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ABSTRACT

The recently discovered gamma-ray burst afterglow is believed to be described reasonably well by synchrotron
emission from a decelerating relativistic shell that collides with an external medium. To compare theoretical
models with afterglow observations, we calculate here the broadband spectrum and corresponding light curve of
synchrotron radiation from a power-law distribution of electrons in an expanding relativistic shock. Both the
spectrum and the light curve consist of several power-law segments with related indices. The light curve is
constructed under two limiting models for the hydrodynamic evolution of the shock: fully adiabatic and fully
radiative. We give explicit relations between the spectral index and the temporal power-law index. Future ob-
servations should be able to distinguish between the possible behaviors and determine the type of solution.

Subject headings: gamma rays: bursts — hydrodynamics — relativity — shock waves

1. INTRODUCTION

Delayed emission in X-ray, optical, and radio wavelengths
has been seen recently in a few gamma-ray bursts (GRBs)
(Costa et al. 1997; Groot et al. 1997; Frail et al. 1997). This
“afterglow” is described reasonably well as synchrotron emis-
sion from accelerated electrons when a spherical relativistic
shell collides with an external medium (Paczyński & Rhoads
1993; Katz 1994; Waxman 1997a, 1997b; Wijers, Rees, &
Mészáros 1997; Katz & Piran 1997a; Mészáros, Rees, & Wijers
1997). Previous analyses described the spectrum and light
curve only over a limited range of frequencies and time. In
this Letter, we discuss the spectrum over a wide range of fre-
quencies and derive the light curve from very early to late
times. We focus on the optical and X-ray emission, where
synchrotron self-absorption is not important, and we assume
that the shell is ultrarelativistic. We allow for both adiabatic
and radiative hydrodynamic evolution.

Consider a relativistic shock propagating through a uniform
cold medium with particle density n. Behind the shock, the
particle density and the energy density are given by and4gn

, respectively, where g is the Lorentz factor of the2 24g nm cp

shocked fluid (Blandford & McKee 1976). We assume that
electrons are accelerated in the shock to a power-law distri-
bution of Lorentz factor , with a minimum Lorentz factorge

: , . To keep the energy of the elec-2pg N(g )dg ∝ g dg g ≥ gm e e e e e m

trons finite, we take . We assume that a constant fractionp 1 2
of the shock energy goes into the electrons. Thenee

p 2 2 mp
g 5 e g ù 610e g, (1)m e e( )p 2 1 me

where the coefficient on the right corresponds to the standard
choice, (Sari, Narayan, & Piran 1996). We also assumep 5 2.5
that the magnetic energy density behind the shock is a constant
fraction of the shock energy. This gives a magnetic fieldeB

strength (fluid frame)

1/2B 5 (32pm e n) gc. (2)p B
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We consider only synchrotron emission and ignore inverse
Compton scattering, which is important when .e 1 eB e

2. SYNCHROTRON SPECTRUM OF A RELATIVISTIC SHOCK

The radiation power and the characteristic synchrotron fre-
quency from a randomly oriented electron with Lorentz factor

in a magnetic field B areg k 1e

24 B2 2P(g ) 5 j cg g , (3)e T e3 8p

q Be2n(g ) 5 gg . (4)e e 2pm ce

The factors of and g are introduced to transform the results2g
from the frame of the shocked fluid to the frame of the observer.
The spectral power, (power per unit frequency, in units ofPn

ergs Hz21 s21), varies as for and cuts off expo-1/3n n ! n(g )e

nentially for . The peak spectral power occurs atn 1 n(g )e

:n(g )e

2P(g ) m c je e TP ≈ 5 gB, (5)n,max
n(g ) 3qe e

and it is independent of .ge

The above description of is suitable when the electronPn

does not lose a significant fraction of its energy to radiation.
This requires to be less than a critical value given byg ge c

:2gg m c 5 P(g )tc e c

6pm c 3m 1e e
g 5 5 , (6)c 2 3j gB t 16e j m c tg nT B T p

where t refers to time in the frame of the observer.
An electron with an initial Lorentz factor cools downg 1 ge c

to in the time t. As it cools, the frequency of the synchrotrongc

emission varies as , while the electron energy varies as2n ∝ ge

. It then follows that the spectral power varies as over21/2g ne

the frequency range , where we have definedn ! n ! n(g )c e

. The net spectrum of radiation from such an electronn { n(g )c c

then consists of three segments: a low-energy tail for ,n ! nc

where goes as ; a power-law segment between and1/3P n nn c
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Fig. 1.—Synchrotron spectrum of a relativistic shock with a power-law
electron distribution. (a) Fast cooling, which is expected at early times (t !

). The spectrum consists of four segments, identified as A, B, C, and D. Self-t0

absorption is important below . The frequencies, , , and , decrease withn n n na m c a

time as indicated; the scalings above the arrows correspond to an adiabatic
evolution, and the scalings below, in square brackets, correspond to a fully
radiative evolution. (b) Slow cooling, which is expected at late times ( ).t 1 t0

The evolution is always adiabatic. The four segments are identified as E, F,
G, and H.

, where ; and an exponential cutoff for21/2n(g ) P ∼ n n 1e n

. The maximum emissivity occurs at and is given byn(g ) ne c

.Pn,max

To calculate the net spectrum from a power-law distribution
of electrons, we need to integrate over . There are now twoge

different cases, depending on whether or .g 1 g g ! gm c m c

Let the total number of swept-up electrons in the postshock
fluid be . When , all the electrons cool3N 5 4pR n/3 g 1 ge m c

down to roughly , and the spectral power at is approxi-g nc c

mately . We call this the case of fast cooling. The fluxN Pe n,max

at the observer, , is given byFn

1/3(n/n ) F , n 1 n,c n,max c
21/2F 5 (n/n ) F , n 1 n 1 n , (7)n c n,max m c{ 21/2 2p/2(n /n ) (n/n ) F , n 1 n ,m c m n,max m

where and is the observed2n { n(g ) F { N P /4pDm m n,max e n,max

peak flux at distance D from the source.
When , only those electrons with can cool.g 1 g g 1 gc m e c

We call this slow cooling, because the electrons with ,g ∼ ge m

which form the bulk of the population, do not cool within a
time t, and we have

1/3(n/n ) F , n 1 n,m n,max m
2(p21)/2F 5 (n/n ) F , n 1 n 1 n , (8)n m n,max c m{ 2(p21)/2 2p/2( ) ( )n /n n/n F , n 1 n .c m c n,max c

The typical spectra corresponding to fast and slow cooling
are shown in Figures 1a and 1b. The low-energy part of these
spectra has empirical support even within the GRB itself (Co-
hen et al. 1997). In addition to the various power-law regimes
described above, self-absorption causes a steep cutoff of the
spectrum at low frequencies (Katz 1994; Waxman 1997b; Katz
& Piran 1997a). For completeness, we show this regime in
Figure 1, but we shall ignore it for the rest of this Letter since
it does not affect either the optical or the X-ray radiation in
which we are interested.

3. HYDRODYNAMIC EVOLUTION AND LIGHT CURVES

The instantaneous spectra do not depend on the hydrody-
namic evolution of the shock. The light curves at a given fre-
quency, however, depend on the temporal evolution of various
quantities, such as the break frequencies and and the peakn nm c

flux . These depend, in turn, on how g and scale as aF Nn,max e

function of t.
We limit the discussion here to a spherical shock of radius

propagating into a constant surrounding density n. WeR(t)
consider two extreme limits for the hydrodynamic evolution
of the shock: either fully radiative or fully adiabatic. In a ra-
diative evolution, all the internal energy generated in the shock
is radiated. This requires two conditions to be satisfied: (1) the
fraction of the energy going into the electrons must be large,
i.e., , and (2) we must be in the regime of fast cooling,e r 1e

.g ! gc m

In the adiabatic case, the energy E of the spherical shock is
constant and is given by (Blandford &2 3 2E 5 16pg R nm c /17p

McKee 1976; Sari 1997). In the radiative case, the energy varies
as , where . Here23 1/3E ∝ g g ù (R/L) L 5 [17M/(16pm n)]p

(Blandford & McKee 1976; Vietri 1996; Katz & Piran 1997a)
is the radius at which the mass swept up from the external
medium equals the initial mass M of the ejecta (we used

instead of in order to be compatible with the adiabatic17/16 3/4
expression and to enable a smooth transition between the two);

we write M in terms of the initial energy of the explosion via
, where is the initial Lorentz factor of the ejecta.2M 5 E/g c g0 0

In both the adiabatic and radiative cases, there is a simple
relation connecting R, g, and t: , where the nu-2t 5 R/cg ct

merical value of varies between ∼3 and ∼7 depending onct

the details of the hydrodynamic evolution and the spectrum
(Sari 1997, 1998; Waxman 1997c; Panaitescu & Mészáros
1997). For simplicity, we use for all cases. We then2t ù R/4g c
have the following hydrodynamic evolution equations,

1/4(17Et/4pm nc) , adiabatic,pR(t) ù (9)1/7{(4ct/L) L, radiative,

5 3 1/8(17E/1024pnm c t ) , adiabatic,pg(t) ù (10)23/7{(4ct/L) , radiative.

Using these scalings and the results of the previous section,
we can calculate the variation with time of all the relevant
quantities. For an adiabatic evolution,

12 23/2 21/2 21 21/2n 5 2.7 # 10 e E n t Hz,c B 52 1 d

14 1/2 2 1/2 23/2n 5 5.7 # 10 e e E t Hz,m B e 52 d

5 1/2 1/2 22F 5 1.1 # 10 e E n D mJy, (11)n,max B 52 1 28

where is the time in days, ergs, is n in units52t E 5 E/10 nd 52 1
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Fig. 2.—Synchrotron light curve (ignoring self-absorption). (a) High-
frequency case ( ). The four segments that are separated by the criticaln 1 n0

times, , , and , correspond to the spectral segments in Fig. 1 with thet t tc m 0

same labels (B, C, D, and H). The observed flux varies with time as indicated;
the scalings within square brackets are for radiative evolution (which is re-
stricted to ), and the other scalings are for adiabatic evolution. (b) Low-t ! t0

frequency case ( ).n ! n0

of , and cm. For a fully radiative evolution,23 28cm D 5 D/1028

the results are

13 23/2 24/7 4/7 213/14 22/7n 5 1.3 # 10 e E g n t Hz,c B 52 2 1 d

14 1/2 2 4/7 24/7 21/14 212/7n 5 1.2 # 10 e e E g n t Hz,m B e 52 2 1 d

3 1/2 8/7 28/7 5/14 22 23/7F 5 4.5 # 10 e E g n D t mJy, (12)n,max B 52 2 1 28 d

where we have scaled by a factor of 100: .g g { g /1000 2 0

The spectra presented in Figure 1 show and for typicaln nc m

parameters. In both the adiabatic and radiative cases, de-nc

creases with time slower than . Therefore, at sufficiently earlynm

times, , i.e., fast cooling, while at later times, , i.e.,n ! n n 1 nc m c m

slow cooling. The transition between the two occurs when
at :n 5 n tc m 0

2 2210e e E n days, adiabatic,B e 52 1t 5 (13)0 7/5 7/5 4/5 24/5 3/5{4.6e e E g n days, radiative.B e 52 2 1

At , the spectrum changes from fast cooling (Fig. 1a) tot 5 t0

slow cooling (Fig. 1b). In addition, if , the hydrodynamice r 1e

evolution changes at this stage from radiative to adiabatic (see
also Mészáros, Rees, & Wijers 1997). If , the evolutione K 1e

would have been adiabatic throughout. If during the fast-cool-
ing phase ( ) is somewhat less than unity, then only at ! t e0 e

fraction of the shock energy is lost to radiation. The scalings
will be intermediate between the two limits of fully radiative
and fully adiabatic discussed here.

During radiative evolution, the shock’s energy decreases
with time. When a radiative shock switches to adiabatic evo-
lution at time , it is necessary to use the reduced energy,t 5 t0

, to calculate the subsequent adiabatic evolution. The finalEf,52

energy, , is related to the initial energy, , of the fireballE Ef,52 i,52

by

23/5 23/5 4/5 24/5 22/5E 5 0.022e e E g n . (14)f,52 B e i,52 2 1

Once we know how the break frequencies, and , and then nc m

peak flux, , vary with time, we can calculate the lightFn,max

curve. Consider a fixed frequency . It follows from15n 5 10 n15

equations (11) and (12) that there are two critical times, andtc

, when the break frequencies, and , cross the observedt n nm c m

frequency n:

26 23 21 22 227.3 # 10 e E n n days, adiabatic,B 52 1 15t 5c 27 221/4 22 2 213/4 27/2{2.7 # 10 e E g n n days, radiative,B 52 2 1 15

(15)

1/3 4/3 1/3 22/30.69e e E n days, adiabatic,B e 52 15t 5m 7/24 7/6 1/3 21/3 27/12 21/24{0.29e e E g n n days, radiative.B e 52 2 15 1

(16)

There are only two possible orderings of , , and , namely,t t tc m 0

and . We define the critical frequency,t 1 t 1 t t ! t ! t0 m c 0 m c

:n 5 n (t ) 5 n (t )0 c 0 m 0

11 25/2 21 21 23/21.8 # 10 e e E n Hz, adiabatic,B e 52 1n 50 12 219/10 22/5 24/5 4/5 211/10{8.5 # 10 e e E g n Hz, radiative.B e 52 2 1

(17)

When , the ordering applies, and we refer ton 1 n t 1 t 1 t0 0 m c

the corresponding light curve as the high-frequency light curve.
Similarly, when , we have , and we obtain then ! n t ! t ! t0 0 m c

low-frequency light curve.
Figure 2a depicts a typical high-frequency light curve. At

early times, the electrons cool fast and . Ignoringn ! n ! nc m

self-absorption, the situation corresponds to segment B in Fig-
ure 1, and the flux varies as . If the evolution1/3F ∼ F (n/n )n n,max c

is adiabatic, is constant and . In the radiative case,1/6F F ∼ tn,max n

and . Figure 2a also depicts the scalings23/7 21/3F ∼ t F ∼ tn,max n

in the other segments, which correspond to C, D, and H in
Figure 1, and can be derived in a similar fashion. Figure 2b
shows the low-frequency light curve, corresponding to .n ! n0

Here there are four phases in the light curve, corresponding to
segments B, F, G, and H. The time dependences of the flux
are also shown.

4. DISCUSSION

The main results of this Letter are summarized in Figures 1
and 2, along with the scalings given in equations (11)–(17).

It is well known that the flux at the peak of the synchrotron
spectrum is independent of time in the slow-cooling limit for
adiabatic hydrodynamic evolution (Katz 1994; Mészáros &
Rees 1997). We have shown in this Letter that the peak flux
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is constant even in the fast-cooling limit if the evolution is
adiabatic. The peak frequency varies as during fast21/2n ∝ tc

cooling compared with during slow cooling. This is23/2n ∝ tm

one way of distinguishing between the two cases. For a fully
radiative evolution, the peak flux decreases with time as

, and the peak’s position varies as (these23/7 22/7F ∝ t n ∝ tn,max c

results differ from those given in Katz & Piran 1997a or in
Mészáros, Rees, & Wijers 1997, who considered the flux at

instead of the peak flux, which is at ).n nm c

Even within the adiabatic case, we find that there are two
possible slopes for the decaying part of the light curve. Writing
the flux as , the two cases give and2bF ∼ t b 5 3p/4 2 3/4n

. If the physics of particle acceleration in rel-b 5 3p/4 2 1/2
ativistic shocks is universal in the sense that the power-law
index p of the electron distribution is always the same, and if
the evolution is adiabatic, then we expect always to observe
one of these two values of b, which differ by 1/4. Indeed, some
X-ray afterglows appear to decay with , while the op-b ù 1.4
tical and X-ray afterglows of GRB 970228 and GRB 970508
had (Yoshida et al. 1998; Sokolov et al. 1997). Theb ù 1.2
difference between the two values is consistent with 1/4. The
corresponding value of p is ∼2.6, which is a reasonable energy
index for shock acceleration. If future observations of gamma-
ray burst afterglows always find decays with either orb 5 1.4

, it will be a strong confirmation of the shock modelb 5 1.2
and the adiabatic assumption.

In addition to the decay of the light curve with time, we can
also consider the spectral index a, defined by . The2aF ∼ nn

two values of b given above for adiabatic evolution correspond
to and , respectively. Thus, the relationa 5 (p 2 1)/2 a 5 p/2
between b and a in an adiabatic fireball is either orb 5 3a/2

. Some previous studies (Mészáros & Reesb 5 3a/2 1 1/2
1997; Waxman 1997a) have considered the first possibility.
However, for the standard choice of parameters, namely, n ∼

(a standard interstellar medium), , and (rough231 cm e e 1 0.1e B

equipartition of energy between electrons and magnetic fields),
the second relation holds in both the optical and X-ray bands
during much of the decay. Indeed, this relation is more com-
patible with detailed observations of GRB 970508. In a radi-
ative evolution, the relation is . Future obser-b 5 (12a 2 2)/7
vations should be able to distinguish between the different
behaviors and determine the type of solution.

Finally, we note that in none of the cases considered does
the flux rise more steeply than (see, however, Katz & Piran1/2t
1997b). This is a potential problem since GRB 970508 dis-
played a sharp rise in the optical flux just before its peak at 2
days (Sokolov et al. 1997).
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