, 8)..................... 82.55 60.75 89.81 47.06 67.23 94.84 68.29 28.47

(3, 4)..................... 8.28 6.56 17.02 69.95 14.97 12.61 30.85 70.68

(3, 5)..................... 45.95 70.13 37.40 30.05 58.86 74.46 65.30 64.63

(3, 6)..................... 57.59 46.74 73.13 32.75 75.31 55.18 92.67 70.25

(3, 7)..................... 59.28 70.55 53.90 89.17 86.54 84.12 74.25 75.14

(3, 8)..................... 88.47 86.21 99.99 51.26 97.75 98.33 99.75 52.92

(4, 5)..................... 45.67 48.51 53.44 35.19 70.24 68.26 53.26 37.53

(4, 6)..................... 97.59 86.04 74.28 56.19 87.02 72.28 62.90 40.57

(4, 7)..................... 58.15 97.56 53.43 82.42 24.69 32.10 88.82 98.15

(4, 8)..................... 81.16 88.23 85.67 79.73 86.53 95.20 99.00 69.17

(5, 6)..................... 94.28 99.93 66.08 59.03 95.95 85.30 83.88 24.12

(5, 7)..................... 99.70 95.69 59.87 84.32 98.19 98.45 69.04 95.96

(5, 8)..................... 81.17 78.64 31.27 63.85 30.90 33.36 24.40 76.85

(6, 7)..................... 55.27 59.56 20.41 8.19 63.74 77.77 97.42 16.48

(6, 8)..................... 56.28 80.03 72.51 76.98 48.28 66.79 62.53 51.73

(7, 8)..................... 7.99 18.78 9.70 7.69 10.26 24.76 25.11 5.18

Notes.—Probabilities of obtaining a lower cross-cross statistic value than that observed in the first-year WMAP data, measured
relative to MC simulations by means of rank ordering (Copi et al. 2004). The statistics were computed for the LILC, WILC, TOH-DQ,
and PE-filtered V-band WMAP maps.

TABLE 3

Low-l Multipole Correlations by Dot Products

(l1, l2)

LILC

(%)

WILC

(%)

TOH-DQ

(%)

PE

(%)

PE (norm)

(%)

(2, 3)............ 97.16 99.29 99.87 95.43 98.82

(2, 4)............ 18.06 36.71 34.72 26.77 41.30

(2, 5)............ 31.94 64.20 51.29 18.24 32.34

(2, 6)............ 22.30 63.83 62.02 8.64 15.88

(2, 7)............ 27.44 49.98 79.38 30.72 82.54

(2, 8)............ 23.71 45.93 76.57 13.70 22.63

(3, 4)............ 8.19 6.31 11.74 31.43 28.21

(3, 5)............ 66.52 55.50 55.61 49.25 57.42

(3, 6)............ 63.03 67.86 71.35 37.73 78.77

(3, 7)............ 57.68 53.91 66.51 41.84 70.52

(3, 8)............ 51.58 38.07 47.64 22.06 8.36

(4, 5)............ 66.54 68.05 75.88 92.05 67.29

(4, 6)............ 42.59 33.51 57.19 32.64 51.10

(4, 7)............ 21.56 23.02 46.10 45.83 46.38

(4, 8)............ 44.77 48.59 57.79 71.25 45.38

(5, 6)............ 70.94 82.05 79.16 24.32 31.81

(5, 7)............ 64.26 73.48 77.59 42.08 46.88

(5, 8)............ 97.68 97.32 97.86 89.23 54.70

(6, 7)............ 64.16 77.42 64.94 6.83 92.13

(6, 8)............ 87.23 90.25 73.87 14.50 83.13

(7, 8)............ 8.67 12.84 30.35 2.74 8.11

Notes.—Probabilities of finding a value of the Scc-statistic lower than the
observed WMAP values, estimated from ensembles of 10,000 MC simulations.
The cross products are all unnormalized (corresponding to the ‘‘oriented area’’
statistic of Schwarz et al. 2004), except for the last column. The PE filter results
were obtained from the V band alone, imposing the Kp2 mask.
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different techniques (e.g.,Weeks 2004; Eriksen et al. 2004a) and is
well established by now.

The multipole vector framework is especially well suited for
this particular anomaly. Recalling that the multipole vectors of
order l contain terms of orders l, l � 2, l � 4, : : : , we see that the

quadrupole only consists of a quadratic term plus a constant, while
the octopole consists of a cubic and a linear term. Further, it can
be shown that the cross vectors for a given multipole point toward
the saddle points of the term of order l of each multipole (but,
unfortunately, not toward the saddle points of the multipole as a

Fig. 2.—Multipole cross-product vectors on the sky as a function of cleaning method (top), frequency band (middle), and sky coverage (bottom). Default options for the
PE filter results are the V-band map and Kp2 sky cut. The maps are shown in the ecliptic reference frame with the vernal equinox at the center. The radius of each dot is 5�.
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whole.) For the quadrupole, a quite intuitive interpretation of the
twomultipole vectors is therefore readily available: their cross product
points toward the saddle point. For WMAP, a similar statement
is very nearly true for even the three octopole cross vectors.

On the basis of these observations, we can make a connection
between the multipole vector framework and the approach taken
by de Oliveira-Costa et al. (2004); since theWMAP octopole is
planar, its saddle points are clustered, and all its cross products
point roughly toward the same point on the sky. Furthermore,
since the quadrupole plane is aligned with the octopole plane,
even this cross product points toward the same point on the sky.
This is clearly seen in Figure 2, where we plot the positions
of the quadrupole and the three octopole cross-product vectors
on the sky, in ecliptic projection. Clearly, the four vectors are
strongly clustered on the sky, as discussed above.

To assess the estimator uncertainty (i.e., due to the sky cut) in
the position of each of the low-l cross-product vectors, we used
the foreground-free MC PE simulations described above. For each
simulation, we computed the cross products from both the input
map and the reconstructed PE-filtered map (for the V-band alone),
computed the absolute angular distance between the input and out-
put vectors for all possible pairings, and chose the relative ordering
with the smallest sum of errors. (This is necessary because the
multipole vectors are not internally ordered.) Such computations
show that the mean angular error is about 4

�
for the quadrupole

cross vector, and 6�–9� for the three octopole vectors. Thus, the
error in each case roughly equals the size of each dot in Figure 2.

Returning to the quadrupole-octopole anomaly, we note that
the previously defined S-statistics involving cross products are
well suited for measuring the degree of alignment for these two
modes, due to the above argument. Following Weeks (2004),
we therefore adopt the normalized Scc statistic for this particular
analysis, and the corresponding results are tabulated in Table 4.

In the top section, results for different foreground cleaning
methods are given. Clearly, the quadrupole-octopole alignment
is quite stable (although not perfectly so) with respect to fore-
ground cleaning method: the results for the cross-product type
statistics are all at the 98% confidence level, in good agreement
with the 98.7% significance obtained using the angular mo-
mentum dispersion statistic of de Oliveira-Costa et al. (2004).

In the middle section, we list the same statistic from each of the
three cosmologically interesting WMAP frequency bands using the
PE filter. Again, the results are very stable, and this gives us confi-
dence that the effect is indeed a feature of the CMB field, rather than
caused by residual foregrounds. Further, we also point out that this
particular set of results clearly demonstrates the strength of the PE
filter method; while the other methods only allow for frequency av-
eraged conclusions, the PE method can provide frequency-specific
results and therefore much greater control over foregrounds.

Finally, in the bottom section of Table 4 we give the PE filter
results for different sky cuts as applied to the V-band WMAP
data. (Here we note that the PE estimator uncertainties for the
large 20+ cuts are considerably larger than for the Kp2 and Kp0
masks, as discussed by Bielewicz et al. [2004], and the numbers
are only included here for completeness.)

5.3. Ecliptic Correlations

Finally, we consider a set of claims made by Schwarz et al.
(2004)—that the low-l anisotropy pattern observed by WMAP
could have a very local origin and that there could be yet un-
known microwave sources or sinks within our own solar system.
These claims were based on measuring alignments between the
multipole vector cross products for l ¼ 2 and 3 and a predefined
set of fixed axes. These axes ranged from the somewhat plau-

sible (the super-Galactic and ecliptic) to the highly surprising
(the equinoxes). Their main result was that the four l ¼ 2 and 3
cross-product vectors were nearly orthogonal to the ecliptic north-
south axis, as measured by the dot product. This can visually be
seen in Figure 2, as the dots all lie along the equator in the eclip-
tic frame and, indeed, clustered near the vernal equinox.

We now repeat the calculations of Schwarz et al. (2004), ap-
plying the PEfiltermethod to theQ-,V-, andW-bandWMAPmaps
and imposing the Kp2, Kp0, and 20+ sky cuts. We compute the
sum of dot products between the ecliptic north-south axis and the
union of the l ¼ 2 and 3 cross-product vectors, following Schwarz
et al. (2004), and also for eachmode individually, up to l ¼ 6. The
results from these computations are summarized in Table 5.

Again starting with the top section, we see that the numbers
(except for the quadrupole alone) are not very sensitive to the
particular foreground correction method. Further, for the par-
ticular combination in question (l ¼ 2 and 3), the alignment is
in fact stronger for the PE-filtered V-bandmap than for the more
contaminated maps (although this may be somewhat of a co-
incidence, looking at the l ¼ 2 and 3 numbers individually).
The numbers also do not depend strongly on frequency or sky
cut. As far as these numbers are concerned, the alignment must
therefore be assumed to be of CMB origin, and not of foreground
origin. Taken at face value, these results therefore appear to con-
firm the claims made by Schwarz et al. (2004).

However, while the nominal significance of the results seems
solid, a much more fundamental objection may be raised against
this detection, namely, its strong dependence on a posteriori
choices. Two particular problems may be identified, namely, the
choice of multipoles to include and the choice of external axis.

In the first case, we see in Table 5 that the ecliptic align-
ment is only significant if one takes into account both l ¼ 2
and 3 simultaneously, and no other multipoles. Further, the
quadrupole-ecliptic alignment alone is only significant in the
TOHmap, and quite insignificant in the PE-filtered map. In fact,
the numbers for the quadrupole alignment (both for different

TABLE 4

Quadrupole-Octopole Correlations

Data

Vector-Vector

(%)

Vector-Cross

(%)

Cross-Vector

(%)

Cross-Cross

(%)

Sensitivity to Method

LILC............. 92.04 2.47 2.27 98.57

WILC ........... 83.28 2.24 2.94 97.31

TOH-DQ ...... 90.69 2.03 1.82 98.65

PE................. 91.36 1.62 1.05 98.82

Sensitivity to Frequency

Q band.......... 93.13 0.44 0.45 99.61

V band.......... 91.36 1.62 1.05 98.82

W band......... 89.28 1.74 1.30 98.73

Sensitivity to Sky Coverage

Kp2............... 91.36 1.62 1.05 98.82

Kp0............... 89.66 2.06 37.91 89.92

20+ ............... 90.43 8.95 57.92 81.45

Notes.—Probabilities of finding a value of the S-statistic for (l1; l2) ¼ (2; 3)
lower than that of the observed WMAP data for various foreground cleaning
methods, frequencies, and sky cuts. The default sky mask for the PE filter
method is Kp2. The row marked by PE shows results for the PE method applied
to the template-corrected V-band WMAP map (see text for details). The cross
products are normalized following Weeks (2004).
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methods and for different frequencies) imply that a significant
amount offoreground residuals is present in thismode, and that its
true direction is not well constrained. Results that strongly depend
on this mode cannot be trusted.

As far as the choice of axis goes, it is important to remember
that the ecliptic axis was identified after looking at the data. It
is therefore very difficult to assess the true significance of the
alignment; the set of possible choices one could have considered
is indeed large. However, some quantification may be provided
by means of the following arguments.

First, it is important to remember that no knownnoncosmological
physical mechanism is able to produce a frequency-independent
signature similar to the one discussed here. A very good null hy-
pothesis is, therefore, that the internal correlations seen in the CMB
pattern are in fact of cosmological origin. Next, as discussed in
x 5.2, it is well known by now that (de Oliveira-Costa et al. 2004)

1. the octopole moment is somewhat planar and
2. the quadrupole plane is strongly aligned with the octopole

plane.

Again, as described in x 5.2, the first point implies that the three
octopole cross vectors are aligned along some axis, and the
second point implies that the quadrupole cross vector is aligned
along the same axis. Thus, all four cross vectors point toward
roughly the same point on the sky. Such arrangements could be
established either by means of cosmological physics (e.g., non-
trivial topologies, cosmic vorticity/shear) or by local physics
(e.g., galactic foregrounds).

The correct question to answer is then, given such an ar-
rangement of the low-l multipoles, what is the probability of
finding a stronger alignment with the ecliptic than the observed
one? Or rather, since we presumably would have been equally
satisfied with an alignment with the Galactic or super-Galactic
reference frames, we ask, what is the probability of finding a
stronger alignment with any one of the three frames?

To answer this question, we run the following experiment. We
take the set of four observed cross vectors and rotate them jointly by
an arbitrary Euler matrix, conserving the relative arrangement but
randomizing the overall orientation and position. This operation is
repeated one million times, each time computing the dot products
with each of the three reference axes, and recording the number of
times anyoneof these is smaller than the observed ecliptic alignment.
For the Doppler-corrected TOH map we find a stronger align-

ment in 3% of the simulations, and the anomaly can therefore be
considered to be statistically robust. However, for the PE-filtered
maps we find a stronger alignment in everywhere from 3% to
39%, depending on sky cut and frequency. Once again, the anom-
aly is therefore considerably stronger in the TOHmap than in the
PE-filtered maps.
The large variation among the PE-filtered maps stems from the

fact that the statistic is highly sensitive to the relative orientation of
all four vectors: a higher significance is found when three of the
four vectors lie on a single great circle, than, for instance, when the
fourth point lies well inside the triangle spanned by the other three
points. Thus, the foreground-sensitive quadrupole vector does
play a significant role in this anomaly, and the particularly strong
quadrupole-ecliptic antialignment seen in the TOHmap alone is
a strong factor.9

To summarize, from the above experiments it appears that it
is not the external alignment with the ecliptic that is anomalous,
but rather the internal alignments between the quadrupole and
octopole. Given such an arrangement, it is not unlikely to hit
upon one of the three most important reference frames.
A second observation is that the cross vectors point toward the

ecliptic plane, not the poles. Presumably, an alignment with the
poles would have been evenmore exciting than an alignment with
the plane, and therefore a two-sided distribution should be con-
sidered when quoting confidence limits. This further reduces the
significance of the anomaly.
In conclusion, it seems unreasonable to us to accept a mar-

ginally significant (�99%) effect as physical in light of the nu-
merous problems connected to it.We believe that it is unnecessary
to introduce the (exceedingly difficult to explain) idea of ecliptic
alignment in addition to the more general quadrupole-octopole
alignment. Of course, local physics may certainly have a role to
play with respect to the latter problem, but Galactic or extra-
galactic contamination seem like far more plausible candidates
than contamination of solar system origin.

6. CONCLUSIONS

In this paper, we have revisited a set of claims found in the
literature regarding the low-l CMB pattern and multipole vec-
tors. We have remedied the most serious outstanding problem
connected to these analyses, in that we have used only partial-
sky data to estimate the multipole vectors. This allowed us to
study the frequency-specificWMAP sky maps individually, while
imposing different sky cuts to study regional dependence. Using
these methods, the multipole vector approach may finally be used
for cosmological analysis.
Three claims were studied in depth. First, Copi et al. (2004)

found a set of strong correlations among the l ¼ 2, : : : , 8 multi-
poles using the multipole vector formalism. Unfortunately, they
only had access to two full-sky maps (the WILC and TOH sky
maps),which are known to be contaminated by galactic foregrounds.

9 Here we also note that although Schwarz et al. (2004) did in fact consider
the quadrupole stability issue by adding Gaussian noise with rms of 10 �K to
a20, we believe that this estimate significantly underestimates the true quadru-
pole uncertainty in the ILC maps (Eriksen et al. 2004a).

TABLE 5

Low-l-Ecliptic Correlations

Data

l ¼ 2

(%)

l ¼ 3

(%)

l ¼ 2þ 3

(%)

l ¼ 4

(%)

l ¼ 5

(%)

l ¼ 6

(%)

Sensitivity to Method

LILC.............. 7.7 3.3 1.0 61.8 20.5 41.6

WILC ............ 13.6 4.0 1.5 67.0 29.5 41.0

TOH .............. 0.0 3.6 0.7 76.8 16.9 42.4

TOH-DQ ....... 2.6 3.6 0.9 76.8 16.9 42.4

PE.................. 9.2 2.3 0.6 71.4 19.8 65.6

Sensitivity to Frequency

Q band........... 3.9 1.8 0.4 44.4 9.9 32.1

V band........... 9.2 2.3 0.6 71.4 19.8 65.6

W band.......... 14.6 2.9 1.2 56.7 16.9 57.5

Sensitivity to Sky Coverage

Kp2................ 9.2 2.3 0.6 71.4 19.8 65.6

Kp0................ 52.0 1.7 3.4 88.5 20.9 51.3

20+ ................ 58.1 5.0 12.3 34.2 16.0 53.3

Notes.—Probabilities of finding a value of the Scc-statistic lower than the
observed WMAP data for various values of l, foreground cleaning methods,
frequencies, and sky cuts. Default sky cut for the PE filter method is Kp2. The
row marked by PE shows results for the PE method applied to the template-
corrected V-band WMAP map (see text for details). The cross products are
normalized following Weeks (2004).
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While we reproduced their results for these two maps, we also
found that the anomaly is not present in the best available fre-
quency-specific CMB maps. Therefore, as far as the low-l cor-
relations are statistically significant, they must be considered an
artifact of the TOH and WILC sky maps, and not of theWMAP
data as a whole.

Second, we revisited the much more established anomaly
first reported by de Oliveira-Costa et al. (2004); the strong align-
ment between the quadrupole and octopole moments. Our re-
sults confirm previous conclusions: the effect is significant at the
98%–99%confidence level and independent offrequency and sky
cut. It appears to be quite robust.

Finally, we also considered the claims made by Schwarz et al.
(2004) that the low-l CMB field could be of solar system origin.
This claim was based on the observation that the l ¼ 2 and 3
multipole cross-product vectors align with the ecliptic north-
south axis and, indeed, that they point toward the vernal equinox.
While the nominal significance of these results are confirmed in
this paper, we also found that it is not at all unusual to observe
such a strong alignment with one of the three major axes
(ecliptic, Galactic, or super-Galactic), given the peculiar internal
arrangements of the quadrupole and octopole. Thus, it is not the
ecliptic correlation per se that is anomalous, but rather the
quadrupole-octopole alignment. Whether this latter feature is
caused by cosmological or noncosmological physics is not yet

clear, but solar system physics does not appear to provide the
most plausible explanation.
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APPENDIX

THE LOW-l PE MULTIPOLE COEFFICIENTS OF THE FIRST-YEAR WMAP DATA

In this Appendix (Tables 6 and 7), we tabulate the low-l spherical harmonic coefficients and multipole vectors as computed with the
PE filter method. The methods used in these computations are described by Bielewicz et al. (2004) for PE filtering, and Copi et al.
(2004) or Weeks (2004) for multipole vector estimation.

TABLE 6

Low-l Spherical Harmonics Coefficients

Multipole (l, m)

Q Band

(�K)

V Band

(K)

W Band

(�K)

(2, 0)........................................ (11.53 + 0.00i) (15.57 + 0.00i) (10.14 + 0.00i)

(2, 1)........................................ (�5.54 + 3.09i) (�5.37 + 2.37i) (�4.94 + 2.98i)

(2, 2)........................................ (�9.52 � 15.89i) (�12.31 � 17.78i) (�13.46 � 18.54i)

(3, 0)........................................ (�6.92 + 0.00i) (�5.70 + 0.00i) (�5.41 + 0.00i)

(3, 1)........................................ (�4.53 � 1.53i) (�9.06 � 0.18i) (�9.50 + 0.78i)

(3, 2)........................................ (23.27 + 0.12i) (21.95 + 0.98i) (22.04 + 0.74i)

(3, 3)........................................ (�20.57 + 28.58i) (�15.68 + 29.61i) (�14.64 + 29.40i)

(4, 0)........................................ (19.60 + 0.00i) (15.57 + 0.00i) (21.31 + 0.00i)

(4, 1)........................................ (�4.83 + 9.92i) (�7.15 + 9.21i) (�7.71 + 8.38i)

(4, 2)........................................ (7.55 + 6.76i) (9.31 + 8.05i) (9.35 + 8.32i)

(4, 3)........................................ (2.68 � 21.94i) (5.21 � 21.75i) (6.24 � 20.75i)

(4, 4)........................................ (10.82 � 5.30i) (5.89 � 7.75i) (4.70 � 9.36i)

(5, 0)........................................ (16.05 + 0.00i) (15.46 + 0.00i) (14.35 + 0.00i)

(5, 1)........................................ (23.77 + 6.08i) (26.05 + 3.77i) (24.53 + 3.08i)

(5, 2)........................................ (�8.13 + 4.66i) (�8.84 + 2.55i) (�7.26 + 3.27i)

(5, 3)........................................ (23.19 + 3.18i) (20.22 + 4.13i) (19.95 + 3.95i)

(5, 4)........................................ (�3.77 + 8.91i) (�3.42 + 8.45i) (�2.95 + 8.14i)

(5, 5)........................................ (11.21 + 18.55i) (12.30 + 18.97i) (12.82 + 20.28i)

(6, 0)........................................ (5.09 + 0.00i) (4.66 + 0.00i) (1.33 + 0.00i)

(6, 1)........................................ (�0.14 + 3.51i) (1.11 + 4.91i) (0.66 + 5.18i)

(6, 2)........................................ (8.72 � 5.38i) (10.20 � 6.50i) (10.53 � 6.99i)

(6, 3)........................................ (�4.35 + 1.10i) (�6.06 � 0.12i) (�7.10 � 0.53i)

(6, 4)........................................ (10.46 � 1.09i) (11.04 � 0.61i) (11.10 � 0.39i)

(6, 5)........................................ (�7.08 � 6.34i) (�6.21 � 4.95i) (�5.53 � 3.99i)

(6, 6)........................................ (9.01 + 10.29i) (7.18 + 10.94i) (5.46 + 10.88i)

Notes.—Full-sky low-l spherical harmonic coefficients reconstructed from the high-latitude template-corrected
WMAP data by means of the PE filter method of Bielewicz et al. (2004).
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TABLE 7

Low-l Multipole Vector Coordinates

(l, i)

LILC

(deg)

WILC

(deg)

TOH

(deg)

TOH-DQ

(deg)

PE

(deg)

(2, 1).......................... (130.69, 13.56) (120.95, 19.79) (125.50, 22.06) (118.96, 25.09) (130.83, 20.83)

(2, 2).......................... (2.52, 12.71) (15.55, 3.21) (6.65, 11.23) (11.15, 16.62) (353.87, 11.22)

(3, 1).......................... (89.22, 37.70) (95.27, 37.04) (86.94, 39.30) (86.94, 39.30) (85.14, 36.77)

(3, 2).......................... (23.83, 9.67) (21.73, 9.39) (22.64, 9.18) (22.64, 9.18) (21.65, 11.36)

(3, 3).......................... (312.66, 10.60) (312.98, 10.71) (315.08, 8.20) (315.08, 8.20) (315.31, 7.52)

(4, 1).......................... (192.95, 69.87) (199.63, 70.63) (208.64, 76.73) (208.64, 76.73) (150.86, 74.40)

(4, 2).......................... (214.60, 33.56) (217.36, 39.46) (206.98, 31.93) (206.98, 31.93) (212.50, 20.35)

(4, 3).......................... (333.95, 28.72) (331.69, 30.23) (333.51, 26.86) (333.51, 26.86) (334.43, 27.64)

(4, 4).......................... (72.41, 4.30) (71.93, 6.96) (74.74, 5.46) (74.74, 5.46) (254.98, 0.62)

(5, 1).......................... (227.44, 56.28) (231.38, 54.54) (237.31, 57.54) (237.31, 57.54) (234.76, 56.33)

(5, 2).......................... (97.61, 37.39) (100.79, 38.52) (98.70, 38.50) (98.70, 38.50) (99.99, 38.77)

(5, 3).......................... (43.08, 36.64) (40.12, 37.00) (44.67, 33.54) (44.67, 33.54) (46.43, 35.11)

(5, 4).......................... (288.28, 31.08) (286.47, 34.23) (285.79, 31.44) (285.79, 31.44) (287.88, 32.28)

(5, 5).......................... (177.04, 1.21) (176.05, 1.20) (172.84, 3.07) (172.84, 3.07) (173.91, 2.23)

(6, 1).......................... (30.43, 52.37) (34.55, 53.56) (30.66, 54.88) (30.66, 54.88) (26.83, 51.17)

(6, 2).......................... (242.42, 52.09) (239.66, 55.52) (236.10, 54.70) (236.10, 54.70) (244.92, 32.48)

(6, 3).......................... (86.97, 32.38) (84.08, 34.58) (84.62, 25.31) (84.62, 25.31) (84.86, 33.38)

(6, 4).......................... (282.14, 24.91) (285.49, 20.96) (296.45, 24.09) (296.45, 24.09) (284.29, 26.57)

(6, 5).......................... (333.04, 16.67) (337.00, 17.06) (325.01, 14.58) (325.01, 14.58) (330.03, 15.60)

(6, 6).......................... (218.37, 5.48) (212.87, 5.36) (35.65, 0.60) (35.65, 0.60) (232.36, 23.45)

Notes.—Low-l multipole vector Galactic coordinates (l, b) of the first-year WMAP data, as computed from the spherical harmonic
coefficients listed in Table 6 by the algorithm of Copi et al. (2004).
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